1. Historical introduction 2. The Schrödinger equation for one-particle problems 3. Mathematical tools for quantum chemistry 4. The postulates of quantum mechanics 5. Atoms and the ‘periodic’ table of chemical elements 6. Diatomic molecules 7. Ten-electron systems from the second row 8. More complicated molecules FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 1/ 48-5 The one-electron atom H (Z = 1), He+ (Z = 2), Li2+ (Z = 3), . . ., U91+ (Z = 92), . . . Electronic Hamilton operator (for point-like clamped nucleus)∗ : c = Tb + Vb = − H e en el ~2 2 Z e2 ∇ − 2me κ0 r (139) Determination of stationary bound states, i.e. solutions h r | ψ i = ψ(r ) c with E < 0, to the time-independent Schrödinger equation (with H el from above): c − E ψ(r ) = H el ! ~2 2 Z e2 − − E ψ(r ) = 0 ∇ − 2me κ0 r (140) Firstly, we remove the fundamental constants by switching to ‘atomic units’. This reduces the mathematical work to pure numbers, and eliminates quantities which have experimental uncertainties. ∗ The finite mass of the nucleus can be taken into account by switching from the electron mass m e to a reduced mass µ, where µ−1 = me −1 + mN −1 and mN is the nuclear mass. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 2/ 48-5 Atomic unitsa Physical quantity Symbol (name) me e ~ κ0 mass charge angular momentum, action el. permittivity 4πε0 length κ0 ~2/(me e2 ) = ~/(αme c) time ~/Eh = ~/(α2 me c2 ) velocity a0 Eh /~ = αc linear momentum ~/a0 = αme c force Eh /a0 energy e2 /(κ0 a0 ) = α2 me c2 power Eh 2 /~ charge density e/a03 el. current eEh/~ el. potential Eh /e el. capacitance κ0 a0 el. resistance ~/e2 el. field strength (E ) Eh /(ea0) el. displacement (D ) e/a02 el. dipole moment ea0 el. quadrupole moment ea0 2 el. polarizability (ea0)2 /Eh magn. flux ~/e magn. flux density (B ) ~/(ea02 ) magnetizing force (H ) eEh /(a0 ~) magn. dipole moment e~/me = 2µB a0 (bohr) Eh (hartree) Value in SI unitsb 9.1093826(16) × 10−31 1.60217653(14) × 10−19 1.05457168(18) × 10−34 1.112650056 . . . × 10−10 5.291772 2.418884 2.187691 1.992852 8.238723 4.359744 1.802378 1.081202 6.623618 2.721138 5.887891 4.108236 5.142206 5.721476 8.478353 4.486551 1.648777 6.582119 2.350517 1.251682 1.854802 × × × × × × × × × × × × × × × × × × × × × 10−11 10−17 106 10−24 10−8 10−18 10−1 1012 10−3 101 10−21 103 1011 101 10−30 10−40 10−41 10−16 105 108 10−23 kg C Js F m−1 m s m s−1 kg m s−1 N J W C m−3 A V F Ω V m−1 C m−2 Cm C m2 C2 m2 J−1 Wb T A m−1 J T−1 a Based on CODATA recommended values 2002 (http://physics.nist.gov/constants/). b The standard deviation uncertainty in the least significant digits is given in parentheses. Now the Schrödinger equation reads c − E ψ(r ) = − 1 ∇2 − Z − E ψ(r ) = 0 H (141) el 2 r which is transformed from cartesian coordinates (x, y, z) to spherical coordinates (r, θ, φ), with 0 ≤ r < ∞, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π. Laplace operator ∆ and squared angular momentum operator lb2 (in atomic units) in spherical coordinates: lb2 1 ∂ 2∂ lb2 1 ∂2 ∆ = ∇2 = 2 r − 2= r − r ( ∂r ∂r r r ∂r 2 r2 ) ∂ 1 ∂2 1 ∂ 2 b sin θ + l = − sin θ ∂θ ∂θ sin2 θ ∂φ2 (142) (143) Separation ansatz for the state function: ψ(r ) = ψ(r, θ, φ) = R(r) Y (θ, φ) (144) (this is always possible for ‘central fields’, i.e. V = V (r)). FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 4/ 48-5 The angular part is found to be a spherical harmonic, Y (θ, φ) = Ylm(θ, φ), which is an ‘angular momentum eigenfunction’, i.e. a simultaneous eigenfunction of lb2 and lbz (in atomic units): lb2 Ylm(θ, φ) = l(l + 1) Ylm(θ, φ) lbz Ylm(θ, φ) = m Ylm(θ, φ) (145) (146) Orbital angular momentum quantum number l: l = 0, 1, 2, 3, . . ., Magnetic quantum number m: −l ≤ m ≤ l. Explicit form for the spherical harmonics (with Condon-Shortley† phase convention), −l ≤ m ≤ l: Ylm(θ, φ) = Θlm(θ) Φm (φ) = (−1)m Nlm Plm (cos θ) ei m φ Nlm = s 2l + 1 (l − m)! , 4π (l + m)! Z Ω (147) Yl,−m(θ, φ) = (−1)m Ylm∗(θ, φ) Ylm∗(θ, φ) Yl0m0 (θ, φ) dΩ = δll0 δmm0 † E. U. Condon (1902-1974), G. H. Shortley (∗ 1910) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 5/ 48-5 Notation for single-particle eigenfunctions of angular momentum: lb2 | ψαlm i = l(l + 1) ~2 | ψαlm i l 0 s lbz | ψαlm i = m ~ | ψαlm i 1 p 2 d 3 f 4 g 5 h 6 i 7 k 8 l 9 m 10 n ... ... Notation for many-particle eigenfunctions of total angular momentum: 2 b2 | Ψ L αLM i = L(L + 1) ~ | ΨαLM i b = L z L 0 S b |Ψ L z αLM i = M ~ | ΨαLM i n X i=1 lbz,i , 1 2 P D 3 F b = L 4 G 5 H n X i=1 6 I bl , i 7 K 8 L b · L b b2 = L L 9 M 10 N ... ... FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 6/ 48-5 The associated Legendre‡ functions Plm (cos θ) are related to the Legendre polynomials Pl (x) = Pl0 (x) (x = cos θ). The following relations hold (for −l ≤ m ≤ l, where applicable): l+m 1 2 m/2 d 2 l (1 − x ) (x − 1) 2l l! dxl+m l 1 d Pl (x) = l (x2 − 1)l = 2F1 (−l, l + 1; 1; (1 − x)/2) l 2 l! dx (l − m)! m Pl−m (x) = (−1)m P (x) (l + m)! l l+m m (x) = 2l + 1 x P m (x) − m (x) Pl+1 Pl−1 l l−m+1 l−m+1 2m x Plm (x) − (l + m)(l − m + 1) Plm−1 (x) Plm+1 (x) = q 1 − x2 Plm (x) = (148) (149) (150) (151) (152) ‡ A.-M. Legendre (1752-1833) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 7/ 48-5 The first Legendre polynomials l Pl (x) 0 1 1 x 2 1 (3x2 − 1) 2 1 (5x3 − 3x) 2 1 (35x4 − 30x2 + 3) 8 1 (63x5 − 70x3 + 15x) 8 3 4 5 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 8/ 48-5 The first associated Legendre functions l m Plm (cos θ) 1 3 0 0 cos θ 3 +1 1 +1 sin θ 3 1 −1 1 sin θ −2 3 −1 +2 1 3 2 (5 cos θ − 3 cos θ) 3 sin θ (5 cos2 θ − 1) 2 2 −1 8 sin θ (5 cos θ − 1) 15 sin2 θ cos θ 3 3 sin θ cos θ 3 −2 +3 1 sin2 θ cos θ 8 15 sin3 θ 3 −3 1 sin3 θ − 48 l m 0 0 1 2 0 Plm (cos θ) 1 (3 cos2 θ − 1) 2 2 +1 2 2 −1 +2 −1 2 sin θ cos θ 2 −2 1 2 8 sin θ 3 sin2 θ FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 9/ 48-5 The first spherical harmonics (Condon-Shortley phase convention) m Ylm(θ, φ) 0 0 1 +1 1 0 1 −1 2 +2 2 +1 2 0 2 −1 2 −2 1 4π q 3 sin θ eiφ − 8π q 3 cos θ 4π q 3 sin θ e−iφ 8π q 5 sin2 θ e2iφ 3 96π q 5 sin θ cos θ eiφ −3 24π q 5 (3 cos2 θ − 1) 1 2 4π q 5 sin θ cos θ e−iφ 3 24π q 5 sin2 θ e−2iφ 3 96π l q l m 3 +3 3 +2 3 +1 3 0 3 −1 3 −2 3 −3 Ylm(θ, φ) q 7 3 3iφ 2880π sin θ e 7 sin2 θ cos θ e2iφ 15 480π q 7 sin θ (5 cos2 θ − 1) eiφ −3 2 48π q 7 (5 cos3 θ − 3 cos θ) 1 2 4π q 3 7 sin θ (5 cos2 θ − 1) e−iφ 2 48π q 7 sin2 θ cos θ e−2iφ 15 480π q 7 sin3 θ e−3iφ 15 2880π −15 q FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 10/ 48-5 Two-point boundary value problem for P (r) = r R(r) (as resulting from the separation ansatz): d2 + 2 [ E − Vl (r) ] dr 2 ! (153) P (r) = 0 l(l + 1) Z − , P (0) = 0 , lim P (r) = 0 r→∞ 2 r2 r Physically acceptable (i.e. normalizable) solutions exist only for a discrete set of energies: Quantization due to the boundary conditions. Vl (r) = Radial functions (eigenfunctions): (2l+1) Pnl (r) = r Rnl (r) = Nnl xl+1 Lnr x= 2Z r, n Z ∞ 0 Nnl = 1 n s 2 Z nr ! , (n + l)! Rnl (r) Rn0l (r) r dr = Z ∞ 0 (x) e−x/2 (154) nr = n − l − 1 ≥ 0 Pnl (r) Pn0l (r) dr = δnn0 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 11/ 48-5 Energy eigenvalues (in atomic units): 1 Z2 2 n2 These are degenerate for n > 1 (further details below). Principal quantum number n: n = 1, 2, 3, . . . En = Enlm = − (155) This result for En is also an important hint for the understanding of the stability of matter: En > − ∞, i.e. the electron does not collapse into the nucleus, despite the singular attractive potential, due to a balance between kinetic and potential energy. Generalized Laguerre§ polynomials: (α) Lk (x) = (α) Lk (x) = (α + 1)k 1F1 (−k; α + 1; x) k! 2k + α − 1 − x (α) k + α − 1 (α) Lk−1 (x) − Lk−2 (x) k k (156) (k ≥ 2) (157) § E. N. Laguerre (1834-1886) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 12/ 48-5 The first generalized Laguerre polynomials (α) Lk (x) k 0 1 1 (α + 1) − x 2 3 4 5 h i 1 (α + 1)(α + 2) − 2(α + 2)x + x2 2 h i 1 (α + 1)(α + 2)(α + 3) − 3(α + 2)(α + 3)x + 3(α + 3)x2 − x3 6 h 1 24 (α + 1)(α + 2)(α + 3)(α + 4) − 4(α + 2)(α + 3)(α + 4)x i 2 3 4 + 6(α + 3)(α + 4)x − 4(α + 4)x + x h 1 120 (α + 1)(α + 2)(α + 3)(α + 4)(α + 5) − 5(α + 2)(α + 3)(α + 4)(α + 5)x + 10(α + 3)(α + 4)(α + 5)x2 − 10(α + 4)(α + 5)x3 + 5(α + 5)x4 − x5 i FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 13/ 48-5 The first radial functions of one-electron atoms n l nr 1s 1 0 0 2s 2 0 1 2p 2 1 0 3s 3 0 2 3p 3 1 1 3d 3 2 0 4s 4 0 3 4p 4 1 2 4d 4 2 1 4f 4 3 0 Pnl (r) (x = 2Zr/n) √ Z x e−x/2 1 2 q Z x (2 − x) e−x/2 2 q 1 Z x2 e−x/2 2 6 q 1 Z x (3 − 3x + x2/2) e−x/2 3 3 q Z 2 (4 − x) e−x/2 1 3 24 x q 1 Z 3 −x/2 3 120 x e q 1 Z x (4 − 6x + 2x2 − x3/6) e−x/2 4 4q 1 Z 2 − 5x + x2/2) e−x/2 4 60 x (10 q 1 Z 3 −x/2 4 720 xq (6 − x) e Z 1 4 −x/2 4 5040 x e FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 14/ 48-5 Radial functions Pnl (r) of the one-electron atom (for n = 1, 2, 3, 4) 0.8 0.6 Pnl (r) Z 1/2 0.4 0.2 0.0 n = 1 (1s) 0.4 Pnl (r) Z 1/2 0.2 . ...... ... .... ... ... .... ..... .. . .. ... .. .... .. ... ... .... ... .. ... ... ... .... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... .... ..... ... ......... ... ................................. ............................ . 0 0.0 -0.2 n = 3 (3s, 3p, 3d) ............................................................................................. ........... ........ ... ............... .......... ...... ......... ..... ......... .... . .... ......... . . ......... . ......... .... ... . . . . . . . ......... . . . . . . . . . . . . . .......... .......... .. .... ............. ........... . . . ........... . . . . .... ............ . . . ........ . . . . . . . . . ............. . .. . . .. .... . ............... ........................... . . .... .......... ....... ... . .................. .. . ... ... ... ... ...... ................................................................... . ... .... .............................................................. ........................... ......... ... ... ...... .. ... ... ... . ................................. . . ... ....................... . ...... . . . . . . . . . . . . . . . ... . . ......... . . . . . . ... ..... . ... . . . . . . . . ... ... ............ .... ... ... ........... .................. .... .......... .. .... ......... .... ......... . . . . . . . ..... . . ...... .......... ........... ............ ................................. ........................................................................ .... .... .... .... .... .... .... ....... -0.4 10 0 Zr 10 20 30 Zr n = 2 (2s, 2p) 0.4 Pnl (r) Z 1/2 0.2 0.0 -0.2 -0.4 ............ ..... ......... .... ... .... ... .... .... .... .. .... .... .... .... . . .... . ..... ............... ..... ... ..... ..... ...... ... ....... ....... ... ... ... ......... ............ ... ... .... ................. ....... .... ................................... ... ............................................. .... ... ............................ ... ................ ... ........... . . . . . . . ... ...... ... ...... ... ..... ... ..... ... .... . . . . ... .... ... .... ... .... ... .... .... ... . . . ... .. .... .... ..................... 0.4 Pnl (r) Z 1/2 0.2 .... .... .... .... .... .... ................................................ 0.0 -0.2 n = 4 (4s, 4p, 4d, 4f) .............. ........................... .............................................................................................................................. ................. .............. .... .................... ........... ................ ................ .......... ................ .......... ................ ....... ................ ......................................................................................... . ................. . . ...... . . . .................. ...... ................... ..... ................... ....................... . . . . . . . . .................... . . . . . ..................... . . . . ..... ..... ... ....................... ..... ...... ... ............ . . . ......................... . . . . . . . . . . . . . . . . . . . . . ........ ..... ..... ..... .. ..... .. . .. ................................ .. ..... ....... ....................................... ......................... ............................ ....... ..... ..... . .... ... . . .................................................. ..... .. ...... ........ . . ... . . ..... ..... .... ... ........ . ........ . . . . . . . . . . . . . . . . . . . . . ..... ... ..... .................... .... ....... .... ..... ..... ..... ............................................................ ..... ..... ......... .................... ..... . ................... ....... ..... ...... ..... ................. ................................ . . . . . . . . . .................................. ...... . . ...... . . . . .......... ......................... . ........ . ........ . . . . . . . . . . . . . ... ... .......... .............. ......................... ........................................................................ ............................................................................................ .................................................................................................................... .... .... .... .... .... .... -0.4 0 0 10 10 20 30 40 Zr 20 Zr FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 15/ 48-5 Eigenfunctions and energy eigenvalues (in atomic units) of the oneelectron atom: 1 ψnlm(r ) = Pnl (r) Ylm(θ, φ) , r n = 1, 2, 3, 4, . . . , 0 0 1 Z2 Enlm = En = − 2 n2 l = 0, 1, . . . , n − 1 , 0 h nlm | n l m i = Z (158) m = −l, −l + 1, . . . , l ψnlm(r ) ψn0l0m0 (r ) dr = δnn0 δll0 δmm0 Ground state and corresponding energy: ψ100(r ) = s Z 3 −Zr 1√ 1 e = Z 2Zr e−Zr √ , π r 4π Z2 E1 = − 2 (159) For isovalue plots — i.e. representations of all points r with ψnlm(r ) = |c| for chosen c ∈ R — of the eigenfunctions of the one-electron atom, see J. Brickmann, M. Klöffler, H.-U. Raab, Chemie in unserer Zeit 12 (1978) 23-26. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 16/ 48-5 Degree of degeneracy¶: m degeneracy: l degeneracy (without spin): l degeneracy (spin included): gl = l X 1 = 2l + 1 (160) m=−l n−1 X gl = n 2 (161) l=0 s g n = 2 gn = 2 n2 (162) gn = s essentially determines the length of the rows (‘periods’) The value gn in the table of chemical elements (2, 8, 18, 32), whereas the value 2 gl = 2(2l + 1) determines the block structure of the ‘periodic’ table (s-, p-, d-, and f-block for l = 0, 1, 2, 3, respectively). ¶ The degeneracy with respect to l, eq. (161), is a special property of the one-electron atom (with point-like nucleus), and is not present in many-electron atoms. For example, the 2s and 2p states of a one-electron atom are degenerate, i.e. they have the same energy, but the ‘orbital energies’ for the 2s and 2p orbitals in any state of a many-electron atom are always different. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 17/ 48-5 The ‘periodic’ table of the chemical elements (2004) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 1 2 H He 2 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 3 11 12 Na Mg 4 19 K 37 Ar 31 32 33 34 35 36 24 V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 41 42 47 30 18 Cl 23 5 38 39 40 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 6 ∗ 77 78 Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 106 109 Fr Ra 55 87 56 88 ∗ ∗∗ 72 73 74 75 76 46 29 17 S 22 45 28 16 P Ti 44 27 15 21 43 26 14 Si Ca Sc 20 25 13 Al 79 48 80 ∗∗ 104 111 112 Rf Db Sg Bh Hs Mt Ds X (X) 57 58 65 66 105 59 60 107 61 108 62 63 110 64 49 50 In Sn Sb Te 81 82 113 67 114 ( X) 68 51 83 115 69 52 84 116 (X) 70 53 54 I Xe 85 86 117 118 (?) 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 89 90 91 Ac Th Pa 92 U 93 94 95 96 97 98 Np Pu Am Cm Bk Cf 99 100 101 102 103 Es Fm Md No Lr FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 18/ 48-5 The variation principle at work (I) The ground state 1s1 2 S of the one-electron atom Definition of the system under consideration: c = Tb + Vb , H A set of trial functionsk : Tb = − 1. Slater function (ζ > 0): 1 ∆, 2 Vb = Vnuc(r ) = − 3. Lorentz function (a > 0): h ψS = NS exp (−ζr) ψL = NL 1 + (ar) i 2 −1 4. Preuß function (c > 0): 2. Gauß function (α > 0): ψ G = NG Z r h exp (−αr 2) ψP = NP 1 + cr k Refs.: i−2 C. Zener, Phys. Rev. 36 (1930) 51, J. C. Slater, Phys. Rev. 36 (1930) 57 (Slater function) — S. F. Boys, Proc. R. Soc. London A 200 (1950) 542, H. Preuß, Z. Naturforsch. A 11 (1956) 823 (Gauß function) — H. Preuß, Z. Naturforsch. A 13 (1958) 439 (Preuß function). FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 19/ 48-5 Trial functions (unnormalized) for the ground state of the one-electron atom 1 ...... f (x) 0 ....................... ......... ... ....... ... ...... ... ..... ..... ... ..... ... ....... ... ........ ... ........ ... ......... ... ........ ... ........ ... ........ ........ ... ........ ... ... ... ... ... ..... ... ... .... ... ... .... ... ... .... .... .... ... ... ... ..... ... ... .... ... ..... ... ... .... ... ... ..... ... ... .... ... ... ..... ... ... . ... ... ........ ... ... ..... ... ... .... ... ... ..... ... ... ..... .... .... ..... .... .... ..... .... ..... .... ... .... ..... . ... .... ..... . ... .... ..... ..... ... ..... ... ..... ...... ... ..... ..... ... ...... ..... .... ...... ..... .... ....... ..... .... ....... ...... ........ .... ...... ......... .... ...... ......... .... ....... .......... .... ........ ........... ......... .... ........... .......... .... ............ ........... .... ............. ............ ..... .............. ............. .... ............... ................ ................ ................ .................. ..... .................. .................... ..... .................... ...................... ..................... ...... ........................ . . . ........................ ...... ............................ ............................ ....... ................................. ................................. ........ ...................................... . . . . . ......................................... ......... ............. .................................................... .......... ................................................................... ............ .................... .............. .................. .......................... ........................................................ ........................................................................................................................................................... ... ... ... S: exp(−x), x = ζr ... ... 2), x = √αr ... G: exp(−x ... .... .... .... L: 1/(1 + x2), x = ar .... .... .... .... P: 1/(1 + x)2 , x = cr .... ..... ..... ...... ...... ...... ...... ...... ....... ....... ........ .......... ........... ............ ............. ............... .................. ...................... ............................ ......................................... .... 0 1 x 2 3 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 20/ 48-5 Estimate for the ground state energy: c|ψi = hE i = hH i = hψ|H Z c ψ(r ) dr = h T i + h V i ψ(r ) H 1 1 h ψ | ∆ | ψ i = + h ∇ψ | ∇ψ i , 2 2 Mathematical preliminaries: • The beta function: h V i = − Z hr −1 i hT i = − B(a, b) = B(a, b) = Z 1 0 Γ(a) Γ(b) = B(b, a) Γ(a + b) ta−1(1 − t)b−1 dt = • Useful integral formulas: Z ∞ 0 Z ∞ 0 xs−1 exp (−p xn) dx = Z ∞ 0 ta−1 dt (1 + t)a+b 1 Γ(s/n) n ps/n xs−1 1 dx = B(p − s/n, s/n) (1 + xn)p n (a > 0, b > 0) (p > 0, s/n > 0) (s/n > 0, np − s > 0) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 21/ 48-5 1. The Slater function ψS = NS exp (−ζr), ζopt =?: hr i = NS2 4π k Z ∞ 0 dr r k+2e−2ζr = NS2 4π π h1i = hr i = NS2 3 ≡ 1 ζ 0 ⇒ NS = Γ(k + 3) (2ζ)k+3 q (k > −3) ζ 3 /π Γ(k + 3) 1 2k+1 ζ k 2 Z 1 2 4π ∞ d −x h T i = + NS dx xe 2 ζ 0 dx Z 1 1 2 4π ∞ dx (1 − x)2 e−2x = ζ 2 = NS 2 ζ 0 2 hV i = −Z ζ 1 dh E i h E i = ζ2 − Z ζ ⇒ = ζ − Z = 0 ⇒ ζopt = Z 2 dζ 1 hE i 1 2 x − 1 Z = x (x = ζ/Z) ⇒ E = − min Z2 2 2 hr k i = FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 22/ 48-5 2. The Gauß function ψG = NG exp (−αr 2), αopt =?: 2 4π hr k i = NG Z ∞ 0 2 h1i = hr 0 i = NG 2 1 Γ( k+3 k+2 −2αr 2 2 ) dr r e = NG 4π k+3 π 3/2 ≡1 2α ⇒ 2 (2α) 2 2α 3/4 NG = π (k > −3) 2 Γ( k+3 2 ) hr i = √ π (2α)k/2 2 Z d 1 2 4π ∞ −x2 dx xe h T i = + NG √ 2 α 0 dx Z 2 1 2 4π ∞ 3 = NG √ dx (1 − 2x2)2 e−2x = α 2 α 0 2 k hV i = − 2Z q 2α/π s s 3 2α 2 3 dh E i 8Z 2 = −Z = 0 ⇒ αopt = hEi = α −2Z ⇒ 2 π dα 2 πα 9π s √ hEi 2 4 2 3 (x = α/Z) ⇒ E = − x − 2 Z = x min Z2 2 π 3π FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 h 3. The Lorentz function ψL = NL 1 + (ar)2 Z ∞ i−1 23/ 48-5 , aopt =?: r k+2 dr 1−k k+3 2 4π 1 = N L k+3 B( 2 , 2 ) 2 2 a 2 0 (1 + (ar) ) q 2 0 2π NL = a3 /π ⇒ h1i = hr i = NL 3 ≡ 1 a 2 1 1−k k+3 , ) (−3 < k < 1) hr k i = B( 2 2 π ak 2 Z 1 2 4π ∞ d x h T i = + NL dx 2 a 0 dx 1 + x2 Z ∞ 1 2 4π (1 − x2)2 1 2 = NL dx a = 2 a 0 (1 + x2)4 4 h V i = − 2 Z a/π 1 dh E i 4Z a 1 2 h E i = a2 − 2 Z ⇒ = a − Z = 0 ⇒ aopt = 4 π da 2 π π 2 4 2 1 hE i x − (x = a/Z) ⇒ E = − = x Z min Z2 4 π π2 hr i = NL2 4π k FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 24/ 48-5 h 4. The Preuß function ψP = NP 1 + cr i−2 , copt =?: Z ∞ k+2 r dr 2 4π = N B(1 − k, k + 3) P ck+3 0 (1 + cr)4 s 3c3 4π 0 2 h1i = hr i = NP 3 ≡ 1 NP = ⇒ 3c 4π 2 hr i = NP 4π k 3 hr k i = k B(1 − k, k + 3) (−3 < k < 1) c !2 Z 1 2 4π ∞ d x h T i = + NP dx 2 c 0 dx (1 + x)2 Z 1 2 1 2 4π ∞ (1 − x)2 = c = NP dx 2 c 0 (1 + x)6 5 h V i = − Z c/2 1 dh E i 5Z c 2 Z h E i = c2 − Z ⇒ = c − = 0 ⇒ copt = 5 2 dc 5 2 4 hE i 5 2 1 1 (x = c/Z) ⇒ E = − = x x − Z min Z2 5 2 16 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 25/ 48-5 Variation of the ground state energy h E i of the one-electron atom with the trial function parameter hE i = f (x) = a2 x2 + a1 x 2 Z x 1 .. ... ... .... .. ...... ... ........... ... ... .......... ... ........... .... ... ........... .. ... ..... ..... ... ... ...... ....... ... .... ...... ... .. ..... ...... ... . . ..... ...... ... ... ..... ....... ... ... ..... ....... ... .. ..... ........ ... .. ........ ..... . .. ... . ......... ..... ........ .. ... .......... ..... ......... ... ... ........... ...... ........... ... ............ ... ...... ............ . . . . . . ............. ..... . . . ..... ... . . ................. ........ ...... ... ..... . ................ ....... ...... ... ... ......................................................................................................................... ........ ....... ... ........ ...... ........ ... ........... ......... .... . . . . . . . . . . . . . .... .. ..... ..... ..... ............ .... ......................... ................. ............. ..... .... ....................................... ....................................................... ...... ..... ... ........... ...... .......................... f (x) −0.5 2 .. ... ... . . ... ... ... ... . ... . ... ... ... ... ... . . .... ... .... .... . .... . . . .... .... ..... .... ...... . . . . ...... ..... ....... ...... . . . .......... . . . . ........................................ 0 ...... S: x2 /2 − x, x = ζ/Z p √ G: 3x2 /2 − 2 2/π x, x = α/Z L: x2 /4 − 2x/π, x = a/Z P: x2/5 − x/2, x = c/Z For optimal choice of the parameter x (i.e. at the minima), the quantum mechanical virial theorem, h V i / h T i = −2, is fulfilled, and thus h E i = h V i /2 = − h T i in all four cases. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-06-30 26/ 48-5 Perturbation theory Time-independent Rayleigh-Schrödinger perturbation theory for nondegenerate states Find a solution for the Schrödinger equation c ψ =E ψ H λ λ λ λ ⇔ with the Hamilton operator c =H c(0) + H λ ∞ X k=1 c −E H λ λ ψλ = 0 c(k) , λk H (163) (164) where λ is a (natural or artificial) perturbation parameter (|λ| < λmax), and assume that the solutions of the unperturbed problem c(0)ψ (0) = E (0)ψ (0) H (165) are completely known (with all E (0) non-degenerate). Then put Eλ = E (0) + ∞ X ε (k) k λ and ψλ = ψ k=1 (0) + ∞ X χ(l) λl (166) l=1 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 27/ 48-5 into eq. (163): ∞ X c(0) − E (0) + c(k) − ε(k) λk ψ (0) + 0= H χ(l) λl H l=1 k=1 ( ∞ X c(0) − E (0) ψ (0) + c(0) − E (0) χ(m) = H λm H ∞ X m=1 ) m−1 X c(k) − ε(k) χ(m−k) + H c(m) − ε(m) ψ (0) + H k=1 Thus we obtain from the coefficient of λm : (0) (0) c(0) m=0: m=1: m=2: .. H −E ψ =0 c(0) − E (0) χ(1) + H c(1) − E (1) ψ (0) = 0 H (0) (0) (1) (1) (2) c c H −E −E χ + H χ(1) c(2) − E (2) ψ (0) = 0 + H FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 28/ 48-5 The ‘intermediate normalization’ condition h ψ (0) | ψλ i = 1 h ψ (0) | ψ (0) i = 1 with implies orthogonality between ψ (0) and all χ(l): h ψ (0) | χ(l) i = 0 (for l = 1, 2, . . .) Resulting expressions for ε(1) and ε(2) : c(1) | ψ (0) i ε(1) = h ψ (0) | H (167) c(1) | χ(1) i + h ψ (0) | H c(2) | ψ (0) i ε(2) = h ψ (0) | H (168) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 29/ 48-5 The perturbation theory may be used advantageously • to determine (non-variational) approximations to the solutions of eq. (163): Eλ ≈ E (n) =E (0) + n X ε(k) λk n X χ(l) λl k=1 ψλ ≈ ψ (n) = ψ (0) + l=1 • to obtain exact values for derivatives of the energy E or the state function ψ to various orders in λ at λ = 0, e.g.: ∂ nE = n! ε(n) n ∂λ λ=0 The perturbation theory presented above can be extended to include the case of degenerate states. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 30/ 48-5 The two-electron atom H− (Z = 1), He (Z = 2), Li+ (Z = 3), . . ., U90+ (Z = 92), . . . Hamilton operator (in atomic units): b +h b + 1 c = − 1 ∇2 − 1 ∇2 − Z − Z + 1 = h H (169) 1 2 el 2 1 2 2 r1 r2 r12 r12 General structure of state functions for two-electron systems ∗∗: Φ(x1, x2 ) = f (r 1, r 2)Θ(σ1 , σ2) Spin part Θ = | SMS i: Singlet (S = 0, para-He) or triplet (S = 1, ortho-He) √ | 00 i = (αβ − βα)/ 2 √ | 11 i = αα | 10 i = (αβ + βα)/ 2 | 1 − 1 i = ββ ∗∗ . . . as long as the Hamilton operator does not act on the spin of the particles. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 31/ 48-5 For the spatial part f (r 1, r 2 ) a suitable choice must be made. For S states we can simplify further to f (r1 , r2, r12 ), or equivalently f (s, t, u) with s = r1 + r2 , t = r1 − r2, and u = r12 . Variational results for the helium ground state 1s2 1S a. f (s, t, u) e−ζr1 e−ζr2 = e−ζs ϕ(r1 ) ϕ(r2 ) e−ζr1 e−ηr2 + e−ηr1 e−ζr2 e−ζs+cu e−ζs (1 + cu) e−ζs+cu cosh (at) e−ζs c0 + c1 u + c2t2 + c3s + c4 s2 + c5 u2 exact − Eopt /a.u. 2.8477 2.8617 2.8757 2.8896 2.8911 2.8994 2.9032 2.9037 b c d e a E. A. Hylleraas, Z. Phys. 54 (1929) 347 b C. Froese Fischer: The Hartree-Fock method for atoms. Wiley, New York, 1977 c C. Eckart, Phys. Rev. 36 (1930) 878 d W.-K. Li, J. Chem. Educ. 64 (1987) 128 e K. Frankowski, C. L. Pekeris, Phys. Rev. 146 (1966) 46 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 32/ 48-5 The many-electron atom A part of the knowledge of the state functions of the one-electron atom can be transferred to the many-electron atom, if the following assumptions are made††: 1. Central field approximation: The electrons in the many-electron atom are assumed to move in an effective central field Veff,l (r), so that the orbitals can be written as ψ(r ) = R(r) Y (θ, φ), with Y (θ, φ) = Ylm(θ, φ). 2. Equivalence restriction: The radial parts are assumed to be independent of the magnetic quantum number m: R(r) = Rnl (r). The resulting set of radial functions Pnl (r) = r Rnl (r) has to be determined for every state of the many-electron atom, e.g. - He ground state (singlet): 1s2 1S → P10 (r) - He excited states (singlet or triplet): 1s1 2s1 1,3S → P10(r), P20 (r) - Li ground state (doublet): 1s2 2s1 2S → P10 (r), P20 (r) †† In addition to the approximation of the many-electron state function as a Slater determinant (an antisymmetrized product of spin orbitals), or a linear combination thereof. FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 Electron configuration of neutral atoms in the ground state (designated as 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn 1s1 1s2 [He] 2s1 [He] 2s2 [He] 2s2 [He] 2s2 [He] 2s2 [He] 2s2 [He] 2s2 [He] 2s2 [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 [Ne] 3s2 [Ne] 3s2 [Ne] 3s2 [Ne] 3s2 [Ne] 3s2 [Ar] 4s1 [Ar] 4s2 [Ar] 3d1 [Ar] 3d2 [Ar] 3d3 [Ar] 3d5 [Ar] 3d5 2S 0 2S 1/2 1S 2p1 2p2 2p3 2p4 2p5 2p6 3p1 3p2 3p3 3p4 3p5 3p6 4s2 4s2 4s2 4s1 4s2 1/2 1S 0 2P 1/2 3P 0 4S 3/2 3P 2 2P 3/2 1S 0 2S 1/2 1S 0 2P 1/2 3P 0 4S 3/2 3P 2 2P 3/2 1S 0 2S 1/2 1S 0 2D 3/2 3F 2 4F 3/2 7S 3 6S 5/2 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Ar] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] [Kr] 3d6 4s2 3d7 4s2 3d8 4s2 3d10 4s1 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 5s1 5s2 4d1 5s2 4d2 5s2 4d4 5s1 4d5 5s1 4d5 5s2 4d7 5s1 4d8 5s1 4d10 4d10 5s1 4d10 5s2 4d10 5s2 4d10 5s2 33/ 48-5 2S+1 L J) 5D 4 4F 9/2 3F 4 2S 1/2 1S 4p1 4p2 4p3 4p4 4p5 4p6 5p1 5p2 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 0 2P 1/2 3P 0 4S 3/2 3P 2 2P 3/2 1S 0 2S 1/2 1S 0 2D 3/2 3F 2 6D 1/2 7S 3 6S 5/2 5F 5 4F 9/2 1S 0 2S 1/2 1S 0 2P 1/2 3P 0 34/ 48-5 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 Sb Te I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir [Kr] [Kr] [Kr] [Kr] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] 4d10 5s2 5p3 4d10 5s2 5p4 4d10 5s2 5p5 4d10 5s2 5p6 6s1 6s2 5d1 6s2 4f1 5d1 6s2 4f3 6s2 4f4 6s2 4f5 6s2 4f6 6s2 4f7 6s2 4f7 5d1 6s2 4f9 6s2 4f10 6s2 4f11 6s2 4f12 6s2 4f13 6s2 4f14 6s2 4f14 5d1 6s2 4f14 5d2 6s2 4f14 5d3 6s2 4f14 5d4 6s2 4f14 5d5 6s2 4f14 5d6 6s2 4f14 5d7 6s2 4S 3/2 3P 2 2P 3/2 1S 0 2S 1/2 1S 0 2D 3/2 1G 4 4I 9/2 5I 4 6H 5/2 7F 0 8S 7/2 9D 2 6H 15/2 5I 8 4I 15/2 3H 6 2F 7/2 1S 0 2D 3/2 3F 2 4F 3/2 5D 0 6S 5/2 5D 4 4F 9/2 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Xe] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] [Rn] 4f14 5d9 6s1 4f14 5d10 6s1 4f14 5d10 6s2 4f14 5d10 6s2 4f14 5d10 6s2 4f14 5d10 6s2 4f14 5d10 6s2 4f14 5d10 6s2 4f14 5d10 6s2 7s1 7s2 6d1 7s2 6d2 7s2 5f2 6d1 7s2 5f3 6d1 7s2 5f4 6d1 7s2 5f6 7s2 5f7 7s2 5f7 6d1 7s2 5f8 6d1 7s2 5f10 7s2 5f11 7s2 5f12 7s2 5f13 7s2 5f14 7s2 5f14 6d1 7s2 5f14 6d2 7s2 3D 2S 6p1 6p2 6p3 6p4 6p5 6p6 FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 3 1/2 1S 0 2P 1/2 3P 0 4S 3/2 3P 2 2P 3/2 1S 0 2S 1/2 1S 0 2D 3/2 3F 2 4K 11/2 5L 6 6L 11/2 7F 0 8S 7/2 9D 2 8H 17/2 5I 8 4I 15/2 3H 6 2F 7/2 1S 0 35/ 48-5 LS terms for electron configurations p2 and p3 p2 : 3P (9), 1D (5), 1S (1) p3 : 4S (4), 2D (10), 2 P (6) 6 2 = 15 = 9 + 5 + 1 6 3 = 20 = 4 + 10 + 6 Energy levels of neutral tetravalent atoms from the p-, d-, and f-block (C, Ti, Ce), within an energy range above lowest ground state level: ∆E = 1 eV ≈ 8065.55 cm−1 (Eh = 2 h c R∞) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 36/ 48-5 Energy levels of C I‡‡ (280 lines of data) — IP = 11.26030 eV ----------------------------------------------Configuration | Term | J | Level | | | (cm-1) -------------------|--------|-----|-----------2s2.2p2 | 3P | 0 | 0.00 | | 1 | 16.40 | | 2 | 43.40 | | | 2s2.2p2 | 1D | 2 | 10192.63 | | | 2s2.2p2 | 1S | 0 | 21648.01 | | | 2s.2p3 | 5S* | 2 | 33735.20 | | | 2s2.2p(2P*)3s | 3P* | 0 | 60333.43 | | 1 | 60352.63 | | 2 | 60393.14 | | | 2s2.2p(2P*)3s | 1P* | 1 | 61981.82 | | | 2s.2p3 | 3D* | 3 | 64086.92 | | 1 | 64089.85 | | 2 | 64090.95 | | | .. . .. . .. . .. . .. . .. . | | | | 1F* | 3 | 90721.0 | | | 2s2.2p(2P*)27d | 1F* | 3 | 90732.7 | | | 2s2.2p(2P*)28d | 1F* | 3 | 90742.2 | | | 2s2.2p(2P*)29d | 1F* | 3 | 90753.8 | | | -------------------|--------|-----|-----------| | | C II (2P*<1/2>) | Limit | | 90820.42 | | | C II (2P*<3/2>) | Limit | | 90883.84 | | | 2s.2p2(4P)3s | 5P | 1 | 103541.8 | | 2 | 103562.5 | | 3 | 103587.3 | | | 2s.2p3 | 3S* | 1 | 105798.7 | | | 2s.2p3 | 1P* | 1 | [119878] 2s2.2p(2P*)26d ‡‡ Source: Atomic Spectra Database, http://physics.nist.gov/PhysRefData/contents.html FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 37/ 48-5 Energy levels of Ti I‡‡ (380 lines of data) — IP = 6.820 eV ----------------------------------------------------------------Configuration | Term | J | Level | Lande | Leading | | | (cm-1) | g | Percentages ------------------|-------|----|------------|-------|-----------3d2.4s2 | a 3F | 2 | 0.000 | 0.66 | 100 | | 3 | 170.132 | 1.08 | 100 | | 4 | 386.874 | 1.25 | 100 | | | | | 3d3(4F)4s | a 5F | 1 | 6556.828 | 0.00 | 100 | | 2 | 6598.749 | 0.99 | 100 | | 3 | 6661.003 | 1.25 | 100 | | 4 | 6742.757 | 1.35 | 100 | | 5 | 6842.964 | 1.41 | 100 | | | | | 3d2.4s2 | a 1D | 2 | 7255.369 | 1.02 | 96 | | | | | 3d2.4s2 | a 3P | 0 | 8436.618 | | 92 | | 1 | 8492.421 | 1.50 | 92 | | 2 | 8602.340 | 1.49 | 90 | | | | | 3d3(4F)4s | b 3F | 2 | 11531.760 | 0.67 | 100 | | 3 | 11639.804 | 1.08 | 100 | | 4 | 11776.806 | 1.26 | 98 | | | | | 2 3d3.(2D2).4s 1D 7 3d3.(2P).4s 3P 7 3d3.(2P).4s 3P 7 3d3.(2P).4s 3P 1 3d2.3s2 1G ‡‡ Source: Atomic Spectra Database, http://physics.nist.gov/PhysRefData/contents.html FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 38/ 48-5 Energy levels of Ti I (contd.) 3d2.4s2 | | a 1G | | | 4 | | | 12118.394 | | | 0.98 | .. . 3d4 | | a 5D | | | | | | | | | | | | 0 1 2 3 4 | | | | | | | 28772.86 28791.62 28828.51 28882.44 28952.10 3d2.4p2 | | e 3D | | | | h 5D | | | | | | | | | | | | | | | | 2 1 3 0 1 2 3 4 | | | | | | | | | | | 48724.34 48724.83 48839.74 48802.32 48859.51 48915.07 49024.43 49036.46 90 .. . | | | | | | | .. . 3d2.4p2 | | | .. . | | | | | | | .. . | | | | | | | | | | | 8 3d3.(2G).4s 1G 100 100 100 100 100 .. . | | | | | | | | | | | FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 39/ 48-5 Energy levels of Ti I (contd.) | f 3D | 2 | 49571.69 | | | 3 | 49619.72 | | | | | | f 1D | 2 | 50128.08 | | | | | | f 1G | 4 | 52125.98 | | | | | | e 1P | 1 | 53663.32 | | | | | ------------------|-------|----|------------| | | | | Ti II (4F<3/2>) | Limit | | 55010 | | | | | | | | | | | | | FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 40/ 48-5 Energy levels of Ce I‡‡ (953 lines of data) — IP = 5.5386 eV ------------------------------------------------------------------------------Configuration | Term | J | Level | Lande | Leading | | | (cm-1) | g | Percentages -------------------------|---------|-------|------------|---------|-----------4f.5d 6s2 | 1G* | 4 | 0.000 | 0.94543 | 55 29 | | | | | 4f.5d 6s2 | 3F* | 2 | 228.849 | 0.76515 | 66 24 | | 3 | 1663.120 | 1.07736 | 85 7 | | 4 | 3100.151* | 1.07703 | 34 27 | | | | | 4f.5d 6s2 | 3H* | 4 | 1279.424 | 0.88979 | 54 20 | | 5 | 2208.657 | 1.03212 | 80 12 | | 6 | 3976.104 | 1.16032 | 78 13 | | | | | 4f.5d 6s2 | 3G* | 3 | 1388.941 | 0.73494 | 66 11 | | 5 | 4199.367 | 1.15021 | 48 34 | | | | | 4f(2F*) 5d2(3F)6s (4F) | 5H* | 3 | 2369.068 | 0.59978 | 66 16 | | 4 | 2437.629 | 0.98592 | 38 25 | | 6 | 4746.627 | 1.16593 | 67 24 | | 7 | 5802.108 | 1.237 | 62 38 | | | | | 4f.5d 6s2 | 1D* | 2 | 2378.827 | 0.93654 | 54 23 | | | | | 3H* 1D* 4f(2F*).5d2(1D).6s(2D) 3F* 4f(2F*).5d2(3F).6s(4F) 5I* 1G* 4f(2F*).5d2(1D).6s(2D) 3H* 4f(2F*).5d2(1D).6s(2D) 3H* 4f(2F*).5d2(1D).6s(2D) 3G* 4f(2F*).5d2(3F).6s(4F) 5H* 4f.5d.6s2 3G* (2F*) (3F)(4F) 3G* (2F*) (3F)(4F) 5I* (2F*) (3F)(4F) 5I* 3F* ‡‡ Source: Atomic Spectra Database, http://physics.nist.gov/PhysRefData/contents.html FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 41/ 48-5 Energy levels of Ce I (contd.) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f.5d 6s2 4f.5d 6s2 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) | | | | | | | | | | | | | | | | | | | | | | | | | 5I* * * 3D* * * 3G* * * | | | | | | | | | | | | | | | | | | | | | | | | | 4 5 6 7 8 5 4 1 2 3 0 1 3 4 5 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 3210.583 | | 3312.240* | | 3710.513 | 4766.323 | 5006.719 | | 3974.503 | | 4020.954 | | 4160.283 | | 4173.494 | | 4417.618 | | 3196.607 3764.008 4455.756 5315.803 6809.128 0.66612 0.90691 1.11714 1.21625 1.250 1.16277 1.08582 0.61549 1.14945 1.23674 1.49404 0.72933 1.02948 1.17790 | | 67 | 90 | 64 | 56 | 100 | | 41 3G* | | 29 3F* | | 64 | 67 | 58 | | 29 5D* | | 17 3S* | | 47 | | 41 3G* | | 29 3G* | 11 3 26 33 4f.5d.6s2 3F* 4f.5d.6s2 3H* (2F*) (3F)(4F) 5H* (2F*) (3F)(4F) 5H* 37 (2F*) (3F)(4F) 5H* 26 3G* 10 4f(2F*).5d2(1D).6s(2D) 3D* 12 4f(2F*).5d2(1D).6s(2D) 3D* 20 1F* 23 (2F*) (1D)(2D) 3P* 15 (2F*) (1D)(2D) 3P* 23 (2F*) (3F)(4F) 5H* 30 (2F*) (3F)(4F) 5H* 28 4f.5d.6s2 3G* FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 42/ 48-5 Energy levels of Ce I | 4f2.6s2 | | | | 4f(2F*) 5d2(3F)6s (4F) | | 4f(2F*) 5d2(3F)6s (4F) | | 4f(2F*) 5d2(3F)6s (4F) | | | | | | 4f(2F*) 5d2(3F)6s (4F) | | 4f(2F*) 5d2(3F)6s (4F) | | 4f(2F*) 5d2(3F)6s (4F) | | 4f.5d 6s2 | | 4f(2F*) 5d2(3F)6s (4F) | | | | | | (contd.) 3H 3S* * 5G* * * * * 5F* | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4 5 6 1 2 2 3 4 5 6 3 0 4 1 1 2 3 4 5 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 4762.718 6238.934 7780.202 5097.777 5210.906 5409.236 6234.792 6856.559 7467.160 8055.526 5519.751 5571.156 5572.074 5637.233 5674.829 5904.006 6337.061 7174.156 7933.558 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.80508 | 1.035 | 1.169 | | 1.88257 | | 1.22694 | | 0.773 | 1.04965 | 1.150 | 1.179 | 1.207 | | 1.24530 | | | | 1.31658 | | 1.389 | | 0.140 | 0.905 | 1.232 | 1.373 | 1.345 | | 89 92 92 4 4f.5d(3G*).6s.6p(1P*) 3H 4 4f.5d(3G*).6s.6p(1P*) 3H 4 4f.5d(3G*).6s.6p(1P*) 3H 49 25 (2F*) (3F)(4F) 5D* 28 5D* 27 (2F*) (3F)(4F) 5G* 35 69 72 69 50 24 13 6 7 18 32 5D* 21 (2F*) (3F)(4F) 3F* 44 5D* 35 4f.5d.6s2 3P* 29 5D* 27 (2F*) (3F)(4F) 3F* 30 3P* 26 4f(2F*).5d2(3F).6s(4F) 5D* 73 66 42 67 81 6 13 16 19 5 (2F*) (2F*) (2F*) (2F*) (2F*) (2F*) (2F*) (2F*) (2F*) (2F*) (3F)(4F) (3F)(4F) (3F)(2F) (3F)(4F) (3F)(4F) (3F)(4F) (3F)(4F) (3F)(4F) (3F)(4F) (3P)(4P) FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 5D* 5D* 1G* 3H* 3H* 5D* 5G* 5D* 5D* 5F* 43/ 48-5 Energy levels of Ce I (contd.) 4f.5d 6s2 4f(2F*) 5d2(3F)6s (2F) 4f.5d 6s2 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F)? 4f(2F*) 5d2(3F)6s (2F)? 4f(2F*) 5d2(1D)6s (2D) 4f(2F*) 5d2(3F)6s (4F) | | | | | | | | | | | | | | | | | | | | | | | | | * * * * * * * * * * * * | | | | | | | | | | | | | | | | | | | | | | | | | 2 4 3 5 2 3 4 6 5 5 1 4 | | | | | | | | | | | | | | | | | | | | | | | | | 6303.984 6475.540 6621.892 6663.226 6836.628 7169.751 7348.299 7696.210 7715.236 7841.955 7853.119 7890.429 | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.897 | | 1.147 | | 0.953 | | 0.68078 | | 1.13 | | 0.964 | | 1.076 | | 0.934 | | 1.063 | | 0.983 | | 1.242 | | 1.419 36 3P* 16 4f(2F*).5d2(1D).6s(2D) 3P* 43 3H* 17 (2F*)(3F)(2F) 1G* 35 1F* 17 3D* 19 3I* 18 (2F*)(3F)(2F) 3I* 33 3F* 18 (2F*)(3F)(4F) 5G* 28 3F* 26 (2F*)(3F)(4F) 5F* 22 1G* 21 (2F*)(3F)(4F) 3H* 39 3I* 19 (2F*)(1G)(2G) 3I* 22 3I* 14 (2F*)(3F)(4F) 5G* 24 3H* 21 (2F*)(3F)(2F) 3I* 27 1P* 16 (2F*)(3F)(2F) 3D* 25 3F* 18 (2F*)(3F)(4F) 5D* FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 44/ 48-5 Energy levels of Ce I (contd.) 4f(2F*) 5d2(3P)6s (4P) 4f(2F*) 5d2(3F)6s (4F) 4f2.6s2 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (4F) | | | | | | | | | | | | | | | | | | | | | | | | | | | 5G* 5P* 3F 1S* * * * 3I* * | | | | | | | | | | | | | | | | | | | | | | | | | | | 2 3 4 5 6 2 3 1 2 3 4 0 2 5 4 7 6 | | 8088.912 | 8307.309 | 8762.126 | 9462.705 | 11030.470 | | 8101.187 | 8270.249 | 8430.846 | | 8235.605 | 9206.305 | 9379.148 | | 8351.167 | | 8366.098 | | 8400.730 | | 8509.209 | | 8587.973 | | 8603.531 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 0.403 0.957 1.054 1.19 1.193 1.735 1.504 2.04 0.680 1.083 1.139 1.525 0.917 0.954 1.155 1.225 95 81 50 46 51 3 6 9 12 21 (2F*)(3F)(4F) (2F*)(3P)(4P) (2F*)(3F)(2F) (2F*)(3P)(4P) (2F*)(3F)(2F) 85 74 62 5 (2F*)(3F)(4F) 5S* 11 (2F*)(3F)(4F) 3D* 10 (2F*)(3F)(4F) 3P* 88 90 55 4 4f.5d(3F*).6s.6p(1P*) 3F 4 4f.5d(3F*).6s.6p(1P*) 3F 32 1G 44 17 4f.5d.6s2 3P* 33 3P* 16 (2F*)(3F)(4F) 5S* 30 3I* 19 4f.5d.6s2 1H* 20 3H* 19 (2F*)(3P)(4P) 5G* 59 24 (2F*)(1G)(2G) 3I* 36 5G* 25 (2F*)(3F)(4F) 3H* FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 5G* 3G* 3H* 3G* 3H* 45/ 48-5 Energy levels of Ce I (contd.) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3P)6s (4P) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (4F) 4f(2F*) 5d2(3P)6s (4P) 4f(2F*) 5d2(3F)6s (2F) 4f(2F*) 5d2(3F)6s (2F)? | | | | | | | | | | | | | | | | | | | | | | | | * * * * 3D* * 3I* * 3D* 3F* 3G* | | | | | | | | | | | | | | | | | | | | | | | | 1 3 5 0 3 2 6 7 1 2 2 3 | | 8695.201 | | 8902.306 | | 8991.451 | | 9119.094 | | 9135.099 | | 9200.707 | | 9333.222 | 11061.551 | | 9369.628 | | 9425.529 | | 9709.012 | | 9787.220 | .. . .. . | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1.285 1.128 1.067 1.274 1.376 1.047 1.141 1.065 1.207 0.799 0.868 22 3P* 12 (2F*)(3F)(4F) 5P* 20 1F* 14 4f.5d.6s2 1F* 31 3H* 17 (2F*)(3P)(4P) 5G* 40 3P* 32 (2F*)(3F)(2F) 1S* 50 12 (2F*)(3F)(4F) 5P* 24 3D* 21 (2F*)(3P)(2P) 3D* 61 79 20 (2F*)(1G)(2G) 3I* 16 (2F*)(1G)(2G) 3I* 21 3P* 17 (2F*)(3F)(2F) 3D* 46 8 (2F*)(3F)(4F) 5S* 51 13 (2F*)(3P)(2P) 3F* 42 26 (2F*)(3P)(2P) 3G* .. . FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 46/ 48-5 Energy levels of Ce I (contd.) .. . .. . .. . | | | | | * | 6 | 30603.359 | | | | | | * | 4,3 | 30624.042 | | | | | | * | 2 | 30706.313 | | | | | | * | 4 | 30739.270 | | | | | | * | 3 | 30740.884 | | | | | | * | 5 | 30767.047 | | | | | | * | 4 | 30787.639 | 0.695? | | | | | * | 3 | 30854.052 | 0.737 | | | | | * | 7 | 30876.234 | | | | | | * | 2 | 30991.841 | | | | | -------------------------|---------|-------|------------| | | | | Ce II (4H*<7/2>) | Limit | | 44672 | | | | | | | | | | | | | | | | | | | | | | | | | FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 47/ 48-5 H atom in a weak homogeneous electric field (Stark effect) — perturbation theory FAQC — D. Andrae, Theoretical Chemistry, U Bielefeld — 2004-07-14 48/ 48-5
© Copyright 2026 Paperzz