BuildingCriminalCapitalvsSpecificDeterrence: TheEffectofIncarcerationLengthonRecidivism DavidS.Abrams December,2011 Abstract Inevaluatingtheefficacyofmostmoderncriminaljusticesystems,avitalrelationshipto understandisthatbetweenincarcerationlength(andlikelihood)andrecidivism.Because mostpreviousattemptstoestimatethisrelationshipsufferfromomittedvariablesbias, eventhesignisunknown.Inthispaper,Ibuildonpreviousworkidentifyingsubstantial heterogeneityinattorneyabilityinapublicdefenderofficewithrandomcaseassignment.I makeuseofthisvariationtoaddresstheomittedvariablesproblembyinstrumentingfor sentencelengthandincarcerationrateusingtherandomlyassignedpublicdefender.A negativerelationshipbetweenrecidivismandsentencelengthgoesawaywhen instrumentingforsentence.Similarly,apositiveandstatisticallysignificantrelationship betweenrecidivismandincarcerationbecomesinsignificantintheIVregressions. Howevertheregressionresultsdonotrevealthefullstory,astherelationshipsarerather nonlinear.Agraphicalexaminationrevealsanegativerelationshipbetweenrecidivismand sentencelengthandalsorecidivismandincarcerationrate,particularlyforshorter sentencesandlowerincarcerationrates.Inaddition,longersentencestendtoleadto moreseverecrimesuponoffenderrelease.Puttogether,thesefindingsprovidesome evidenceforamildspecificdeterrenteffect,butonethatrapidlydiminishes. JELClassifications:J24,K14,K42 University of Pennsylvania Law School and Wharton. The author would like to thank Stephanos Bibas, Shawn Bushway, Philip Cook, John MacDonald, John Pfaff, and members of the Penn Junior Faculty Economics Workshop for helpful comments and encouragement. Emily Turner provided extraordinary feedback and discussion on the project. This paper would not be possible without a prior co‐authored work with Albert Yoon, to whom special thanks is due. Excellent feedback was provided by members of the Penn, Texas, Georgetown, Michigan, Northwestern, Harvard and Berkeley law school faculties, the NBER 2010 SI Crime Workshop, and 2010 CELS participants. Nancy Wang and especially Kathy Qian provided outstanding research assistance. Email: [email protected] 1 I.Introduction ThegrowthinincarcerationrateintheUnitedStatesinthelastseveraldecadesof the20thcenturyandearly21stcenturyiswellknown.Muchhasbeenwrittenaboutthe efficacy,justice,andefficiencyofthisapproachtocrimefromamyriadofmethodological perspectives.1InthispaperIattempttounderstandonepieceoftheincarcerationpuzzle: theimpactofsentencelengthandlikelihoodofincarcerationonrecidivism,oftencalled specificdeterrence. Therelationshipbetweenincarcerationanddeterrenceisofinteresttoeconomists, asitisoneofthecomponentsindeterminingthewelfareeffectsofincarceration.2Theend goalistoanswerthequestion:Inwhatsituationsisincarcerationwelfare‐enhancing?This projectmaybethoughtofasalargecost‐benefitcalculus,inwhichthecostsincludethe capitalexpendituresonincarceration,thevalueoffreedom,andpotentialcriminogenic effectsofimprisonment.Benefitsfromincarcerationincludecrimereductiondueto incapacitation,generaldeterrence,andspecificdeterrence.3 Thispaperfocusesonthelastoftheserelationships,incarcerationandspecific deterrence.ThequestionsIexploreare“Whatistheimpactofamarginalincreasein incarcerationlengthonfuturerecidivism?”4and“whatistheimpactofamarginalincrease inanindividual’slikelihoodofincarcerationonfuturerecidivism?”Whilesimpletostate, 1 Cite several background papers here. I have investigated the costs and benefits of other aspects of the criminal justice system elsewhere. This includes Abrams and Rohlfs (2010) on optimal bail‐setting and the value of freedom; Abrams (2010) on general deterrence; Abrams, Bertrand and Mullainathan (2011) on defendant race and sentencing. 3 One may also include retribution and rehabilitation in the calculus, although these are much harder values to estimate. 4 I will sometimes refer to the derivative of recidivism with respect to sentence length as the magnitude of specific deterrence or simply specific deterrence. 2 2 thereissubstantialcomplexityinthesequestions,andasIshowinthispaper,inthe answers. Definingrecidivismisahardenoughproblemthatasubstantialamountofworkhas beendevotedjusttothistopic(Maltz,2001).Iengageinsomeofthecomplexityofthis probleminseveralways.Iuseseveralalternativedefinitionsofrecidivism,including binaryindicatorswithvaryingtimewindows,aswellascontinuousvariablesthatindicate theseverityoftherecidivatingcrime.Iapplyhazardmodelsandadditionallyexaminethe effectsonrecidivismofboththeintensiveandextensivemarginofincarceration. Perhapsmostconfoundingtomuchpreviousresearchisthefactthatthereare almostcertainlyunobservablevariablesthatarecorrelatedwithbothsentencelengthand recidivism.Itmaybethecasethatdefendantswhoarerelatively“bad”inunobservable waysaremorelikelytobothgetlongersentencesandrecommitoffenses.Underthis model,aninabilitytocontrolfor“badness”willyieldupward‐biasedestimatesoftheeffect ofsentencelengthonrecidivism.Alternatively,judgesmaybeinfluencedbythelikelihood thatoffenderswillbeapprehended,andthusindividualssentencedtolongerdurationsof incarcerationmayappeartohavelowerrecidivismratesinthecrosssection.Inprevious work(egSpohnandHolleran,2002;Gottfredson,1999)attemptsweremadetoaccountfor theseconcernsthroughsyntheticcontrolgroups,covariatebalancing,andothermatching techniquesbasedonobservables.Butthereissubstantialliteratureineconomicsand elsewherethatillustratesthedifficultiesinusingeventhemostsophisticatedmatching techniques(Lalonde,1986;DehejiaandWahba,1998;Dehejia,2000). 3 Anotherchallengeposedbytheresearchquestionsisthattherelationships investigatedarecomplicatedandmaynotbewell‐suitedtoasinglecoefficientasinanOLS orprobitregression.IestimatebothOLSandIVregressionsinthispaper,usingdifferent assumptionsaboutthesentencingdistribution.Dependingonthemodelforthesentencing distribution,Ifindeitheranegativerelationship,butmorefrequentlynosignificant relationshipbetweenrecidivismandsentencelength.Therelationshipbetweenthe variablesisnotalwaysmonotonicandIfurtherexploreitthroughnon‐parametric techniques. IntheIVregressions,Ifindastatisticallyinsignificantrelationshipbetween recidivismandsentencelength.Butthismasksanegativerelationshipforrelativelylow sentencelengthsandaflatrelationshipthereafter.Usingtheinstrumentstopredictany incarcerationalsoyieldsinsignificantcoefficients.Again,though,thereappearstobea decliningrelationshipforlowprobabilitiesofincarcerationwhichflattensoutas probabilityofincarcerationexceedsabout40%. Whentakingseverityoftherecidivatingcrimeintoaccount,increasedsentence lengthpredictsmoresevererecidivism.Takentogether,theseresultstellastoryofa moderatedeterrenteffectofincarcerationandsentencelength,butonewiththeperverse effectthatthefewerrecidivatingcrimestendtobemoresevere.Thesephenomenaare quiteconsistentifcriminalsinclinedtocommitlesssevereoffensesarejustthosewhoare moredeterred. Theremainderofthepaperisorganizedasfollows.InSectionII,Ireviewsomeof themorerecentcontributionsinthelongliteratureonincarcerationandrecidivism. 4 SectionIIIprovidesbackgroundinformationonthePublicDefender’sofficeinClarkCounty anddescribesthedataset.InSectionIV,Ipresenttheempiricalspecificationsandthe mainresults.SectionVconcludes. II.BackgroundonIncarcerationandRecidivism Understandinghowpunishmentaffectsrecidivismisessentialtoarationalcriminal justicepolicy.Soitshouldnotbesurprisingthatanumberofattemptshavebeenmadeto estimatethisrelationship.Alargefractionofthesestudiespotentiallysufferfromomitted variablesbias,soIfocusprimarilyonrecenteconomicstudiesthatattempttoexplicitly accountforit.Theydosowithavarietyofapproaches:matchingtechniques,regression discontinuity,instrumentalvariables,naturalexperiments,andevenafieldexperiment. Tworelativelyrecentreviews(Nagin,Cullen&Jonson2009;Bushway&Paternoster 2009)bothdiscussempiricalworkonrecidivismandspecificdeterrence(theformerisa muchmoreextensivesurvey).Theycoverarangeofstudiesandbothnotethelackof consensusonthetopic.Oneimportantreasonforthelackofconsensusisthatstudies oftenseektoanswerslightlydifferentquestions.Thereisvariationinthedefinitionof recidivism(re‐arrest,reincarceration,etc),whethertheintensiveorextensivemarginis thefocus,thesizeofthepotentialrecidivismwindow,theinitiallawenforcementaction whoseeffectisbeinginvestigated,andthegeographiclocale. ArecentstudybyNieuwbeerta,Blokland,Nagin(2009)usesamatchingtechnique toattempttodetecttheeffectoffirstincarcerationonrecidivismintheNetherlands.They 5 usepropensityscorematchingwithincriminaltrajectorygroupstosynthesizecontrol groupsinordertoestimatethecausaleffectofincarceration.Theauthorsfindthatthe experienceoffirstincarcerationsubstantiallyincreasesthelikelihoodoffuturecriminality (overtwiceashighforsomeindividuals).Thetwoprimarycritiquesofthestudyarethe standardcritiqueofmatchingapproaches(thepotentialthatomittedvariablesstilldrive results)andthegeneralizabilitygiventhesubstantiallydifferentcriminaljusticesystemin theNetherlands. MuchotherrecentworkaddressestheOVBproblemmoresquarely,usingIVor quasi‐experimentaltechniques.Kuziemko(2007)usestwoapproachestoestimatethe magnitudeofspecificdeterrenceusingdatafromGeorgiastateprisons.Anatural experimentthatledtothereleaseof901prisonersin1981providesthepotentialto compareprisonerswithsimilarsentencesandvaryinglengthsoftimeserved,wherethe variationisdeterminedexogenouslybywhentheirsentencesbegan.Theidentifying assumptionhingessharplyontherebeingnotimetrendorotherdirectrelationship betweendateofincarcerationandlikelihoodofrecidivism.Usingthisapproachand anothermakinguseofprisonerriskassessmentsshefindsasubstantialnegativeeffectof sentencelengthonrecidivism:a7%declineinrecidivismforeveryextramonthserved. BushwayandOwens(2010)takeabehavioralapproachtounderstandingthe impactofsentencelengthsoncrime.A2001lawchangeinMarylandprovidesthemwitha naturalexperimentwherebyanaturalreferenceforsentencelengthischanged,butnotthe actualsentences.Whilenotdirectlycomparabletootherstudiesexamined,theauthors findthatshortersentencesrelativetoareferencepointleadtohigherrecidivismrates. 6 Drago,Galbiati,andVertova(2009)examineanaturalexperimentinItalywhereall inmatesincarceratedin2006receiveduptoa3yearsentencecommutation.Whilethe experimentisdramaticandsubstantialdeterrenceisdetected,theinterpretationis difficult.Sinceprisonerswithlongersentencereductionsalsofacehigherpenaltiesupon rearrest,theneteffectmustbeacombinationofspecificandgeneraldeterrence.If,as someotherstudiessuggest,specificdeterrenceisnegative(lesscrimeafterlonger incarceration)thengeneraldeterrencemustdominateheresincedefendentswhoreceived greatercommutationshadlargerdropsinrecidivism.Anevenmorerecentpaperusinga Europeannaturalexperiment(MaurinandOuss2010)usesthe1996BastilleDaypardon inFrancetoestimatetheeffectofsentencereductionsonrecidivism.Theyfindthata greatersentencereductionviathepardonleadstoanincreaseinexpectedfuture recidivism. Hjalmarsson(2009)usesaregressiondiscontinuityapproachmadepossiblebythe WashingtonStatejuvenilesentencingguidelines.Shefindsthatjuvenileswhoare incarceratedhavealowerprobabilityofrecidivismthanthosethatreceivealocal(non‐ incarceration)sanction.ThisisincontrasttothestudybyNieuwbeerta,etaldiscussed abovewhichfoundapositiveeffectoffirstincarcerationonrecidivismintheNetherlands. Fourrecentpaperstakeaninstrumentalvariablesapproachtothequestionof specificdeterrence,threeofwhichuseverysimilarinstruments.Loeffler(2005)uses judge‐specificsentencingtendenciesandrandomcaseassignmenttoobtainexogenous variationinsentencelength.Thisstudy,usingdatafromEssexCounty,NJ,alsofocuseson 7 theextensivemarginandfindsthatincarcerationsubstantiallyreducesthelikelihoodof recidivism. AvirtuallyidenticalapproachtothatofLoefflerisadoptedbyBerubeandGreen (2007)andGreenandWinik(2010).TheGreenco‐authoredpapersbothmakeuseofdata fromtheDCsuperiorcourtandbothfindlittlerelationshipbetweensentencelengthand recidivism.Theyfindanegativeandstatisticallysignificantrelationshipbetween incarcerationlengthandrecidivismwhendoingordinaryleastsquaresregressions.But thesignbecomespositiveandtheeffectstatisticallyinsignificantwhen2SLSorLIML estimationisperformed(althoughthestandarderrorsarelarger). TheclosestapproachtothatusedinthispaperisfoundinTurner(2009).Usingthe ClarkCountydatasetusedhere,Turnerinstrumentsforsentencelengthusingrandom assignmenttoattorneyandheterogeneityinattorneyperformance.Shefindsamostly insignificantrelationshipbetweensentencelengthandrecidivism,althoughonethatvaries somewhatbytherecidivismwindow. Perhapsthemostsignificantcontributiontotheliteratureonspecificdeterrence comesfromalittle‐knownfieldexperimentperformedbytheCaliforniadepartmentinthe 1970s(BerecocheaandJaman1981).Theauthorsrandomizeda6‐monthearlyrelease amongfelonsservingtimein1970.Theycompareoneandtwoyearrecidivismrates betweenthetreatmentandcontrolgroupsandfindnosignificantdifference.However,a simplet‐testonthedataindicatesthattheearlyreleasegrouprecidivatedatasignificantly higherrate,supportinganegativerecidivism‐sentencelengthrelationship.Takentogether, 8 thesestudiesshowthatthereisnotconsistentevidenceontheeffectofimprisonmenton futurerecidivism. III.CriminalJusticeinClarkCounty,Nevada Thedataforthispapercomesfromtwosources,bothinNevada.5Thefirstdata sourceistheClarkCountyPublicDefender(CCPD)6andincludesdataondefendants representedbytheCCPD’sofficefrom2001–2008.Theinitialdatasetwascollectedin ordertoinvestigatetheimpactthatattorneyshaveoncaseoutcomes(Abrams&Yoon, 2007;Abrams&Yoon,2009).ThekeyfeatureoftheCCPDisthattheofficeusesrandom assignmentofcasestopublicdefendersforalmostallcases7.Inthispaper,Iexploitthis randomassignmentandthesubstantialvariationinpublicdefenderskilltoinstrumentfor sentencelength. TheCCPDisintheminorityofpublicdefenderofficesinthatitusesrandomcase assignmentandalsomakesuseofverticalrepresentation.Thisensuresthatasinglepublic defenderhandlesalmostallcasesfrombeginningtoend.Theofficeusesrandom assignmentpartlyasarecruitingtool,toenticeambitiousyoungattorneyswiththe prospectofhandlinginterestingcasesmuchmorequicklythaninotheroffices.Thesystem isalsoseenasbeingmoreequitablethanthehierarchicaloneusedinmostoffices.Forthis paper,whatisimportantisitsconsistentapplication.InAbramsandYoon(2007&2009) itwasempiricallyverifiedthatobservablecasecharacteristicsappeartoberandomly assignedacrosspublicdefenders. 5 The Nevada DOC data is still being collected. Las Vegas contains the vast majority of the population of Clark County. 7 There are several classes of exceptions, including public defenders in their first year, certain sex crimes, and capital murder cases. For further detail see Abrams and Yoon (2007). 6 9 TheseconddatasetcomesfromtheNevadaDepartmentofCorrections(NDOC)and containsdataonprisonersheldinNevadafromJanuary,2006–October,2009.The offenderinformationincludesdemographicinformationandmayincludebeginningand enddatesoftheprisonterm. Table1summarizestheCCPDdataset.Inadditiontotherandomlyassigneddata,a substantialnumberofadditionalobservationsareincludedinordertocalculaterecidivism rates.Theseobservations(whichbringtheinitialtotalto110,282observations)often containmissingdata,butaretakenasindicatorsofrecidivismaslongasthedefendantis identifiable.Besidestherecidivismrates,thedatainTable1refersonlytotherandomly assignedcases(n=17,471),whichincludeonlythefirstappearanceofanoffenderinthe dataset.Thisimpliesthatthemeansentencesusedwillbelowerthanthemeanofthefull dataset. InNevada,defendantsreceiveasentencerangefromthejudge,indicatinga minimumandmaximum.Inpractice,thevastmajorityofdefendantsareincarceratedfora periodoftimemuchclosertotheminimumsentencelengththanthemean.8Forthis reason,theprinciplemeasureofsentencelengthIuseistheminimum.Themean minimumsentencelengthis4.6months(includingzeroes),althoughabouthalfthe sentencesarezero.Theinstrument,whenconstructedusingOLSinthefirststage,hasan identicalmeanbyconstruction,butsubstantiallylowerstandarddeviation.Whenthefirst stageisatobitregressionthemeanofthepredicted(minimum)sentenceisabithigher thantheunderlyingmean.Theseareduetothenon‐normalityofthesentencing 8 In some cases, defendants may be paroled even before serving the minimum sentence length, since a 2007 legislative reform. See Chapter 525, Statutes of Nevada 2007. 10 distributionandinparticularitslongrighttail(Figure1).Thenon‐normalityistobe expectedinpartduetotruncationatzero.Onesimplepotentialfixwouldbetoperforma logtransformation,asthedistributionoflogsentenceismuchclosertonormal.However thisnecessarilydiscardsallofthezerosentences,whichmakeupthemajorityofthedata. Thiswouldinvalidatetheinstrumentasdatawouldbeselectedbasedontheoutcome.9For mostofthespecifications,IusethemaininstrumentbasedonPublicDefenderidentity,and thisdistributionmaybeseeninFigure2. Duetothelargenumberofzerosentences,conditioningonthesentence10being non‐zeroyieldsameanof9.3months,substantiallyhigherthantheunconditionalmean. Bycomparisonthemeanunconditionalsentence(theaveragebetweentheminimumand maximumsentencingrange)is8.5months.Only50%oftheoffendersinthedataset receiveasentencewithsomelengthofincarceration.11 Demographically,thedefendantsresemblethoseinmanyothercriminaljustice populations:heavilymaleandminority.80%ofthepopulationismale,with31%Black and22%Hispanic(theseclassificationsarenotmutuallyexclusive).Theaverageoffender ageinthedatasetisalmost33yearsold,butthereissubstantialvariation,ascanbeseen inFigure3. 9 One potential way to use this technique may be to find a subset of data for which all defendants receive some sentence, and thus taking the log does not discard any data based on the dependent variable. However, it is likely that the untransformed data will be close to normally distributed for just such a subset, making the transformation unnecessary. 10 From here forward I use sentence to indicate the minimum sentence, unless otherwise noted. 11 Probation (or suspended sentences) is counted as a zero sentence length in this data set. 11 Crimetypeisbrokendownintofourcategories,withpropertycrimescomprising thelargestcategory,containing40%oftheoffenders.12Drugcrimesmakeup24%ofthe data,andviolentcrimeanadditional16%.Sexcrimesaccountfor2%ofthedataand19% donotfallintoanyofthesecategories. Recidivismistheprimarydependentvariableandisdefinedhereasreappearance intheClarkCountyPublicDefenderdatasetwithinafixedamountoftimefromexpected releasefromincarceration.Thismeasureofrecidivismissomewhatintermediatebetween arrestandimprisonmentdata.Itindicatesthatprosecutionhasprogressedtothepoint whereaPDhasbeenassigned,butmanycaseswillnotresultinincarcerationoreven conviction.Theassumptionisthatthisisanunbiasedmeasureofcriminalactivity. Specifically,thenyearrecidivismdummyvariableis1iftheoffenderappearsinthedata withinthenyearperiodimmediatelyfollowingreleasefromincarcerationandzeroifthere isnoappearancewithinthiswindow.Thedateofreleasefromincarcerationisestimated asthecaserecorddataplustheminimumsentencelength.Inordertoavoidtruncation effects,recidivismdummiesarenotcalculatedforoffenderswhosesentencesendwithinn yearsoftheendofthedataset. Therecidivismratesestimatedinthispopulationareinlinewiththosefound elsewhere,althoughthepopulationsandmethodforcomputingrecidivismvary.Theone, two,andthreeyearrecidivismratesforthesampleare21.2%,34.9%and47.5%, respectively.Theseratesareabithigherthanthosefoundforfederalprisonersin(Chen& Shapiro,2007)of16.4%,27.5%and37.0%.AnotherpointofcomparisonistheUnited 12 The property crime category is equivalent to the Embezzlement, Fraud, and Theft (EFT) category used in other crime datasets. 12 StatesSentencingCommissionFY1992RecidivismSampleforwhichthetwoyear recidivismrateis22.1%(USSC2003).InthenextsectionIinvestigatetowhatextentthese recidivismratesareaffectedbysentencelength. IV.The(Complicated)RelationshipbetweenSentenceLengthandRecidivism Ifirstinvestigatetherelationshipbetweensentencelengthandrecidivismby runninganaïvecross‐sectionallinearprobabilitymodelasin(1): (1) Hererecidisadummyvariablethatis1ifdefendantdrecidivateswithinpyearsofrelease fromincarceration,zeroifthedefendantdoesnotrecidivateinthiswindow,andnot observedotherwise.Theindependentvariableofinterestissentencelengthtowhich defendantdwasinitiallysentenced.Anarrayofcaseanddefendant‐specificcontrols, includingjudge,casetype,defendantage,defendantrace,defendantsex,aswellasmonthly timedummiesareincludedasregressors.Thisisalsoestimatedusingaprobit specification,whereΦisthecumulativenormaldistribution. (2) Φ Themainproblemwiththisapproachisthatsentencesarenotrandomlyassigned todefendants.Infactitislikelythatjudgesdeterminesentencesbasedinparton characteristicsunobservabletotheeconometricianthatarealsocorrelatedwithlikelihood ofrecidivism.Thatis,E[εd|sentd]≠0andislikely>0.Themostlikelysuchcharacteristicis someunderlyingcriminalpropensity,whichisorthogonaltoallobservablecontrol variable,butdetectablebythejudgeandcorrelatedwithsentencelength.Criminal 13 propensitywillalsocertainlybepredictiveofrecidivism,andthusfailuretoaccountforit willresultinanupwardbiasedcoefficientonsentencelength. TherandomassignmentofPublicDefenderstocasesintheCCPDconstitutesa naturalexperimentinsentencelengthassignment.SincePD’svarysubstantiallyin individualability,andassignmentisrandom,defendantseffectivelyfaceapartiallottery oversentencelengths.Iusethislotterytoobtainanunbiasedestimateoftheeffectof sentencelengthonrecidivismusinganIVregression. Animportantmethodologicalchallengestillremains:howtobestmodelthe sentencingdistribution.Sentencingcanbemodeledasatwostageprocess,composedof thedecisionofwhethertoincarcerateandthenwhatmagnitudesentencetoassign,for thosethatarenon‐zero.Thistypeofprocessleadsnaturallytoconsideringsomesortof censoreddistribution,likethetobit.Anderson,KlingandStith(1999)useazero‐inflated negativebinomialmodeltocapturethefactthatsentencesusuallyarechosenasanintegral numberofmonths.Inresultsnotreportedinthepaper,thezero‐inflatednegativebinomial wasfoundtofitthesentencingdistributionsimilarlytothetobit,andsotheanalysiswas runusingthelatterforsimplicity. Forthefirststageregression,Iinstrumentforsentencelengthusingafullsetofpublic defenderdummyvariables(PDa)asin(3): (3) Thesecondstageusesthepredictedvaluesofsentencelengthtogetexogenousvariationin (4),relyingontheidentifyingassumptionthatE[νd|PDa]andE[εd|PDa]=0. 14 (4) Table2reportsresultsfromtheOLSregressionsaswellasthefirststagefromthe IVregression.Thefirstcolumnreportsresultsfromthebaselinearprobabilitymodel describedinequation1.Thereisastatisticallysignificantandnegativecoefficienton sentencelength,indicatingthatinthecross‐sectionanextramonthsentencelengthis associatedwithadecreasedrecidivismrateofabout0.7percentagepoints.Figure5a displaystherelationshipgraphically.Offthemean18%oneyearrecidivismratefoundin Table1,thisisareductionofaround3.3%.Ofcourse,thisislikelytosufferfromomitted variablesbias,asdiscussedbefore.BeforeIattempttoaddressthisconcern,Iexaminethe relationshipofthecontrolvariablesandrecidivismaswellastheotherspecifications. Thesecondspecificationusesaprobitmodelratherthanlinearprobability.The reportedmarginaleffectof‐.0079isstatisticallyindistinguishablefromthecoefficientin thelinearprobabilitymodel.Irunprobitversionsofalloftheothermodelsaswellandthe resultsareallconsistentwiththelinearprobabilitymodel,sotheyareomittedfromthe tables. Oneofthemostdifficultempiricalchallengeswithdeterminingrecidivismratesis howtoproperlycontrolforage.Itiswellknown(BushwayandPiehl2007)that criminalitydeclinesovertime.Infactonecanseetrendclearlyinthisdataset,asinFigure 4.Thispresentsamajorchallengetotheeconometrician.Evenifavalidinstrumentis foundforsentencelength,thetreatmentwillnecessarilyimplythatthosedefendantswho arerepresentedbyworseattorneys(andhencegetlongersentences)willbeolderon 15 averageattimeofrelease.Thisthenhasadirectnegativeimpactonthemagnitudeof recidivism. Thuswenowhavereasonswhythenaïveestimatemaybeupwardbiased(omitted variables)ordownwardbiased(thecriminalityageprofile,whichmayalsosimplybean omittedvariable).Toaddresstheformerconcern,IusetheIVspecificationdescribedin equations3and4above.Toaddressthelatter,Itakethreedifferentapproaches:First,I controlforageatoffense.SinceIdonotknowtheexactreleasedatefromincarcerationin theCCPDdataset,thisisatleastlikelytobestronglycorrelated.13SecondIusethe estimatedreleasedate,calculatedastheinitialtrialdateplustheminimumsentence. Finally,IusetheempiricalageprofileinFigure4tonormalizetherecidivismvariable. Thusanobservationwithrecidivismwheretheoffenderis50willreceivesubstantially moreweightthanwhentheoffenderis20. Inthecross‐section,addingtheagecontrolsdoincreasethecoefficientonsentence length,butonlyveryslightly(Table2,column3).Thepointestimatesaresomewhatlarger inabsolutemagnitudeforthe2and3yearmeasuresofrecidivism,butasafractionofbase recidivismratestheyareevensmaller,andlosestatisticalsignificanceforthe3yearrate. Forthe3yearmeasurethecross‐sectionalregressionindicatesanapproximate3.5% declineinrecidivismforamonthincreaseinminimumsentence(seeFigure6a).Sincethe sentencingdistributionisveryskewed,thestandarddeviationisnotnecessarilyvery informative.Stillusingthevalueof11.1monthstranslatestoasubstantial39%declinein recidivismassociatedwithaonestandarddeviationincreaseinsentencelength.An 13 In future work incorporating Nevada DOC data I will know the exact date of release. 16 examinationofthecontrolvariablesindicateslittleconsistencythatisstatistically significantacrossmostspecifications,exceptthatBlackandmaleoffenderstendtohave higherrecidivismrates. Table3presentsthemainregressionresultsfromtheIVstrategy,althoughasIwill discussshortly,linearregressiontellsaveryincompletestoryinthiscontext.Theresults fromthefirststage(column1)areunsurprising:maledefendantstendtoreceivelonger sentences.Weakinstrumentsmaybeaconcerninthisdataset.Itestforthembylooking atthechangeinR2whentheinstrumentsareaddedtotheregression(arelativelysmall1.5 percentagepoints).IalsorunanF‐testonthejointsignificanceoftheinstruments.The valueofaround6islessthantherule‐of‐thumbthresholdof10.However,thesetestsmay beinappropriategiventhenon‐normalityoftheerrors. ThemainreasonthatIVisimportantinthiscontextistoavoidtheunobserved variablesproblem.Iarguedabovethattheunobservedcriminalpropensityislikelytobias thecoefficientonsentenceupwardinthiscontext.Incolumn2ofTable3wefindevidence forthisargument,asthecoefficientonsentencelengthisalmosttwicethemagnitudeas thatintheOLSregression,wherethefirststageisalinearmodel(seealsoFigure5b).14 Adjustingfortherecidivism‐ageprofiledoeslittletochangethecoefficient.Becauseofthe potentialweakinstrumentsconcern,IalsoperformaLIMLIVregressionwhichshouldbe consistentevenwithweakinstruments.Thepointestimatefromthisspecificationis negative,butsmallerinmagnitudeandstatisticallyinsignificant.Whenlookingattwoor threeyearrecidivism(seeFigure6b),thecoefficientremainsnegativeandlargerin 14 One ramification of using a linear model for the first stage is that predicted sentence can be negative. This leads to the unusual aspect of Figures 5b and 6b having some negative‐valued sentences. The slope of the curve is unaffected by axis scale and this is the parameter of interest. 17 magnitudethanOLS,andstatisticallyindistinguishablefromzero.AsintheOLS regressions,offenderageissignificantlynegativelyrelatedtorecidivism.Blackandmale offendershavehigherrecidivismratesaswell,whichwasalsoseenintheOLS. Whenusingatobitmodelforthefirststage,theresultsdiffersomewhat,butare consistentwiththeOLSfirststageresults.Thecoefficientonsentencelengthismore positiveforeachofthethreetimewindowsexamined,butallarestillstatistically insignificant.AnexaminationofFigures5canddand6cprovidesthevisualanalogofthese regressions.WhiletheIVapproachiskeytogettinganunbiasedmeasureofspecific deterrence,thecoefficientsarenotmeaningfuliftherelationshipbetweendeterrenceis notlinear,ashasbeenassumedthusfar.Ratherthanattemptingamorecomplicated parametricorsemi‐parametricapproach,thefiguresprovidemoreinformativenon‐ parametricevidence. Figures5and6showacomplicatedrelationshipbetweenrecidivismandsentence length,onethatisnotwell‐capturedinamonotonicregressionasreportedinTables2and 3.Thereisagenerallynegativerelationshipbetweenrecidivismandsentencelength, althoughonethatdoesnotappearverylinear(whichmayexplaintheinsignificant regressionresults).Bothfigures5cand6cseemtoindicatethatwhilelongersentences mayreducerecidivismforshortsentencelengths,theeffectsrapidlypeterout. Inextexaminetheextensivemargin:theeffectofachangeinlikelihood,ratherthan length,ofincarcerationonfuturerecidivism.TheresultsarereportedinTable4and Figures7aand7b.Aswiththeintensivemargin,theOLSresultsappeartobeupward‐ 18 biased.Thisseemslikeanaturalramificationofjudgesbeingmorelikelytosentencethe unobservablycrime‐pronetoincarceration.Herethepointestimatesforalltimeranges arepositiveandstatisticallysignificantforOLS,butinsignificantforIV.Theremaystillbea substantialpositiveimpactofincarcerationonrecidivismofupto10percentagepoints, butthelargestandarderrorsintheIVspecificationsmakethisimpossibletodistinguish fromanulleffect. Tothispointallrecidivatingcrimeshavebeentreatedequally.Fromapolicy perspective,onemaywanttoweightrecidivatingcrimesaccordingtotheirseverity.In Table5andFigures8aand8b,Iperformthesameanalysis,butreplacethebinary recidivismdependentvariablewiththeexpectedsentencelengthfortherecidivating crime.Thisshouldbeareasonablemeasureoftheseverityoftherecidivatingcrime.The resultsshowthatlongersentencesleadtoanincreasedseverityofrecidivatingcrime.The regressioncoefficientsarenotstatisticallysignificant,althoughthestandarderrorsare quitelarge.ThevisualevidenceinFigures8aand8bseemtosupportthepositive relationship. Sincealmostallfeloniesareincludedinthedataset,itispossiblethatsomeofthe nullresultsareduetoheterogenouseffectsbycrimetype,crimeseverity,orother characteristics.SincetherandomassignmentofcasestoPD’sisessentialtothe identificationstrategy,itisnotpossibletoexaminesubsetsofthedatabyacharacteristic likecrimeseverity(asmeasuredbysentencelength)thatisanoutcomeofthetrialprocess. Butsincealltypesofcasesarerandomlyassigned,itispossibletoperformtheanalysisfor aparticulartypeofcrime.Unfortunately,theonlyhomogenouscrimecategoryforwhich 19 thereispotentiallysufficientdataisdrugcrimes.ThisanalysisisreportedinFigures9a, 9b,and9c.Theregressionresultsareomitted,butconveythesameinformationasthe figures:namelythatthereisnosignificantrelationshipbetweensentencelengthand recidivismfordrugcrimes.Thefiguresconveythelackofpowerinthisanalysis,soevena substantialcoefficientmightnotbedetectedbythisanalysis. V.Conclusion Seentogether,thedatatellsacomplicatedstory,butonethathelpstoexplainthe divergenceofpreviousfindings.Loeffler(2005)reportsthatofthehandfulofpapersthat havepreviouslytriedtoaddresstheomittedvariablesconcern,6reportednodeterrent effectand4reportedapositiveeffect.Dependingonwhichpartofthedistributionone focusesonandthemeasureofrecidivism,thispapercouldfindapositive,negative,orno effect. Onecontributionofthispaperistheabilitytoexaminetheeffectonrecidivismover alargerangeofthesentencingandincarcerationdistributions.Almostallpreviouswork hasfocusedeitheronanarrowsubset,orassumedahomogeneouseffect.Butan examinationofthefiguresproducedhereshowthatthisassumptionisincorrect.This paperfurthershowstheimportanceoftheIVapproachwhenthereisseriousconcern aboutomittedvariables. RunninganOLSorprobitofrecidivismonsentencelengthyieldsanegative coefficientforalldurations,andonethatissignificantfor1yearrecidivism.AnOLSor probitofrecidivismonprobabilityofincarcerationyieldsapositive,andstatistically significantcoefficient.Itisstrikingthatthesignofthecoefficientisoppositethaton 20 sentencelength.IntheabsenceofOVB,thiswouldmeanthatgoingtoprisonmakesone morelikelytorecidivate(perhapsevidenceforcriminalcapitalformation)butthelonger spentinprisonmakesonelesslikelytorecidivate(perhapsexplainedbyupdatingof prisonersastothelikelihoodofbeingsentencedtoprisonand/ortheunpleasantness thereof). Byinstrumentingforsentencelengthusingrandomlyassignedpublicdefenders,I amabletoobtainacausalestimateoftheimpactofsentencelengthandincarcerationon recidivism.TheseanalysesshowthattheOLSpointestimatesareupwardbiased,although theIVresultsarestatisticallyinsignificant.Anexaminationofthefigures5‐7showsthat thisislikelyduetothefactthattherelationshipisnonlinear.Whilelongersentencesmay reducerecidivismforshortsentencelengths,theeffectsrapidlydiminish. Theothermainresultsmakeuseoftheseverityofrecidivismasthedependent variable.HereIfindthatlongersentencesincreasetheexpectedseverityofthe recidivatingcrime.Thiscomplicatedrelationshiplendsatleastsomesupporttotheories ofspecificdeterrence.Thecomplexityofthesefindingsisimportanttounderstandbetter withaneyetowardmakingbetterpolicydecisions. 21 AppendixA:DataCleaningProcedure Ibeginwithadatasetofover140,000charge‐levelobservationsfromtheClark CountyPublicDefender’sOffice,butonlyafractionofthemaremadeuseofintheanalysis. ThisAppendixdescribestheprocedureemployedtoproducetheusabledataset. Approximately12,500observationsdonotcontainthenameoftheleadpublic defenderonthecase.Lackingtheinstrument,theseobservationsaredropped.Theinitial datasetcontainsmultiplechargespercase.Forsimplicity,onlythemostseverechargeis examinedforeachcase,whicheliminatesapproximately24,000observations.Firstyear publicdefendersdonotreceivecasesthroughtherandomassignmentprocessusedwith otherPD’s,anddroppingtheircaseseliminatesabout20,500observations. Thekeytotheidentificationstrategyinthispaperistherandomassignmentof casestopublicdefenders.Sometimesmultipleattorneysmayworkonacase,makingit difficulttoknowwhichonetoattributeacaseto.Thesecasesareeliminated,whichdrops about44,500observations.Certaincasetypesarenothandledbyrandomassignment.For example,probationviolationsareusuallyhandledbythesameattorneywhohandledthe underlyingcase.Eliminatingtheseobservationsreducesthenumberbyabout13,000. Finally,toensurethateachpublicdefenderhasaminimumof50totalcases,Ieliminate about1,500caseshandledbythosePD’swithfewerthantheminimum.Thisleavesatotal of28,803observationsforwhichthecasesarerandomlyassignedtopublicdefenders. ThesecasesrepresentXdefendants. 22 FigureA1a(AlternativeReleaseDates) 1 Year Recidivism Rate vs. Predicted Sentence .1 .15 Recidivism .2 .25 .3 .35 First Stage Tobit 0 2 4 6 Predicted Sentence 8 10 FigureA1b(AlternativeReleaseDates) 2 Year Recidivism Rate vs. Predicted Sentence .2 .3 Recidivism .4 .5 First Stage Tobit 0 2 4 Predicted Sentence 23 6 8 FigureA2a(AlternativeReleaseDates) 1 Year Recidivism Severity vs. Predicted Sentence 2 Recidivating Sentence 4 6 8 10 First Stage Tobit 0 2 4 6 Predicted Sentence 8 10 FigureA2b(AlternativeReleaseDates) 2 Year Recidivism Severity vs. Predicted Sentence 2 Recidivating Sentence 4 6 8 10 First Stage Tobit 0 2 4 Predicted Sentence 6 8 24 References Abrams,D.S.(2010).MoreCrime,LessTime:EstimatingtheDeterrentEffectofIncarceration usingSentencingEnhancements.WorkingPaper. Abrams,D.S.,M.Bertrand,andS.Mullainathan(2011).DoJudgesVaryinTheirTreatmentof Race?JournalofLegalStudies,forthcoming. Abrams,D.S.andC.Rohlfs(2010).OptimalBailandtheValueofFreedom:Evidencefrom thePhiladelphiaBailExperiment.EconomicInquiry,forthcoming. Abrams,D.S.,&Yoon,A.H.(2007).TheLuckoftheDraw:UsingRandomCaseAssignment toInvestigateAttorneyAbility.UniversityofChicagoLawReview,74(4),1145‐1177. Anderson,J.,Kling,J.,&Stith,K.(1999).MeasuringInterjudgeSentencingDisparity:Before andAftertheFederalSentencingGuidelines.TheJournalofLawandEconomics, 42(1),271‐307. AssemblyBill510Chapter525,StatutesofNevada2007 Berecochea,J.andJaman,D.(1981).TimeServedinPrisonandParoleOutcome:An ExperimentalStudy.Mimeo,ResearchDivision,CaliforniaDepartmentof Corrections. Berube,D.,andD.P.Green.2007.Theeffectsofsentencingonrecidivism:Resultsfroma naturalexperiment.WorkingPaper. Bushway,ShawnD,andEmilyGOwens.2010.“FramingPunishment:ANewLookat IncarcerationandDeterrence.” Bushway,Shawn,andAnnePiehl.2007.“TheInextricableLinkBetweenAgeandCriminal HistoryinSentencing.”Crime&Delinquency53:1:156‐183 Bushway,ShawnandRaymondPaternoster(2009).“TheImpactofPrisononCrime”in DoPrisonsMakeUsSafer?TheBenefitsandCostsofthePrisonBoom.(eds.Steven RaphaelandMichaelA.Stoll)RussellSageFoundation.pp.119‐150. Chen,M.K.,&Shapiro,J.M.(2007).DoHarsherPrisonConditionsReduceRecidivism?A Discontinuity‐basedApproach.AmericanLawandEconomicsReview,9(1),1‐29. Dehejia,R.(2000).WasThereaRiversideMiracle?AFrameworkforEvaluatingMulti‐Site Programs.NBERWorkingPaperSeries(Vol.3).Cambridge,MA. 25 Dehejia,R.H.,&Wahba,S.(1998).PropensityScoreMatchingMethodsforNon‐Experimental CausalStudies.NBERWorkingPaperSeries(pp.1‐22).Cambridge,MA. Drago,Francesco,RobertoGalbiati,andPietroVertova.2009.“TheDeterrentEffectsof Prison:EvidencefromaNaturalExperiment.”JournalofPoliticalEconomy117(2): 257‐280. Gottfredson,D.(1999).Effectsofjudges’sentencingdecisionsoncriminalcareers.Research inBrief,NationalInstituteofJustice,USDepartmentofJustice,Washington,DC. Green,DonaldP.,andDanielWinik.2010.“UsingRandomJudgeAssignmentstoEstimate theEffectsofIncarcerationandProbationonRecidivismAmongDrugOffenders.” Criminology48(2):357‐387. Hjalmarsson,Randi.2009.“JuvenileJails:APathtotheStraightandNarrowortoHardened Criminality?”TheJournalofLawandEconomics52(4):779‐809. Kling,J.R.(2004).IncarcerationLength,Employment,andEarnings.Employmentand Earnings,IndustrialRelationsSection(pp.1‐46). Kuziemko,Ilyana.2007.“GoingOffParole:HowtheEliminationofDiscretionaryPrison ReleaseAffectstheSocialCostofCrime.”NBERWorkingPaper. Lalonde,R.J.(1986).EvaluatingtheEconometricEvaluationsofTrainingProgramswith ExperimentalData.TheAmericanEconomicReview,76(4),604‐620. Langan,P.A.andD.J.Levine(2002),RecidivismofPrisonersReleasedin1984(Bureauof JusticeStatistics,Washington,DC). Loeffler,C.(2005).UsingInter‐JudgeSentencingDisparitytoEstimatetheEffectof ImprisonmentonCriminalRecidivism. Maltz,M.D.(2001).Recidivism. Maurin,Eric,andAurelieOuss.2009.“SentenceReductionsandRecidivism:Lessonsfrom theBastilleDayQuasiExperiment.”IZADiscussionPaper. Nagin,D.S.Cullen,F.T.,Jonson,C.L.(2009)“ImprisonmentandReoffending.”InM.Tonry, ed.,CrimeandJustice:AnAnnualReviewofResearch(vol.38).Chicago:Universityof ChicagoPress. Nieuwbeerta,P.,D.S.Nagin,andA.Blokland.(2009)“TheRelationshipbetweenFirst ImprisonmentandCriminalCareerDevelopment:AMatchedSamplesComparison,” JournalofQuantitativeCriminology:25:227–257 26 Spohn,C.,&Holleran,D.(2002).TheEffectofImprisonmentonRecidivismRatesofFelony Offenders:AFocusonDrugOffenders.Criminology,40(2),329–358.JohnWiley& Sons. Turner,Emily(2009).“UsingRandomCaseAssignmentandHeterogeneityinAttorney AbilitytoExaminetheRelationshipBetweenSentenceLengthandRecidivism“ Unpublisheddissertation,UniversityofPennsylvania. UnitedStatesSentencingCommission,FY1992RecidivismSample(U.S.Citizens),2003, weighteddata. UnitedStatesSentencingCommission.2003VariableCodebook:CriminalHistoryand RecidivismStudy,2001DataCollectionfromPSR.Washington,D.C. 27 Figure1 0 1000 Frequency 2000 3000 Sentence Length Distribution 0 10 20 30 Minimum Sentence Length (months) 40 50 Figure2 PD Identity as an Instrument for Sentence Length (Tobit) 0 2 Frequency 4 6 8 10 Variation in Defendant Sentence by PD 0 2 4 PD Tobit Sentencing Effect (months) 6 28 Figure3 0 500 Frequency 1000 1500 Offender Age Distribution 20 40 60 Age at Offense 80 100 Figure4–ToReplace .1 3 Year Recidivism Rate .2 .3 .4 .5 .6 3 Year Recidivism-Age Profile 20 40 60 Actual Sentence 29 80 100 Figure5a 1 Year Recidivism Rate vs Actual Sentence 0 .1 Recidivism .2 .3 .4 Cross Section 0 10 20 Actual Sentence 30 40 Figure5b 1 Year Recidivism Rate vs. Predicted Sentence .1 .15 Recidivism .2 .25 .3 First Stage OLS -4 -2 0 2 Predicted Sentence 30 4 6 Figure5c 1 Year Recidivism Rate vs. Predicted Sentence .1 .15 Recidivism .2 .25 .3 .35 First Stage Tobit 0 2 4 Predicted Sentence 6 8 Figure5d 1 Year Recidivism Rate vs. Predicted Sentence .1 .15 Recidivism .2 .25 .3 .35 First Stage Tobit, Renormalized Ages 0 2 4 Predicted Sentence 31 6 8 Figure6a 3 Year Recidivism Rate vs Actual Sentence .1 .2 Recidivism .3 .4 .5 .6 Cross Section 0 10 20 Actual Sentence 30 40 Figure6b 3 Year Recidivism Rate vs. Predicted Sentence .3 .4 Recidivism .5 .6 .7 First Stage OLS -2 0 2 Predicted Sentence 32 4 6 Figure6c 3 Year Recidivism Rate vs. Predicted Sentence .3 .4 Recidivism .5 .6 .7 .8 First Stage Tobit 0 2 4 Predicted Sentence 33 6 8 Figure7a 1 Year Recidivism Rate vs. Predicted Incarceration Rate .1 .15 Recidivism .2 .25 .3 First Stage Probit 0 .2 .4 .6 Predicted Incarceration Rate .8 Figure7b 2 Year Recidivism Rate vs. Predicted Incarceration Rate .2 .3 Recidivism .4 .5 First Stage Probit .2 .4 .6 Predicted Incarceration Rate 34 .8 Figure8a 1 Year Recidivism Severity vs. Predicted Sentence 2 Recidivating Sentence 4 6 8 10 First Stage Tobit 0 2 4 Predicted Sentence 6 8 Figure8b 3 Year Recidivism Severity vs. Predicted Sentence 2 Recidivating Sentence 4 6 8 10 First Stage Tobit 0 2 4 Predicted Sentence 35 6 8 Figure9a–DrugPossession 1 Year Recidivism Rate vs. Predicted Sentence 0 .1 Recidivism .2 .3 .4 .5 First Stage Tobit 0 2 4 6 Predicted Sentence 8 10 Figure9b–DrugPossession 2 Year Recidivism Rate vs. Predicted Sentence 0 .2 Recidivism .4 .6 First Stage Tobit 0 2 4 6 Predicted Sentence 36 8 10 Figure9c–DrugPossession 3 Year Recidivism Rate vs. Predicted Sentence 0 .2 Recidivism .4 .6 .8 First Stage Tobit 0 5 10 Predicted Sentence 37 15 Table1 SummaryStatistics Variable Mean Median Std.Dev. Observations SentencingCharacteristics MinimumSentence(months) PredictedMinSentence(tobit) PredictedMinSentence(ols) MeanSentence(months) MinSentence(non‐zero) Incarceration 4.59 5.7 4.59 8.5 9.3 0.50 0 5.7 4.8 0 6.0 0 11.1 2.9 2.7 22.3 14.3 0.50 17471 17310 17471 17471 8647 17471 OffenderCharacteristics Ageatoffense Black Hispanic Male 32.6 0.31 0.22 0.80 30.9 10.4 17471 17471 17471 17471 OffenseCharacteristics Drugs ViolentCrime SexCrime PropertyCrime(EFT) Other 0.24 0.16 0.02 0.40 0.19 17471 17471 17471 17471 17471 0.212 0.349 0.475 4.15 13725 10243 7295 6113 RecidivismRates Withinoneyear Withintwoyears Withinthreeyears RecidivatingSentence 0.00 9.60 Summary Statisticsforoffender‐level dataobtained fromthe ClarkCountyPublic Defender forthe years 2001 ‐ 2008.Offensecharacteristics reported forfirstoffense.Data includes81Public Defenders, eachwithaminimumof50caseseach,and50judges. Recidivismisdefined as reappearance asaPublicDefender clientwithinthe indicated timeafter release fromincarceration (ifsentenced toincarceration). 38 Table2 OLSregressionresults 1YearRecidivism VARIABLES Sentence Sex(1=male) BlackOffender HispanicOffender DrugOffense ViolentOffense EFT SexOffense Constant Observations AdjustedR‐squared **p<0.01,*p<0.05 (1) (2) Probit Noage control Marginal Effects ‐0.00706 (0.000580)** 0.0650 (0.00837)** 0.0365 (0.00828)** ‐0.0199 (0.00884)* 0.0138 (0.0140) ‐0.0283 (0.0148) 0.0227 (0.0134) ‐0.0227 (0.0269) 0.241 (0.0484)** ‐0.00785 (0.000736)** 0.0667 (0.00805)** 0.0360 (0.00821)** ‐0.0267 (0.00892)** ‐0.0501 (0.00930)** ‐0.0869 (0.00969)** ‐0.0380 (0.00914)** ‐0.0785 (0.0205)** 13573 0.030 13725 2YearRecidivism 3YearRecidivism (3) (4) (5) (6) (7) Recidivism‐ AgeProfile Adjustment Noage control Recidivism‐ AgeProfile Adjustment Noage control Recidivism‐ AgeProfile Adjustment ‐0.00157 (0.00132) 0.0935 (0.0147)** 0.0790 (0.0132)** ‐0.0137 (0.0156) 0.00630 (0.0238) ‐0.0582 (0.0257)* 0.00477 (0.0223) ‐0.0136 (0.0464) 0.533 (0.0504)** ‐0.00168 (0.00134) 0.0952 (0.0149)** 0.0799 (0.0134)** ‐0.0243 (0.0156) 0.0126 (0.0243) ‐0.0632 (0.0259)* ‐0.000181 (0.0225) 0.0142 (0.0502) 0.518 (0.0500)** 7156 0.079 7146 0.074 ‐0.00696 ‐0.00533 ‐0.00537 (0.000591)** (0.000899)** (0.000924)** 0.0648 0.0976 0.0992 (0.00848)** (0.0116)** (0.0118)** 0.0354 0.0635 0.0622 (0.00841)** (0.0109)** (0.0111)** ‐0.0263 ‐0.0181 ‐0.0292 (0.00882)** (0.0123) (0.0123)* 0.0171 0.0252 0.0307 (0.0142) (0.0188) (0.0191) ‐0.0299 ‐0.0253 ‐0.0281 (0.0148)* (0.0201) (0.0203) 0.0212 0.0374 0.0342 (0.0135) (0.0179)* (0.0180) ‐0.0100 ‐0.0574 ‐0.0419 (0.0288) (0.0366) (0.0393) 0.223 0.388 0.370 (0.0462)** (0.0524)** (0.0512)** 13557 0.028 10101 0.049 10087 0.045 Robuststandarderrorsinparentheses Note:Offender‐leveldataobtainedfromtheClarkCountyPublicDefenderOfficefortheyears 2001‐2008.Monthlytimedummies includedtoallow fortimevariationinoverallcrimerates.Sentenceistheminimumsentencemeasured inmonths,EFT= embezzlement,fraud,theft.Dataincludes81PublicDefenders,eachwithaminimumof50casesand50 judges.Recidivismis definedasreappearanceasaPublicDefenderclientwithintheindicatedtimeafterreleasefromincarceration (ifsentencedto incareceration). 39 Table3 IVregressionresults 1YearRecidivism FirstStageOLS VARIABLES (1) FirstStage Sentence Length Sentence Sex(1=male) BlackOffender HispanicOffender DrugOffense ViolentOffense EFT SexOffense AgeatOffense Constant Observations AdjustedR‐squared 1.081 (0.123)** 0.0516 (0.110) ‐0.0235 (0.106) 0.896 (0.187)** 1.397 (0.233)** 1.631 (0.171)** 1.207 (0.361)** 0.000453 (0.00425) ‐0.884 (0.386)* 13573 0.165 (2) Noage control FirstStage Tobit 2YearRecidivism IVLIML 3YearRecidivism FirstStage FirstStage FirstStage FirstStage OLS OLS Tobit Tobit (3) (4) (5) (6) Recidivism‐ Recidivism‐Age Recidivism‐ AgeProfile Profile Controlfor AgeProfile Adjustment Adjustment ageatoffense Adjustment (7) Recidivism‐ AgeProfile Adjustment (8) Recidivism‐ AgeProfile Adjustment (9) Recidivism‐ AgeProfile Adjustment ‐0.0148 (0.00519)** 0.0735 (0.0101)** 0.0369 (0.00831)** ‐0.0200 (0.00888)* 0.0199 (0.0145) ‐0.0169 (0.0165) 0.0357 (0.0158)* ‐0.0135 (0.0276) ‐0.0157 (0.00525)** 0.0744 (0.0103)** 0.0359 (0.00844)** ‐0.0265 (0.00886)** 0.0240 (0.0147) ‐0.0171 (0.0166) 0.0359 (0.0159)* 0.000429 (0.0294) ‐0.00478 (0.00425) 0.0624 (0.00965)** 0.0355 (0.00844)** ‐0.0261 (0.00887)** 0.0209 (0.0164) ‐0.0288 (0.0177) 0.0223 (0.0177) ‐0.00687 (0.0307) ‐0.00715 (0.00434) 0.0695 (0.00873)** 0.0338 (0.00744)** ‐0.0328 (0.0105)** ‐0.0530 (0.0149)** ‐0.0949 (0.0157)** ‐0.0437 (0.0167)** ‐0.0807 (0.0238)** ‐0.0126 (0.00741) 0.107 (0.0142)** 0.0622 (0.0111)** ‐0.0302 (0.0124)* 0.0392 (0.0210) ‐0.0160 (0.0237) 0.0468 (0.0220)* ‐0.0369 (0.0397) 0.00123 (0.00544) 0.0923 (0.0128)** 0.0622 (0.0111)** ‐0.0285 (0.0123)* 0.0217 (0.0228) ‐0.0402 (0.0246) 0.0215 (0.0235) ‐0.0481 (0.0411) ‐0.00757 (0.0103) 0.1000 (0.0171)** 0.0803 (0.0134)** ‐0.0246 (0.0156) 0.0214 (0.0288) ‐0.0533 (0.0311) 0.0113 (0.0302) 0.0202 (0.0512) 0.00514 (0.00824) 0.0901 (0.0161)** 0.0791 (0.0134)** ‐0.0251 (0.0157) ‐0.00385 (0.0330) ‐0.0796 (0.0337)* ‐0.0181 (0.0325) 0.00150 (0.0532) 0.233 (0.0485)** 0.214 (0.0463)** 0.230 (0.0461)** 0.271 (0.0174)** 0.363 (0.0514)** 0.375 (0.0510)** 0.514 (0.0504)** 0.519 (0.0500)** 13573 0.024 13557 0.022 13557 0.021 13725 0.022 10087 0.043 10087 0.042 7146 0.074 7146 0.074 **p<0.01,*p<0.05 Robuststandarderrorsinparentheses Note:Offender‐leveldataobtainedfromtheClarkCountyPublicDefenderOfficefortheyears 2001‐2008.Monthlytimedummiesincludedtoallow fortime variationinoverallcrimerates.Sentenceistheminimumsentencemeasured inmonths,EFT=embezzlement,fraud,theft.Dataincludes78PublicDefenders, eachwithaminimumof50casesand51judges.RecidivismisdefinedasreappearanceasaPublicDefenderclientwithintheindicatedtimeafterreleasefrom incarceration(ifsentencedtoincareceration). 40 Table4 RecidivismandIncarceration 1YearRecidivism VARIABLES Incarceration Sex(1=male) BlackOffender HispanicOffender DrugOffense ViolentOffense EFT SexOffense AgeatRelease Constant Observations AdjustedR‐squared **p<0.01,*p<0.05 (1) OLS 0.0335 (0.00774)** 0.0543 (0.00836)** 0.0333 (0.00832)** ‐0.0272 (0.00901)** 0.00782 (0.0140) ‐0.0409 (0.0147)** 0.00654 (0.0134) ‐0.0254 (0.0270) ‐0.00159 (0.000340)** 0.296 (0.0490)** 13573 0.026 (2) IV 2YearRecidivism (3) OLS 0.00396 0.114 (0.0437) (0.0106)** 0.0574 0.0807 (0.00954)** (0.0115)** 0.0345 0.0565 (0.00839)** (0.0108)** ‐0.0257 ‐0.0325 (0.00907)** (0.0124)** 0.00995 0.00777 (0.0186) (0.0189) ‐0.0393 ‐0.0443 (0.0188)* (0.0201)* 0.00914 0.0115 (0.0191) (0.0179) ‐0.0223 ‐0.0510 (0.0309) (0.0367) ‐0.00157 ‐0.00288 (0.000340)** (0.000457)** 0.290 (0.0498)** 13540 0.025 0.487 (0.0535)** 10103 0.060 (4) IV 0.0148 (0.0521) 0.0910 (0.0126)** 0.0591 (0.0109)** ‐0.0289 (0.0126)* 0.0161 (0.0259) ‐0.0393 (0.0261) 0.0192 (0.0257) ‐0.0500 (0.0407) ‐0.00282 (0.000460)** 0.467 (0.0546)** 10059 0.050 3YearRecidivism (5) OLS (6) IV 0.159 0.0889 (0.0131)** (0.0804) 0.0777 0.0861 (0.0146)** (0.0162)** 0.0706 0.0734 (0.0130)** (0.0134)** ‐0.0311 ‐0.0288 (0.0156)* (0.0162) ‐0.0257 ‐0.0358 (0.0238) (0.0436) ‐0.0799 ‐0.0959 (0.0254)** (0.0403)* ‐0.0284 ‐0.0405 (0.0222) (0.0404) ‐0.0164 ‐0.0337 (0.0466) (0.0563) ‐0.00303 ‐0.00294 (0.000575)** (0.000588)** 0.633 (0.0532)** 7156 0.100 0.608 (0.0545)** 7110 0.082 Robuststandarderrorsinparentheses Note:Thistablereportsthe resultsofOLSand2SLS regressionsorrecidivism onabinaryincarcerationindicator. Offender‐leveldataobtainedfromtheClarkCountyPublicDefenderOfficefortheyears 2001‐2008.Monthlytime dummiesincludedtoallow fortimevariation inoverall crimerates. EFT=embezzlement,fraud,theft.Dataincludes 81PublicDefenders,eachwithaminimumof50casesand50judges.Atobitregressionisusedforthefirststageof theIVregressionsreportedinthistable. 41 Table5 RecidivismSeverity VARIABLES Sentence Sex(1=male) BlackOffender HispanicOffender DrugOffense ViolentOffense EFT SexOffense AgeatRelease Constant Observations AdjustedR‐squared **p<0.01,*p<0.05 1Year Recidivism 2Year Recidivism 3Year Recidivism 0.195 (0.159) 1.542 (0.296)** ‐0.292 (0.293) ‐0.673 (0.347) ‐0.736 (0.526) 0.443 (0.746) ‐0.357 (0.563) ‐1.874 (0.914)* ‐0.000828 (0.0138) 2.461 (1.261) 0.231 (0.175) 1.538 (0.311)** ‐0.168 (0.316) ‐0.560 (0.376) ‐1.008 (0.626) 0.363 (0.803) ‐0.519 (0.620) ‐1.639 (1.104) 0.000826 (0.0149) 2.404 (1.269) 0.0726 (0.218) 1.460 (0.357)** ‐0.385 (0.352) ‐0.526 (0.420) ‐1.027 (0.766) 0.775 (0.912) ‐0.0444 (0.764) ‐1.299 (1.230) 0.00533 (0.0168) 2.686 (1.290)* 5707 0.011 4950 0.011 4064 0.082 Robuststandarderrorsinparentheses Note:Thistablereports2SLS regressionswhere theoutcomeistheexpected sentenceoftherecidivatingcrime.Offender‐leveldataobtainedfromtheClark CountyPublicDefenderOfficefortheyears 2001‐2008.Monthlytimedummies includedtoallow fortimevariationinoverallcrimerates.Sentenceisthe minimumsentencemeasured inmonths,EFT=embezzlement,fraud,theft.Data includes81PublicDefenders,eachwithaminimumof50casesand50judges.A tobitregressionisusedforthefirststageinalloftheregressionsreportedinthis table. 42
© Copyright 2025 Paperzz