1. 3. R4 [(5x − x2 ) − x]dx = 0 h 2 (4x − x )dx = 2x2 − 0 R4 h y 2 (e − y + 2)dy = ey − y=−1 R1 y3 3 11. y 2 − 1 = 1 − y 2 iff y = ±1. i1 h 2y 3 = 83 . 2y − 3 + 2y i1 x3 3 i4 = x=0 = e − e−1 + 10 . 3 y=−1 R1 y=−1 32 . 3 R1 [1 − y 2 − (y 2 − 1)]dy = y=−1 (2 − 2y 2 )dy = y=−1 R3 13. 12 − x2 = x2 − 6 iff x = ±3. h i3 3 18x − 2x3 = 72. R3 [12 − x2 − (x2 − 6)]dx = x=−3 x=−3 (18 − 2x2 )dx = x=−3 16. R 2π 0 (2 − 2 cos x)dx = [2x − 2 sin x]2π x=0 = 4π. R R π3 = − ln |u| + C = − ln | cos x| + C. We have −π | tan x − tan xdx = −du u 3 R0 2 sin x|dx = −π 2(tan x − 2 sin x)dx = [−2 ln | cos x| + 4 cos x]0x= −π = 2 − 2 ln 2. 21. Note R 3 3 29. R1 0 (2x − x )dx 3 + R3 1 (−0.5x + 2.5 − x )dx 3 = h 5x 6 i1 2 + h x=0 √ −1± 9 4 −5x2 12 + 2.5x i3 = 2.5. x=1 Rπ = −1 or 0.5 iff x = π6 . 02 | sin x− 31. sin x−cos 2x = sin x−1+2 sin2 x = 0 iff sin x = π Rπ Rπ 6 + cos 2x|dx = 06 (− sin x + cos 2x)dx + π2 (sin x − cos 2x)dx = [cos x + 0.5 sin 2x]x=0 π 2 [− cos x − 0.5 sin 2x]x= π = 6 2 1. A(x) = π(2 − 0.5x) . R2 1 √ 3 3 2 6 − 1. h 2 A(x)dx = π 4x − x + x3 12 i2 19π . 12 = x=1 R9 √ 9 5. A(y) = π(2 y)2 = 4πy. 0 A(y)dy = 2π [y 2 ]y=0 = 162π. R1 7. x3 = x iff x = 0, ±1. A(x) = π(x2 − x6 ). 0 R2 9. y 2 = 2y iff y = 0, 2. A(y) = π(4y 2 − y 4 ). 0 A(x)dx = π A(y)dy = π 11. y 2 = (x2 )2 = x iff x = 0, 1. A(x) = π((1 − x2 )2 − (1 − h 5 i1 R1 x 2x3 x2 4x3/2 A(x)dx = π − − + = 11π . 5 3 2 3 30 0 h h x3 3 − 4y 3 3 − x7 7 i1 y5 5 = 4π . 21 = 64π . 15 x=0 i2 y=0 √ 2 √ x) ) = π(x4 − 2x2 − x + 2 x). x=0 −2x2 R1 −2x2 R1 2 e−2x dx ≈ 3.75825. R1 R1 2 2 2 2 2 2 (b) A(x) = π((e−x +1)2 −12 ) = πe−x (2+e−x ). −1 πe−x (2+e−x )dx = 2π 0 (2e−x + 2 e−2x )dx ≈ 13.14312. p √ 33. y = ±0.5 4 − x2 . x = ± 4 − 4y 2 . 31. (a) A(x) = πe . −1 πe dx = 2π 0 1 √ √ √ √ R2 (a) A(x) = π((2+0.5 4 − x2 )2 −(2−0.5 4 − x2 )2 ) = 4π 4 − x2 . −2 4π 4 − x2 dx = R2√ 8π 0 4 − x2 dx ≈ 78.95684. Rπ Rπ Rπ 2 2 2 Remark 1. Observe that θ=0 sin2 θdθ = θ=0 cos2 θdθ. This gives us θ=0 (sin2 θ + √ π π R R R 2 2 2 cos2 θ = π2 ⇒ θ=0 cos2 θ = π4 . Hence x=0 4 − x2 dx = cos2 θ)dθ = 2 θ=0 Rπ 2 2 cos θ · 2 cos θdθ = π, i.e., the volume = 8π 2 . θ=0 p p p p R1 (b) A(y) = π((2+ 4 − 4y 2 )2 −(2− 4 − 4y 2 )2 ) = 8π 4 − 4y 2 . −1 8π 4 − 4y 2 dy = R1p 32π 0 1 − y 2 dy ≈ 78.95684. R1 p Rπ 2 Remark 2. y=0 1 − y 2 dy = θ=0 cos θ · cos θdθ = π4 , i.e., the volume = 8π 2 . 41. Rotate the region above the x-axis bounded by x = y 2 , x = y 4 about the y-axis. 2
© Copyright 2026 Paperzz