Ideal Gas P v = RT P v̄ = R̄T R = cp − cv Cycle I Boundary Work–reversible process Z W = P dV 1 2 k = cp /cv Work–polytropic process (P V n = constant) P V −P V 2 2 1 1 , for n 6= 1 1−n 1 W2 = P1 V1 ln(V2 /V1 ), for n = 1 I δQ = δW Closed System–Control Mass Increase in Entropy Principle ∆Scm = S2 − S1 m(V22 − V12 ) + mg(Z2 − Z1 ) + 1 W2 Q = U − U + 1 2 2 1 2 Z 2 m(s2 − s1 ) ≥ 1 δQ = T 2 Z 1 ∆Ssurr = − δQ + 1 S2gen T 1 Q2 T0 ∆Snet = ∆Scm + ∆Ssurr ≥ 0 Open System–Control Volume X ṁi − X ṁe = e i Q̇cv − Ẇcv + X i dmcv dt ṁ = V̇ /v = VA/v X dEcv V2 V2 ṁi hi + i + gzi − ṁe he + e + gze = 2 2 dt e X X X Q̇cv X X X Q̇cv dScv ≥ ṁi si − ṁe se + = ṁi si − ṁe se + + Ṡ gen dt T T e e i i Gibbs Relations T ds = du + P dv = dh − v dP Internal Energy, Enthalpy, and Entropy Change–Ideal Gas Z 2 Z 2 u2 − u1 = cv dT, h2 − h1 = cp dT, 1 Z s2 − s1 = 1 2 1 P2 cp dT − R ln = T P1 Z 2 1 cv v2 P2 dT + R ln = s0T2 − s0T1 − R ln T v1 P1 Isentropic Process–Ideal Gas with constant specific heats T2 = T1 P2 P1 k − 1 k = v1 v2 k − 1 Shaft Work–reversible, neglect KE & PE Z e w=− v dP i ME 301 Shaft Work–reversible, polytropic w=− n (Pe ve − Pi vi ) n−1 DWM Closed System–Exergy and Irreversibility Combined first and second law 1 W2 = U1 − U2 − T0 (S1 − S2 ) + X j T0 Qj 1 − − T0 1 S2gen Tj Useful work u 1 W2 = 1 W2 − P0 (V2 − V1 ) = U1 − U2 − T0 (S1 − S2 ) + P0 (V1 − V2 ) + X j Exergy or nonflow availability per unit mass T0 − T0 1 S2gen Qj 1 − Tj Useful work φ = (u − u0 ) − T0 (s − s0 ) + P0 (v − v0 ) u 1 W2 = m(φ1 − φ2 ) + X j T0 Qj 1 − − T0 1 S2gen Tj Irreversibility 1 I2 = 1 W2rev − 1 W2 = 1 W2u,max − 1 W2u = T0 1 S2gen = T0 (S2 − S1 ) − X Qj j Tj Exergy balance Φ2 − Φ1 = m(φ2 − φ1 ) = − [1 W2 − P0 (V2 − V1 )] + X j T0 − T0 1 S2gen Qj 1 − Tj Control Volume–Exergy and Irreversibility Combined first and second law X X X Ve2 T0 V2i + gzi − T0 si − + gze − T0 se + ṁe he + Q̇j 1 − − T0 Ṡgen Ẇcv = ṁi hi + 2 2 Tj e j i Flow availability or exergy per unit mass ψ = (h + V2 /2 + gz − T0 s) − (h0 + gz0 − T0 s0 ). Reversible work X X X T0 rev Q̇j 1 − Ẇcv = ṁi ψi − ṁe ψe + Tj e i j Irreversibility " rev I˙cv = Ẇcv − Ẇcv = T0 Ṡgen = T0 X ṁe se − X e i ṁi si − X Q̇cv # T Exergy balance Ψ̇2 − Ψ̇1 = X e ME 301 ṁe ψe − X i ṁi ψi = −Ẇcv + X j T0 Q̇j 1 − − T0 Ṡgen Tj DWM ME 301 Notes Gas Mixtures Composition • Gravamatric analysis (mass basis) m = m1 + m2 + m3 + · · · = X mi i 1= or with ci ≡ mi /m, then P X mi m2 m3 m1 + + + ··· = m m m m i ci = 1. • Molar analysis (mole basis) n = n1 + n2 + n3 + · · · = X ni i 1= or with yi ≡ ni /n, then P X ni n2 n3 n1 + + + ··· = n n n n i yi = 1. • Molecular weight Mi = mi ni m = M= n P X n i Mi = yi Mi n • Conversion mole basis → mass basis ci = mi n i Mi ni Mi /n yi M i =P =P =P m nj M j nj Mj /n yj Mj mass basis → mole basis yi = ni mi /Mi mi /(Mi m) ci /Mi =P =P =P n mj /Mj mj (Mj m) cj /Mj Ideal Gas Relationships P V = nR̄T = mRT X R̄ = 8.314 ni = n and X mi = m kJ ft lbf Btu = 1545 = 1.986 kmol K lb mol R lb mol R and R = R̄/M ME 301 Notes • Dalton Model - components behave as an ideal gas at T and V of mixture Pi = ni R̄T /V = mi Ri T /V ni R̄T /V ni Pi = = = yi P n nR̄T /V =⇒ Pi = yi P X ∴ Pi = X yi P = P X yi = P X yi = V • Amagat-Leduc Model - components behave as an ideal gas at T and P of mixture Vi = ni R̄T /P = mi Ri T /P ni R̄T /P ni Vi = = yi = V n nR̄T /P • Note that R = P =⇒ Vi = yi V X ∴ Vi = X yi V = V ci Ri Properties X U= X U = nū = c̄v ≡ ∂ ū ∂T = X yi H= c̄p ≡ ∂ h̄ ∂T X = ∂ ūi ∂T X = X yi p Hi ∂ h̄i ∂T X Si = or or yi c̄vi or X X yi h̄i cv ≡ Hi = ni h̄i or or ni s̄i =⇒ s̄ = X X yi c̄pi where X Si = ni s̄i ∂h ∂T or dPi dT X − yi R̄ T Pi or ds = Mi = ci v ∂ui ∂T ci ui = X X ci hi = X ci cvi v X mi hi =⇒ h = = X ci p ∂hi ∂T ci cpi p Si = mi si S = ms = X X X Hi = mi hi or and = H = mh = cp ≡ mi ui =⇒ u = ∂u ∂T yi s̄i ū h̄ s̄ c̄v c̄p = = = = u h s cv cp X or yi c̄pi Ui = mi ui U = mu = p X M= X yi ūi where S = ns̄ = ds̄i = X Ui = ni ūi v ni h̄i =⇒ h̄ = S= ds̄ = where ni ūi =⇒ ū = v H = nh̄ = Ui X mi si =⇒ s = dsi = X ci cpi X ci si dPi dT X − ci Ri T Pi ūi h̄i s¯i c̄v c̄p = = = i = i ui hi si cvi c pi
© Copyright 2026 Paperzz