u-Substitution Examples Example 1. Evaluate Z t5 p t2 − 9 dt. We let u = t2 − 9 (which implies that t2 = u + 9), then du = 2t dt 1 du = t dt 2 Then: Z t5 p t2 − 9 dt = Z Z = t4 p t2 − 9t dt 2 (t2 ) p t2 − 9t dt √ 1 (u + 9)2 u du 2 Z 1 u2 + 18u + 81 u1/2 du 2 Z 1 5/2 u + 18u3/2 + 81u1/2 du 2 1 2 7/2 36 5/2 162 3/2 u + u + u +C 2 7 5 3 1 7/2 18 5/2 81 3/2 u + u + u +C 7 5 3 1 2 18 2 7/2 (t − 9) + (t − 9)5/2 + 27(t2 − 9)3/2 + C 7 5 Z = = = = = = Example 2. Evaluate Z x2 − 1 √ dx. 2x − 1 We let u = 2x − 1 (which implies that x = 21 (u + 1)), then du = 2 dx 1 du = dx 2 1 Then: Z x2 − 1 √ dx = 2x − 1 Z (x2 − 1)(2x − 1)−1/2 dx ! 2 Z 1 1 = (u + 1) − 1 u−1/2 du 2 2 Z 1 1 = (u + 1)2 − 1 u−1/2 du 4 2 Z 1 1 = (u + 1)2 − 4 u−1/2 du 4 2 Z 1 2 −1/2 = (u + 2u + 1 − 4)u du 8 Z 1 (u2 + 2u − 3)u−1/2 du = 8 Z 1 u3/2 + 2u1/2 − 3u−1/2 du = 8 1 2 5/2 4 3/2 = u + u − 6u1/2 + C 8 5 3 1 1 3 = (2x − 1)5/2 + (2x − 1)3/2 − (2x − 1)1/2 + C 20 6 4 Example 3. Evaluate Z9 √ We let u = 1 + √ 1 1 x (1 + √ 2 dx. x) x, then 1 du = √ dx 2 x 1 2 du = √ dx x √ √ Also, when x = 1, u = 1 + 1 = 2, and when x = 9, u = 1 + 9 = 4. Then: Z9 √ 1 √ dx = x(1 + x)2 Z9 (1 + 1 √ x)2 1 1 Z4 = 1 2 du u2 2 Z4 = 2u−2 du 2 4 = −2u−1 2 4 −2 = u 2 1 1 = −2 − 4 2 1 = 2 Example 4. Evaluate Z4 √ x dx. 2x + 1 0 2 1 √ dx x We let u = 2x + 1 (which implies that x = 21 (u − 1)), then du = 2 dx 1 du = dx 2 Also, when x = 0, u = 1, and when x = 4, u = 9. Then: Z4 x √ dx = 2x + 1 Z4 x(2x + 1)−1/2 dx 0 0 Z9 = 1 1 (u − 1)(u−1/2 ) du 2 2 1 1 = 4 Z9 u1/2 − u−1/2 du 1 9 1 2 3/2 1/2 u − 2u 4 3 1 1 2 3/2 2 3/2 1/2 1/2 ·9 −2·9 − ·1 −2·1 4 3 3 1 2 18 − 6 − + 2 4 3 1 40 · 4 3 10 3 = = = = = Example 5. Evaluate Z sin(2u) cos(2u) du. We let w = sin(2u), then du = 2 cos(2u) dx 1 du = cos(2u) dx 2 Then: Z Z 1 dw 2 w2 1 = + C1 2 2 1 = sin2 (2u) + C1 4 sin(2u) cos(2u) du = w Alternatively, we can let w = cos(2u), then du = −2 sin(2u) dx − 1 du = cos(2u) dx 2 3 Then: Z −1 dw 2 w2 −1 = + C2 2 2 1 = − cos2 (2u) + C2 4 1 1 1 1 2 2 2 = − 1 − sin (2u) + C2 = − + sin (2u) + C2 = sin (2u) + C1 4 4 4 4 Z sin(2u) cos(2u) du = w 4
© Copyright 2026 Paperzz