1031微 微甲07-11班 班期 末 考 解 答 和 評 分 標 準 1. (10%) Solve the initial value problem: dy ey , y(0) = −1. = dx 1 + x2 Solution: dy ey (separable) = dx 1 + x2 1 dx (2%) ⇒ e−y dy = 1 + x2 ⇒ −e−y = tan−1 x + C (3% for each side) With y(0) = −1, we have −e = tan−1 0 + C = C. ⇒ C = −e (2%) ∴ The solution is e−y = e − tan−1 x 2. (a) (10%) Solve the initial value problem: 2x(x + 3)y 0 + (4x + 3) y = 2x 21 (x + 3) 21 , 1 y(1) = , x > 0. 2 (b) (3%) Find lim y(x) and lim+ y(x). x→∞ x→0 Solution: (a) Divide the equation by 2x (x + 3) 4x + 3 1 We get y 0 + y=p 2x(x + 3) x(x + 3) Multiply integration factor I(x) on both side, then 1 4x + 3 y = Ip Iy 0 + I 2x(x + 3) x(x + 3) ´ 4x+3 4x + 3 Solve that I 0 = I , we let I = e 2x(x+3) dx 2x(x + 3) ˆ ˆ 4x + 3 1 1 3 1 2 Where dx = ( + )dx = ln x + ln (x + 3) + C, when x > 0 2x(x +p 3) 2 x x+3 2 p 3 Hence I(x) = eC x(x + 3)3 , Let C = 0 ⇒ I(x) = x(x + 3)3 4x + 3 1 0 Iy 0 + I =x+3 y = Iy 0 + I 0 y = (Iy) = I p 2x(x + 3) x(x + 3) ˆ p 1 1 Iy = (x + 3)dx = x3 + 3x + D ⇒ x(x + 3)3 y = x3 + 3x + D 2 2 1 1 Bring y(1) = into the equation, we find D = 2 2 x2 + 6x + 1 Hence y = p 2 x(x + 3)3 (b) s r (1 + x6 + x12 )2 1 1 lim y = lim = = x→∞ x→∞ 4 2 4(1 + x3 )3 p 2 Because lim+ x + 6x + 1 = 1, and lim+ 2 x(x + 3)3 = 0 x→0 So lim+ y → +∞ x→0 x→0 評分標準如下, (a) 解出 I(x) +5分 解出y 的不定積分 +3分 代入初始條件求出完整解答 +2分 Page 1 of 7 計算錯誤該部分加分折半 (b) (a)解出的 y 錯誤不管答案一律0分 (有些同學計算錯誤會影響答案,有些不會,覺得不應該同樣因為計算錯誤而有差別) 此外對一題2分,兩題3分 3. (a) (7%) Find the length of the curve in polar coordinates: r = (b) (7%) Find the area enclosed by the curve given in (a). √ 1 + sin 2θ, 0 ≤ θ ≤ 2π. Solution: (a) dr cos 2θ d√ 1 + sin 2θ = √ = dθ dθ 1 + sin 2θ The length of the curve L is ˆ 2π r2 L= 0 ˆ 2π = + s dr dθ 2 1 + sin 2θ + 0 ˆ 2π = 0 ˆ 2π = 0 ˆ = s 2π s r √ dθ (2 points) (2 points) cos2 2θ dθ 1 + sin 2θ 1 + 2 sin 2θ + sin2 2θ + cos2 2θ dθ 1 + sin 2θ 2 + 2 sin 2θ dθ 1 + sin 2θ 2 dθ 0 √ = 2 2π (3 points) (b) Because r ≥ 0 for 0 ≤ θ ≤ 2π (or due to observation from the figure below), the area A of the enclosed region is ˆ 2π 1 2 A= r dθ (4 points) 2 0 ˆ 1 2π = (1 + sin 2θ) dθ 2 0 2π 1 1 = θ − cos 2θ 2 2 0 1 1 1 = 2π − − 0 + 2 2 2 =π Page 2 of 7 (3 points) 4. (a) (7%) Find the length of the parametric curve C: x = ln(sec t + tan t) − sin t, y = cos t, 0 ≤ t ≤ π . 3 (b) (7%) Rotate the curve C about x-axis. Find the surface area. √ (c) (7%) Find the volume of the solid bounded by the surface given in (b) and the planes x = 0, x = ln(2+ 3)− √ 3 . 2 Solution: (a). d (x(t)) = sec(t) − cos(t), dt d (y(t)) = −sin(t). dt ˆ π ˆ π 3 ds = 3 tan(t)dt 0 . . . (1 points) . . . (2 points) 0 π/3 = −ln|cos(t)|0 . . . (2 points) = ln(2) ] . . . (2 points) , where ds = s d (x(t)) dt 2 2 d + (y(t)) dt = tan(t)dt. dt (b). ˆ π ˆ π 3 2πy(t)ds = 3 2πcon(t)tan(t)dt 0 . . . (2 points) 0 π/3 = −2πcos(t)|0 =π ] . . . (3 points) . . . (2 points) (c). ˆ ˆ π πy (t)d(x(t)) = 3 πcon2 (t)[sec(t) − cos(t)]dt 2 . . . (2 points) 0 ˆ π = 3 πsin2 (t)con(t)dt 0 π π/3 sin3 (t)|0 . . . (3 points) 3 √ 3 π ] . . . (2 points) = 8 = , where d(x(t)) = [sec(t) − cos(t)]dt. ˆ 5. (10%) Find 1 dx. x2 (x2 + x + 1) Solution: 1 a b cx + d = + 2 + 2 , where a, b, c, d are determined. (1 point) Then solve a = −1,b = x2 (x2 + x + 1) x x x +x+1 1,c = 1,d = 0. (2 points, if solve partially 1 point) so we have ˆ ˆ ˆ ˆ 1 −1 1 x dx = dx + dx + dx x2 (x2 + x + 1) x x2 x2 + x + 1 Let Page 3 of 7 1 + x ˆ x dx (2 points) x2 + x + 1 ˆ ˆ ˆ x + 21 x 1 1 1 dx = dx − dx = ln(x2 + x + 1) (2 points) x2 + x + 1 x2 + x + 1 2 x2 + x + 1 2 ˆ 2 2x + 1 1 √ = √ arctan √ (3 points) 3 2 1 2 3 3 (x + 2 ) + ( 2 ) = − ln |x| − 1 1 1 2x + 1 + ln(x2 + x + 1) − √ arctan √ +C x 2 3 3 If you don’t wirte +C, you will lose 1 point. so Answer is − ln |x| − ˆ 6. (10%) Find 1 dx. sec x − 1 Solution: Solution 1. ˆ ˆ 1 sec x + 1 sec x + 1 · dx = dx (2分) sec x − 1 sec x + 1 sec2 x − 1 ˆ ˆ cos2 x cos x sec x + 1 dx (3分) = + = dx tan2 x sin2 x sin2 x ˆ ˆ 1 − sin2 x 1 d sin x + dx = 2 sin2 x ˆ ˆ ˆ sin x 1 2 d sin x + csc x dx − 1 dx = sin2 x 1 =− − cot x − x + C. sin x 1 dx = sec x − 1 後面的三項積分個別計分,第一項積出 − Solution 2. Let t = tan cos x = ˆ 1 再得 4 分,其它兩項及常數 C 一共佔 3 分。 sin x x (佔 1 分), then we have 2 2t 2 1 − t2 (佔 1 分), sin x = (沒有用到), and dx = dt. (佔 1 分) 1 + t2 1 + t2 1 + t2 So ˆ ˆ 1−t2 ˆ 2 cos x 1 − t2 1+t2 · 1+t2 dx (2分) = dt (5分) dt = 2 2 1−t 1 − cos x t (1 + t2 ) 1 − 1+t2 ˆ 1 2 1 = − dt (7分) = − − 2 tan−1 t + C (9分) 2 2 t t +1 t 1 x x =− − 2 tan−1 tan + C = − cot − x + C. (10分) tan x2 2 2 1 dx = sec x − 1 ˆ 前面兩種解法是大部分人採用的積分策略,所以在此列出詳細配分標準,以下還有數種解法,處理方式都很漂亮,在此也 完整呈現供大家參考及學習,配分以個案處理, 但原則上和前兩種配分方式雷同。 Solution 3. ˆ Solution 4. ˆ ˆ 1 − 2 sin2 x2 cos x dx = dx 1 − cos x 2 sin2 x2 ˆ ˆ x x x = csc2 d − 1 dx = − cot − x + C. 2 2 2 1 dx = sec x − 1 1 dx = sec x − 1 ˆ ˆ 1 sec x + 1 · dx = sec x − 1 sec x + 1 Page 4 of 7 ˆ sec x + 1 dx = sec2 x − 1 ˆ sec x + 1 dx. tan2 x Since ˆ and ˆ ˆ sec x sec x tan x 1 dx = d sec x = − sec x d cot3 x tan3 x tan3 x tan3 x ˆ ˆ sec x sec x cos x 2 2 dx + 3 sec x cot x csc x dx = +3 = 3 3 tan x tan x sin4 x ˆ sec x sec x 1 1 = +3 d sin x = − + C, tan3 x tan3 x sin3 x sin4 x sec x dx = tan2 x ˆ 1 dx = tan2 x we get Solution 5. ˆ ˆ ˆ 1 dx = sec x − 1 Since and ˆ cot2 x dx = (csc2 x − 1) dx = − cot x − x + C, 1 1 sec x − cot x − x + C. − dx = sec x − 1 tan3 x sin3 x ˆ ˆ ˆ ˆ sec x + 1 1 · dx = sec x − 1 sec x + 1 sec x dx = tan2 x ˆ sec x + 1 dx = sec2 x − 1 ˆ sec x + 1 dx. tan2 x ˆ cot x csc x dx = − csc x + C, ˆ ˆ cos2 x 2 2 dx = cos x csc x dx = − cos2 x d cot x sin2 x ˆ = − cos2 x cot x + cot x d cos2 x ˆ = − cos2 x cot x − 2 cot x cos x sin x dx ˆ ˆ = − cos2 x cot x − 2 cos2 x dx = − cos2 x cot x − (1 + cos 2x) dx 1 dx = tan2 x ˆ sin 2x +C 2 − cos2 x cot x − x − sin x cos x + C = − cos2 x cot x − x − we get ˆ 1 dx = − csc x − cos2 x cot x − x − sin x cos x + C. sec x − 1 x Solution 6. Let t = cot , then we have 2 cos x = t2 − 1 , 1 + t2 sin x = 2t , 1 + t2 and dx = − 2 dt. 1 + t2 So ˆ ˆ t2 −1 −2 ˆ cos x 1 − t2 1+t2 · 1+t2 dt = dx = dt 2 −1 t 1 − cos x 1 + t2 1 − 1+t2 ˆ 2 = −1 + dt = −t + 2 tan−1 t + C 1 + t2 x x + C. = − cot + 2 tan−1 cot 2 2 1 dx = sec x − 1 ˆ 1 Solution 7. Let t = sec x+tan x. Since sec2 x−tan2 x = (sec x+tan x)(sec x−tan x) = 1, we have = sec x−tan x t and sec x = t2 + 1 , 2t tan x = t2 − 1 , 2t Page 5 of 7 dt = t2 + 1 dx. 2 (b) Discuss the asymptotic behavior lim y(x) and lim+ y(x). x→∞ x→0 Problem 3. (%+%) (a) Find the length of the polar curve: r = √ 1 + sin 2θ, 0 ≤ θ ≤ 2π. (b) Find the area enclosed by the curve given in (a). So ˆ 4. (%+%+%) Problem ˆ ˆ 1 2 1 4t dx = · 2 dt = dt 2 (t t2 +1 (a) Find curve C: x = ln(sec t + tan t) − sin2 t,+y 1) = cos t, 0 ≤ t ≤ π3 . secthe x −length 1 of the parametric t + 1 (t − 1) 2t − 1 ˆ (b) Rotate the curve C about the 2x-axis. Find2the surface area. 2 − = dt = − − 2 tan−1 t + C (t − 1)2 t2 + 1 t−1 (c) Find the volume of the solid bounded by the surface given in (b) and the planes x = 0, x = √ 2 ln(2 + 3). =− − 2 tan−1 (sec x + tan x) + C. Z sec1x + tan x − 1 Problem 5. (%) Find x2 (x2 + x + 1) Z dx. 1 Problem (%) Find dx. with radius R and all axes of cylinders lie in a plane with polar 7. Consider the intersection of6.three circular cylinders sec x − 1 π 2π Problem the intersection three circular cylinders with radius and alllooks like the union equations θ = 0, θ = , and7.θ (%+%) = . Consider The cross-section is of a hexagon, and the shape of theR solid 3 3 π 2π axes of cylinders lie in a plane with polar equations θ = 0, θ = , and θ = . The cross-section of two umbrellas. 3 3 is a hexagon, and the shape of the solid looks like the union of two umbrellas. θ= 2π 3 θ= π 3 y R θ=0 (a) (b) Figure 1: Intersection of three cylinders. (a) Vertical view. (b) The solid. (a) Find the cross area ofsection the crossof section of the when solid when heightisisy, y, y y∈ R].R]. (a) (6%) Find the area of the the solid the the height ∈[−R, [−R, (b) (6%) Find the volume solid. (b) Findof thethe volume of the solid. Problem 8. (%) Evaluate the improper integral Solution: (a)Observe the figures below. Z ∞ 2 x3 e−x dx. 0 1 (a)Observe the figures below. d d θ= π 6 y R When the height is y, the area of the cross section(hexagon) is decided by p When the height is y, the area of the cross section(hexagon) d = R2 − y 2 . Hence, Hence, is decided by d = p 1 2 Area = 6 × Area of1equilateral triangles = 6 × × d × √ d 2 2 3 Area = 6 × Area of equilateral triangles = 6 × × √ d× √ d 2 √ = 2 3(R32 − y 2 ) (3%) 2 2 = 2 3(R − y ) ˆ R √ Z R Z R √ √ 1 8 3 3 (b) R = 2 3(R2 − y 2 )dy = 2 3(R2 y − y 3 )|R (b)VV== A(y)dy A(y)dy(3%) −R = 3 3 −R −R √ ˆ−R R √ √ 1 3 R 8 3 3 2 2 2 = 2 3(R − y )dy = 2 3(R y − y )|−R (2%) = R (1%) 3 3 −R ˆ 8. (10%) Evaluate the improper integral ∞ 2 x3 e−x dx. 0 Page 6 of 7 R2 − y 2 .(3%) Solution: ˆ 0 ∞ 3 −x2 x e ˆ ˆ 2 1 t x e dx = lim x e dx = lim u e−u du (3分) t→∞ 0 t→∞ 2 0 0 ! ˆ t2 ˆ 2 2 1 t 1 h −u iu=t −u −u − e du (6分) = lim − ue u de = lim − t→∞ t→∞ 2 0 2 u=0 0 2 2 1 1 h −u iu=t = lim − t2 e−t − e t→∞ 2 2 u=0 1 2 −t2 1 −t2 1 1 = lim − t e − e + (7分) = , t→∞ 2 2 2 2 t 3 −x2 1 dx = lim t→∞ 2 ˆ t 2 −x2 2 where we use the l’Hospital Rule to get find the limit: 2 t2 2 t→∞ et lim t2 e−t = lim t→∞ ∞ (∞ ,L0 ) = lim t→∞ 1 2t = 0. 2 = lim t t→∞ 2t e et2 ˆ ∞ 這題重點在於是否具有「瑕積分的觀念」,而判定的依據是以有寫出「極限」為準;縱使前面所有的式子都是寫 或 0 2 2 −t 是上、下限寫 |∞ = 0,就認定你知道「瑕積分的意義」;這個極限值不是顯然 0 , 但最後一定要用極限判斷 lim t e t→∞ 2 的,一定要討論,佔 3 分, 也就是說,最後有完整討論這個極限就可以拿到滿分 10 分。 另一個極限式 lim e−t = 0 t→∞ 可接受直接寫答案,沒有解釋不會扣分。 Page 7 of 7
© Copyright 2026 Paperzz