File:Psych1HeatCoil.EES 10/21/2003 3:41:38 PM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #1" " Moist air enters a heating coil at 40°F dry-bulb temperature and 36°F wet-bulb temperature at a rate of 2000 cfm. Barometric pressure is 14.696 psia. The air leaves the coil at a dry-bulb temperature of 140°F. " "Given information" P_atm = 14.696 T_sa = 140 T_ma = 40 TWB_ma = 36 CFM_ma = 2000 TW_ent = 180 TW_lvg = 160 T_steam = 250 "Calculate properties of mixed air" W_ma = HUMRAT(AIRH2O,t=T_ma, b=TWB_ma,p=P_atm) h_ma = ENTHALPY(AIRH2O,t=T_ma, w=W_ma,p=P_atm) v_ma = VOLUME(AIRH2O,t=T_ma, w=W_ma,p=P_atm) c_p = SPECHEAT(AIRH2O,t=T_ma,w=W_ma,p=P_atm) "a) How much heat is added to the air?" m_sa = CFM_ma/v_ma*CONVERT(hr,min) h_sa = ENTHALPY(AIRH2O,t=T_sa, w=W_ma,p=P_atm) Q_air = m_sa*(h_sa-h_ma) Q_airT = m_sa*c_p*(T_sa-T_ma) "b) If the heat is provided by hot water that enters the coil at 180°F and leaves at 160°F, what is the water flow rate?" c_WATER = SPECHEAT(WATER,t=TW_ent,p=P_atm) m_w = Q_air/(c_WATER*(TW_ent-TW_lvg)) "c) If the heat is provided by a steam coil with saturated steam at 250°F, what steam flow rate is required? File:Psych1HeatCoil.EES 10/21/2003 3:41:39 PM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder Assume that the steam leaves the coil as a saturated liquid?" hfg_steam = ENTHALPY(STEAM,t=T_steam,x=1)-ENTHALPY(STEAM,t=T_steam,x=0) m_steam = Q_air/hfg_steam AREN 3010 In-Class Psychrometric Problem #1 Moist air enters a heating coil at 40°F dry-bulb temperature and 36°F wet-bulb temperature at a rate of 2000 cfm. Barometric pressure is 14.696 psia. The air leaves the coil at a dry-bulb temperature of 140°F. Given information = 14.696 P atm T sa = 140 T ma = 40 TWB ma = 36 CFM ma = 2000 TW ent = 180 TW lvg = 160 T steam = 250 Calculate properties of mixed air = ω W ma 'AirH2O' , T = T ma , B = TWB ma , P = P atm h ma = h 'AirH2O' , T = T ma , w = W ma , P = P atm v ma = v 'AirH2O' , T = T ma , w = W ma , P = P atm cp = Cp 'AirH2O' , T = T ma , w = W ma , P = P atm a) How much heat is added to the air? CFM ma min m sa = h sa = h 'AirH2O' , T = T sa , w = W ma , P = P atm Q air = m sa · Q airT v ma · 60 · hr h sa – h ma = m sa · c p · T sa – T ma b) If the heat is provided by hot water that enters the coil at 180°F and leaves at 160°F, what is the water flow rate? c WATER = Cp 'Water' , T = TW ent , P = P atm File:Psych1HeatCoil.EES 10/21/2003 3:41:39 PM Page 3 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder mw = Q air c WATER · TW ent – TW lvg c) If the heat is provided by a steam coil with saturated steam at 250°F, what steam flow rate is required? Assume that the steam leaves the coil as a saturated liquid? hfg steam m steam = h 'Steam' , T = T steam , x = 1 = – h 'Steam' , T = T steam , x = 0 Q air hfg steam Unit Settings: [F]/[psia]/[lbm]/[degrees] CFMma = 2000 [cfm] hfgsteam = 945.5 [Btu/lbm] msa = 9473 [lbm/hr] Patm = 14.7 [psia] TWB ma = 36 [F] Tma = 40 [F] vma = 12.67 [ft3/lbm] cp = 0.2419 [Btu/lbm-R] hma = 13.42 [Btu/lbm] msteam = 242.4 [lbm/hr] Qair = 229218 [Btu/hr] TW ent = 180 [F] Tsa = 140 [F] W ma = 0.003532 No unit consistency or conversion problems were detected. cWATER = 1.002 [Btu/lbm-R] hsa = 37.62 [Btu/lbm] mw = 11435 [lbm/hr] QairT = 229162 [Btu/hr] TW lvg = 160 [F] Tsteam = 250 [F] File:Psych2ZoneHeat.EES 10/21/2003 3:50:04 PM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #2" "A building space is to be maintained at 70°F dry-bulb and 30% RH when the barometric pressure is 14.696 psia. The total heating load on the space has been calculated to be 60,000 Btu/hr. Supply air is delivered to the space at a temperature of 120°F " "Given information" P_atm = 14.696 T_sa = 120 T_ra = 70 RH_ra = .3 Q_heat = 60000 Q_fan = 400*CONVERT(W,Btu/hr) "Calculate properties of outdoor and return air" W_ra = HUMRAT(AIRH2O,t=T_ra, r=RH_ra,p=P_atm) v_ra = VOLUME(AIRH2O,t=T_ra, w=W_ra,p=P_atm) v_sa = VOLUME(AIRH2O,t=T_sa, w=W_ra,p=P_atm) c_p = SPECHEAT(AIRH2O,t=T_ra,w=W_ra,p=P_atm) "a) What is the volumetric airflow required for the space?" m_sa=Q_heat /(c_p*(T_sa-T_ra)) CFM_sa = m_sa*v_sa/CONVERT(hr,min) CFM_ra = m_sa*v_ra/CONVERT(hr,min) "b) What is the discharge air temperature?" T_da = T_sa-Q_fan/(m_sa*c_p) AREN 3010 In-Class Psychrometric Problem #2 A building space is to be maintained at 70°F dry-bulb and 30% RH when the barometric pressure is 14.696 psia. The total heating load on the space has been calculated to be 60,000 Btu/hr. Supply air is delivered to the space at a temperature of 120°F File:Psych2ZoneHeat.EES 10/21/2003 3:50:05 PM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder Given information P atm = 14.696 T sa = 120 T ra = 70 RH ra = 0.3 Q heat = 60000 Q fan = 400 · 3.41214 · Btu/hr W Calculate properties of outdoor and return air W ra = ω 'AirH2O' , T = T ra , R = RH ra , P = P atm v ra = v 'AirH2O' , T = T ra , w = W ra , P = P atm v sa = v 'AirH2O' , T = T sa , w = W ra , P = P atm cp = Cp 'AirH2O' , T = T ra , w = W ra , P = P atm a) What is the volumetric airflow required for the space? m sa = CFM sa Q heat cp · T sa – T ra v sa = m sa · min 60 · CFM ra hr v ra = m sa · 60 · min hr b) What is the discharge air temperature? T da = T sa – Q fan m sa · c p Unit Settings: [F]/[psia]/[lbm]/[degrees] CFMra = 1110 [cfm] msa = 4949 [lbm/hr] Qheat = 60000 [Btu/hr] Tra = 70 [F] vsa = 14.72 [ft3/lbm] CFMsa = 1214 [cfm] Patm = 14.7 [psia] RHra = 0.3 Tsa = 120 [F] W ra = 0.004648 No unit consistency or conversion problems were detected. cp = 0.2425 [Btu/lbm-R] Qfan = 1365 [Btu/hr] Tda = 118.9 [F] vra = 13.45 [ft3/lbm] File:Psych3CoolCoil.EES 10/21/2003 12:01:00 PM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #3" " Moist air enters a cooling coil at 78°F dry-bulb temperature and 50% RH at a rate of 2400 cfm. Barometric pressure is 14.696 psia. The air leaves the coil at a dry-bulb temperature of 55°F and a dew-point temperature of 53°F. The condensate leaves at a temperature of 52°F. " "Given information" P_atm = 14.696 T_da = 55 TDP_da = 53 T_ma = 78 RH_ma = .5 CFM_ma = 2400 T_cond = 52 "Calculate properties of mixed and supply air" W_ma = HUMRAT(AIRH2O,t=T_ma, r=RH_ma,p=P_atm) h_ma = ENTHALPY(AIRH2O,t=T_ma, w=W_ma,p=P_atm) v_ma = VOLUME(AIRH2O,t=T_ma, w=W_ma,p=P_atm) W_da = HUMRAT(AIRH2O,t=T_da, d=TDP_da,p=P_atm) h_da = ENTHALPY(AIRH2O,t=T_da, w=W_da,p=P_atm) c_p = SPECHEAT(AIRH2O,t=T_ma,w=W_ma,p=P_atm) "a) What is the total load on the coil?" m_sa = CFM_ma/v_ma*CONVERT(hr,min) h_cond = ENTHALPY(WATER,t=T_cond,p=P_atm) m_cond = m_sa*(W_ma-W_da) Q_totExact = m_sa*(h_ma-h_da)-m_cond*h_cond Q_tot=m_sa*(h_ma-h_da) Error_Q = (Q_tot-Q_totExact)/Q_totExact "b) What is the sensible heat ratio?" Q_sen = m_sa*c_p*(T_ma-T_da) SHR = Q_sen/Q_tot "c) What are the supply air conditions?" Q_fan = 1200*CONVERT(W,Btu/hr) File:Psych3CoolCoil.EES 10/21/2003 12:01:00 PM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder T_sa = T_da+Q_fan/(m_sa*c_p) W_sa = W_da AREN 3010 In-Class Psychrometric Problem #3 Moist air enters a cooling coil at 78°F dry-bulb temperature and 50% RH at a rate of 2400 cfm. Barometric pressure is 14.696 psia. The air leaves the coil at a dry-bulb temperature of 55°F and a dew-point temperature of 53°F. The condensate leaves at a temperature of 52°F. Given information = 14.696 P atm T da = 55 TDP da T ma = 53 = 78 RH ma = 0.5 CFM ma = 2400 T cond = 52 Calculate properties of mixed and supply air W ma = ω 'AirH2O' , T = T ma , R = RH ma , P = P atm h ma = h 'AirH2O' , T = T ma , w = W ma , P = P atm v ma = v 'AirH2O' , T = T ma , w = W ma , P = P atm W da = ω 'AirH2O' , T = T da , D = TDP da , P = P atm h da = h 'AirH2O' , T = T da , w = W da , P = P atm cp = Cp 'AirH2O' , T = T ma , w = W ma , P = P atm a) What is the total load on the coil? m sa = CFM ma v ma · 60 · min hr h cond = h 'Water' , T = T cond , P = P atm m cond = m sa · Q totExact Q tot W ma – W da = m sa · = m sa · h ma – h da h ma – h da – m cond · h cond File:Psych3CoolCoil.EES 10/21/2003 12:01:00 PM Page 3 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder Error Q = Q tot – Q totExact Q totExact b) What is the sensible heat ratio? Q sen = m sa · c p · SHR = T ma – T da Q sen Q tot c) What are the supply air conditions? Q fan = 1200 · T sa = T da + W sa = W da 3.41214 · Btu/hr W Q fan m sa · c p Unit Settings: [F]/[psia]/[lbm]/[degrees] CFMma = 2400 [cfm] hcond = 20.09 [Btu/lbm] mcond = 17.58 [lbm/hr] Qfan = 4095 [Btu/hr] QtotExact = 77596 [Btu/hr] TDPda = 53 [F] Tma = 78 [F] W da = 0.008539 cp = 0.2449 [Btu/lbm-R] hda = 22.48 [Btu/lbm] msa = 10452 [lbm/hr] Qsen = 58866 [Btu/hr] RHma = 0.5 Tcond = 52 Tsa = 56.6 [F] W ma = 0.01022 No unit consistency or conversion problems were detected. ErrorQ = 0.004553 hma = 29.94 [Btu/lbm] Patm = 14.7 [psia] Qtot = 77949 [Btu/hr] SHR = 0.7552 Tda = 55 [F] vma = 13.78 [ft3/lbm] W sa = 0.008539 File:Psych4Mix.EES 10/21/2003 9:26:57 AM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #4" " Outdoor air is mixed with building return air in a mixing chamber prior to conditioning. The outdoor air is at 90°F and 40% RH with an airflow of 1000 cfm. The return air is 80°F and 67°F wet-bulb with an airflow rate of 3000 cfm. " "Given information" P_atm = 14.696 T_ra = 80 TWB_ra = 65 cfm_ra = 3000 T_oa = 90 RH_oa = .4 cfm_oa = 1000 "Calculate properties of outdoor and return air" h_ra = ENTHALPY(AIRH2O,t=T_ra, b=TWB_ra,p=P_atm) W_ra = HUMRAT(AIRH2O,t=T_ra, b=TWB_ra,p=P_atm) v_ra = VOLUME(AIRH2O,t=T_ra, b=TWB_ra,p=P_atm) h_oa = ENTHALPY(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) W_oa = HUMRAT(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) v_oa = VOLUME(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) "What is the mixed air condition?" m_oa = cfm_oa/v_oa*CONVERT(hr,min) m_ra = cfm_ra/v_ra*CONVERT(hr,min) m_ma = m_oa+m_ra OA_frac = m_oa/m_ma h_ma = OA_frac*h_oa + (1-OA_frac)*h_ra W_ma = OA_frac*W_oa + (1-OA_frac)*W_ra T_ma = TEMPERATURE(AIRH2O,h=h_ma,w=W_ma,p=P_atm) v_ma = VOLUME(AIRH2O,T=T_ma,w=W_ma,p=P_atm) cfm_ma = m_ma*v_ma/CONVERT(hr,min) AREN 3010 In-Class Psychrometric Problem #4 File:Psych4Mix.EES 10/21/2003 9:26:57 AM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder Outdoor air is mixed with building return air in a mixing chamber prior to conditioning. The outdoor air is at 90°F and 40% RH with an airflow of 1000 cfm. The return air is 80°F and 67°F wet-bulb with an airflow rate of 3000 cfm. Given information P atm = 14.696 T ra = 80 TWB ra = 65 cfm ra = 3000 T oa = 90 RH oa = 0.4 cfm oa = 1000 Calculate properties of outdoor and return air h ra = h 'AirH2O' , T = T ra , B = TWB ra , P = P atm = ω W ra 'AirH2O' , T = T ra , B = TWB ra , P = P atm v ra = v 'AirH2O' , T = T ra , B = TWB ra , P = P atm h oa = h 'AirH2O' , T = T oa , R = RH oa , P = P atm = ω W oa v oa 'AirH2O' , T = T oa , R = RH oa , P = P atm = v 'AirH2O' , T = T oa , R = RH oa , P = P atm What is the mixed air condition? m oa = m ra = m ma OA frac h ma W ma T ma cfm oa · v oa cfm ra v ra · 60 · 60 · min hr min hr = m oa + m ra = m oa m ma = OA frac · h oa + = OA frac · W oa + 1 – OA frac 1 – OA frac · h ra · W ra = T 'AirH2O' , h = h ma , w = W ma , P = P atm File:Psych4Mix.EES 10/21/2003 9:26:57 AM Page 3 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder v ma cfm ma = v 'AirH2O' , T = T ma , w = W ma , P = P atm = m ma · v ma 60 · min hr Unit Settings: [F]/[psia]/[lbm]/[degrees] cfmma = 4000.005 [cfm] hma = 31.14 [Btu/lbm] mma = 17274 [lbm/hr] OAfrac = 0.2459 TWB ra = 65 [F] Tra = 80 [F] vra = 13.82 [ft3/lbm] W ra = 0.009743 cfmoa = 1000 [cfm] hoa = 34.91 [Btu/lbm] moa = 4248 [lbm/hr] Patm = 14.7 [psia] Tma = 82.47 [F] vma = 13.89 [ft3/lbm] W ma = 0.01031 No unit consistency or conversion problems were detected. cfmra = 3000 [cfm] hra = 29.91 [Btu/lbm] mra = 13027 [lbm/hr] RHoa = 0.4 Toa = 90 [F] voa = 14.13 [ft3/lbm] W oa = 0.01206 File:Psych5OneZone.EES 10/21/2003 9:28:52 AM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #5" " A building space is to be maintained at 78°F dry-bulb and 65°F wet-bulb. The total cooling load on the space has been calculated to be 60,000 Btu/hr of which 42,000 Btu/hr is sensible heat gain. Supply air is delivered to the space at a temperature of 58°F. For acceptable air quality, 500 cfm of outside air is required. Outdoor conditions are 90°F and 50% RH. " "Given information" P_atm = 14.696 T_sa = 58 T_ra = 78 TWB_ra = 65 T_oa = 90 RH_oa = .5 cfm_oa = 500 Q_sen = 42000 Q_tot = 60000 "Calculate properties of outdoor and return air" h_ra = ENTHALPY(AIRH2O,t=T_ra, b=TWB_ra,p=P_atm) W_ra = HUMRAT(AIRH2O,t=T_ra, b=TWB_ra,p=P_atm) h_oa = ENTHALPY(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) W_oa = HUMRAT(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) v_oa = VOLUME(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) c_p = SPECHEAT(AIRH2O,t=T_ra,b=TWB_ra,p=P_atm) "a) What is the airflow required for the space?" m_sa=Q_sen /(c_p*(T_ra-T_sa)) "b)What is the supply air humidity ratio?" h_sa = h_ra - Q_tot / m_sa W_sa = HUMRAT(AIRH2O,t=T_sa, h=h_sa,p=P_atm) File:Psych5OneZone.EES 10/21/2003 9:28:53 AM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "c) What is the capacity of the cooling coil?" m_oa = cfm_oa/v_oa*CONVERT(hr,min) OA_frac = m_oa/m_sa h_ma = OA_frac*h_oa + (1-OA_frac)*h_ra W_ma = OA_frac*W_oa + (1-OA_frac)*W_ra Q_coil = m_sa*(h_ma - h_sa) "d) What is the sensible heat ratio of the cooling coil?" T_ma = TEMPERATURE(AIRH2O,h=h_ma,w=W_ma,p=P_atm) Q_scoil = m_sa*c_p*(T_ma - T_sa) SHR_coil = Q_scoil/Q_coil AREN 3010 In-Class Psychrometric Problem #5 A building space is to be maintained at 78°F dry-bulb and 65°F wet-bulb. The total cooling load on the space has been calculated to be 60,000 Btu/hr of which 42,000 Btu/hr is sensible heat gain. Supply air is delivered to the space at a temperature of 58°F. For acceptable air quality, 500 cfm of outside air is required. Outdoor conditions are 90°F and 50% RH. Given information = 14.696 P atm T sa = 58 T ra = 78 TWB ra T oa = 65 = 90 RH oa = 0.5 cfm oa = 500 Q sen = 42000 Q tot = 60000 Calculate properties of outdoor and return air h ra = h 'AirH2O' , T = T ra , B = TWB ra , P = P atm W ra = ω h oa = h 'AirH2O' , T = T oa , R = RH oa , P = P atm W oa = ω 'AirH2O' , T = T ra , B = TWB ra , P = P atm 'AirH2O' , T = T oa , R = RH oa , P = P atm v oa = v 'AirH2O' , T = T oa , R = RH oa , P = P atm cp = Cp 'AirH2O' , T = T ra , B = TWB ra , P = P atm File:Psych5OneZone.EES 10/21/2003 9:28:53 AM Page 3 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder a) What is the airflow required for the space? m sa = Q sen cp · T ra – T sa b)What is the supply air humidity ratio? h sa = h ra – W sa = ω Q tot m sa 'AirH2O' , T = T sa , h = h sa , P = P atm c) What is the capacity of the cooling coil? m oa = OA frac h ma cfm oa v oa = · min 60 · hr m oa m sa = OA frac · h oa + W ma = OA frac · W oa + Q coil = m sa · 1 – OA frac 1 – OA frac · h ra · W ra h ma – h sa d) What is the sensible heat ratio of the cooling coil? T ma = T 'AirH2O' , h = h ma , w = W ma , P = P atm Q scoil SHR coil = m sa · c p · = T ma – T sa Q scoil Q coil Unit Settings: [F]/[psia]/[lbm]/[degrees] cfmoa = 500 [cfm] hoa = 38.31 [Btu/lbm] moa = 2114 [lbm/hr] Patm = 14.7 [psia] Qsen = 42000 [Btu/hr] SHRcoil = 0.6208 Toa = 90 [F] voa = 14.19 [ft3/lbm] W ra = 0.0102 cp = 0.2449 [Btu/lbm-R] hra = 29.92 [Btu/lbm] msa = 8576 [lbm/hr] Qcoil = 77720 [Btu/hr] Qtot = 60000 [Btu/hr] TWB ra = 65 [F] Tra = 78 [F] W ma = 0.01142 W sa = 0.008272 No unit consistency or conversion problems were detected. hma = 31.99 [Btu/lbm] hsa = 22.93 [Btu/lbm] OAfrac = 0.2464 Qscoil = 48251 [Btu/hr] RHoa = 0.5 Tma = 80.98 [F] Tsa = 58 [F] W oa = 0.01515 File:Psych6OneZoneOffDesign.EES 10/21/2003 9:29:37 AM Page 1 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "AREN 3010 In-Class Psychrometric Problem #6" " A building space is to be maintained at 78°F dry-bulb temperature. The total cooling load on the space has been calculated to be 30,000 Btu/hr of which 27,000 Btu/hr is sensible heat gain. Supply air is delivered to the space at 58°F and 90% RH. The outdoor air mass flow rate is 25% of the total supply mass flow rate. Outdoor conditions are 80°F and 55% RH. " "Given information" P_atm = 14.696 T_sa = 58 RH_sa = .90 T_ra = 78 T_oa = 80 RH_oa = .55 OA_frac = .25 Q_sen = 27000 Q_tot = 30000 "Calculate properties of outdoor and return air" W_sa = HUMRAT(AIRH2O,t=T_sa, r=RH_sa,p=P_atm) h_sa = ENTHALPY(AIRH2O,t=T_sa, w=W_sa,p=P_atm) h_oa = ENTHALPY(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) W_oa = HUMRAT(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) v_oa = VOLUME(AIRH2O,t=T_oa, r=RH_oa,p=P_atm) c_p = SPECHEAT(AIRH2O,t=T_ra,r=.5,p=P_atm) "a) What is the airflow required for the space?" m_sa=Q_sen /(c_p*(T_ra-T_sa)) "b)What is the zone air humidity ratio?" h_sa = h_ra - Q_tot / m_sa W_ra = HUMRAT(AIRH2O,t=T_ra, h=h_ra,p=P_atm) File:Psych6OneZoneOffDesign.EES 10/21/2003 9:29:37 AM Page 2 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder "c) What is the capacity of the cooling coil?" OA_frac = m_oa/m_sa h_ma = OA_frac*h_oa + (1-OA_frac)*h_ra W_ma = OA_frac*W_oa + (1-OA_frac)*W_ra Q_coil = m_sa*(h_ma - h_sa) "d) What is the sensible heat ratio of the cooling coil?" T_ma = TEMPERATURE(AIRH2O,h=h_ma,w=W_ma,p=P_atm) Q_scoil = m_sa*c_p*(T_ma - T_sa) SHR_coil = Q_scoil/Q_coil AREN 3010 In-Class Psychrometric Problem #6 A building space is to be maintained at 78°F dry-bulb temperature. The total cooling load on the space has been calculated to be 30,000 Btu/hr of which 27,000 Btu/hr is sensible heat gain. Supply air is delivered to the space at 58°F and 90% RH. The outdoor air mass flow rate is 25% of the total supply mass flow rate. Outdoor conditions are 80°F and 55% RH. Given information = 14.696 P atm T sa = 58 RH sa = 0.9 T ra = 78 T oa = 80 RH oa = 0.55 OA frac Q sen Q tot = 0.25 = 27000 = 30000 Calculate properties of outdoor and return air W sa = ω 'AirH2O' , T = T sa , R = RH sa , P = P atm h sa = h 'AirH2O' , T = T sa , w = W sa , P = P atm h oa = h 'AirH2O' , T = T oa , R = RH oa , P = P atm W oa v oa cp = ω 'AirH2O' , T = T oa , R = RH oa , P = P atm = v 'AirH2O' , T = T oa , R = RH oa , P = P atm = Cp 'AirH2O' , T = T ra , R = 0.5 , P = P atm a) What is the airflow required for the space? File:Psych6OneZoneOffDesign.EES 10/21/2003 9:29:38 AM Page 3 EES Ver. 6.867: #317: CEAE University of Colorado, Boulder = m sa Q sen cp · T ra – T sa b)What is the zone air humidity ratio? h sa = h ra – W ra = ω Q tot m sa 'AirH2O' , T = T ra , h = h ra , P = P atm c) What is the capacity of the cooling coil? OA frac h ma = m oa m sa = OA frac · h oa + W ma = OA frac · W oa + Q coil = m sa · 1 – OA frac 1 – OA frac · h ra · W ra h ma – h sa d) What is the sensible heat ratio of the cooling coil? T ma = T 'AirH2O' , h = h ma , w = W ma , P = P atm Q scoil SHR coil = m sa · c p · = T ma – T sa Q scoil Q coil Unit Settings: [F]/[psia]/[lbm]/[degrees] cp = 0.2449 [Btu/lbm-R] hra = 29.4 [Btu/lbm] msa = 5513 [lbm/hr] Qcoil = 34165 [Btu/hr] Qtot = 30000 [Btu/hr] SHRcoil = 0.8101 Tra = 78 [F] W ma = 0.01031 W sa = 0.009226 hma = 30.16 [Btu/lbm] hsa = 23.96 [Btu/lbm] OAfrac = 0.25 Qscoil = 27677 [Btu/hr] RHoa = 0.55 Tma = 78.5 [F] Tsa = 58 [F] W oa = 0.01204 No unit consistency or conversion problems were detected. hoa = 32.42 [Btu/lbm] moa = 1378 [lbm/hr] Patm = 14.7 [psia] Qsen = 27000 [Btu/hr] RHsa = 0.9 Toa = 80 [F] voa = 13.87 [ft3/lbm] W ra = 0.009731
© Copyright 2026 Paperzz