Math002 EXAM II Term 123 Page: 1 Code 0 1) The number of vertical asymptotes of y = sec( 1 x + π ) over the 2 3 interval [ π , 13π ] is : 3 3 A) 3 B) 2 C) 4 D) 1 E) 5 2) The graph of y = tan(x + π ) over the interval (-π , π ) intersects the 4 x- axis at: A) - π and 3π 4 4 B) - 3π and π 4 4 C) - π and π 4 4 D) - π and π 2 2 E) - π and π 2 4 Math002 EXAMI I Term 123 3) If 270∘ < x < 360∘ , then A) cscx = - 1- cos2x 1 - cos2 x 1 - cos2x B) csc x = 1 - cos2 x C) cscx = - 1+ cos2x D) csc x = - 1 + cos2 x 1 - cos x E) csc x = - 1 + sin2 x 4) The range of f (x) = -2 + 6sin2x - 8cos2x is : A) [-12 , 8] B) [-10 , 10] C) [-10 , 8] D) [-10, -2 ] E) [-2 , 8] Page: 2 Code 0 Math002 EXAMI I Term 123 5) tan x - cot x is identical to : sinx cosx A) sec2 x - csc2 x B) tan2 x + cot2x C) sec2 x - tan2x D) sin2 x - cos2x E) sec2 x + csc2x 6) Which one of the following statements is FALSE? A) sinx + 1 2 - sinx - 1 2 =2x B) sin(2.5) is a positive number C) cos2 x = cosx D) sin x - sin3x = sinx cos2 x E) cos4 x - 1 = - sin2x (cos2 x + 1) Page: 3 Code 0 Math002 EXAMI I Term 123 7) sin(270∘- θ) = A) -cosθ B) sinθ C) - tanθ D) - cotθ E) undefined 8) If tan t = - 4 , t in QII, and tan x = 5 , x in QIII , then 12 3 cot(t - x ) is equal to: A) - 16 63 B) - 36 77 C) - 63 15 D) 63 36 E) - 12 36 Page: 4 Code 0 Math002 EXAMI I Term 123 9) sin2 (67.5 ∘) - 1 2 A) 2 4 B) - 2 2 C) 2 D) 1 4 E) - 3 4 10) If sin x = - 4 , π < x < 3π , then cos x equals to : 2 5 2 A) - 5 5 B) 5 5 C) 5 D) - 1 5 E) 1 5 Page: 5 Code 0 Math002 EXAMI I Term 123 11) The exact value of sec[ sin-1 ( - 4 ) - tan-1 ( - 5 )] = 5 12 A) 65 56 B) 65 63 C) 65 33 D) 33 63 E) 65 16 12) Which one of the following statements is TRUE ? A) cos-1(cos 3 ) = 3 B) sin-1 (sin π ) = π C) csc-1 x= 1 sin-1x D) sin(sin-1π) = π E) y = cos-1 x is an even function. Page: 6 Code 0 Math002 EXAMI I Term 123 13) The sum of the solutions of the equation over the interval [0,2π) 2sinx -1 = cscx is : A) 7π 2 B) 3π C) 3π 2 D) 15π 3 E) 5π 3 14) The number of solutions of the equation : 4 sin x cos x = 3 , 0 ≤ x < 2π is : A) 4 B) 2 C) 3 D) 1 E) 5 Page: 7 Code 0 Math002 EXAMI I Term 123 15) If x = 2 csc-1( Page: 8 Code 0 y + 3 ) , then y = 2 A) 2 csc ( x ) - 3 2 B) 3 csc ( x ) - 2 2 C) 1 csc ( x ) - 3 2 2 2 D) 2 csc (2x) - 3 E) 3 csc (2x) - 2 16) For 0 < x < 3π , the graph of the function y = 3 csc(x - π ) is increasing on 2 2 2 the interval(s): A) (π , 3π ) 2 B) (0 , π ) 2 C) ( π , π ) 2 D) (0 , π ) E) ( π , 3π ) 2 2 Math002 EXAMI I Term 123 Page: 9 Code 0 17) The exact value of cos(50∘)cos(50∘) + cos(40∘)sin(50∘) is equal to: A) 1 B) 0 C) -1 D) 1 2 E) 2 2 18) If arctan x = arccos 12 , then x = 13 A) 5 12 B) 12 5 C) 12 13 D) 5 13 E) 13 12 Math002 EXAMI I Term 123 = 19) 2 tan x 1 + tan2x A) sin 2x B) cos 2x C) sec 2x D) cot 2x E) tan 2x 20) If cos-1x + sin-1 3 = π , then x = 2 2 A) 3 2 B) 2 2 C) 3 2 D) 2 E) 3 Page: 10 Code 0
© Copyright 2026 Paperzz