PHYS 4110 – Dynamics of Space Vehicles Chapter 9: Interplanetary Trajectories Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Professor of Space Engineering Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736 2100 ext. 33854 Email: [email protected] Homepage: http://www.yorku.ca/jjshan Outline n n n n n n n Interplanetary Hohmann Transfers Rendezvous Opportunities Sphere of Influence Method of Patched Conics Planetary Departure Planetary Rendezvous Planetary Flyby Prof. Jinjun Shan Interplanetary Trajectories - 2 Interplanetary Hohmann Transfers Prof. Jinjun Shan Interplanetary Trajectories - 3 Interplanetary Hohmann Transfers Prof. Jinjun Shan Interplanetary Trajectories - 4 Example - 1 n Calculate the total delta-v required by a mission from the earth to Mars and the flight time. Prof. Jinjun Shan Interplanetary Trajectories - 5 Interplanetary Hohmann Transfers Hohmann Transfers from the earth to other planets in the solar system Earth Mercury Venus Mars Jupiter Saturn Uranus Neptune delta-V 17.14 5.202 5.593 14.44 15.735 15.939 15.707 105 146 259 998 (2.73) 2,222 (6.09) 5,862 (16.1) 11,171 (30.6) Km/s Flight time days Prof. Jinjun Shan Interplanetary Trajectories - 6 Rendezvous Opportunities - 1 θ1 = θ10 + n1t θ 2 = θ 20 + n 2 t φ = θ 2 − θ1 = φ 0 + ( n 2 − n1 ) t Tsyn € Prof. Jinjun Shan 2π T1T2 = = n2 − n1 T1 − T2 Interplanetary Trajectories - 7 Example - 2 n Calculate the synodic periods of Mars and Venus relative to the earth. Prof. Jinjun Shan Interplanetary Trajectories - 8 Rendezvous Opportunities - 2 Synodic periods in the Solar System, relative to Earth: Sid. P. (a) Syn. P. (a) Syn. P. (d) Mercury 0.241 0.317 115.9 Venus 0.615 1.599 583.9 Earth 1 — — Moon 0.0748 0.0809 29.5306 Mars 1.881 2.135 777.9 Jupiter 11.87 1.092 398.9 Saturn 29.45 1.035 378.1 Uranus 84.07 1.012 369.7 Neptune 164.9 1.006 367.5 Prof. Jinjun Shan Interplanetary Trajectories - 9 Rendezvous Opportunities - 3 Prof. Jinjun Shan Interplanetary Trajectories - 10 Example - 3 n n Calculate initial and final phase for a earth-Mars mission. Calculate the minimum waiting time for initiating a return trip from Mars to the earth. Prof. Jinjun Shan Interplanetary Trajectories - 11 Sphere of Influence Prof. Jinjun Shan Interplanetary Trajectories - 12 Example - 4 n n Calculate the radius of the earth’s SOI. Calculate the radius of the moon’s SOI (for earth-moon system). Prof. Jinjun Shan Interplanetary Trajectories - 13 Method of Patched Conics Prof. Jinjun Shan Interplanetary Trajectories - 14 Planetary Departure - 1 ΔvD = v∞ = ⎞ 2 R2 − 1⎟⎟ ⎜ R1 ⎝ R1 + R2 ⎠ µsun ⎛⎜ h2 1 rp = µ1 1 + e e = 1+ rp v∞ v∞ = µ h e2 − 1 2 h = rp v∞ µ1 2 v p = v∞ + 2 µ1 rp vc = 2 2 µ1 + rp µ1 rp Δv = v p − v c ⎛ ⎜ 1 ⎜ β = cos−1 ⎜ 2 rp v∞ ⎜ 1 + ⎜ µ1 ⎝ Prof. Jinjun Shan ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Interplanetary Trajectories - 15 Planetary Departure - 2 Prof. Jinjun Shan Interplanetary Trajectories - 16 Example - 5 n A spacecraft is launched on a mission to Mars starting from 300 km circular parking orbit. Calculate (a) the delta-v required; (b) the location of perigee of the departure hyperbola; (c) the amount of propellant required as a percentage of the spacecraft mass before the delta-v burn, assuming a specific impulse of 300 seconds. [Example 8.4] R1 = 1.496 × 108 km R2 = 2.279 × 108 km 11 3 µSun = 1.327 × 10 km /s 2 µEarth = 3.986 × 105 km 3/s2 Prof. Jinjun Shan Interplanetary Trajectories - 17 Planetary Rendezvous - 1 v ∞ = v 2 − v A (v ) v ∞ = v A (v ) − v 2 % ( −1 1 δ = 2sin ' * & e) v ∞2 + vp = h2 Δ= µ2 vp ) hyp Δv = v p rp = ) hyp € 2 µ2 + rp − vp 2 µ2 1 − e v ∞ 2 1+ e Δv min = v ∞ Prof. Jinjun Shan = rp 1+ e 2 −1 2 µ2 2 µ2 rp 1 = v∞ € e = 1+ rp v ∞ 2 ) vp ) cap 2 µ2 rp v ∞ 2 µ2 (1+ e) = rp cap ra = 1−e 2 2 µ2 v ∞2 Δ = rp 2 1−e Interplanetary Trajectories - 18 Planetary Rendezvous - 2 Prof. Jinjun Shan Interplanetary Trajectories - 19 Planetary Rendezvous - 3 2 µ2 Δ = rp 1+ rp v ∞ 2 Prof. Jinjun Shan Interplanetary Trajectories - 20 Example - 6 n After a Hohmann transfer from the earth, calculate the minimum delta-v required to place a spacecraft in Mars orbit with a period of seven hours. Also calculate the periapse radius, the aiming radius and the angle between periapse and Mars’ velocity vector. [Example 8.5] Prof. Jinjun Shan Interplanetary Trajectories - 21 Example - 7 n A spacecraft is launched on a mission to Mars starting from ISS in a 300 km circular parking orbit, and is required to be placed in Mars orbit with a period of 7 hours. Calculate (a) the total delta-v required; (b) the location of perigee of the departure hyperbola; (c) the periapse radius and the aiming radius of arrival hyperbola, the angle between periapse and Mars’ velocity vector; (d) if the spacecraft mass in circular parking orbit is 5,000 kg, what is the mass of spacecraft in Mars orbit, assuming a specific impulse of 300 seconds; (e) the total delta-v required to land on Mars from a 250 km circular orbit in Mars’ equatorial plane. µ Sun = 1.327 × 1011 km3 /s 2 µ Earth = 3.986 × 105 km3 /s 2 µ Mars = 4.2828 × 104 km3 /s 2 Prof. Jinjun Shan rEarth = 6378 km R1 = REarth = 1.496 × 108 km rMars = 3396 km R2 = RMars = 2.279 × 108 km Interplanetary Trajectories - 22 Planetary Flyby - 1 A spacecraft which enters a planet’s sphere of influence and does not impact the planet or go into orbit around it will continue in its hyperbolic trajectory through periapse and exit the sphere of influence. ! (v) ! ! v1 = v + v∞1 ! (v) ! ! v2 = v + v∞ 2 ! ! (v) ! (v) ! Δv ( v ) = v2 − v1 = Δv∞ Prof. Jinjun Shan Interplanetary Trajectories - 23 Planetary Flyby - 2 ! (v) ! ! ! (v) ! ! ! ! (v) ! (v) ! v1 = v + v∞1 v2 = v + v∞ 2 Δv ( v ) = v2 − v1 = Δv∞ ! (v) (v) (v) v1 = v1 V uˆ V + v1 S uˆ S = v⊥1uˆ V − vr1uˆ S ! (v) (v) v∞1 = [v∞1 ]V uˆ V + [v∞1 ]S uˆ S = v1 cos α1 − v uˆ V + v1 sin α1uˆ S [ ] 2 [ ] h = rp v∞ + 2µ rp ( e = 1+ ) rp v∞ 2 µ (v) [ ] v v sin α1 −1 −1 ∞1 S 1 φ1 = tan = tan φ2 = φ1 + δ (v) [v∞1 ]V v1 cos α1 − v ! v∞ 2 = [v∞1 ]V uˆ V + [v∞1 ]S uˆ S = v∞ cos φ2uˆ V + v∞ sin φ2uˆ S ! (v) ! ! (v) (v) v2 = v + v∞ 2 = [v2 ]V uˆ V + [v2 ]S uˆ S = (v + v∞ cos φ2 )uˆ V + v∞ sin φ2uˆ S h2 = Rv⊥ 2 Prof. Jinjun Shan R= h2 2 µ sun 1 1 + e2 cosθ 2 vr 2 = µ sun h2 e2 sin θ 2 Interplanetary Trajectories - 24 Gravity Assist Maneuvers - 1 Prof. Jinjun Shan Interplanetary Trajectories - 25 Gravity Assist Maneuvers - 2 Prof. Jinjun Shan Interplanetary Trajectories - 26
© Copyright 2026 Paperzz