PAP Algebra 2 Rational Exponents & Radicals Test Review 1. Write each expression in radical form. 1 a) (10x ) 3 2. Name: _____________________ 3 3 b) −2 4 c) ( −2 ) 4 d) 8m 4 + 3k 2 ( ) 2 3 − Simplify each radical expression. a) a 4 b5 c 7 d) 5 81x4 y 2 • 5 6 x2 y3 g) x2 + 2 x + 1 j) 2 3 5x7 + 3x 3 40 x4 m) 9 2 + 11 p) 32 x 5 27 x 3 r) ( 81 ) 4 −2 b) e) h) x 4 n y 3n + 2 3 3 −54 f) 5 − i) 9c3 l) 27c5 n) s) 3 320 3 5 k) q) x 2 • 4 x3 c) 3 ( a + 7b ) a2n a7n 4 5 2 4 o) 8 54 • 27 9 27 4 9 ab3c 3 ( a 2b 3c 6•36 6 ) u) The expression 4ab 2b − 3a 18b3 + 7ab 6b is equivalent to a. 2ab 6b 3. b. 16ab 2b c. −5ab + 7ab 6b d. −5ab 2b + 7ab 6b Evaluate each expression. a) 64 2 3 b) −5 ( 216 ) 2 3 c) ( −32 ) − ⎛ 1 ⎞ d) ⎜ ⎟ ⎝ 512 ⎠ 3 5 − 2 3 Simplify each expression 3 4 e) k • k 2 5 ⎛ b5 ⎞ f) ⎜ −10 ⎟ ⎝ 32a ⎠ 5 ⎛ 23 ⎞ g) b ⎜ b − b 2 ⎟ ⎝ ⎠ j) x 2 5 ⎛ m − 8 5 h) ⎜ − 2 ⎜ t 7 ⎝ 1 2 3 − 2 ⎞ ⎟ ⎟ ⎠ 4 ⎛ t 16 ⎜ 1 ⎜ m 5 ⎝ ⎛ y − x ⎞ k) ⎜ ⎟ ⎝ xy − 9 ⎠ 5 6 x 5 • x −5 ⎞ ⎟ ⎟ ⎠ 2 −4 i) 250 3 2 23 ⎛ ⎛ 116 2x l) ⎜ ⎜ 4 ⎜⎜ ⎜ x 3 ⎝ ⎝ 0 ⎞ ⎟ ⎟ ⎠ 2 ⎞ ⎟ ⎟⎟ ⎠ −3 1 m) a 4. 72 •a 5 ⎛ ⎞ 3 2 8 x y ⎟ n) ⎜ 1 ⎜ ⎟ ⎜ 27 x 2 y ⎟ ⎝ ⎠ 50 o) Simplify each expression. Assume all variables are positive. a) − z 2 16 z 3 + 3 36 z 7 1 ⎛ 13 ⎞ d) ⎜ 3a − 2a 2 ⎟ ⎝ ⎠ b) 4 + x 3 − 2 x ( 2 e) )( 3− x x 4 3 1 2 ) ⎛ − 14 ⎞ x ⎜ x ⎟ ⎝ ⎠ ( ) 3 2 Solve each equation. 5. a) 3x5 + 350 = −379 6. Solve each equation. When solving a radical equation, be sure to check for extraneous solutions. a) x − 2 = 2 x − 1 4 b) ( x + 4 ) = 625 b) 3 3x − 3 = 3 4 x + 6 c) 4 x = 9 x + 9 3 d) x +3= 0 e) 2 x + x = 3 f) ( x + 3) 2 − 1 = 7 2 g) 4 x + 5 = 10 x − 1 − 2 3 h) 4( x − 5) − 2 = 62 4 k) (3x − 2) − 40 = 41 For 17-19, given the functions, evaluate the following expressions. 17. f(x) = x2 – 4 and g(x) = 4x – 1 a) f [g(3)] 18. f (x) = x 2 + 2 and g(x) = − 3x a) f [g(8)] b) f(g(x)) −1 3 b) g [f(5)] 19. f ( x) = 2 x − 3 and g ( x) = 2 x 2 − x − 3 a) f ( x) − g ( x) b) f (−1) − g (−1) Perform the indicated operations. Answer in SIMPLEST form. BOX ANSWERS. (3 pts. each) 20. Given f ( x) = 5 x3 f ( x) a) = g ( x) and g ( x) = 2 x 1 2 b) f (x)ig(x) c) f(g(x)) 21. (each part is 2 pts.) Given the graph y = f ( x) below with the point (-1, -1) as a point of inflection, find a. f (−3) − f (4) 6 4 2 −6 −4 −2 −2 −4 −6 −8 b. f (−5) 2 4 6 8 10 c. f −4
© Copyright 2026 Paperzz