Computational Interpretations of Classical Linear Logic Computational Interpretations of Classical Linear Logic Paulo Oliva Queen Mary, University of London, UK ([email protected]) WoLLIC, Rio de Janeiro 4 July 2007 Computational Interpretations of Classical Linear Logic Outline 1 Introduction Functional Interpretations of IL Linear Logic 2 Functional Interpretation of LL Motivation: Games The Interpretation Relation to Interpretations of IL 3 Conclusions Characterisation Summary Computational Interpretations of Classical Linear Logic Introduction Outline 1 Introduction Functional Interpretations of IL Linear Logic 2 Functional Interpretation of LL Motivation: Games The Interpretation Relation to Interpretations of IL 3 Conclusions Characterisation Summary Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Proof Interpretations ( Syntax e.g. “blue car” ⇒ Semantics real blue cars ) Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Proof Interpretations ( Syntax e.g. “blue car” ( Syntax e.g. Java ⇒ ⇒ Semantics ) real blue cars Syntax Machine code ) Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Proof Interpretations ( Syntax e.g. “blue car” ( Syntax e.g. Java Proofs e.g. CL e.g. PA ⇒ ⇒ ⇒ Semantics ) real blue cars Syntax ) Machine code Proofs IL PRA Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Formula A ⇒ Set of functionals |A| Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Formula A Proof π ⇒ Set of functionals |A| ⇒ Functional fπ ∈ |A| Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Formula A ⇒ Set of functionals |A| Proof π ⇒ Functional fπ ∈ |A| S 1 `π A ⇒ S2 ` fπ ∈ |A| Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Formula A ∀x∃y(y > x) ⇒ Set of functionals |A| {f : f x > x} Proof π ⇒ Functional fπ ∈ |A| S 1 `π A ⇒ S2 ` fπ ∈ |A| Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Formula A ∀x∃y(y > x) Proof π ... S 1 `π A ⇒ Set of functionals |A| {f : f x > x} ⇒ Functional fπ ∈ |A| λx.x + 1 ⇒ S2 ` fπ ∈ |A| Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Dialectica Gödel 1958 Relative consistency of arithmetic Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Dialectica Gödel 1958 Relative consistency of arithmetic ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ PRAω ` ∃f (f ∈ ∅) Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Dialectica Gödel 1958 Relative consistency of arithmetic ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ PRAω ` ∃f (f ∈ ∅) Modified realizability Kreisel 1959 Independence results for IL Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Dialectica Gödel 1958 Relative consistency of arithmetic ( Falsity interpreted as empty set (| ⊥ | ≡ ∅) PA `⊥ ⇒ PRAω ` ∃f (f ∈ ∅) Modified realizability Kreisel 1959 Independence results for IL ( |P | set of non-computable functionals IL ` P ⇒ IL ` ∃f (f ∈ |P |) Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Gödel’s Dialectica interpretation Kreisel’s modified realizability Diller-Nahm interpretation Stein’s family of interpretations Monotone variants of the above (Kohlenbach) Bounded Dialectica interpretation (Ferreira/O.) Bounded modified realizability (Ferreira) ... Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Gödel’s Dialectica interpretation Kreisel’s modified realizability Diller-Nahm interpretation Stein’s family of interpretations Monotone variants of the above (Kohlenbach) Bounded Dialectica interpretation (Ferreira/O.) Bounded modified realizability (Ferreira) ... Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Gödel’s Dialectica interpretation Kreisel’s modified realizability Diller-Nahm interpretation Stein’s family of interpretations Monotone variants of the above (Kohlenbach) Bounded Dialectica interpretation (Ferreira/O.) Bounded modified realizability (Ferreira) ... Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Gödel’s Dialectica interpretation Kreisel’s modified realizability Diller-Nahm interpretation Stein’s family of interpretations Monotone variants of the above (Kohlenbach) Bounded Dialectica interpretation (Ferreira/O.) Bounded modified realizability (Ferreira) ... Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Functional Interpretations Gödel’s Dialectica interpretation Kreisel’s modified realizability Diller-Nahm interpretation Stein’s family of interpretations Monotone variants of the above (Kohlenbach) Bounded Dialectica interpretation (Ferreira/O.) Bounded modified realizability (Ferreira) ... Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Goal Understand different functional interpretations Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Goal Understand different functional interpretations Functional interpretation of a refinement of IL Computational Interpretations of Classical Linear Logic Introduction Functional Interpretations of IL Goal Understand different functional interpretations Functional interpretation of a refinement of IL Linear logic Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, A ` B ⇒ Γ, !A, !A ` B Γ, !A ` B Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, A ` B ⇒ Γ, !A, !A ` B Γ, !A ` B Refinement of intuitionistic implication A→B ≡ !A ( B Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic (Girard 1987) Explicit treatment of contraction Γ, A, A ` B Γ, A ` B ⇒ Γ, !A, !A ` B Γ, !A ` B Refinement of intuitionistic implication A→B ≡ !A ( B Refinement of logical connectives conjunction disjunction additive ∧ multiplicative ⊗ ∨ O Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Duality (A ∨ B)⊥ ≡ A⊥ ∧ B ⊥ (∃zA)⊥ ≡ ∀zA⊥ (A ∧ B)⊥ ≡ A⊥ ∨ B ⊥ (∀zA)⊥ ≡ ∃zA⊥ Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Duality (A ∨ B)⊥ ≡ A⊥ ∧ B ⊥ (∃zA)⊥ ≡ ∀zA⊥ (A ∧ B)⊥ ≡ A⊥ ∨ B ⊥ (∀zA)⊥ ≡ ∃zA⊥ (A O B)⊥ ≡ A⊥ ⊗ B ⊥ (?A)⊥ ≡ !(A⊥ ) (A ⊗ B)⊥ ≡ A⊥ O B ⊥ (!A)⊥ ≡ ?(A⊥ ) Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Duality (A ∨ B)⊥ ≡ A⊥ ∧ B ⊥ (∃zA)⊥ ≡ ∀zA⊥ (A ∧ B)⊥ ≡ A⊥ ∨ B ⊥ (∀zA)⊥ ≡ ∃zA⊥ (A O B)⊥ ≡ A⊥ ⊗ B ⊥ (?A)⊥ ≡ !(A⊥ ) (A ⊗ B)⊥ ≡ A⊥ O B ⊥ (!A)⊥ A ( B ≡ A⊥ O B AOB ≡ A⊥ ( B ≡ ?(A⊥ ) Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Structural Γ ` A ∆, A ` B (cut) Γ, ∆ ` B Γ, A ` B (⊥) Γ, B ⊥ ` A⊥ A`A (id) Γ`A (per) π{Γ} ` A Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Structural Γ ` A ∆, A ` B (cut) Γ, ∆ ` B Γ, A ` B (⊥) Γ, B ⊥ ` A⊥ A`A (id) Γ`A (per) π{Γ} ` A Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Connectives and Quantifiers Γ`A Γ`B Γ`A∧B Γ`A Γ`A∨B Γ`A ∆`B Γ, ∆ ` A ⊗ B Γ, A ` B Γ`A(B Γ`A Γ ` ∀zA Γ ` A[t/z] Γ ` ∃zA Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Connectives and Quantifiers Γ`A Γ`B Γ`A∧B Γ`A Γ`A∨B Γ`A ∆`B Γ, ∆ ` A ⊗ B Γ, A ` B Γ`A(B Γ`A Γ ` ∀zA Γ ` A[t/z] Γ ` ∃zA Computational Interpretations of Classical Linear Logic Introduction Linear Logic Linear Logic: Modalities Γ`B Γ, !A, !A ` B (con) (wkn) Γ, !A ` B Γ, !A ` B !Γ ` A (!) !Γ ` !A Γ`A (?) Γ ` ?A Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Outline 1 Introduction Functional Interpretations of IL Linear Logic 2 Functional Interpretation of LL Motivation: Games The Interpretation Relation to Interpretations of IL 3 Conclusions Characterisation Summary Mathematicians are happy with proof or counter-example Mathematicians are happy with proof or counter-example Mathematics is like a game, mathematicians are always winners because they play both roles Mathematicians are happy with proof or counter-example Mathematics is like a game, mathematicians are always winners because they play both roles View a mathematical statement as the description of a game ∀n ≥ 2 ∃x, y, z( 4 1 1 1 = + + ) n x y z Paul Erdös ∀n ≥ 2 ∃x, y, z( 4 1 1 1 = + + ) n x y z Paul Erdös f0 , f1 , f2 : N → N∗ n ∈ {2, . . .} ∀n ≥ 2 ∃x, y, z( 4 1 1 1 = + + ) n x y z Paul Erdös f0 , f1 , f2 : N → N∗ n ∈ {2, . . .} 4 1 1 1 = + + n f0 (n) f1 (n) f2 (n) Games: Formal Description Game G ≡ (D1 , D2 , R ⊆ D1 × D2 ) Games: Formal Description Game G ≡ (D1 , D2 , R ⊆ D1 × D2 ) Two players Eloise and Abelard Two domains of moves x ∈ D1 and y ∈ D2 Games: Formal Description Game G ≡ (D1 , D2 , R ⊆ D1 × D2 ) Two players Eloise and Abelard Two domains of moves x ∈ D1 and y ∈ D2 Adjudication of Winner Relation R(x, y) between players’ moves (usually |G|xy ) Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Games: Examples Domain 1 Domain 2 Adjudication x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Games: Examples Domain 1 Domain 2 Adjudication x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0, . . . , 5} y ∈ {0, . . . , 5} x + y is even Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Games: Examples Domain 1 Domain 2 Adjudication x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0, . . . , 5} y ∈ {0, . . . , 5} x∈N y∈N x + y is even x≥y Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Games: Examples Domain 1 Domain 2 Adjudication x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0, . . . , 5} y ∈ {0, . . . , 5} x + y is even x∈N y∈N x≥y f ∈N→N y∈N f (y) ≥ y Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Games: Examples Domain 1 Domain 2 Adjudication x ∈ {0, 1, 2} y ∈ {0, 1, 2} x + 1 = y mod 3 x ∈ {0, . . . , 5} y ∈ {0, . . . , 5} x + y is even x∈N y∈N x≥y f ∈N→N y∈N f (y) ≥ y fi ∈ N → N∗ n≥2 4 n = 1 f0 n + 1 f1 n + 1 f2 n Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Goal A is true (is provable) iff Eloise has winning move in game |A|xy Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Motivation: Games Symmetry Game A⊥ should be game A with roles reversed |A⊥ |xy ≡ ¬|A|yx |(A⊥ )⊥ |xy ≡ |A|xy Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Interpretation |A ⊗ B|x,v f,g :≡ |A|xfv and |B|vgx Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Interpretation |A ⊗ B|x,v f,g :≡ |A|xfv and |B|vgx x gx |A ( B|f,g x,w :≡ |A|f w implies |B|w Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Interpretation |A ⊗ B|x,v f,g :≡ |A|xfv and |B|vgx x gx |A ( B|f,g x,w :≡ |A|f w implies |B|w |∀zA(z)|fy,z :≡ |A(z)|fy z Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Interpretation |A ⊗ B|x,v f,g :≡ |A|xfv and |B|vgx x gx |A ( B|f,g x,w :≡ |A|f w implies |B|w |∀zA(z)|fy,z :≡ |A(z)|fy z |∃zA(z)|x,z f :≡ |A(z)|xfz Exponential Games One of the players plays first (break symmetry) Exponential Games One of the players plays first (break symmetry) The other player responds with (multiple copies of game) Exponential Games One of the players plays first (break symmetry) The other player responds with (multiple copies of game) (1) unlimited number of copies ( |!A|x :≡ ∀y|A|xy |?A|y :≡ ∃x|A|xy Exponential Games One of the players plays first (break symmetry) The other player responds with (multiple copies of game) (1) unlimited number of copies ( |!A|x :≡ ∀y|A|xy |?A|y :≡ ∃x|A|xy (2) finitely many copies ( |!A|x :≡ ∀y ∈ f x|A|xy |?A|y :≡ ∃x ∈ f y|A|xy Exponential Games One of the players plays first (break symmetry) The other player responds with (multiple copies of game) (1) unlimited number of copies ( |!A|x :≡ ∀y|A|xy |?A|y :≡ ∃x|A|xy (2) finitely many copies ( |!A|x :≡ ∀y ∈ f x|A|xy |?A|y :≡ ∃x ∈ f y|A|xy (3) no copying allowed (make single move) ( |!A|xf :≡ |A|xfx |?A|fy :≡ |A|fy y Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Soundness Theorem If Γ ` A is provable in linear logic then Eloise wins game Γ ( A Computational Interpretations of Classical Linear Logic Functional Interpretation of LL The Interpretation Soundness Theorem If Γ ` A is provable in linear logic then Eloise wins game Γ ( A , i.e. she has moves t, r such that for all v, y |Γ|vr(y) ` |A|t(v) y IL Q Q Q Q ? Q Q (·) Q Q Q ? LL Q Q s Q - G Modified realizability IL Q (Kreisel’1959) Q Q Q ? Q Q (·) Q Q Q Q Q s Q - ? LL (1) ∀y|A|xy G Diller-Nahm interpretation (Diller-Nahm’1974) Modified realizability IL Q (Kreisel’1959) Q Q Q ? Q Q (·) Q Q Q Q Q s Q - ? LL (1) ∀y|A|xy (2) ∀y ∈ f x |A|xy G Dialectica interpretation (Gödel’1958) Diller-Nahm interpretation (Diller-Nahm’1974) Modified realizability IL Q (Kreisel’1959) Q Q Q ? Q Q (·) Q Q Q Q Q s Q - ? LL (1) ∀y|A|xy (2) ∀y ∈ f x |A|xy (3) |A|xfx G Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Relation to Interpretations of IL Parametrised Interpretation ∗ ∗ Bounded quantifiers ∀xρ @ aρ A and ∃xρ @ aρ A (∀x @ a A)⊥ ≡ ∃x @ a A⊥ (∃x @ a A)⊥ ≡ ∀x @ a A⊥ Parametrised interpretation: |!A|xf :≡ ∀y @ f x |A|xy |?A|fy :≡ ∃x @ f y |A|xy Computational Interpretations of Classical Linear Logic Functional Interpretation of LL Relation to Interpretations of IL Parametrised Interpretation Γ`B Γ, !A ` B Γ, !A, !A ` B Γ, !A ` B cA : ρ∗ εA : ρ∗ × ρ∗ ,→ ρ∗ Γ`A Γ `?A ηA : ρ∗ !Γ ` A !Γ `!A µA : ρ → τ ∗ ,→ ρ∗ → τ ∗ ρ ,→ Computational Interpretations of Classical Linear Logic Conclusions Outline 1 Introduction Functional Interpretations of IL Linear Logic 2 Functional Interpretation of LL Motivation: Games The Interpretation Relation to Interpretations of IL 3 Conclusions Characterisation Summary Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation We have seen that if A is provable in LL then Eloise has a winning move Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation We have seen that if A is provable in LL then Eloise has a winning move What about the other way around? Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation We have seen that if A is provable in LL then Eloise has a winning move What about the other way around? For which extension of LL do we have the converse? Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) |A ⊗ B|x,v f,g :≡ |A|xfv ⊗ |B|vgx x gx |A ( B|f,g x,w :≡ |A|f w ( |B|w |∀zA(z)|fy,z :≡ |A(z)|fy z |∃zA(z)|x,z f :≡ |A(z)|xfz |!A|x :≡ !∀y|A|xy |?A|y :≡ ?∃x|A|xy Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y ∀w∃v|Γ|vw ` ∃x∀y|A|xy Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y axiom v ∀w∃v|Γ|w ` ∃x∀y|A|xy Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y axiom v ∀w∃v|Γ|w ` ∃x∀y|A|xy J J J J J ^ J ∃v∀w|Γ|vw ` ∀y∃x|A|xy Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y axiom v ∀w∃v|Γ|w ` ∃x∀y|A|xy J J J cut rule J J ^ J ∃v∀w|Γ|vw ` ∀y∃x|A|xy Computational Interpretations of Classical Linear Logic Conclusions Characterisation Characterisation (modified realizability) t[v] |Γ|vr[y] ` |A|y axiom v ∀w∃v|Γ|w ` ∃x∀y|A|xy J J J cut rule J J ^ J ∃v∀w|Γ|vw ` ∀y∃x|A|xy ? ` x x y |A|y Æ v v w |Γ|w Æ Computational Interpretations of Classical Linear Logic Conclusions Characterisation Simultaneous Quantifier Æ A0 (a0 , y0 ), . . . , An (an , yn ) x0 xn y0 A0 (x0 , y0 ), . . . , yn An (xn , yn ) ( ) Æ Æ yi may only appear free in the terms aj , for j 6= i Computational Interpretations of Classical Linear Logic Conclusions Characterisation Simultaneous Quantifier Æ A0 (a0 , y0 ), . . . , An (an , yn ) x0 xn y0 A0 (x0 , y0 ), . . . , yn An (xn , yn ) ( ) Æ Æ yi may only appear free in the terms aj , for j 6= i (x = y), (x 6= y) ( ) = y), xy (x 6= y) Æ Æ x y (x Æ New Principles f y,z A(f z, y, z) Æ Sequential choice ∀z yx A(x, y, z) ( Æ New Principles f y,z A(f z, y, z) Æ Æ Parallel choice x v y A(x) O w B(v) ( f,g y,w (A(f w) Æ Sequential choice ∀z yx A(x, y, z) ( O B(gy)) Æ Æ New Principles f y,z A(f z, y, z) Æ Æ Parallel choice x v y A(x) O w B(v) ( Æ Æ Trump advantage ! yx A ( ∃x!∀yA f,g y,w (A(f w) Æ Sequential choice ∀z yx A(x, y, z) ( O B(gy)) Æ New Principles f y,z A(f z, y, z) Æ Æ Parallel choice x v y A(x) O w B(v) ( f,g y,w (A(f w) Æ Sequential choice ∀z yx A(x, y, z) ( O B(gy)) Æ Æ Trump advantage ! yx A ( ∃x!∀yA Æ Theorem These are sufficient for deriving the equivalence between A and its interpretation yx |A|xy . Æ Computational Interpretations of Classical Linear Logic Conclusions Summary Summary Functional interpretations of linear logic Usual interpretations of IL derivable Interesting use of (simple) branching quantifier Characterisation using branching quantifier Sound extensions of linear logic
© Copyright 2026 Paperzz