Graphing Exercise 1. For the given function f . Find the domain of f . Find the x− and y− intercept(s) if possible. Find any horizontal, vertical, and slant asymptote(s). Determine the interval where f is increasing, the interval where f is decreasing. Find all critical numbers of f and classify them as local max, local min, or neither. Find the interval where f concaves up, and the interval where f concaves down. Find all inflection points. Use any other knowledge you have about f to draw the graph of f . a. f (x) = sin(2x) Ans: f is defined everywhere. x−intercepts where x = π n, n an integer. 2 y− intercept at (0, 1) No asymptote of any kind. f 0 (x) = 2 cos(2x), f 00 (x) = −4 sin(2x), π local maxima at x = + πn, n any integer. 4 3π local minima at x = + πn, n any integer. 4 3π 5π increasing on intervals + πn, + πn , n any integer. (231,211) 4 4 y 6 3π π + πn, + πn , n any integer. decreasing on intervals 4 4 5 π inflection points at x = n, n any integer. 2 4 π concave up at + πn, π + πn , n any integer. 2 3 π concave down at πn, + πn , n any integer. 2 2 1 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1 -2 Graphing... f(x) = sin(2x) domain = (-∞, ∞) 0.17s b. f (x) = x3 − x2 − 8x + 1 Ans: f is defined everywhere. y−intercept (0, 1) No asymptote of any kind. f 0 (x) = 3x2 − 2x − 8, f 00 (x) = 6x − 2 local maximum at x = − 4 3 local minimum at x = 2 4 increasing on −∞, − ∪ (2, ∞) 3 4 decreasing on − , 2 3 1 inflection point at x = 3 1 concave up on ,∞ 3 1 concave down on −∞, 3 (231,171) y 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9-8-7-6-5-4-3-2-1 o-1 x -21 2 3 4 5 6 7 8 9 1011121314151617181920 -3 -4 -5 -6 -7 -8 -9 -10 -11 Graphing... f(x) = x^3-x^2-8x+1 domain = (-∞, ∞) 0.12s c. f (x) = ex + 1 Ans: f is defined everywhere. No x− intercept. y−intercept (0, 2) f 0 (x) = ex , f 00 (x) = ex horizontal asymptote y = 1 No local max or min., always increasing. No inflection point, always concave up. (231,171) y 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9-8-7-6-5-4-3-2-1 o-1 x -21 2 3 4 5 6 7 8 9 1011121314151617181920 -3 -4 -5 -6 -7 -8 -9 -10 -11 Graphing... f(x) = e^x+1 domain = (-∞, ∞) 0.09s d. f (x) = x2 − 1 x+2 Ans: Domain of f : All real numbers except −2 x−intercept x = −1 and x = 1 y−intercept 0, − 12 x2 + 4x + 1 00 6 f (x) = , f (x) = (x + 2)2 (x + 2)3 0 vertical asymptote x = −2, slant asymptote y = x − 2 √ √ local max x = −2 − 3, local min x = −2 + 3 √ √ increasing −∞, −2 − 3 ∪ (−2 + 3, ∞) √ √ decreasing (−2 − 3, −2) ∪ (−2, −2 + 3) No inflection point but f changes concavity at the vertical asymptote x = −2. concave up (−2, ∞) concave down (−∞, −2) (231,164) y 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -1 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9-8-7-6-5-4-3-2-1o-2 12345678910 1112131415161718292021223242526272839303132x34 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 Graphing... f(x) = (x^2-1)/(x+2) domain = (-∞, ∞) 0.14s e. f (x) = ln(x − 1) Ans: x−intercept (2, 0). No y−intercept. f is defined only for x > 1. Vertical asymptote at x = 1. 1 1 f 0 (x) = , f 00 (x) = − x−1 (x − 1)2 No local max or min. Function always increasing. No inflection point. Function always concave down. (231,180) y 7 6 5 4 3 2 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8 9 10 x -2 -3 -4 -5 Graphing... f(x) = ln(x-1) domain = (0,∞) 0.05s f. f (x) = √ 3 x Ans: f always defined. x− and y− intercept (0, 0) 2 1 f 0 (x) = √ , f 00 (x) = − √ 3 3 2 3 x 9 x5 Critical number at x = 0, neither local max or min. Always increasing. Inflection point at x = 0. Concave up on (−∞, 0), concave down on (0, ∞) (231,180) y 7 6 5 4 3 2 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8 9 10 x -2 -3 -4 -5 Graphing... f(x) = x^(1/3) domain = (-∞, ∞) 0.12s g. f (x) = (x − 3)(x + 1)(x + 2) Ans: f defined everywhere. x− intercept x = −1, x = −2, x = 3 y− intercept (0, −6) f 0 (x) = 3x2 − 7, f 00 (x) = 6x s local max at x = − s local min at x = 7 3 7 3 s s s s 7 7 ∪ , ∞ increasing on −∞, − 3 3 7 decreasing on − , 3 7 3 inflection point at x = 0 Concave down on (−∞, 0) Concave up (0, ∞) (231,166) y 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9-8-7-6-5-4-3-2-1 o-1 x -21 2 3 4 5 6 7 8 9 1011121314151617181920 -3 -4 -5 -6 -7 -8 -9 -10 -11 Graphing... f(x) = (x-3)(x+1)(x+2) domain = (-∞, ∞) 0.09s h. f (x) = sin x + cos x Ans: f defined everywhere. x−intercept when x = 3π + πn, n an integer. 4 y−intercept (0, 1) f 0 (x) = cos x − sin x, f 00 (x) = − sin x − cos x π local maxima at x = + 2πn, n any integer. 4 5π local minima at x = + 2πn, n any integer. 4 9π 5π + 2πn, + 2πn , n any integer. increasing on 4 4 π 5π decreasing on + 2πn, + 2πn , n any integer. 4 4 3π inflection points at x = + πn, n any integer. 4 7π 3π + 2πn, + 2πn , n any integer. concave up on 4 4 7π 11π concave down on + 2πn, + 2πn , n any integer. 4 4 (231,181) y6 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 x -2 -3 Graphing... f(x) = sin(x)+cos(x) domain = (-∞, ∞) 0.11s i. f (x) = |x2 − 4| Ans: f defined everywhere. x− intercept at x = −2 and x = 2 y− intercept (0, 4) ( 2x −2x ( 2 −2 0 f (x) = f 00 (x) = if x < −2 or 2 < x if − 2 < x < 2 if x < −2 or 2 < x if − 2 < x < 2 local maximum at x = 0 local minima at x = −2 and x = 2 increasing on (−2, 0) ∪ (2, ∞) decreasing on (−∞, −2) ∪ (0, 2) inflection points at x = −2 and x = 2 concave up on (−∞, −2) ∪ (2, ∞) concave down on (−2, 2) (231,175) y 7 6 5 4 3 2 1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8 9 10 x -2 -3 -4 -5 Graphing... f(x) = abs(x^2-4) domain = (-∞, ∞) 0.09s j. f (x) = x2 x2 + 9 Ans: f defined everywhere. x− and y− intercept (0, 0) f 0 (x) = 18x 18(9 − 3x2 ) 00 , f (x) = (x2 + 9)2 (x2 + 9)3 Horizontal asymptote y = 1 local min at x = 0 increasing (0, ∞) decreasing (−∞, 0) √ √ inflection points at x = − 3 and x = 3 √ √ concave up − 3, 3 √ √ 3, ∞ concave down −∞, − 3 ∪ (231,194) y 4 3 2 1 -5 -4 -3 -2 -1 o 1 2 3 4 5x -1 -2 Graphing... f(x) = (x^2)/(x^2+9) domain = (-∞, ∞) 0.09s k. f (x) = √ x −1 x2 Ans: Domain of f = (−∞, −1) ∪ (1, ∞) No x− or y− intercept. 1 3x f 0 (x) = − 2 , f 00 (x) = 2 3/2 (x − 1) (x − 1)5/2 Vertical asymptotes at x = −1 and x = 1. Function is undefined on (−1, 1). Horizontal asymptotes y = −1 and y = 1 No critical number. Function is always decreasing inside its domain. No inflection point, but function changes concavity at the vertical asymptotes. Concave up on (1, ∞) Concave down on (−∞, −1) (231,178) y 5 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 x -2 -3 -4 Graphing... f(x) = (x)/(sqrt(x^2-1)) domain = (-∞, ∞) 0.12s √ l. f (x) = 1 − x2 x Ans: No y− intercept. x−intercept at x = −1 and x = 1 f 0 (x) = − x2 √ 1 2 − 3x2 00 , f (x) = x3 (1 − x2 )3/2 1 − x2 f is defined only on [−1, 0) ∪ (0, 1]. f has vertical asymptote at x = 0 No critical number. Function is always decreasing (in its domain). s 2 Inflection points at x = − and x = 3 s 2 ∪ 0, Concave up −1, − 3 s s 2 3 s 2 3 s 2 2 Concave down − ,0 ∪ ,1 3 3 (231,184) y 4 3 2 1 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6x -1 -2 -3 Graphing... f(x) = (sqrt(1-x^2))/(x) domain = (-∞, ∞) 0.08s m. f (x) = ln x x2 Ans: x− intercept (1, 0) No y− intercept. vertical asymptote at x = 0. Function is defined only for x > 0. Horizontal asymptote y = 0 1 − 2 ln x 00 −5 + 6 ln x , f (x) = x3 x4 √ local maximum at x = e √ increasing on 0, e √ decreasing on e, ∞ f 0 (x) = inflection point at x = e5/6 concave up e5/6 , ∞ concave down 0, e5/6 (214,103) y 1 -3 -2 -1 o 1 2 3 4 x -1 -2 -3 Graphing... f(x) = (ln(x))/(x^2) domain = (-∞, ∞) 0.09s n. f (x) = x + sin x Ans: f defined everywhere. y−intercept (0, 0) f 0 (x) = 1 + cos x, f 00 (x) = − sin x Critical numbers at x = π(2n + 1), n any integer. These numbers are neither max or min. All horizontal tangents. Function increasing on (π(2n + 1), π(2n + 3)), n any integer. Inflection points at x = πn, n any integer. Concave up on (π + 2πn, 2π(n + 1)), n any integer. Concave down on (2πn, π + 2πn), n any integer. (230,145) y 12 11 10 9 8 7 6 5 4 3 2 1 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9-8-7-6-5-4-3-2-1 o-1 x -21 2 3 4 5 6 7 8 9 1011121314151617181920 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 Graphing... f(x) = x+sin(x) domain = (-∞, ∞) 0.09s ex o. f (x) = x Ans: No x− or y− intercept. f defined everywhere except x = 0. Vertical asymptote at x = 0. Horizontal asymptote y = 0. local minimum at x = 1 increasing on (1, ∞) decreasing on (−∞, 0) ∪ (0, 1) No inflection point but function changes concavity at vertical asymptote x = 0 concave up (0, ∞) concave down (−∞, 0) (219,138) y 4 3 2 1 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8x -2 -3 -4 -5 Graphing... f(x) = (e^x)/(x) domain = (-∞,∞) 0.09s p. f (x) = √ x +1 x2 Ans: f defined everywhere. x− and y− intercept (0, 0) f 0 (x) = (x2 1 + 1)3/2 f 00 (x) = (x2 −3x + 1)5/2 Horizontal Asymptote: y = 1 (as x → ∞) and y = −1 (as x → −∞) Always increasing, no local max or min. Concave up on (−∞, 0), concave down (0, ∞). Inflection point at x = 0 (231,154) y 4 3 2 1 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1 -2 -3 -4 Graphing... f(x) = x/(sqrt(x^2+1)) domain = (-∞, ∞) 0.12s q. f (x) = x − 3x1/3 Ans: f defined everywhere. √ √ x−intercepts x = 0, x = −3 3, x = 3 3 y−intercept (0, 0) 2 f 00 (x) = x−5/3 3 Increasing on (−∞, −1) ∪ (1, ∞) f 0 (x) = 1 − x−2/3 Decreasing on (−1, 0) ∪ (0, 1) Local max at x = −1. Local min at x = 1 x = 0 is a critical number, neither max nor min. It is a vertical tangent. Concave up on (0, ∞) Concave down on (−∞, 0) Inflection Point at x = 0 (231,154) y 4 3 2 1 -6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1 -2 -3 -4 Graphing... f(x) = x-3x^(1/3) domain = (-∞, ∞) 0.1s r. f (x) = 1 (1 + ex )2 Ans: f defined everywhere. No x− or y− intercept. f 0 (x) = −2ex (1 + ex )3 f 00 (x) = −2ex (1 − 2ex ) (1 + ex )4 Horizontal asymptote at y = 0 (as x → ∞) and y = 1 (as x → −∞ ) Always decreasing. No local max or min. 1 1 Concave up on ln , ∞ Concave down on −∞, ln 2 2 1 Inflection Point at x = ln 2 (258,163) y 2 1 -3 -2 -1 o 1 2 x -1 -2 Graphing... f(x) = 1/(1+e^x)^2 domain = (-∞,∞) 0.12s s. f (x) = ln(x2 − 3x + 2) Ans: Domain of f : (−∞, 1) ∪ (2, ∞) y−intercept (0, ln 2) √ √ 3− 5 3+ 5 x−intercept at x = ,x= 2 2 −2x2 + 6x − 5 2x − 3 f 00 (x) = 2 f 0 (x) = 2 x − 3x + 2 (x − 3x + 2)2 Vertical asymptotes at x = 1 and x = 2 Increasing on (2, ∞) Decreasing on (−∞, 1) No local max or min. (242,208) Concave down on whole domain of (−∞, 1) ∪ (2, y ∞) 7 No inflection point. 6 5 4 3 2 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8 9 10 11 12 x13 -2 -3 -4 -5 -6 -7 -8 Graphing... f(x) = ln(x^2-3x+2) domain = (-∞, ∞) 0.11s t. f (x) = x ex2 Ans: f defined everywhere. x− and y−intercept (0, 0) 1 − 2x2 2x(2x2 − 3) 00 f (x) = ex2 ex2 Horizontal asymptote y = 0 √ ! √ √ √ ! ! 2 2 2 2 , Decreasing on −∞, − ∪ ,∞ Increasing on − 2 2 2 2 √ √ 2 2 Local max at x = . Local min at x = − . 2 2 f 0 (x) = s s s 3 3 3 Concave up on , ∞ ∪ − , 0 Concave down on −∞, − ∪ 0, 2 2 2 s 3 Inflection points at x = 0 and x = − and x = 2 (279,151) s s 3 2 3 2 y 1 -3 -2 -1 o 1 2 3 x -1 -2 -3 Graphing... f(x) = x/(e^(x^2)) domain = (-∞, ∞) 0.12s u. f (x) = x2 x −9 Ans: Domain of f is all ready numbers except x = −3 or x = 3 x− and y− intercept (0, 0) f 0 (x) = − x2 + 9 (x2 − 9)2 f 00 (x) = − 2x(x2 + 27) (x2 − 9)3 Horizontal asymptote y = 0 Vertical asymptote x = −3 and x = 3 Always decreasing within its domain No local max or local min. Concave up on (−3, 0) ∪ (3, ∞) Concave down on (−∞, −3) ∪ (0, 3) Inflection point at x = 0 (294,216) y 11 10 9 8 7 6 5 4 3 2 1 -16-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 o-11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16x17 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 Graphing... f(x) = x/(x^2-9) domain = (-∞, ∞) 0.11 v. f (x) = x2 1 −9 Ans: Domain of f : All real numbers except x = −3 or x = 3 No x− or y− intercept. f 0 (x) = −2x 2 (x − 9)2 f 00 (x) = 6(x2 + 3) (x2 − 9)3 Horizontal asymptote y = 0 Vertical asymptote x = −3 and x = 3 Increasing on (−∞, −3) ∪ (−3, 0) Decreasing on (0, 3) ∪ (3, ∞) Local max at x = 0 Concave up on (−∞, −3) ∪ (3, ∞) Concave down on (−3, 3) No inflection point. (277,161) y 5 4 3 2 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 o -1 1 2 3 4 5 6 7 8 9 10 x 11 -2 -3 -4 -5 -6 -7 -8 -9 Graphing... f(x) = 1/(x^2-9) domain = (-∞,∞) 0.12 w. f (x) = x2 x +9 Ans: f defined everywhere. x− and y− intercept (0, 0) f 0 (x) = −x2 + 9 (x2 + 9)2 f 00 (x) = 2x(x2 − 27) (x2 + 9)3 Horizontal asymptote y = 0 Increasing on (−3, 3) Decreasing on (−∞, −3) ∪ (3, ∞) Local min at x = −3. Local max at x = 3 √ √ Concave up on (−3 3, 0) ∪ (3 3, ∞) √ √ Concave down on (−∞, −3 3) ∪ (0, 3 3) √ √ Inflection points at x = 0, x = −3 3, and x = 3 3 (278,225) y5 4 3 2 1 -6 -5 -4 -3 -2 -1 o -1 -2 -3 -4 -5 Graphing... f(x) = x/(x^2+9) domain = (-∞,∞) 1 2 3 4 5 6 7 x. f (x) = x2 x+8 Ans: f defined everywhere except x = −8 x− and y− intercept (0, 0) f 0 (x) = 1 − 64 x(x + 16) = 2 (x + 8) (x + 8)2 f 00 (x) = 128 (x + 8)3 Vertical asymptote x = −8 Slant asymptote y = x − 8 Increasing on (−∞, −16) ∪ (0, ∞) Decreasing on (−16, −8) ∪ (−8, 0) Local min at x = 0. Local max at x = −16 Concave up on (−8, ∞) Concave down on (−∞, −8) No inflection point. (294,138) y 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 -1 -2 o -65 -60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 -3 5 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 Graphing... f(x) = x^2/(x+8) domain = (-∞, ∞) 10 15 20 25 30 35 40 45 50 55 60 65 70 y. f (x) = 1 1 − x2 Ans: f defined everywhere except x = −1 or x = 1 No x− or y− intercept. f 0 (x) = 2x (1 − x2 )2 f 00 (x) = 6x2 + 2 (1 − x2 )3 Horizontal asymptote y = 0 Vertical asymptote x = −1 and x = 1 Increasing on (0, 1) ∪ (1, ∞) Decreasing on (−∞, −1) ∪ (−1, 0) Local min at x = 0 Concave up on (−1, 1) Concave down on (−∞, −1) ∪ (1, ∞) No inflection point. (223,149) y 3 2 1 -5 o -1 -2 -3 -4 -5 -6 -7 -8 -9 Graphing... f(x) = 1/(1-x^2) domain = (-∞, ∞) 5 10 z. f (x) = x4 − 3x3 + 3x2 − x Ans: f defined everywhere. x− intercept at x = 0 and x = 1 y− intercept (0, 0) f 0 (x) = 4x3 − 9x2 + 6x − 1 = (x − 1)2 (4x − 1) Increasing on f 00 (x) = 12x2 − 18x + 6 = 6(2x − 1)(x − 1) 1 ,∞ 4 Decreasing on −∞, 1 4 1 4 Critical number at x = 1 is neither a max or min. It is a horizontal tangent. 1 Concave up on −∞, ∪ (1, ∞) 2 1 ,1 Concave down on 2 1 Inflection points at x = and x = 1 2 Local min at x = − y 2 1 o -1 x aa. f (x) = x + ln(x2 + 1) Ans: Domain of f is all real numbers. x− and y− intercept (0, 0) f 0 (x) = 1 + 2x (x + 1)2 = x2 + 1 x2 + 1 f 00 (x) = 2(1 − x2 ) (x2 + 1)2 No asymptote of any kind. Increasing on (−∞, −1) ∪ (−1, ∞) Critical number at x = −1 is neither max nor min. It is horizontal tangent. Concave up on (−1, 1) Concave down on (−∞, −1) ∪ (1, ∞) Inflection points at x = −1 and x = 1 (336,255) y 7 6 5 4 3 2 1 -5 o -1 -2 -3 -4 -5 -6 Graphing... f(x) = x+ln(x^2+1) domain = (-∞, ∞) 5
© Copyright 2026 Paperzz