The Brown Dwarf Multiplicity Fraction: Are Most Brown Dwarfs in (Tight) Multiples? Adam J. Burgasser UC San Diego/MIT 20% ? WHAT IS THE BROWN 50% DWARF MULTIPLICITY ? FRACTION IN THE FIELD? 10%? © 2009 Adam J Burgasser Lada (2006): 5‐15% Bate et al. (2009): 5‐20% Thies & Kroupa (2007): 5‐15% © 2009 Adam J Burgasser “BD binary fractions are low” But are they? Lada (2006): 5‐15% Bate et al. (2009): 5‐20% Thies & Kroupa (2007): 5‐15% © 2009 Adam J Burgasser Pinfield et al. (2003): 40‐61%! Maxted & Jeffries (2005): 32‐45%! If 67% L/T transition objects are binary (Liu et al. 2006) then … Burgasser (2007): 24‐53%! © 2009 Adam J Burgasser http://www.vlmbinaries.org © 2009 Adam J Burgasser Number of Sources 30 ~4 AU VLM Binaries Archive 93 sources 25 20 15 10 5 0 10-2 100 102 104 Projected Separation (AU) http://www.vlmbinaries.org © 2009 Adam J Burgasser Number of Sources 30 50 mas VLM Binaries Archive 90 sources 25 20 15 10 How many sources live here? 5 0 10-2 100 102 104 Angular Separation (marcs) 106 http://www.vlmbinaries.org © 2009 Adam J Burgasser “Easy” Ways to Find Tight BD Binaries • Radial velocity variables (e.g., Joergens 2006,2008; Basri & Reiners 2006; Blake et al. 2008) Pros: samples tight physical separations (<1‐5 AU); direct mass measurement Cons: expensive, impossible for faint sources, difficult to characterize components • Overluminosities in CMD (e.g., Pinfield et al. 2003; Chapelle et al. 2005; Burgasser et al. 2008) Pros: no limit on separation, cheap(ish) Cons: contamination issues, requires cospatial sample or accurate distance measurements (not cheap), difficult to characterize components © 2009 Adam J Burgasser Also eclipsing, microlensing, etc. Spectral Binaries Combined light spectra of distinct but comparably bright components Pros: independent of angular & projected separation, can be done with low‐resolution data (cheap), can characterize components Cons: rare, no separation info, complex selection effects Silvestri et al. (2006) WD‐dM unresolved pair © 2009 Adam J Burgasser Exploiting the L/T Transition* “J‐band” bump Deep minimum in LF An enhanced binary fraction of equal‐ brightness components at the L/T transition *Spectral types L7‐T5 © 2009 Adam J Burgasser 2M 0518‐2828 Archetype L/T Spectral Binary 1.2 0518-2828 Normalized F! 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.5 Wavelength (!m) 2.0 Cruz et al. (2004); Burgasser et al. (2006) © 2009 Adam J Burgasser 2M 0518‐2828 Archetype L/T Spectral Binary 1.2 0518-2828 0825+2115 L7.5 (L7.0) 2331-4718 T5.0 (T5.0) "2 = 58.9 Normalized F! 1.0 0.8 0.6 0.4 Resolved (barely) with HST/NICMOS (50 mas ≈ 1.8 AU) 0.2 0.0 1.0 1.5 Wavelength (µm) 2.0 Cruz et al. (2004); Burgasser et al. (2006) © 2009 Adam J Burgasser 2M 0320‐0446 An M/T Spectral/Spectroscopic Binary Burgasser et al. (2008); Blake et al. (2008) © 2009 Adam J Burgasser 2M 0320‐0446 An M/T Spectral/Spectroscopic Binary ΔK = 4.3 mag Burgasser et al. (2008); Blake et al. (2008) Spectroscopic binary with 0.67 yr period (ΔV = ±7 km/s; M1 ≈ 0.08 M, M2 ≈ 0.05 M © 2009 Adam J Burgasser Search for Unresolved L/T Binaries • Full sample of 253 SpeX prism spectra for 233 L3‐T8 dwarfs from SpeX Prism Spectral Libraries* • Index selection of binary candidates • Template library of 170 spectra (reject low g, subdwarfs, low S/N, known & candidate binaries) • Construct 13581 unique binary combinations • Compare single and binary templates to candidates and assess statistical significance of “better fit” © 2009 Adam J Burgasser * http://www.browndwarfs.org/spexprism Index Selection 1.2 2252-1730 H2O-J/H2O-H 1.0 0423-0414 0423-0414 1404-3159 1021-0304 0.8 1534+1615 0518-2828 0.6 0.4 0.2 L0 L2 L4 L6 L8 T0 T2 T4 T6 T8 Derived NIR Spectral Type => 21 candidates identified (12 “strong” + 8 “weak”) © 2009 Adam J Burgasser 1.2 0.2 0.2 0.0 1.5 Wavelength (µm) 2.0 2.0 0.6 0.4 0.2 0.8 0.6 0.4 0.0 1.5 Wavelength (µm) 2.0 1.5 Wavelength (µm) Normalized F! 0.8 1.0 0.6 0.4 0.2 0.8 0.6 0.4 0.0 1.5 Wavelength (µm) 2.0 1.2 1.5 Wavelength (µm) Normalized F! 0.8 1.0 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.0 1.5 Wavelength (µm) 2.0 0.6 0.4 1.5 Wavelength (µm) 2.0 0119+2403 0858+3256 T1.0 (T0.0) 2254+3123 T4.0 (T4.0) "2 = 15.7 1.0 0.8 0.6 0.4 0.0 1.5 Wavelength (µm) 2.0 1.0 1.5 Wavelength (µm) 2.0 1.2 1207+0244 1036-3441 L6.0 (L6.5) 1209-1004 T3.0 (T3.0) "2 = 6.14 1.0 0.8 0.6 0.4 2052-1609 1155+0559 L7.5 (L7.0) 1122-3512 T2.0 (T2.0) "2 = 2.59 1.0 0.8 0.6 0.4 0.2 0.0 1.0 2.0 0.2 0.2 0.0 1.0 1.5 Wavelength (µm) 1.2 1.2 0949-1545 1632+4150 T1.0 (T1.0) 1122-3512 T2.0 (T2.0) "2 = 13.7 Normalized F! 1.0 1.0 2139+0220 0830+4828 L9.0 (L9.5) 1214+6316 T3.5 (T4.0) "2 = 1.83 1.0 1.2 0909+6525 1750+4222 T2.0 (T1.5) 1048+0919 T2.5 (T2.5) "2 = 2.53 0.4 2.0 0.8 2.0 0.6 0.0 1.5 Wavelength (µm) 0.0 1.0 0.8 0.2 0.2 0.0 1.0 0.4 1.0 0.2 2.0 1439+3042 0151+1244 T1.0 (T0.0) 2356-1553 T5.5 (T5.5) "2 = 4.85 1.0 1.2 1711+2232 0624-4521 L5.0 (L5.0) 1828-4849 T5.5 (T5.5) "2 = 1.49 Normalized F! 1.0 0.6 1.0 1.2 1516+0259 0318-3421 L7.0 (L6.5) 1048+0919 T2.5 (T2.5) "2 = 1.97 0.8 2.0 1.5 Wavelength (µm) 1.2 0.0 1.0 1.2 1.0 0.2 0.0 1.0 0.4 2.0 1435+1129 1043+1213 L7.0 (L8.0) 1615+1340 T6.0 (T6.0) "2 = 19.9 1.0 0.2 0.6 0.0 1.5 Wavelength (µm) 1.2 Normalized F! 0.8 0.8 0.2 1.0 1415+5724 1523+3014 L8.0 (L7.5) 0741+2351 T5.0 (T5.5) "2 = 1.73 1.0 Normalized F! Normalized F! 1.0 Normalized F! 1.5 Wavelength (µm) 1.2 1324+6358 1043+2225 L8.0 (L9.0) 1214+6316 T3.5 (T4.0) "2 = 6.17 0.4 0.0 1.0 1.2 0.6 0.2 0.0 1.0 Normalized F! 0.4 Normalized F! 0.4 0.6 0.8 1106+2754 1520+3546 T0.0 (L7.5) 0000+2554 T4.5 (T4.5) "2 = 5.18 1.0 Normalized F! 0.6 0.8 1.2 1039+3256 1043+1213 L7.0 (L8.0) 2254+3123 T4.0 (T4.0) "2 = 2.56 1.0 Normalized F! 0.8 1.0 Normalized F! Normalized F! 1.0 1.2 0351+4810 0103+1935 L6.0 (L6.0) 0602+4043 T4.5 (T4.5) "2 = 6.64 Normalized F! 0247-1631 1520+3546 T0.0 (L7.5) 0050-3322 T7.0 (T6.5) "2 = 1.99 Normalized F! 1.2 © 2009 Adam J Burgasser 0.0 1.0 1.5 Wavelength (µm) 2.0 1.0 1.5 Wavelength (µm) 2.0 1.2 0247-1631 1520+3546 T0.0 (L7.5) 0050-3322 T7.0 (T6.5) "2 = 1.99 0.6 0.2 0.0 0.0 0.8 0.6 0.4 0.2 0.0 0.8 2.0 1.0 0.6 1.5 Wavelength (µm) 0.4 1.0 0.8 0.6 2.0 1.5 Wavelength (µm) 2.0 0.8 0.6 1.5 Wavelength (µm) 2.0 1.0 1.2 1711+2232 0624-4521 L5.0 (L5.0) 1828-4849 T5.5 (T5.5) "2 = 1.49 1.0 0.4 0.0 1.0 1.2 1.5 Wavelength (µm) 0.6 0.4 1.0 0.2 1.0 2.0 0.8 0.6 0.4 0.2 0.0 1.5 Wavelength (µm) 1.5 Wavelength (µm) 2.0 1.5 Wavelength (µm) 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0.0 1.5 Wavelength (µm) 2.0 1.0 0.8 0.6 0.4 1.5 Wavelength (µm) 2.0 2.0 2052-1609 1155+0559 L7.5 (L7.0) 1122-3512 T2.0 (T2.0) "2 = 2.59 1.0 0.8 0.6 0.4 0.2 0.0 1.0 1.5 Wavelength (µm) 1.2 1207+0244 1036-3441 L6.0 (L6.5) 1209-1004 T3.0 (T3.0) "2 = 6.14 0.2 0.0 1.0 0.4 1.0 12 are unobserved at high resolution 1.0 0.6 2.0 1.2 0949-1545 1632+4150 T1.0 (T1.0) 1122-3512 T2.0 (T2.0) "2 = 13.7 0.8 0.0 1.0 1.2 0909+6525 1750+4222 T2.0 (T1.5) 1048+0919 T2.5 (T2.5) "2 = 2.53 0119+2403 0858+3256 T1.0 (T0.0) 2254+3123 T4.0 (T4.0) "2 = 15.7 0.2 0.0 1.0 2.0 1.2 2139+0220 0830+4828 L9.0 (L9.5) 1214+6316 T3.5 (T4.0) "2 = 1.83 2 have been subsequently resolved with AO (Gelino et al. in prep.) 0.8 1439+3042 0151+1244 T1.0 (T0.0) 2356-1553 T5.5 (T5.5) "2 = 4.85 0.2 0.0 1.0 1516+0259 0318-3421 L7.0 (L6.5) 1048+0919 T2.5 (T2.5) "2 = 1.97 0.4 0.2 0.0 1.5 Wavelength (µm) 2.0 1.2 1435+1129 1043+1213 L7.0 (L8.0) 1615+1340 T6.0 (T6.0) "2 = 19.9 1.0 0.2 Normalized F! 1.0 1.5 Wavelength (µm) 1.2 0.8 0.4 3 are unresolved with HST/AO (Looper et al. 2008; Gelino et al. in prep) 1.0 1.2 0.6 0.0 1.0 1415+5724 1523+3014 L8.0 (L7.5) 0741+2351 T5.0 (T5.5) "2 = 1.73 1.0 Normalized F! Normalized F! 1.0 2.0 1.2 1.0 1.2 1.5 Wavelength (µm) Normalized F! 0.4 0.8 0.2 0.0 1.0 1324+6358 1043+2225 L8.0 (L9.0) 1214+6316 T3.5 (T4.0) "2 = 6.17 0.6 0.2 Normalized F! 2.0 0.4 Normalized F! 0.8 1.5 Wavelength (µm) Normalized F! Normalized F! 1.0 0.6 Normalized F! 1.0 1.2 0.8 0.2 Normalized F! 0.0 1106+2754 1520+3546 T0.0 (L7.5) 0000+2554 T4.5 (T4.5) "2 = 5.18 1.0 We identified 17/21 sources as probable binaries (index selection, better fit to binary templates) 0.4 Normalized F! 0.2 0.6 Normalized F! 0.4 0.8 1.2 1039+3256 1043+1213 L7.0 (L8.0) 2254+3123 T4.0 (T4.0) "2 = 2.56 1.0 Normalized F! 0.8 1.0 Normalized F! Normalized F! 1.0 1.2 0351+4810 0103+1935 L6.0 (L6.0) 0602+4043 T4.5 (T4.5) "2 = 6.64 Normalized F! 1.2 © 2009 Adam J Burgasser 0.0 1.0 1.5 Wavelength (µm) 2.0 1.0 1.5 Wavelength (µm) 2.0 What about the binary fraction? 0/12 (21) 1/9 (13) 6/9 (14) 8/17 (20) 3/7 (13) 1/10 (20) eb = 15% 80 Fraction of Binaries 6/10 (15) 60 40 20 0 L8 L9 T0 T1 T2 T3 Spectral Type T4 T5 © 2009 Adam J Burgasser What about the binary fraction? 0/12 (21) 1/9 (13) 6/9 (14) 6/10 (15) 8/17 (20) 1/10 (20) eb = 15% 80 Fraction of Binaries 3/7 (13) 60 53±7% 40 eb ≥ 15+3‐1 % 20 0 L8 L9 T0 T1 T2 T3 Spectral Type T4 T5 © 2009 Adam J Burgasser Conclusions • Spectral binaries comprised of L dwarf/T dwarf pairs can measure the intrinsic BD binary fraction – Indep. of physical separation (tight pairs; e.g. 2m0320) – Indep. of angular separation (distant pairs, large samples) – Can be done cheap and fast with low‐res spectral data • We uncovered 17 (+3) probably binaries; a few confirmed, most awaiting follow‐up • The BD binary fraction is ≥15% independent of separation distribution © 2009 Adam J Burgasser The Brown Dwarf Multiplicity Fraction: Are Most Brown Dwarfs in (Tight) Multiples? Adam J. Burgasser UC San Diego/MIT
© Copyright 2026 Paperzz