Radian and Degree Measure Lesson 1.1 r s=r r If Arc length (s) = radius, then = 1 radian. For one complete revolution, = 2 /2 1.57 rad Quadrant II Quadrant I 2 1 3 3.14 rad Quadrant III 0, 2 6.35 rad 6 4 5 3/2 4.72 rad For positive angles Quadrant IV - 3/2 - 4.72 rad Quadrant II Quadrant I -5 -4 -6 - - - 3.14 rad -3 Quadrant III 0, - 2 -6.35 rad -1 -2 - /2 - 1.57 rad For negative angles Quadrant IV Ex 1: Estimate the angle to the nearest 1/2 radian. A. C. 2.5 rad - 1 rad B. 3.5 rad Ex 2: Determine the quadrant in which each angle lies. A. /5 B. 7/5 Quad I Quad III C. - /12 Quad IV D. - 3.5 Quad II 0 Acute Angles - angles that have a measure 0 < < /2 radians Obtuse Angles - angles that have a measure /2 < < radians Ex 3: Sketch each angle in standard position. A. 2/3 C. - 7/4 B. 5/4 D. 3 Coterminal - two angles that share the same terminal side. One positive angle + One negative angle Two positive angles Ex 4: Determine two co-terminal angles (one positive and one negative) for each angle. 6 A. /6 + 2 6 2 2 12 6 6 13 6 12 6 6 11 6 Ex 4 (cont’d): Determine two co-terminal angles (one positive and one negative) for each angle. B. 5/6 5 Positive: 2 6 5 12 6 6 17 6 5 2 Negative: 6 5 12 6 6 7 6 C. - 2/3 2 Positive: 2 3 2 6 3 3 2 Negative: 2 3 2 6 8 3 3 3 D. /12 Positive: Negative: 4 3 25 12 23 12 24 2 12 12 12 24 2 12 12 12 Complementary angles - two angles whose sum is /2 radians Supplementary angles - two angles whose sum is radians Ex 5: Find, if possible, the complement and supplement of each angle A. /3 Compl.: Suppl.: 3 3 x 2 x 3 2 x 2 3 6 6 x 3 3 3 3 6 2 3 Ex 5 (cont’d): Find, if possible, the complement and supplement of each angle B. 3/4 3 Compl.: 4 2 Complementary angle does not exist. 3 3 4 3 Suppl.: x x 4 4 4 4 4 Ex 5 (cont’d): Find, if possible, the complement and supplement of each angle C. 1 D. 2 Compl.: 1 x Suppl.: 2 x 2 Compl.: 1 1 x x 1 Homework: p.138 #2-24 even 2 Does not 2 exist. Suppl.: 2 x x 2
© Copyright 2026 Paperzz