Shamos’s Catalog of the Real Numbers
by
Michael Ian Shamos, Ph.D., J.D.
School of Computer Science
Carnegie Mellon University
2011
Copyright © 2011 Michael Ian Shamos.
All rights reserved.
PREFACE
i
Preface
Have you ever looked at the first few digits the decimal expansion of a number and tried to
recognize which number it was? You probably do it all the time without realizing it. When
you see 3.14159... or 2.7182818... you have no trouble spotting and e, respectively. But are
2 3
and
you on familiar terms with 0.572467033... or 0.405465108...? These are
12
log 3 log 2 , both of which have interesting stories to tell. You will find them, along with
those of more than 10,000 other numbers, listed in this book. But why would someone bother
to compile a listing of such facts, which may seem on the surface to be a compendium of
numerical trivia?
2 3
Unless you had spent some time with
, you might not realize that it is the sum of two
12
cos k
very different series, ( 1) k 2 and k (2k ) (2k 1) . The proof that each sum
k
k 1
k 1
2
3
is elementary; what connection there may be between the two series remains
equals
12
elusive. The number log 3 log 2 turns up as the sum of several series and the value of certain
1
,
k
k 1 3 k
( 1) k 1
,
2k k
k 1
dx
dx
1 ( x 1)( x 2) and 0 2e x 1 . If your research led to
either number, this information might well lead you to additional findings or help you explain
what you had already discovered.
Mathematics is an adventure, and a very personal one. Its practitioners are all exploring
the same territory, but without a roadmap they all follow different paths. Unfortunately, the
mathematical literature dwells primarily on final results, the destinations, if you will, rather
than the paths the explorers took in arriving at them. We are presented with an orderly
sequence of definitions, lemmas, theorems and corollaries, but are often left mystified as to
how they were discovered in the first place.
The real empirical process of mathematics, that is, the laborious trek through false
conjectures and blind alleys and taking wrong turns, is a messy business, ill-suited to the crisp
format of referred journals. Possibly the unattractiveness of the topic accounts for the scarcity
of writing on the subject. How many unsuccessful models of computation did Turing invent
before he hit on the Turing machine? How did he even generate the models? How did he
realize that the Halting Problem was interesting to consider, let alone imagine that it was
unsolvable? What did his scrap paper look like?
This book is a field guide to the real numbers, similar in many ways to a naturalist’s
handbook. When a birdwatcher spots what he thinks may be a rare species, he notes some of
its characteristics, such as color or shape of beak, and looks it up in a field guide to verify his
identification. Likewise, when you see part of a number (its initial decimal digits), you should
be able to look it up here and find out more about it. The book is just a lexicographic list of
10,000 numbers arranged by initial digits of their decimal expansions, along with expressions
whose values share the same initial digits.
definite integrals:
ii
PREFACE
This book was inspired by Neil Sloane’s A Handbook of Integer Sequences. That work,
first published in 1971, is an elaborately-compiled list of the initial terms of over 2000 integer
sequences arranged in lexicographic order. When one is confronted with the first few term of
an unfamiliar sequence, such as {1, 2, 5, 16, 65, 326, 1957,...}, a glance at Sloane reveals that
this sequence, number 589, is the total number of permutations of all subsets of n objects, that
n
n
n n
n!
1
n! , which is the closest integer to n ! e . Sloane’s book is
is, k!
k 1 k
k 1 ( n k )!
k 1 j!
extremely useful for finding relationships among combinatorial problems. It leads to
discoveries, which help in turn generate conjectures that hopefully lead to theorems.
What impelled me to compile this catalog was an investigation into Riemann’s -function
that I began in 1990. It struck me as incredible that we have landed men on the moon but still
1
have not found a closed-form expression for (3) 3 . I say incredible because in the 18th
k 1 k
1
century Euler proved that ( s ) s is a rational multiple of s for all even s, and gave a
k 1 k
formula for the coefficient in terms of Bernoulli numbers. No such formula is known for any
odd s. It is not even known whether a closed form exists.
1
1
( 1) k
,
and
, whose values
I began exploring such sums as s
s
st
st
s
st
k 2 k k
k 2 k k
k 1 k k
can often be written as simple expressions involving various values of the -function. For
2 1 coth
1
5
1
,
and the remarkable
example, 5
(
)
3
3
4
2
4
6
2
k 1 k k
k 2 k k
1
1
. To keep track of these many results, I kept them in a list by numerical
4
2
12
k 2 k k
value, conveniently obtained using Mathematica®. Very quickly, after experimenting with
sums of the form
( ak b) 1 ,
I began to notice connections that led to the following
k 1
theorem.
For a 1 an integer, b an integer such that a b 2 and c a positive real
1
( aj b )
number, then a b
.
b
k
cj
k 1 ck
j 1
A proof is given at the end of the chapter. The proof is elementary, but I never would have
been motivated to write down the theorem in the first place without studying the emerging list
of expressions sorted by numerical value.
After a time, I became somewhat obsessed with expanding the list of values and
expressions and found that as it grew it became more and more useful. I began to add material
not directly related to my research and found that it raised more questions than it answered. It
became for me both a handbook and a research manifesto.
Theorem 1.
iii
PREFACE
For example, when I observed that the sums
1
and
2k
k 1 2
(2 k )
4
k 1
k
digit prefix, this evoked considerable interest, since sums of the form
1
shared the same 20-
1
a
k 0
bk
are very difficult
to treat analytically. After verifying that the sums were equal to over 500 digits, I began to
1
1
(2 k )
( 3k )
and k
, to
look for generalizations, exploring such sums as 3k , 4 k , k
k 0 2
k 0 4
k 1 2 1
k 1 4 1
give a few examples. The results suggested a conjecture, which soon yielded the following
theorem:
Theorem 2.
For c > 1 real and p prime,
i 1
1
c
p
i
k 1
( kp )
c kp 1
, where ( n ) is the
Moebius function.
For a proof, see the end of the chapter. Alternatively, the theorem may be expressed in the
(kp)
1
form k
p k . This allows us to relate such strange expressions as
k 1 a 1
k 1 a 1 / p
k 1
1
2
k
and
1
e
k 1 3
3k
to Moebius function sums. Unfortunately, the theorem seems to
1
1
and
.
k
2
kk
k 1 k
k 1 k
This book is what is known in computer science as a hash table, a structure for indexing in
a small space a potentially huge number of objects. It is similar to the drawers in the card
catalog of a library. Imagine that a library only has 26 card drawers and that it places catalog
cards in each draw without sorting them. To find a book by Taylor, you must go to drawer “T”
and look through all of the cards. If the library has only a hundred books and the authors’
names are reasonably distributed over the alphabet, you can expect to have to look at only two
or three cards to find the book you want (if the library has it). If the library has a million
books, this method would be impractical because you would have to leaf through more than
20,000 cards on the average. That’s because about 40,000 cards will “hash” to the same
drawer. However, if the library had more card drawers, let’s say 17,576 of them labeled
“AAA” through “ZZZ,” you would have a much easier time since each drawer would only
have about 60 cards and you would expect to leaf through 30 of them to find a book the library
holds (all 60 to verify that the book is not there).
Hashing was originally used to create small lookup tables for lengthy data elements. The
term “hashing” in this context means cutting up into small pieces. Suppose that a company
has 300 employees and used social security numbers (which have nine digits) to identify them.
A table large enough to accommodate all possible social security numbers would need 109
entries, too large even to store on most computer hard disks. Such a table seems wasteful
anyway, since only a few hundred locations are going to be occupied. One might try using just
the first three digits of the number, which reduces the space required to just a thousand
locations. A drawback is that the records for several employees would have to be stored at that
location (if their social security numbers began with the same three digits). An attempt to store
shed no light on trickier sums like
iv
PREFACE
a record in a location where one already exists is called a “collision” and must be resolved
using other methods. There will not be many collisions in a sparse table unless the numbers
tend to cluster strongly (as the initial digits of social security numbers do). Using this scheme
in a small community where workers have lived all their lives might result in everyone hashing
to the same location because of the geographical scheme used to assign social security
numbers. A better method would be to use the three least-significant digits or to construct a
“hash function,” one that is designed to spread the records evenly over the storage locations. A
suitable hash function for social security numbers might be to square them and use the middle
three digits. (I haven’t tried this.)
Getting back to the library, notice that any two cards in a drawer may be identical (for
multiple copies of the same book) or different. The only thing they are guaranteed to have in
common is the first three letters of the author’s last name. Now imagine that the library sets up
2620 drawers. Aside from the fact that you might have to travel for some time to get to a
drawer, once you arrive there you will probably find very few cards in it, and the chances are
excellent that if there is more than one card, you are dealing with the same author or two
authors who have identical names. Of course, it’s still possible for two authors to have
different names that share the same 20 first letters.
This book is a hash table for the real numbers. It has 1020 drawers, but to save paper only
the nonempty drawers are shown. But it differs very significantly from the card catalog of a
library, in which the indexing terms (the “keys”) have finite length. When you examine two
catalog cards, you can tell immediately whether the authors have the same name, even if their
names are very long. When you look up an entry in this book, you can’t tell immediately
whether the expressions given are identically equal or not. That’s because their decimal
expansions are of infinite length and all you know is that they share the same first 20 digits.
With that warning, I can tell you there is no case in this book known to the author in which two
listed quantities have the same initial 20 digits but are known not to be equal. There are many
cases, however, in which the author has no idea whether two expressions for the same entry are
equal, but therein lies the opportunity for much research by author and reader alike.
sin k
sin 2 k 1
As a final example, seeing with some surprise that
2
led me to an
k
k
2
k 1
k 1
investigation of the conditions under which the sum of an infinite series equals the sum of the
squares of its individual terms. (We may call such series “element-squaring.”) Elementsquaring series rarely occur naturally but are in fact highly abundant:
Theorem 3.
Every convergent series of reals B bk such that B
k 1
(2)
bk 2 can
k 1
be transformed into an element-squaring real series B bk by prepending to B a single real
k 0
1
term b0 iff B( 2 ) B . Proof: see the end of the chapter.
4
I hope that these examples show that the list offers both information and challenges to the
reader. It is a reference work, but also a storehouse of questions. Anyone who is fascinated by
mathematics will be able to scan through the pages here and wonder if, how and why the
entries for a given number are related.
Eventually it became clear that perusing the catalog in pursuit of gems by eyeball would
not be effective. I then wrote software to search for relationships among the entries, seeking,
v
PREFACE
for example, numbers p, q, r and s such that p = f (q, r, s) for interesting functions f. With
10,000 entries, such searches are fruitful. With a million entries more computing power would
be needed. Some of the results of these investigations can be found in the author’s papers, e.g.,
Overcounting Functions1 and Property Enumerators and a Partial Sum Theorem2. I contend
that this method of search yields a rich stream of conjectures, which in turn lead to interesting
mathematical investigations.
The selection of entries in this book necessarily reflects the interests and prejudices of the
author. This will explain the relatively large number of expressions involving the -function.
For this I make no apology; there are more interesting real numbers than would fit in any book,
even listing only their first 20 digits. The reader is encouraged to develop his own
supplements to this catalog by using Mathematica to develop a list of numbers useful in his or
her own field of study.
Professor George Hardy once related the now-famous story of his visit to an ailing
Ramanujan in which Ramanujan asked him the number of the taxicab that brought him. Hardy
thought the number, 1729, was a dull one, but Ramanujan instantly countered that it was the
smallest integer that can be written as the sum of two cubes in two different ways, as 13 12 3
and 93 10 3 . Hardy marveled that Ramanujan seemed to be on intimate terms with the
integers and regarded them as his personal friends3. It is hoped that this book will help make
the real numbers the reader’s personal friends.
Proofs of Theorems 1-3
For a 1 an integer, b an integer such that a b 2 and c a positive real
1
number, then
. A proof is given at the end of the chapter.
j
ab
kb
c
j 1
k 1 ck
1
Proof: The left-hand sum may be written as the double sum aj b j . Reversing the
c
j 1 k 1 k
Theorem 1.
( aj b )
order of summation,
k
j 1 k 1
1
aj b
c
j
1
b
k 1 k
1
1
aj j
b
j 1 k c
k 1 k
j 1
1
ck
a
j
, which equals
1
1
1
. QED.
b
a
ab
kb
k 1 k ck 1
k 1 ck
1
( kp )
, where ( n ) is the Moebius
i
kp
p
1
i 1 c
k 1 c
Theorem 2. For c > 1 real and p prime,
function.
Proof:
( kp )
c
( kp )
1
c
appears at least once in
pi
1 k 1 j 1 c
i 1
the double sum, certainly in the case when k 1 and j p i . We will show that the sum of all
k 1
1
kp
jkp
. Note that every term of
Available at http://euro.ecom.cmu.edu/people/faculty/mshamos/Overcounting.pdf
Available at http://euro.ecom.cmu.edu/people/faculty/mshamos/PST.pdf
3This incident is partially related in Kanigel, R. The Man Who Knew Infinity. New York: Washington Square Press
(1991). ISBN 0-671-75061-5. The book is a fascinating biography of Srinivasa Ramanujan.
2
vi
PREFACE
1
in the double sum is zero except when k 1 and j is a power of p, in which
i
cp
case ( kp) 1, and the result follows.
Suppose that jk is a power of p. Then if k 1, ( kp) 0 since kp has a repeated factor.
Therefore, only the terms with k 1 contribute to the sum and ( kp) 1 each j a power of p.
Now consider all pairs j, k with jk i not a power of p. Suppose that i has the factorization
a1
p1 pq aq , with each of the ai 0 . If p k or if k has any repeated prime factors, then
( kp) 0 . Since k i , it suffices to consider only those k whose factors are products of subsets
Pk of distinct primes taken from the set P p1 p q p , a set having cardinality q 1 or q,
coefficients of
depending on whether P contains p. If Pk has an odd number of elements, then ( kp) 1;
otherwise, if Pk has an even number of elements, then ( kp) 1. ( kp) 0 cannot be zero
since p does not divide k. But the number of subsets of Pk having an odd number of elements
is the same as the number of subsets having an even number of elements. Therefore, the terms
cancel each other and terms with jk not a power of p do not contribute to the double sum.
QED.
Theorem 3.
k 1
k 1
Every convergent series of reals B bk such that B( 2 ) bk 2 can
be transformed into an element-squaring series B bk by appending to B a single real term
b0 iff B
(2)
Proof:
b
k
k 0
2
k 0
1
B .
4
For
B
to
be
b0 2 bk 2 b0 2 B( 2 ) b0 B .
element-squaring,
it
is
necessary
that
Solving this quadratic equation for b0 yields
k 1
1 1 4 ( B ( 2 ) B)
1
, which is real iff B( 2) B . Since b0 is finite, B b0 B
4
2
1
converges. It is also elementary to show that if B( 2) B , then there is no real element that
4
can be prepended to B to make it element-squaring. QED.
b0
Note that B does not necessarily imply that B
(2)
( 1) k
. For example, let bk
.
k
1
1 1
(2)
Then B , , which is finite, but B , which diverges. Likewise, B(2) does
2 2
k 1 k
2
1
but B diverges.
not imply that B . If bk , then B( 2 )
k
6
USING THIS BOOK
vii
Using This Book
This book is a catalog of almost 10,000 real numbers. A typical entry looks like:
.20273255405408219099...
=
log 3 log 2
1
arctanh
2
5
( 1)k 1
1
2 k 1
(2 k 1) k 1 2 k 1 k
k 0 5
=
log xdx
(2 x 1)
1
1
AS 4.5.64, J941, K148
2
( x) sin x sin 5 x
dx
GR 1.513.7
x
0
Each entry begins with a real number at the left, with its integer and fractional parts
separated. Entries are aligned on the decimal point. Three dots are used to indicate either (1) a
non-terminating expansion, as above, or (2) a rational number whose period is greater than 18.
Three dots are always followed by the symbol , which denotes “approximately equal to.”
The center portion of an entry contains a list of expressions whose numerical values match
the portion of the decimal expansion shown. The entries in the list are separated by the equal
sign =; however, it is not to be inferred that the entries are identically equal, merely that their
decimal expansions share the same prefix to the precision shown.
There is no precise ordering to the expressions in an entry. In general, closed forms are
given first, followed by sums, products and then integrals. At the right margin next to
expression may appear one or more citations to references relating the expression to the
numerical value given or another expression in the entry. When more than one expression
appears on a line containing a citation, it means that the citation refers to at least one
expression on that line. See also, “Citations,” below.
=
Format of Numbers
Numbers are given to 19 decimal places in most cases. Where fewer than 15 digits are
given, no more are known to the author. Rational numbers are specified by repeating the
periodic portion two or more times, with the digits of the last repetition underlined. For
example, 1/22 would be written as .04504545, which is an abbreviation for the non-terminating
decimal .0454545454545045... . Since rational numbers can be specified exactly, the = symbol
rather than is used to the right of the decimal. Where space does not permit a repetition of
the periodic part, it is given once only. If the period is longer than 18 decimals, the sign is
used to denote that the decimal has not been written exactly. No negative entries appear.
Ordering of Entries
Entries are in lexicographic order by decimal part. Entries having the same fractional part
but different integer parts are listed in increasing magnitude by integer part. Rational numbers
are treated as if their decimal expansions were fully elaborated. For example, these entries
would appear in the following order:
viii
USING THIS BOOK
.505002034457717739...
.5050150501
.505015060150701508...
.5050
.505069928817260012...
=
=
Arrangement of Expressions
In general, terms in a multiplicative expression are listed in decreasing order of magnitude
except that constants, including such factors as ( 1) k appear at the left. For example, 4 k ! 2 k k 3
is used in preference to 4 k 3 2 k k !. Additive expressions are ordered to avoid initial minus
signs, where possible. For example, 3 2 k is used instead of 2 k 3. These principles are
applied separately in the numerators and denominators of fractions.
Citations
Abbreviations flushed against the right margin next to an expression denote a reference to
an equation, page or section of a reference work. Page numbers are prefixed by the letter p, as
in “p. 434.” A list of cited works appears at the end of the book.
Other Catalogs
Simon Plouffe maintains a server at the University of Quebec at Montreal that allows
searching among 215 million real numbers for equivalent symbolic expressions. See
http://pi.lacim.uqam.ca/. This book, by contrast, contains only about 10,000 entries. One
would expect, therefore, that almost all of the numbers in the book would also be found in
Plouffe’s index. To test this hypothesis, I had a student write a script to look up each of the
10,000 entries on Plouffe’s server to see how many it would find. The result was
approximately five percent. The reason for such a low degree of overlap, it appears, is that the
expressions in Plouffe’s index were primarily generated by computer from templates, which
the real numbers in this book were assembled for the most part from the mathematical
literature.
WARNING
While great effort has been expended to ensure accuracy, the numerical values and
expressions in this book have not been checked thoroughly and should not be relied upon
unless verified independently.
FIRST-DIGIT PHENOMENON
ix
The First-Digit Phenomenon
In 1881, Simon Newcomb observed that in books of logarithmic tables pages near the front
tended to receive more wear than the later pages, suggesting that the earlier pages were used
more frequently. That implies that the numbers whose logarithms were being looked up were
not uniformly distributed. In particular, numbers whose leading digit was a 1 occurred more
frequently than those beginning with 2 (or any other digit). Newcomb proposed that the
frequency of first digit n in a random list of numbers (assuming meaning can be ascribed to
such a concept), should be log10 (n+1) – log10 n. That is, the frequency of numbers beginning
with 1 ought to be about 30%, while only 4.6% of numbers should begin with 9.
This phenomenon was rediscovered by Frank Benford in 1938 and it is now referred to as
Benford’s law. Its generalization to numbers in base b is that the frequency of digit d is logb
(d+1) – logb d. This catalog (and Plouffe’s collection) provide experimental data concerning
the first digits of the fractional parts of lists of numbers. In fact, both lists exhibit the first digit
phenomenon very strongly. Because the fractional first digits range from 0 to 9 (rather than 1
to 9), the appropriate form of Benson’s law is to take b to be 11, not 10.
The bar chart below shows a plot of log10 (d+1) – log10 d (solid black bars) versus the
actual percentage of entries in the catalog whose fractional part begins with the digit d
(diagonal shading).
No explanation is offered to explain the deviation from the numerical predictions of
Benford’s law in this instance, but the shape of the decay as d increases is similar. Various
mathematical derivations of Benford’s law have been offered, but none are rigorous because of
the futility of attempting to define a random sample of numbers form an unbounded set. It is
somewhat easier to understand the law informally. When I explained Benford’s Law to the
late John Gaschnig, an artificial intelligence graduate student at Carnegie Mellon in the late
1970’s, he pondered it for a few minutes and then announced, “Yes, it’s because 1 is first.”
NOTATION
x
Notation
a( n )
greatest odd divisor of integer n.
Ai( x )
Airy function, solution to y xy 0 .
b( x )
xk .
AS 10.4.1
( 1)k
k 0
Bk
kth Bernoulli number, Bk Bk ( 0 ) .
AS 23.1.2
xt
k
te
t
Bk ( x ) .
t
e 1 k 0
k!
Bk ( x )
kth Bernoulli polynomial, defined by
bp(n)
ck
number of divisors of n that are primes or powers of primes.
AS 23.1.1
coefficient of x in the expansion of ( x ) .
k
C( x )
(1) k 2 k x 4 k 1
1
.
C ( x) cos t 2 dt
2k
20
k 0 ( 2k )!2 ( 4k 1)
Ci( x )
cosine integral, Ci ( x) log x
d (n)
number of divisors of n, d ( n ) 0 ( n )
dn
nth derangement number, d1 0, d2 1, d3 2, d4 9 , nearest integer to n! / e . Riordan 3.5
e(n)
number of exponents in prime factorization of n.
E( x )
complete elliptic integral E ( x )
x
/2
AS 7.3.1, 7.3.11
cos t 1
(1) k x 2 k
dt
log
x
.
0 t
k 1 ( 2k )! ( 2k )
x
AS 5.2.2, AS 5.2.16
1 x sin 2 d .
0
En
En ( x )
1
k
nth Euler number, Ek 2 Ek .
2
2 e xt
tk
th
n Euler number, defined by t
Ek ( x ) .
e 1 k 0
k!
AS 23.1.2
AS 23.1.1
Ei( x )
exponential integral Ei ( x )
e t dt
xk
.
x
log
x t
k 1 k!k
Erfc( x )
(1) k x 2 k 1
2
0
k 0 k!(2k 1)
complimentary error function = 1 Erf ( x ) .
f ( n)
number of representations of n as an ordered product of factors
Fn
nth Fibonacci number, F1 F2 1; Fn Fn1 Fn2
Erf ( x )
error function
2
x
t
e dt
2
2
e x
k 0
AS 5.5.1
2
(1) k 2 k x 2 k 1
.
(2k 1)!!
AS 7.1.5
AS 7.1.2
xi
NOTATION
0 F1 (; a; x )
F ( a; b; x )
1 1
xk
, where a(k ) a( a 1)...( a k ) .
k 0 k ! a( k )
x k a( k )
hypergeometric function
k !b
Kummer confluent hypergeometric function
k 0
Wolfram A.3.9
,
(k )
where a(k ) a( a 1)...( a k ) .
x a( k ) b( k )
k 0
k ! c( k )
F ( a; b; c; x ) hypergeometric function
Wolfram A.3.9
k
2 1
, where a(k ) a( a 1)...( a k ) .
Wolfram A.3.9
( 1)k
0. 91596559417721901505...
2
k 0 (2 k 1)
1
1
1
n
n
(3k 1)
k 1 (3k 1)
G
Catalan’s constant
Gn
gn
1
1
1
n
n
(3k 1)
k 1 (3k 1)
gd ( z )
Gudermannian, gd ( z ) 2 arctan e
z
harmonic number: Hn
Hn
n
2
1
k
k 1
H en
even harmonic sum: H
H on
odd harmonic sum: H
o
e
n
n
n
1
2k
k 1
n
1
2k 1
k 1
1
( 1) j 1 ( j 1) ( n 1)
j ( j )
, j 1
( j 1)!
k 1 k
n
H
( j)
n
H
generalized harmonic number:
( j)
n
hn
(1) k
(1) k
n
(6k 5) n
k 0 (6 k 1)
hg( x )
Ramanujan’s generalization of the harmonic numbers, hg( x )
In ( x )
modified Bessel function of the first kind, which satisfies the differential equation
jn
Jn ( x )
k
K(x)
J314
x
k(k x )
k 1
z 2 y zy ( z 2 n 2 ) y 0 .
1
1
1
n
n
(3k 1)
k 1 (3k 1)
( 1)k x n2k
Bessel function of the first kind
n2k
k 0 k !( n k )! 2
1 k2
/2
1
complete elliptic integral of the first kind
0
Kn ( x )
1 x sin 2
Wolfram A.3.9
J311
LY 6.579
d
modified Bessel function of the second kind, which satisfies the differential equation
xii
NOTATION
z 2 y zy ( z 2 n 2 ) y 0 .
Wolfram A.3.9
Ln
log k log(k x) n log k
, when x is an integer n.
k
k x k 1 k
k 1
“little” Fibonacci numbers: Ln 2 Ln 1 Ln 2 ; L0 L1 1 OR
Ln
Lucas numbers: Ln Ln 1 Ln 2 ; L0 2; L1 1
li( x )
logarithmic integral li ( x)
l( x )
x
dt
log t
0
Lin ( x )
polylog function Lin ( x )
log x
p
natural logarithm log e x
a prime number.
xk
n
k 1 k
denotes a sum over all primes.
p
pd (n)
product of divisors pd ( n )
n
pf (n)
d
d |n
1
partial factorial pf ( n )
k 0 k !
p
pfac(n)
product of primes not exceeding n, pfac( n )
pq(n)
product of quadratfrei divisors of n, pq ( n ) 2
pr (n)
number of prime factors of n
prime(n)
nth prime
r (n)
4 ( d )
p n
pr ( n )
HW 17.9
d |n
s( n )
smallest prime factor of n
sd ( n )
sum of the divisors of n, sd ( n ) 1 ( n )
S( x )
x
t 2
(1) k ( / 2) 2 k 4 k 3
dt
.
S ( x) sin
x
2
(
2
1
)!
(
4
3
)
k
k
k
1
0
S1 ( n, m )
AS7.3.2, AS 7.3.13
Stirling number of the first kind, defined by the recurrence relation:
n
x ( x 1)...( x n 1) S1 ( n, m ) x m .
AS 24.1.3
m0
S2 ( n, m )
Stirling number of the first kind, S 2 ( n, m)
Si ( x )
sine integral, Si ( x )
m
1 m
(1) m k k n .
m! k 0
k
sin t
(1) k x 2 k 1
.
dt
0 t
k 0 ( 2k 1)!( 2k 1)
AS 24.1.4
x
AS 5.2.1, AS 5.2.14
xiii
NOTATION
t k (n)
k 1 ei
, tk (1) 1 , where n pi ei
i
k 1
i
This is the number of ways of writing n as a product of k factors.
T (s)
1
k
k
s
, where k has an odd number of prime factors
u k (n)
number of unordered k-tuples a1 ..., ak whose product is n.
w( x )
w( x ) e x erfc( ix )
Wn
(ix ) k
k 0 ( k / 2 1)
k
k
(1)
(1)
n
(6k 5) n
k 0 (6 k 1)
2
z (n)
number of factorizations of n.
z2 ( x )
z2 ( x )
( s)
f
( s )
(( k ) 1) x
k
k 2
( 1) k 1
( s)
s
k 0 ( 2 k 1)
2
x ( (1 x ))
1 x
n
1
n
k 1 k
n
lim f (k ) f ( x)dx
n
1
k 1
1
Riemann zeta function s
k1 k
Euler's constant
J313
lim log n 0.57721566490153286
AS 6.1.3
( log k )m
ks
k 1
( m) ( s )
derivative of the Riemann zeta function
p ( s)
Prime zeta function
k 1
1
prime(k ) s
(k )
(n)
( 1) k 1
(1 21 s )( s)
s
k
k 1
1
( s)
(1 2 s ) ( s)
s
(
k
)
2
1
k 0
Mangoldt lambda, (k ) log k if k is a prime power; 0 otherwise
k
Moebius function, (1) 1, ( n ) ( 1) if n has exactly k distinct prime factors, 0 otherwise.
( n )
number of different prime factors of n.
( s)
( s)
( s)
xiv
NOTATION
v1
(s)
3i 2
3i 2
(1 i 3 )
v1 (1 i 3 )
2
2
s
( s 1) s / 2 ( s )
2
d
k ( n)
sum of kth powers of divisors of n,
1 5
golden ratio,
1. 61803397498948482...
2
k
d |n
( n)
Euler totient function, the number of positive integers less than and relatively prime to n.
n (z )
1
Lin ( z ) Lin ( z )
2
( n)
polygamma function
( x)
kth derivative of the polygamma function
( n)
z 2 k 1
n
k 0 ( 2k 1)
[Ramanujan] Berndt Ch. 9
n 1
(n)
1
k 1 k
( n)
(k ) ( x )
d k ( x)
dx k
n
( k )
k 1
s
2
( s)
( s) 1 ( s 1) s / 2 ( s )
( n)
overcounting function ( n ) -1 + the number of divisors of the g.c.d. of the exponents of the
prime factorization of n.
REFERENCES
xv
References
Citations given in the right margin of the number list refer to works in which more
information about a number or equation may be found. The form of citation is generally a word
or abbreviation followed by a reference giving a page, section or equation number. In the case
of journals, the citation is by volume and page. Following is an alphabetical listing of reference
abbreviations used in the text.
Andrews
AMM
AS
Berndt
CFG
CRC
Dingle
ex
GKP
GR
Edwards, H. M.
Henrici
Hirschman
HW
J
K
LY
Marsden
Melzak
MI
Andrews, L. Special Functions for Engineers and Applied Mathematicians.
New York: Macmillan.
American Mathematical Monthly
Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions.
New York: Dover (1964).
Berndt, B. C. Ramanujan’s Notebooks. New York: Springer-Verlag
(1985). ISBN 0-387-96110-0
Croft, H. T., Falconer, K. J. and Guy, R. K. Unsolved Problems in
Geometry. New York: Springer-Verlag (1991). ISBN 0-387-97506-3.
Handbook of Mathematical Tables. Cleveland: Chemical Rubber Co. (2nd
ed., 1964)
Dingle, R. B. Asymptotic Expansions: Their Derivation and Interpretation.
London: Academic Press (1973).
exercise
Graham, R. E., Knuth, D. E. and Patashnik, O. Concrete Mathematics.
Reading, MA: Addison-Wesley (1989). ISBN 0-201-14236-8.
Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series and
Products. San Diego: Academic Press (1979). ISBN 1-12-294760-6.
Riemann’s Zeta Function. New York: Academic Press (1974). ISBN 012-232750-0.
Henrici, P. Applied and Computational Complex Analysis.
Hirschman Jr., I. I. Infinite Series. New York: Holt (1962). ISBN 0-0311040-8.
Hardy, G. H. and Wright, E. M. Theory of Numbers. Glasgow: Oxford
(4th ed., 1960)
Jolley, L. B. W. Summation of Series. New York: Dover (1961).
Knopp, K. Theory and Application of Infinite Series. New York: Dover
(1990).
Lyusternik, L. A. and Yanpol’skii, A. R. Mathematical Analysis:
Functions, Limits, Series and Continued Fractions. Oxford: Pergamon
(1965).
Marsden, J. E. Basic Complex Analysis. San Francisco: Freeman (1973).
ISBN 0-7167-0451-X.
Melzak, Z. A. Companion to Concrete Mathematics. New York: Wiley
(1973). ISBN 0-471-59338-9.
Mathematical Intelligencer
NOTATION
Riordan
Seaborn
Sloane
Titchmarsh
Vardi
Wilf
Wolfram
xvi
Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley
(1958).
Seaborn, J. B. Hypergeometric Functions and Their Applications. New
York: Springer-Verlag (1991). ISBN 0-387-97558-6.
Sloane, N. J. A. A Handbook of Integer Sequences. New York: Academic
Press (1973). ISBN 0-12-648550-X.
The Theory of the Riemann Zeta Function. London: Oxford (1951).
Vardi, I. Computational Recreations in Mathematica. Redwood City:
Addison-Wesley (1991). ISBN 0-201-52989-0
Wilf, H. S. generatingfunctionology. Boston: Academic Press (1989).
ISBN 0-12-751955-6.
Wolfram, S. Mathematica: A System for Doing Mathematics by Computer.
Reading, MA: Addison-Wesley (2nd ed., 1991). ISBN 0-201-51502-4.
ACKNOWLEDGMENTS
xvii
Acknowledgments
No book like this one has previously appeared, probably because of the monumental
difficulty of performing the required calculations even with computer assistance. However,
with the development of the Mathematica® program, a product of Wolfram Research, Inc., it
has been possible to obtain 20-digit expansions of most of the entries without undue difficulty.
The symbolic summation capability of that program has been invaluable in developing closedform expressions for many of the sums and products listed. Even though my involvement with
computers extends back more than 40 years, I have no hesitation in declaring that Mathematica
is the most important piece of mathematical software that has ever been written and my debt to
its authors is, paradoxically, incalculable.
The tendency to be fascinated with numbers, as opposed to other, abstract structures of
mathematics, is not uncommon among mathematicians, though to be afflicted to the same
degree as this author may be unusual. If so, it because of the role played by a collection of
people and books in my early life. My grandfather, Max Shamos, was a surveyor who, to the
end of his 93-year life, performed elaborate calculations manually using tables of seven-place
logarithms. The work never bored him — he took an infectious pride in obtaining precise
results. When calculators were developed (and, later, computers), he never used them, not out
of stubbornness or a refusal to embrace new technology, but because, like a cabinetmaker, he
needed to use his hands.
I read later in Courant and Robbins’ What is Mathematics, of the accomplishments of the
calculating prodigies like Johann Dase and of William Shanks, who devoted decades to a
manual determination of to 707 decimal places (526 of them correct). At the time, I couldn’t
imagine why someone would do that, but I later understood that he did it because he just had to
know what lay out there. I expect that people will ask the same question about my compiling
this book, and the answer is the same. The challenge set by Shanks is still alive and well —
every year brings a story of a new calculation — is now known to several billion digits.
My father, Morris Shamos, was an experimental physicist with a healthy knowledge of
mathematics. When I was in high school, I was puzzled by the formula for the moment of
2
inertia of a sphere, M m r 2 . That is was proportional to the square of the radius made
5
sense enough, but I couldn’t understand the factor of 2/5. Dad set me straight on the road to
advanced calculus by showing me how to calculate the moment by evaluating a triple integral.
As a teenager during the 1960s, I worked for Jacob T. (“Jake,” later “Jack”) Schwartz at
the New York University Computer Center, programming the IBM 7094. (That machine,
which cost millions, had a main memory equivalent to about 125,000 bytes, about one-tenth of
the capacity of a single floppy disk that today can be purchased for a dollar.) NYU had a large
filing cabinet with punched-cards containing FORTRAN subroutines for calculating the values
of numerous functions, such as the double-precision (in the parlance of the day) arctangent.
By poring over these cards, I learned something of the trouble even a computer must go
through in its calculations of mathematical functions. It was this exposure that drew me to
field that later came to be called computer science.
For the past 25 years I have been an enthusiastic user of Neil Sloane’s A Handbook of
Integer Sequences (now co-authored with Simon Plouffe) in combinatorial research, so it is
ACKNOWLEDGMENTS
xviii
particularly pleasing to note that this book itself, in a sense, consists entirely of such
sequences.
My greatest debt, however, is to Stephen Wolfram for his creation of Mathematica, the
single greatest piece of software ever written. In developing this catalog, I used Mathematica
on and off over a 15-year period to explore symbolic sums and integrals and to compute most
of the constants that appear in this book to 20 decimal places.
ABOUT THE AUTHOR
xix
About the Author
Michael Ian Shamos was born in New York in 1947. He attended the Horace Mann School
and the Columbia University Science Honors Program during high school. He learned
computer programming at Columbia and the NYU Computer Center on the IBM 1401, 1620
and 7094 computers during the 1960s. He graduated from Princeton University in 1968 with
an A.B. degree in Physics and a minor in Mathematics. His senior thesis, written under the
guidance of Prof. John Wheeler, was devoted to the theory of gravitational radiation.
He joined IBM as an engineer in 1968, developing programming systems to operate
automated circuit testing equipment and obtained an M.A. from Vassar College in 1970,
working under Prof. Morton Tavel in the field of acoustics. In 1970, he joined the National
Cancer Institute to write software in support of the Institute’s research in cancer chemotherapy.
In 1970, he began graduate study at the Yale University Department of Computer Science
where he laid the foundations for the field of computational geometry and was awarded the
M.S., M.Phil. and Ph.D. degrees, the latter in 1978. In 1975, he joined the faculty of the
Computer Science Department at Carnegie Mellon University, doing research in combinatorics
and the analysis of algorithms.
In 1979, Dr. Shamos founded Unilogic, Ltd., a computer software company in Pittsburgh.
He obtained the J.D. degree from Duquesne University School of Law in 1981 and has
engaged in the practice of intellectual property law since then, dividing his time with Unilogic
until 1987. He practiced intellectual property law with the Webb Law Firm in Pittsburgh,
concentrating in computer-related matters, from 1990-1998. From 1980-2000, he has acted as
an examiner of computerized voting systems for the Secretary of the Commonwealth of
Pennsylvania and the Attorney General of Texas.
Dr. Shamos is now Distinguished Career Professor in the School of Computer Science at
Carnegie Mellon, where he directs a graduate program in eBusiness Technology.
Dr. Shamos is the author of four published books, Computational Geometry (1985), with F.
P. Preparata, Pool (1990), The Illustrated Encyclopedia of Pool, Billiards and Snooker (1993),
and Shooting Pool (1998). He serves as Curator of the Billiard Archive, a non-profit
organization devoted the preservation of the history of cue games, as Contributing Editor of
Billiards Digest magazine, and Chairman of the Statistics and Records Committee of the
Billiard Congress of America.
Dr. Shamos lives in the Shadyside neighborhood of Pittsburgh with his wife Julie. They
were married in 1973. Their son Alex is a student at the University of Arizona in Tucson.
Their daughter Josselyn Crane lives nearby with her husband Dan and their infant daughter
Harlow.
For more information, consult the Author’s web page:
http://euro.ecom.cmu.edu/shamos.html
( 1) k ( k 1) ( 1) k 1 k 2
k!
k!
k 0
k 1
k k
( 1) 2 ( k 2)
( 1) k k
k!
k !!
k 0
k 1
(k )
k
k 1
(k )
k
k 1 2 1
3
k 1 sin k
(
1
)
k
k 1
2
log x
0 x 2 1
.00000000000000000000
=
=
=
=
=
=
1 .000000000000000000000 =
1
=
=
=
=
k
(k 1)!
2k k
k 0 ( k 2 )!
1
k 0 ( k 1)! k !
k!!
1
((k 2)!! k!!
k 0 ( k 3)!
2k 4 k 3 1
3k 2 3 k 1
6
5
4
3
k7 k
k 2
k 1 k 3k 3k k
2k
1
(2 k 1)!!
k
k 1 k 4 ( k 1)
k 1 ( 2 k )! ( k 1)
2
=
2k
4k 3
4 k 2
(k 1) 2
k 0 k 2
=
( k ) log k
k 1
k
=
=
Fk 1
F F
k 2
k 1
J396
½
2
k 1
=
Berndt Ch. 24 (14.3)
1
2k
k 1
=
2k k 2
k
(
1
)
k
k2
k 1
k ( k 1)
k 1
=
GR 1.212
k
k 1
F4 k 2
8k
GR 0.245.4
=
Hk
(k 1)(k 2)
k 1
=
2k
k 2
=
Lk
3
k 1
=
Hk
2k
2
k
( k ) 1
k 2
=
=
( k )
k
k 2
( k ) log k
k
k 1
(k )
=
(k )
k (k 1) k 1
k 2
=
Berndt Ch. 24, Eq. 14.3
1
, where S is the set of all non-trivial integer powers
1
S
(Goldbach, 1729)
1 log n k
=
k!
n 1 n! k 2
k 1 sin 2 k
= ( 1)
k
k 1
k 1
( 1)
= 1
k
k 1
dx
log x dx
= 2
x
x2
1
1
JAMA 134, 129-140(1988)
=
(x
0
1
=
2
J1065
dx
1) 3/ 2
dx
(1 x)
0
1 x2
=
x log(1 x )
dx
ex
0
=
sin x dx
cos x
x x
0
/2
=
0
dx
(sin x cos x) 2
Berndt I, p. 318
=
1
2 .000000000000000000000 =
=
=
arctan x
dx
x2
(½,1,0)
k
k
k 1 2
=
=
k!2k
k 1 ( 2k )!
k
(k 1)!!
k 1
1 ( 2) 9
1 ( 2) 7
1
1
( 2)
( 2)
512
216
6
6
8
8
k
Prud. 5.1.25.31
2
2
k 1 ( k 1 / 4)
( k 1) Hk
Fk
k
k
2
k 1
k 1 2
( 2k ) 1
exp
k
k 1
z (k )
2
k 1 k
=
4
k 0
k
2k
1
( k 1) k
(2k ) (2k 1)
2k
1 22 k 1 1
k 1
=
2
1
1
k (k 2)
k 1
1
1 2 k
2
k 0
=
=
=
e(1)
k 1
=
0
2
cos x dx
1
x
dx
0
=
x11 dx
0
3 .000000000000000000000 =
ex
k 2k 1
k
k
6
k 0
3
k 2 2k 1
k 2 2k
k 1
Prud. 6.2.3.1
1/ 2 k k
x sin x
dx
1 cos x
log sin x
e
e
x
o e x dx
0
=
k2
2
k 2 k 1
k 1
2
2
/2
=
/k
log x
1 x 2 dx
/2
=
k 1
2
d
(cos )
0
2 1
GR 3.791.1
=
=
Fk Lk
k
k 1 3
2
1
k (k 3)
k 1
2 k 2
k ( k 1)
1
k 1
k
k
2k
k 1 2
k 2
k 0 4 ( k 1)
( 2 k )!!
( 2 k )!!
2
1
k 2 ( 2 k 1)!! ( k k )
k 1 ( 2 k 1)!! k ( k 2 )
3
1 2
k 4k
k 1
FF
k2
(½,2,0) k k kk 3
3
k 1 2
k 1
2
k
k 3 ( k 2 )( k 2 )
3
x dx
log 3 xdx
0 e x 1 x 2
( k 4 ) Fk k
k
2k
k 0
k 1 2
4 .000000000000000000000 =
=
=
6 .000000000000000000000 =
=
=
10 .000000000000000000000 =
k
( k 1) 2
2k
k 0
12 .000000000000000000000 =
2
dx
xe x dx
x log x 0
15 .000000000000000000000 =
20 .000000000000000000000 =
24 .000000000000000000000 =
k4
(1 / 3, 4, 0 ) k
k 1 3
2
k
k 4 ( k 3)( k 3)
log 4 xdx
0 x 2
26 .000000000000000000000 =
( k 1)3
2k
k 0
k2
k 5 ( k 4 )( k 4 )
Fk k 2
k
k 1 2
k4
(½
, 4 , 0 ) k
k 1 2
52 .000000000000000000000 =
70 .000000000000000000000 =
94 .000000000000000000000 =
150 .000000000000000000000 =
k3
k
k 1 2
(½
, 3, 0 )
1082 .000000000000000000000 =
k5
k
k 1 2
(½
, 5, 0 )
Fk k 3
k
k 1 2
F k4
25102. 000000000000000000000 = k k
k 1 2
1
1 .00000027557319224027...
k 1 (10 k )!
1330 .000000000000000000000 =
1 .000002739583286472...
.00000484813681109536...
1 .000006974709035616233...
.00001067827922686153...
1 .0000115515612717522...
1 .000014085447167...
1 .0000248015873015873...
648000
, the number of radians in one second
coth 2
10
(1) k 1
547 61 7
(1) k 1
7
210395
(6k 1)7
k 1 (6k 5)
W7
1
3
k 1 ( k )!
.00003354680357208869...
1 .00003380783857369614...
=
.00004539992976248485...
1 .0000513451838437726...
J313
.00004439438838973293...
697 8
W8
6613488
1 .00005516079486946347...
J313
9
sec1
1
12 arctan 2 6 arctan 4 3 6 arctan 4 3 4 3 3
72
37 20 3
1
5
3 log 3 log 343 3 3 2 arctan
log
13
72
3
dx
1
11 23 1
,1, ,
12
2 F1
x 1
22528 12 12 4096
2
e 10
511( 9)
1
AS 23.2.20
9
512
k 0 ( 2 k 1)
1
( 5) 1
5
7
11
( 5) ( 5) ( 5)
12
12
12
12
358318080
(9)
( 1) k 1
( 1) k 1
6
(6k 1) 6
k 1 ( 6k 5)
=
J328
1 .0000733495124908981...
W6
91 6
87480
.00010539039165349367...
8
.00012340980408667955...
e 9
6 .00014580284304486564...
( 3) ( 2)
1 .000155179025296119303...
(8 )
1 .0002024735580587153...
3
31
log 3 k
k2
k 1
17 8
255(8)
1
8
161280
256
k 0 ( 2 k 1)
AS 23.2.20
.0002480158734938207...
J313
1
(8k )!
k 1
1
1
1
(2)
3
16
8192
k 0 (16k 1)
1
.0002499644008724365... 12
(6k 6) 1
k 6 k 1
k 2 k
(1) k 1
5 61 7
(1) k 1
1 .0002572430074464511...
5
2736
(6k 1)5
k 1 (6 k 5)
1
1
.00026041666666666666 =
3840 5! 2 5
1 .000249304876753261748...
.0002908882086657216...
, the number of radians in one minute of arc.
10800
1
49
.000291375291375291375 =
1 2
k
3432 k 8
(3)
1
.00029347092362294782...
( 2 ) 1
4096
8192
.00033109368017756676...
7
.00033546262790251184...
e 8
1 . 00038992014989212800...
1 .000443474605655004...
W5
J328
3751 (5)
3888
k 1
1
(6k 1)
k 1
1
(16k )
5
3
1
5
(6k 5)
J313
307 7
655360 2
(1) k 1
(1) k 1
7
(4k 1)7
k 1 ( 4k 3)
(1) k / 2
7
k 0 ( 2k 1)
=
=
J326
Prud. 5.1.4.3
1
1
3 1
1 .0004642141285359797...
7776 6 k 1 (6k 1) 4
127( 7)
1
1 .00047154865237655476... ( 7)
7
128
k 0 ( 2 k 1)
1
1 .00049418860411946456... (11) 11
k 1 k
1
1
1
1 .00056102267483432351...
( 2)
3
12
3456
k 1 (12 k 11)
1 .000588927172046...
r(16 )
AS 23.2.20
Berndt 8.14.1
5
log(1 2 )
2 2
2 2 2
2 2
2 2 2
log 2
log
log
8
4 2
16
16
2 2 2
2 2 2
1
21
9
15
( 1) k 1 k 3
.00064675959761549737... 1 ( 2 )
( 4 ) ( 3) (5)
5
2
2
2
2
k 1 ( k 2 )
( 3)
1
.00069563478192106151...
1728 k 1 (12 k ) 3
2
k 1 k ( 2 k )
1 .00076240287712890293... ( 1)
2k
k 1
.000807441557192450666...
1 1 3
5
2
64 2
.00091188196555451621...
e 7
0
x cos(2 x)
e 2
x
1
dx
1
k
k 1
1 .00099457512781808534...
1
1
11
(2)
12 k 1 (12 k 1) 3
3456
.00088110828277842903...
1 .00097663219262887431...
5k
1
10
k 1 k
(10)
.00099553002208977438...
(10k ) 1
k 1
.000998407381073899767...
k
k 2
10
1
k2
1
(1 i
1 i
5 2 coth 1 i 2 cot
coth
6 16
2
2
13
1
.00101009962219514182...
(4) (6k 4) 1 10
12
k4
k 1
k 2 k
1
( k )
.00102614809103260947... (5k 5) 1 10
5
5
k
k 1
k 2 k
k 2 k
=
1
2
.001040161473295852296...
6
15
1
coth (2) (6) (4 k 6) 1 10
k6
8 4
k 1
k 2 k
1
36
.00108225108225108225 =
1 2
924 k 7
k
1
1
5
.00114484089113910728...
(2)
6 k 1 (12 k 2) 3
3456
1 ( 3) 1
5
7
11
1 .00115374373790910569...
( 3 ) ( 3 ) ( 3)
12
12
12
12
124416
.0010598949016150109...
( 1) k 1
( 1) k 1
4
(6k 1) 4
k 1 ( 6k 5)
=
1
1
1
(2)
9 k 1 (9 k 8) 3
1458
2k k 2
2
(k 1) 1
3 .00126030124568644264...
3
2
k 1 k 1
1 .001242978120195538...
.001264489267349618680...
1 .00130144245443407196...
22
7
1
x 4 (1 x) 4
0 1 x 2 dx
1
( 5) 1
7
3
5
( 5) ( 5) ( 5)
8
8
8
8
31457280
( 1) k 1
( 1) k 1
6
(4 k 1) 6
k 1 ( 4 k 3)
=
197
3 ( 3) ( 1) k
3
27 64
32
k 0 ( 2 k 8)
e 1
cos1
1
.00138916447355203054...
1
4 4e
2
k 1 ( 4 k 2 )!
.001311794958417665...
3 .00139933814196238175...
1 .0013996605974732513...
.00142506011172369955...
.00144498563598179575...
.00144687406599163371...
1 .0014470766409421219...
2
3 3
log 3 log( 3 1)
log 2
r (12 )
6
4
3
1
10
log k
k 2 k
960
1
( 2k )
1 6 1
( 6) k 2 k 6
(2 k )
6
k 2 k 1
6
63 ( 6)
1
( 6)
6
960
64
k 1 ( 2 k 1)
Bendt 8.14.1
AS 23.2.20
=
1
1
( 2k )
k6
k 2
1
1
9
(2)
3
16
8192
k 0 (16 k 9)
log 4 k
(4)
24 .00148639373646157098... ( 2 )
k2
k 1
1
1
(2) 3
.00153432674083843739...
4 k 1 (12 k 3) 3
3456
.00146293937923861579...
.0015383430770987471...
.0015383956660985045...
1 .001712244255991878...
930 (5) 6
k
6
1920
k 1 ( 2 k 1)
4 ( 3) ( 1) k
3
256
k 0 ( 4 k 8)
1
1
( 2) 1
8 k 1 (8k 7) 3
1024
5 ( 3)
6
1
1
1 .00181129167264869533...
( 3)
4
1536
1 .00171408596632857117...
1
(4k 1)
k 0
4
1
=
1 log3 x
dx
6 0 x 4 1
5 2 197
1
2
2
54 216 k 1 k ( k 1) ( k 2 ) 2 ( k 3) 2
7 3 (3)
1
.001871372759366027379...
3 2k
360
2
1
k 1 k e
.001815222323088761...
=
3 (k )
e
1
1
.001871809161652456210... 2 2k
1
k 1 k e
k 1
2 k
.001872682449768546116...
1
k e
2 k
k 1
.00187443047777494092...
e
k 1
1
k 1
e 2k
1 ( k )
k 1
1
2 ( k )
k 1
1
2 k
e 2k
0 (k )
e 2k
.001877951661484336384...
.001912334879124743...
x 6 dx
45 (7)
0 e2x 1 8 7
15e 2 109
2k
960
k 0 ( k 6)!
LY 6.21
Ramanujan
1 .001949804343...
j9
1 .00195748553...
G9
.001984126984126984126 =
2 .001989185473323053259...
=
J309
1
504
sinh
J311
5
k 1
sin (1)
1 / 10
x5
e
2 x
0
1
dx
sin (1)3 / 10 sin (1)7 / 10 sin (1)9 / 10
1
10
1 k
k 1
1 .00200839282608221442...
(1) k 1 k 5
k
(1) k
e
( 9)
.00201221758463940331...
.00201403420628152655...
=
.00201605994409566126...
.00201681670359358...
.00202379524407751486...
.002037712107418497211...
.00203946556435117678...
.00205429646536063477...
.002083
1
1
k 1
k 2
3
3
1
5
9
17
387
( 6) (5) 2 ( 3) ( 4 ) ( 3) ( 2)
4
2
2
4
8
16
64
Hk 1
5
k 1 ( k 2 )
1
(8k 1) 1 k 9 k
k 1
k 2
3
3277
( 1) k
3375 32 k 0 ( 2 k 7) 3
1
(
7
k
2
)
1
k9 k2
k 1
k 2
7
MHS (9,1) (10) 2 (5) (3) (7)
4
1
(6k 3) 1 k 9 k 3
k 1
k 2
7 (3)
1
1
1
(2)
3
2
4096
8192
k 0 (16k 8)
(9k ) 1 k
1
480
x 7 dx
0 e 2x 1
.00210716107047916356...
1
(5k 4) 1 k 9 k 4
k 1
k 2
4
( 4k ) 1
sinh
k
90
k 1
1
1
(2) 2
3 k 1 (12 k 4) 3
3456
.002124728805039749548...
.0021368161356763007...
9
1
4
log
k 2
1 1
4
4
k
log1 k
13
1
(5) 2 i ) 2 i
8
2
4
1
= ( 4 k 5) 1 9
5
k 1
k 2 k k
5 4
W4
486
.00213925209462515473...
1 .0021511423251279551...
2
log 4 2 ( 3) log 2
19 5
3 log 2 2
11520
96
48
8
2k
1
= k
5
k 0 4 ( 2 k 1) k
1
1
(2) 8
.00227204396400239669...
9 k 1 (9 k 1) 3
1458
1 .002203585872759559997...
.00228942996522361328...
1
i
2 (1)1 / 3 ) 2 (1)1 / 3
(3) (6)
6 2 3
1
= 9
( ( 3k 6) 1)
6
k 1 k k
k 1
.00234776738898358259...
J313
1 .00237931966451004015...
( 3)
1
512 k 1 (8 k ) 3
/4
log 2 G
log sin x dx
4
2
0
1/ 2
=
log x
dx
1 x2
2 log 2 log 5
3
1 5
log
r (10)
5
4
2
2 5
x 4e x
3
1 e 2x dx
4 5
1109
k2
17e
24
k 1 ( k 5)!
e 6
k 2 Hk
2
6 log 2 8 log 2 6 k
k 0 2 ( k 2)
x 4 dx
3 (5)
0 e2x 1
4 5
GR 4.224.2
GR 2.241.6
0
1 .0024250560555062466...
.002450822732290039104...
.00245775047043566779...
.002478752176666358...
2 .0025071947052832538...
.00254132611404785053...
.002597505554170387853...
1 ( 2) 4
432
3
Berndt 8.14.1
1
1
284 4 ! 2 4
e
1
1
1
1
1
1
1 .00260426354837675067...
cos
cos cosh
2
2
2
4
2
2
4 e
.00260416161616161616
=
.002608537189032796858...
.002613604652091533982...
x
2
.00262472616135652810...
.00264711657512301799...
1
5 1
1
log arctan
8
3 4
4
x
7
2
1
(4 k )!16
k 0
k
dx
x 1
dx
1
7
log 2
log 63
6
315 (9)
4 9
x
2
dx
x
7
8
x dx
1
e
2 x
0
.00264953284061841586...
1
22
22
6
log 31 2 10 2 5 arctan 13
10
2
5
arccoth
2 5 2 5 arctan 13
20
5
5
5
=
x
dx
7
2
1 .002651309852400201...
x2
2 2
5
sin x x cos x
dx
7/2
x
0
1
5 1
.00270640594149767080...
log
4
3 8
1 .00277832894710406108... cosh 1 cos1
x
2
7
dx
x3
log 7 1
dx
7
3
24 2 x x 4
1
.00286715218149708931... 9
k 2 k log k
195353 3 (3)
(1) k 1
.00286935966734132299...
3
216000
4
k 1 ( k 5)
.0028437975415075410...
log 2
1 1 1
=
x5 y 5 z 5
0 0 0 1 xyz dx dy dz
5 .0029142333248880669...
2k
k 0 k ! 1
( 3)
2
( 1) k 1 k
3
36
324
k 1 ( k 3)
1
1
7
.00302826097746345169...
(2)
3
16
8192
k 0 (16 k 7)
1
1
(2) 7
.0031244926731183736...
12 k 1 (12 k 5) 3
3450
.002928727553540092...
.00318531972162645303...
2
e
3 2
sin 3
sin 3x
x 2x 3
2
log 3
9
.00321603622589046372... log 2
2
24
.00326776364305338547...
.003286019155251709...
.0033002236853241029...
Re (i )
1
7 4
16 45 256
3 (3)
7
.0033178346712119643...
32
64
.0033104481564221302...
x
2
7
dx
x5
5
1
7
( 2)
9
1458
1
(9 k 2)
k 1
3
(1) k
3
k 0 ( 2k 6)
1 1 1
x5 y 5 z 5
=
dx dy dz
2 2 2
0 0 0 1 x y z
24 .00333297476905227...
.0033697704469093...
.00337787815787790335...
.003472222222222222222 =
.00364656750482608467...
e(e 3 11e2 11e 1)
k4
1
4
0
,
,
e
k 1 e k
(e 1)5
15 (5) 31
( 1) k
5
16
32
k 0 ( k 3)
1
1
(2) 7
3
8
1024
k 1 (8k 1)
1
k
288
k 1 ( k 1)( k 2 )( k 3)( k 4 )( k 5)
1
( 3)
( 1) k 1
3
27
36
K 1 ( 3k 3)
1 1 1
=
.00368755153479527...
x5 y 5 z 5
0 0 0 1 x3 y 3 z 3 dx dy dz
3
36 3
=
91 (3)
1 (2) 1
6
216
432
1
(6k 5)
k 1
3
Berndt 7.12.3
.0037145966378051377...
log( log( log(log 2 )))
log( log(log 2 ))
2
.00374187319732128820... coth 1 2
e 1
e e
1 .00374187319732128820... coth
e e
3
1
.00375000000000000000 =
800
k 1 ( k 2 )( k 3)( k 4 )( k 5)
5
19
( 1) k 1
( 1) k 1
1 .00375568639565501099...
5
( 4 k 1) 5
212 2
k 1 ( 4 k 3)
(1) k / 2
=
5
k 1 ( 2k 1)
1 .00372150430231012927...
.0037878787878787878
1 .003795666917135695...
=
1
264
J 326
Prud. 5.1.4.3
(1) k 1 k 9
k
(1) k
k 1 e
4 arctan 3 2 log 5
2
8 2
dx
1 x
4
0
32 3
( 1) k 1
3
256
k 1 ( 4 k 2 )
( 1) k k 3
22
2
.0038845985984860509...
2 log k
7
3
k 0 2 ( k 1)
.00388173171751883...
1 .0038848218538872141...
arctan
1 .003893431348...
j8
1 .0039081319092642885...
2
J 311
1
k
k 1
4k
656 8
1 .0039243189542013209...
G8
6200145
1
.00396825396825396825 =
( 5)
252
1
2 .00401700200153911987...
9
k 1 1 k
=
.00402556575171262686...
J 309
25
2
1 k
k 6
1 / (1)1 / 9 (1) 2 / 9 (1)1 / 3 (1) 4 / 9
1 / (1)5 / 9 (1) 2 / 3 (1)7 / 9 (1)8 / 9
7 (4) 7
8
8 4 sinh
( 1) k
8
4
k 2 k k
(1) k (k )
(1)
4
k4
k 2
ω a non trivial 1
=
integer power
.004031441804149936148...
.00406079887448485317...
.004061405366517830561...
1
8 3
1
x 2 e x
0 1 e 2x dx
9450
8
p 8
(8) 1
(8)
(k )
k 1
p prime
k
log (8k )
8
(8)
9450
i
1 .00407802749637265757...
sin (1)1 / 8 sin (1)3 / 8 sin (1)7 / 8 sinh (1)1 / 8
4
2
1 .0040773561979443394...
=
1 k
8
k 2
15
2 sin 2 sinh 2
coth
16 8
8 cos 2 cosh 2
1
= (8k ) 1 8
k 1
k 2 k 1
16 3csch
1
1 .00409337231139922783...
8
cosh 2 cos 2
k 2 1 k
.00409269829928628731...
.00410564209791538355...
10
1
(7 k 1) 1
8
k 2 k k
k 1
3
3
tanh
.00413957343311865398...
( 2)
4
2
2 3
1
= 8
(6k 2) 1
2
k 2 k k
k 1
319 35 2
4
.004147210828822741353...
512
768
576
1
= 2
5
k 2 ( k 1)
.00410818476208031502...
2
1
arccos2 x
1 .00415141584497286361... 16 16 2 4
dx
2
1 x
0
.004166666666666666666 =
1
(7)
240
x 3dx
0 e2 x 1
MHS (8,1) 4 (9) (2) (7) (4) (5) (3) (6)
1
8
3 (5k 3) 1
k 2 k k
k 1
15
( 4 ) coth
8
4
( k )
1
= 8
4 ( 4 k 4) 1
4
k 2 k k
k 1
k 1 k
.004170242045482641209...
.0042040099042187...
.0043397425545712...
.00442764193431403234...
.00449344967863012707...
1
.00450339052463230128...
.00452050160996510208...
3 .00452229793774208627...
( 2)
74
( 1) k 1 k 2
3 ( 3) 1
4
2
180
k 1 ( k 2 )
1
1 ( 3) 1
1
1 log 3 x
dx
4
486
6 0 x 3 1
3 k 0 (3k 1)
(2 k )
k5
k 2
(2 k )
5
k 2 k 1
2
2
csc 2 2
2
4
=
1 .00452376279513961613...
.004548315464154810203...
.0045635776995554368...
.00460551389327864275...
2k 2
2
2
k 1
k 2 ( k 2)
31 (5)
1
(5)
5
32
k 0 ( 2 k 1)
3 2
1
1
2
2
2
256 9
k 1 ( 2 k 1) ( 2 k 1) ( 2 k 3)
G 3 3
( 1) k 1 k
1
3
2
64
k 1 ( 2 k 3)
dx
661
log 2
7
x x6
960
2
k 2 k (2 k ) 1
.004641520347027523161...
cot 2 2
AS 23.2.20
LY 6.21
1
2 (5) (2) 1 i 3 2 (1)1 / 3 1 i 3 2 (1)1 / 3
3 6
1
= 8
5 ( 3k 5) 1
k 2 k k
k 1
1
1
3
.00475611798059498829...
(2)
3
8
8192
k 0 (16k 6)
2 .0047586393290200803...
G
log 2
2
1
log(1 x 2 )
0 1 x 2 dx
GR 4.295.6
/2
=
x
log sin 2 dx
0
2
log 1 2 r (8)
4
67
2
4
( 3)
(5)
.0047648219275670510...
64
96
360
8
2
(1) k 1
7 3
(1) k 1
1 .00483304056527195013...
3
216
(6k 1)3
k 1 (6k 5)
7 ( 3)
1
.00486944347344743055...
3
1728
k 1 (12 k 6)
1 .004759800630060566114...
.00491550994358136550...
.004983200...
log 2
sin 2
2 4
mil/sec
2
1 2
k
k 2
1
k ( k 2)
k 2
5
.00506504565493641652...
.00507713440452621921...
2 .005110575642302907627...
=
1
1
(2) 2
3
3
1458
k 1 ( 9 k 3)
4 93 (5)
k
5
192
k 1 ( 2 k 1)
4 10 3
3
81
k2
1
3 1
1
5 1
2 F1 2,2, ,
2 F1 3,3, ,
2 4
3
2 4
2
k 1 2 k
k
.00513064033265867701...
3 (3) 1549
4
1728
(1) k 1
3
k 1 ( k 4)
1 1 1
=
.005161189593421394431...
.0051783527503297262...
.0053996374561862323...
=
.005491980326903542827...
.005555555555555555555 =
6 .005561414313810886999...
.00567775514336992633...
x4 y4 z 4
0 0 0 1 xyz dx dy dz
(k ) 1
13
coth
30 8
2
16k
k 1
7 (3)
3
1
1
(2) 3
3
4
128
512
1024
k 1 (8k 2)
15
(2) (4) (6) (2 k 6) 1
4
k 1
1
8
6
k 2 k k
13 4
x cos x / 2
Prud. 2.5.38.10
dx
2
8
e 2 x 1
0
1
k
180
k 1 ( k 2 )( k 3)( k 4 )( k 5)
2
2
x
x dx
3
log 2
2
0
(5, 3)
1 log 2 log 3
1 .00570213235367585932...
2
3
4
1
.005787328838611000493... 8
k 1 k log k
.005899759143515937...
45 ( 7 )
8 6
216k
k 1
1
6k 2
3
Ramanujan] Berndt Ch. 2
Berndt 9.27.12
1 .0059138090647037913...
1
1 .005912144457743732...
.005983183296406418...
250
1
5
( 2)
3 3
(5k 4)
k 1
(7)
.00609098301750747937...
log 2 x
1 x
5
dx
0
log k
7
k 2 k
1
7
(2)
15
3375
1
1
log 2 x
dx
x 8 x 8
log 2 x
dx
x8 x 7
1
1
(2)
2
196
2744
(k )
(k 1)
1 .00615220919858899772...
k 2
k
2 .00615265522741426944...
k 1
2
1
1
1
log 2 x
dx
x 8 x 5
log 2 x
x8 x 4
5 2 2
1
2
arctan 2
log
4
16
5 2 2
2
arctan 1 2 arctan 1 2
8
log 2 x
dx
x8 x 6
k
1
1
7
.00624898534623674710...
(2)
12
1728
.00625941279499622882...
(k 1)
(k )
1
7
.00618459927831671541...
(2)
13
2197
31 .0062766802998201758...
2
1
(3)
.00613294338346731778...
8
3
1
1
7
.00605652195492690338...
(2)
16
4096
91 (3)
1 (1) 1
1
1
( 3)
6
6 17496
243
486
324
2
( 2 k 1)
=
4
k 0 ( 6 k 1)
3 26
( 1) k
3
32 27
k 0 ( 2 k 5)
.00603351696087563779...
(1 2 )
1
3
log
2
0
x
log 3
2
8
16
x
dx
(1 x ) x
x
2
6
dx
x2
GR 4.261.10
=
.00628052611482317663...
x 2e x / 2
1 e x dx
2
48
log 2 3 ( 3)
8
32
GR 3.4.11.16
( 1) k 1 k 2
3
k 1 ( 2 k 2 )
5
log 21
12
2 3
3
3 3
1
dx
5 11 1
1
=
F
,
,
,
2 1
6
6 6 64
160
x 1
2
.00629484324054357244...
1
arctan
1
7
.00633038459106079398...
(2)
11
1331
.00634973966291606023...
1
log 2 log 31
5
1
x
2
log 2 x
dx
x8 x 3
dx
x
6
4
k3
.006400000000000000000 =
( 1) k 1 k
625
4
k 1
1
log 2 x
(2) 7
.00643499287419092255...
8
10
x x 2
1000
1
.006476876667430481...
log 3 arctan 2 1
4
2
2 4
x
2
6
dx
x2
3
e e 4e 1
1
k
,
3
,
0
k
(e 1) 4
k 0 e
e
2
6 .006512796636760148...
102 .00656159509381775425...
5
3
.0066004473706482057...
1 (2) 7
9
729
(i ) ( i )
.0066201284733196607...
.006572038310503418...
1
log 2 x
dx
x 8 x 1
1
.00664014983663361581...
log 2 1
log x
dx
4
6 0 ( x 1) 5
( 2 k 1) 1
k 1
.0067379469990854671...
2 k 1
e 5
1 (2) 7
.00675575631575580671...
8
512
log 2 x
1 x 8 1 dx
1
f2 (k )
4
4
i 2 j 2 ( jk )
k 1 k
3
1
( 6) (5) 2 ( 3) ( 4 ) ( 3) ( 2 ) 5
.00677885613384857755...
4
2
H k 1
=
5
k 1 ( k 1)
log 7
1
5
3 1
dx
arctan
.0067875324087718381...
6
x x3
6
6
8
3
3
2
.0067771148086586796...
(4) 1
2
.00695061706903604783...
1 .00698048496251558702...
.00700907815253407747...
1
11
2
arctan
108
8
2
2
96
2
log 2 8 log 3 2 12 (3)
2 (3)
343
4
k 0
k
2k
1
4
(2 k 1) k
2
log x
dx
8
x
x
1
72
4
3 ( 3) 23
1
.00702160271746929417...
4
48
180
4
8
k 1 k ( k 1)( k 2 )
3 3
log 2 x
.00709355636667009771...
G 2
dx
16 128
( x 1) 3
1
.00711283900899634188...
.0071205588285576784...
9
3 1
8 e
6 .00714826080960966608...
( 1)
k 1
k 1
1 .007160669571457955175...
k
k 0
.0071609986849739239...
.0071918833558263656...
( 1) k 1
k 1 ( k 4 )!
3
4
(2 k ) 1
1
2
1
54 (3) 2 2 45
24
2 / 2
e
i i cos( log i ) i sin( log i )
1 (2) 7
.00737103069590539413...
6
216
x
1
8
dx
x2
1
1 (2) 1
log 2 x dx
1 (2) 7
2 .00737103069590539413...
2
6
6
6
216
x 1
216
0
.007455925513314550565...
sech ( k )
2
k 1
.00747701837520388...
.00748486855363624861...
.007511723574771330898...
.0075757575757575757575 =
.00763947766738817903...
1 .00776347048...
( 1) k 1 k
7 4 3 ( 3)
4
360
4
k 1 ( k 2 )
10016
( 1) k 1
G
2
11025
k 1 ( 2 k 7 )
1
1
csch2 ( k )
6 2
k 1
1
( 9 )
132
log 3 13
dx
6 4
2
24
x x
2
j7
1
[Ramanujan] Berndt Ch. 26
J 311
1 .0078160724631199185...
1
(k!)
k 1
7
28 4 2 6
1
7
7
15
135
k 1 k ( k 1)
1
2
2
k 1 k ( k 1) ( k 2 ) ( k 3)
.0078161009852685688...
1716 154
.0078437109295513413...
119 2
72
6
G7
1 .00788821...
2
J 309
2
1 (2) 7
log x
dx
8
5
125
x x3
1
3 (5)
.00798381145026862428...
( 4 ) c4
44
1
x 2e x
.008062883608299872296...
1 e 2x dx
4 3
.0079130289886268556...
.00808459936222125346...
1 log 2
4
2
x e
2 x2
log x dx
0
1
1
(2) 5
.0081426980566204283...
3
16
8192
k 0 (16k 5)
1
1/ 8
2 .00815605449274531515...
sin( ( 1) 3/ 8 sin( ( 1)5/ 8 sin( ( 1) 7 / 8
4 sin( ( 1)
Berndt 9.27.12
=
1
8
1 k
k 1
.00824553665010360245...
1
1
3
96 3 1536G ( 3) ( 3)
4
4
6144
.00824937559196606688...
(3) 13
k 2
f3 (k )
k3
1
5
.0082776188463344292...
(2)
12
3456
1
.00828014416155568957... 1
(7)
.008283832856133592535...
p prime
1
p7
(k )
k 1
k
Titchmarsh 1.2.14
1
(12k 5)
k 0
3
log (7k )
3
1 1 2 e
(1) k 1
cos
.00830855678667219692...
2 3e
3
3
k 1 (3k 2)!
2
sin 1 sinh 1
sin 1 e
1
1
1 .00833608922584898177...
2
2
4 4e
k 0 ( 4 k 1)!
1
1
k
cos1 sin 1
.00833884527896069154...
8
8e
k 1 ( 4 k 1)!
1 .00834927738192282684...
( 7)
8 4 (3) 64 2 (5) 64 6
( 2k )
k
1143
381
381 k 0 4 (2k 1)(2k 2)(2k 3)(2k 4)
=
=
=
1 p 1 p 2 p 3
(4)
1
p 2 p 3 p 4 p 5 p 6
p prime 1 p
=
(6)
6
(248k 3 2604k 2 9394k 11757) (2k )
7560 k 0 4k (2k 1)(2k 3)(2k 5)(2k 6)(2k 7)
Cvijović 1997
1 p 1 p 2 p 3 p 4 p 5
1
p 2 p 3 p 4 p 5 p 6
p prime 1 p
.0083799853056448421...
(8k 1) 1 k
k 1
.00838389135409569500...
1
k 1
MHS (7,4) 4 (5) (6) 21 (4) (7) 84 (2) (9)
9 .00839798699900984124...
4
.00841127767185517548...
.00847392921877574231...
k 2
7
( 6k 1) 1
k 1
k
log(1 k 6 )
k
k 2
1 i 3
1 2
1 1 i 3
4
3
3 2
2
1
= 7
(6k 1) 1
k 2 k k
k 1
1
1
5
( 2)
.0085182264132904860...
3
9
1458
k 1 (9 k 4)
1
.00860324727442514399... 7
2 (5k 2) 1
k 2 k k
k 1
8
(3) (5)
7560
1
1
( 2) 5
.00866072400601531257...
3
8
1024
k 1 (8 k 3)
.008650529099561105501...
1
1
2
3
7
(2) ( 2)
4 27
4
64
64
7
1
(3) i ( i )
.00887608960241063354...
8
2 4
1
= 7
(3k 4) 1
4
k 2 k k
k 1
.00877956993120154517...
MHS (7,1)
1
log 2 x
dx
x8 x 4
331
(11)
2
1 .00891931476945941517...
( 6)
( 7)
5 .00898008076228346631...
(
k 0
.00898329102112942789...
.00915872712911285823...
.009197703611557574338...
.009358682075964994622...
.0094497563422752927...
( k )
k7
k 1
Titchmarsh 1.2.13
1
k )!
2
e 3 / 2 i 3i
1 (2) 5
1
91 (3)
3
3
6
432
216
36 3
k 1 ( 6 k 1)
3
( 4k ) 1
coth
cot
9k
8 4 3
3
3
k 1
52 7
4e 2 4
(1)k
k 0
3 ( 3) log 2
2
3
2k
k!(k 4)(k 7)
1
( 1) k 1
k 1
k2
( k 2) 3
3 i 3
5 2
1 3 i 3
3
3
90 3 2
2
4
.00948402884097088413...
1
(3k 4) 1
7
4
k 2 k k
k 1
74
15
7 ( 4) 15
( 1) k
.00953282949724591758...
4
45 16 16
8
16
k 0 ( k 3)
16G 2 1 1 3 1 log 2 x dx
2 .00956571464674566328...
64
4
4
1 x4
0
=
.00958490817198552203...
.00960000000000000000
=
.00961645522527675428...
96 2 2
6
625
( 3)
1
(8k 7)(8k 5)(8k 3)(8k 1)
k 1
log 3 x
1 x 6 dx
1
( 5k )
3
125
k 1
9
(3)
.009632112894949285675...
8
64
1 1 1
x5 y 5 z 5
=
dx dy dz
2 2 2
x
y
z
1
0 0 0
2 .00965179272267959834...
7
108
3
2 .00966608113054390026...
3 cosh csc h 3 sinh
2
log x
dx
6
1
0
x
1 k
k 1
2
1
3
J243
.009692044900729199735...
153 .00984239264072663137...
(3)
4 3
5
x 2 dx
0 e2x 1
2
9( 3) 2
k
( 1) k 1
.00988445549319781198...
96
(2 k 2) 3
k 1
1 ( 3) 1
3
( 3) 3
.0099992027408679778...
4
4
3072
64
.010007793923494035492...
2 .0100283440867821521...
2
1
( 1) k
csch 3 2
6 k 0 k 3
3
i 2 (1) i
i
i
i
(1)
2
2
2
2
4
2
2
=
k
k 1
.010097259642724159142...
2
coth
2
2
Hk
12
2
(264k ) 1
61
1 2
126 16
.01026128066531735403...
3 (3) 1549
2
864
.01026598225468433519...
1
k
k 1
log 2 x
dx
x 6 x5
4
1 (2) 7
.01031008886672620565...
3
27
log 2 x
dx
x8 x5
1
69 3
( 3)
1
2
3
16
8
2
k 1 k ( k 1) ( k 2 )
7 (3) 3
1 ( 2) 1
1 .01037296826200719010...
4
16
64
128
1 ( 2 ) 1
1
5
=
( 2 )
3
8
8
1024
k 1 ( 4 k 3)
2
.01036989801169337524...
.01037718999605679651...
(k ) 1
k
k 2
.01041511660008006356... 1 cos
.01041666666666666666
=
1 .01044926723267323166...
.010466588676332594722...
1
1
Li k k
6
k 2
1
1
cosh
2
2
( 1) k 1
(4 k )!4
k 1
k
GR 1.413.2
k2
k 1 ( k 1)( k 2 )( k 3)( k 4 )( k 5)
1
1
4 sinh 1
4
16 2 k 2
k 1
1
96
1
8
(2 3 2 log 2 ) (3) 2 (3)
3
x 2 log x dx
0 e2x 1
7
1
log 2
2
log 1 2
16
8
56
2
8
1
( k ) 1
=
2
8k
k 2 64 k 8 k
k 2
197
3 (3)
(1) k
.01049435966734132299...
3
216
4
k 0 ( k 4)
.01049303297362745807...
6
Berndt 7.12.3
cot
1 1 1
=
1 .01050894057394275299...
x3 y 3 z 3
0 0 0 1 xyz dx dy dz
1 ( 3) 1
3
5
7
( 3) ( 3) ( 3 )
8
8
8
8
24576
( 1) k 1
( 1) k 1
=
4
(4 k 1) 4
k 1 ( 4 k 3)
(1) k / 2
4
k 0 ( 2k 1)
=
3
5
9
81
2 (5) ( 2 ) ( 3) ( 4 ) ( 3) ( 2 )
2
4
8
16
Hk 1
=
4
k 1 ( k 2 )
log 3 log 2
3
3 1 3 1
.01077586137283670648... 1
log
8
4
12
3 1 8 3 1
1
1
1 1
(k )
=
hg
( 1) k
2
12 k 1 12 k k 12 12
12 k
k 1
.01065796470989861952...
131
.01085551389327864275... log 2
192
.010864219555727274797...
6 .01086775003589217196...
.01097098867094099842...
.01101534169703578827...
.01105544825889466389...
1 .0110826597832979188...
=
1 .011119930921598195267...
=
x
2
1
6 csc1 7
12
6
dx
x5
(1) k 1
4 4
2 2
k 1 k k
1
1 ( 3) 1
6
4
256
4
k 0 ( k 1)
1
log3 x dx
0 x 4 1
( 1) k
60
k 0 ( 2 k 1)( 2 k 2 )( 2 k 6)( 2 k 7 )
9
1
( 3) (5) 7
5
4
k 2 k k
1
(2 k 5) 1
5
k 1 k ( k 1) ( k 2 )
k 1
1 ( 3) 1
( 1) k
( 3) 3
1
4
4
4
1536
k 0 ( 2 k 3)
1
5 ( k )
k
5
2k
k 1 ( 2 1)k
k 1
1
cosh 2 cos 2
2
( 1 i ) 2 (1 i ) 2
1/ 4
3/ 4
sin
sin 1 sin 1 sin
2
2
49
3600
=
1
k 1
7 .01114252399629706133...
1
k4
4
3 12 log 2 9 log 3
(k
k 0
1
1
1
2 )( k 3 )
1
2 cot1 coth1
.01121802464158449834...
4
csc 1
e2 cos1 cos1 3 sin 1 e2 sin 1
=
2
4(e 1)
1
= 4 4
k 1 k 1
1 .01130477870987731055...
( jk 3) 1
j 5 k 1
1
( 1) k k 3 2 k
.01134023029066286157...
8k k
36 6
k 0
log 3 2 log 2
1 .01140426470735171864...
r ( 6)
2
3
1 .01143540792841495861...
32 log 2 8 ( 2 ) 4 ( 3) 2 ( 4 ) (5)
=
726 .01147971498443532465...
1 .01151515992746256836...
.0117335296527018915...
x6
0 e x (e x 1) dx
720( 7 ) (7) (1)
3 2 3 1
3
cos
12
dx
0 1 x12
x10 dx
0 1 x12
1/ k
2
7
k 1 k
.01175544134736910981...
2 .01182428891548746447...
1
k log
k 2
1
k5
1 k2
2
sinh 2
2 k 1 k 4
1
cos(2 log x)
=
dx
2
(
1
)
x
0
.01174227447013291929...
6
2k
720 (7) 1
2 .01171825870300665613...
2k
k 1
( k 5)
k 1
.01147971498443532465...
7
k
( s) 1 ds
coth
GR 3.883.1
s7
2
e 1
1 ( 2) 1
125
5
2
1
3
k 1 (5k 4)
1
log 2 x dx
0 1 x5
.0118259564890464719...
2
49
864
Hk
k(k 1)(k 2)(k 3)(k 4)
144
k 1
2
3 ( 3)
.01184674928339526517...
2 log 2 4
2
2
3 52
log 2 x
.01196636659281283504...
6
4 dx
16 27
x
x
1
74
5 2
93
5760 192 256
e2 7
2k
.01215800309158281960...
32
k 0 ( k 5)!
dx
.01227184630308512984...
2
( x 16) 2
256
0
.0121188016321911204...
( 1) k
2
4
k 2 ( k 1)
.01228702536616798183...
csc1
2 sin 1 3 cos1
6
.012307165328788035744...
1 3 (3)
8
32
3 3
.01232267147533101011...
1 .01232891528356646996...
.01236617586807707787...
.01243125524701590587...
.0124515659374656125...
.01250606673761113456...
8
1 1 1
3
( 1) k 1 k
3
k 1 ( k 1)( k 2 )
k 1
4
1
k 2k 2
4
x y z
dx dy dz
2 2 2
y z
1 x
0 0 0
5 ( 2) 6 ( 3)
4 30 2
768
1
2
(4 k
k 1
1
1) 4
J373
2
18G 13 9 log 2
13
32
32
128
80 2 8 4
320 log 2 48 ( 3) 560
3
45
1 4 ( 4) 8 ( 6) ( 3) 12 (5)
k
k 1
3
4
1
( 2 k 1) 4
k
( k 2)
k 1
J385
6
3 3 9 log 3
1
1 .01251960216027655609...
log 2
8
2
8
k 0 ( 2 k 1)( 4 k 1)( 6k 1)
15
1
.01256429785698989747... 160 44 ( 2 )
( 4) 80 log 2 20 ( 3) 3
4
2
k 1 k ( 2 k 1)
4
5 2 163
.01261355010396303533...
720
96
256
1
= 2
4
k 2 ( k 1)
.012625017203357165027...
4 2
1 7 (3)
9
6
2
Borwein-Devlin, p. 56
.012665147955292221430...
.012706630570239252660...
2 .01279324663285485357...
1
8 2
xe x
0 1 e 2x dx
15 (5)
4 5
e
0
dx
2 x1 / 5
1
kF!k!
1
I0 5 1 I0 5 1
5
k
k 1
1 .01284424247706555529...
91 (3)
1 ( 2) 5
1
( 2 ) W3
108
432
6
6
log k
6
k 1 k
1
1
3
.01286673993154335922...
( 3)
4
4
1536
k 0 ( 4 k 3)
.01285216513179572508...
( 6)
31 3 2
1
2
108
k 1 k ( k 1)( k 2 )( k 3)
3 ( 3)
2
13
( 1) k 1
.0128978828974203426...
4 log 2
3
2
4
24
4
k 1 k ( k 1) ( k 2 )
5 4
log 3 x dx
6 .01290685395076773064...
6
81
x 1
0
.01288135922899929762...
.01292329471166987383...
( 1) k 1
2
k 1 ( 2 k 5)
k 2 2k 2
2
k 1 k 2k 4
i
i
log 3
1
1 .01295375333486096191... arccot 2
log 3 i log1 i log1
2
2
2
2
1
dx
= k
2 2
x x2
k 0 16 ( 4k 1)
2
.012928306560301890832...
209
G
225
2 csch 3 sin 3
.01303955989106413812... 1
.01312244314988494075...
( 1)
k 1
5 .01325654926200100483...
1 .01330230301225999528...
2
10
1 ( 2) 4
(2) 5
3
6
216
1 .01321183515...
k 1
log 2 x dx
1 x 6 x 3
(k )
k2
8
6
1
sin
5 4 cos1 2
1
2
k 0
k
sin
2k 1
2
.01352550645521592538...
7 (3) 7054
1
7
(2)
2
4
3375
8
1
log 2 x
dx
x8 x 6
1
( 1) k 1 k 3
2
3
3
12
2
2
( ) log ( k 1) 3
4
k 0
49
1
.01361111111111111111 =
3600
k 0 ( 2 k 1)( 2 k 2 )( 2 k 6)( 2 k 7 )
2
4
k2
3
21
.01375102324650707998...
( 3) 1
4
32 128 16
k 1 ( 2 k 3)
65
1 4k k 2
.01387346911505558557... ( 2 ) 6 ( 4 )
4
8
k 2 k ( k 1)
.01358311877719198759...
=
( 1) k ( k 2) 1
3
k
k 1
1 .01389384950459390246...
.01389695950004687007...
cos1 sin 1
k 0
.01417763649649285569...
.0142857142857142857
=
2 .01432273354831573658...
5021 .01432933734541210554...
3 .0143592174654142724...
2
coth (4) (2) 1
2
( 1) k 1 (2 k 4) 1
k
k 2
6
1
k4
x
( x log
dx
1)( x 3)
log 3 2
log 2 3
12
2
0
3 ( 3)
( 1)
3
256
k 0 (4 k k )
2 3
7
dx
2
27
18
( x x 1) 3
1
.01408660433390149553...
1
k 1
k 1
1 .01406980328946130324...
log 2 x
dx
x6 x2
=
sink k
i
Li e i Li2 ei
2 2
e /2
e
i ie
.014063214331492929178...
1
(4 k )!(2 k 1)
1 (2) 9
( 2 ) 5
8
8
512
1 .01395913236076850429...
.013983641297271329...
1
e
1
70
k
16
2
1 k
k 5
1 (1 5 ) / 2
F
k
e
5
k 1 k!
1
8
7
127
log x dx
240
1 x
0
e
5
1
e
5
5e
2 /(1 5 )
1
F
k 1
k
GR 4.266.1
.01442468283791513142...
3 (3)
250
1 .0145709024296292091...
e
log 2 x dx
1 x 6 x
( k ) 1
k 1
1 .01460720903672859326...
.01462276787138248...
1 .01467803160419205455...
.01476275322760796269...
=
1
1 1 log 2
kHk
e 1 Ei
1
k
2 2 2
2
k 1 k !2
(2 k )
4
k 2 k 1
7 ( 4 )
4
1
( 4)
AS 23.2.20, J342
4
96
8
k 1 ( 2 k 1)
7 (3) 28
8
27
1 1 1
x4 y4 z 4
0 0 0 1 x 2 y 2 z 2 dx dy dz
1 ( 2 ) 11
(2) 5
.01479302112711200034...
12
12
1728
2k (k )
6 .01484567464494796828...
k!
k 2
1 .014877322758252568429...
1 .01503923463935248777...
e
2/k
k 1
.01521987685245300483...
.01523087098933542997...
.01529385672063108627...
.01534419711274536931...
.015439636746...
.01555356082097039944...
log 2 x dx
1 x 6 1
2
1
k
H3
1
27
3 3
1
log
log 2 3
4
8
4
e
erf (1)
4
2 k 1
k
k 1
e
x2
sinh x cosh x dx
0
3
4
4
17 2
4
( 3)
.01520739899850402833...
16 48 180
4
1 .01508008428612328783...
2
Berndt 8.17.16
k 1
( 4 ) 3 ( 6) 3(5) ( 7)
2
1
k ( k 2)
4
k3
( k 1)
k 1
7
( 2 k 1) 2
4
648
k 0 ( 6 k 3)
log 2
1
( 1) k 1
8
16 8
k 1 ( 4 k 2 )( 4 k 4 )
2
5
1
( 3)
3
2
4
k 1 k ( k 1) ( k 2 )
J311
j6
6 1 i 3 3 i 3 1 i 3 3 i 3
(3)
3
6
6
2
2
=
( 1) (3k 3) 1 k
k 1
k 1
k 2
6
1
k3
45 (5)
84 ( 3) 504 log 2 462
.015603887018732408909...
4
2 .01564147795560999654... (8)
1
1 .01564643870362333537...
6
k 1 ( k !)
.01564678558976431415...
2 ( 6) 42 ( 4 ) 252 ( 2 ) 462
1
1 .01567586490084791444... 3k
k 1 k
1
1
.0157870776290938623...
(2)
4
8192
x
6
1
( k 1) 6
1
(16k 4)
k 0
3
(2 k )
k 1
2k
dx
1
5
2
.01593429224574911842...
k
log 2
1
2 1
2 1
log
log
2
2
2
2
.01584647647919286276...
k 1
1 .0158084056589008209...
( 1) k 1
6
6
k 1 k ( k 1)
k 1
( 4 k 1)
4 4 k 1 1
104 6
G6
98415
1
243 32 3 3
1
5
( 2) 1
.01594968819427129848...
( 2)
3
3456
3
124416
3456
1
13 ( 3)
3
=
3
1728
2592 3
k 1 (12 k 8)
2
2
log x
.01600000000000000000 =
dx
125
x6
1
1
1 .01609803521875068827... k 4
k 1 k
1 .01594752966348281716...
.01613463028439279292...
.01614992628790568331...
9
2
( 1)
k 1
.0161516179237856869...
x
2
2
2 ( 3)
3
=
log15
4
log 2
10e
k 1
dx
x
5
k
k 2
k 2 ( k 3) 1
163
6
k2
( k 4)!
k 1
2
k 1
( k 1) 3
J309
.0162406578502357031...
2 .01627911832363534251...
1 .01635441905116282737...
.0163897496007479593...
.016406142123916351060...
31 (5) 7 2 ( 3) 4 log 2
8
32
48
2k
7
k 1 k ! k
1
5
k 1 k ! k
1 2G
2
6
2
3
16
log 2
sin 2 sinh 2
2 2
Hk
(2 k 1)
k 1
4
( 1) k
3
k 2 k ( 2 k 1)
1
2
1
k 1
(4 k 2) 1
2 ( 1)
k
k 2
k 1
.0164149791532220206... 6 ( 2 ) ( 3) ( 4 ) (5) ( 6)
1
1
= 7
( k 6) 1
6
6
k 2 k k
k 1 k ( k 1)
k 1
=
.01643437172288507812...
.0166317317921115726...
.01666666666666666666
=
k
6
7 ( 3)
1
3
512
k 1 (8 k 4 )
( 1) k ( k )
k3
k 2
1
60
e
0
dx
2 x1 / 4
1
1 k
2 .016707017649831720444...
k 1
7
1 / ((1)1 / 7 )((1) 2 / 7 )((1)3 / 7 )((1) 4 / 7 )((1)5 / 7 )((1)6 / 7 )
(k )
.016733900585645006255...
k 1 k!1
.01684918394299926361...
log 7 1 3
3
5
arctan
6
2
6
3
3
.01686369315675441582...
1
6
k 2 k k
.01687709709059856862...
6155 63
1080
2
29
12 36
nfac(k )
1 .016942819805640384240...
2k
k 1
.01691147786855766268...
4
x
2
( 1) (5k 1) 1
k 1
k 1
log 3 x dx
5
x x4
1
1
k ( k 1)( k 2)
k 1
2
( k 3)
5
dx
x2
.0170474077354195802...
1
.017070086850636512954...
945
6
1
p6
p prime
( 6) 1
( 6)
(k )
k
k 1
log (6k )
13 (3)
3
1 (2) 2
.01709452908541040576...
3
216
432
324 3
.017100734033216426153...
6
coth 1
12
1 .01714084272965151097...
1
6
k 2 k 1
3 2 2
8
6
2
2 2i 3 cot
=
1 i 3
k 1
3
2i 3
2
( 1) (6k ) 1
k 1
k 1
3
2
e
dx
x2/3
0
1 .01729042976987861804...
1
1 i 3
2
cot
( 6k 2)
2
6 log 2 2
k 1 4 k k
6
1
( k )
2
k 2
2 k 3
( 6)
945
1 log5 k
1 (5)
1 .01735897287127529182...
(m)
120 k 2 k ( k 1)
5! m 2
1
1 .01736033215192280239... 2
2
2
k 2 k k
703 12
703
H (6) k
1 .01736613603473227207...
(12) 6
638512875 691
k
k 1
1 .01734306198444913971...
1 .01737041750471453179...
sinh
cosh cos 3
4 3
1 k1
k 2
(1 i )
3
(1 i )
1 i
coth
coth
2 cot
16 8
2
2
16
1
= 6
2 (8k 2) 1
k 2 k k
k 1
.01740454950499025083...
6
.01745240643728351282...
.01745329251994329577...
.01745506492821758577...
sin1
180
, the number of radians in one degree
tan1
.01746673680343934044...
.01746739278296249906...
.01758720202617971085...
.01759302638532157621...
.01759537266628388376...
1 .01762083982618704928...
.01765194199771948957...
.017716230658780156731...
.01772979515817195598...
1
6
1 ( 7 k 1) 1
k 2 k k
k 1
( 6k ) 1
log(1 k 6 )
k
k 1
k 2
33
k
( 3) 3 ( 4)
4
16
k 1 ( k 3)
11
3
1
tanh
6
(6k ) 1
12 2 3
2
k 2 k 1
k 1
5
(5k 1) 1
log(1 k )
k
k
k 1
k 2
3
k6
6
6 2 sech 2
k 2 k 1
2
2 8G
1
2
144
k 1 (12 k 3)
log(2 k 1)
15
4
Prud. 5.5.1.5
log 2 ( 4)
4
16
1440
k 0 ( 2 k 1)
1 11 log 2 log 3
6
18
4
e
1
x
dx
(e 1)(e x 2)(e x 3)
x
2
10G
1 (1) 1
5
(1)
9
72
12
12 9
1 (1) 1
11
5
7
=
(1) (1) (1)
12
12
12
12
144
1 .017739549085798905616...
( 1) k 1
( 1) k 1
2
(6k 1) 2
k 1 ( 6k 5)
1 2 3
log 2 18 log 2 2 (2) 18 (2) log 2 6 (3) (2)
12
(1) k 1 log3 k
k2
k 1
1
(5k 1) 1
6
k 2 k k
k 1
32 k 1
e 3 e 3
sinh 3
AS 4.5.62
2
k 0 ( 2 k 1)!
( 1) k 1
1
10
3 arctan log
1
k
3
9
k 1 2 k ( 2 k 1) 9
=
.017796701498469380675...
=
.01785302516320311736...
10 .01787492740990189897...
.01793192101883973082...
2 .01820187236017492412...
B1
1
2 6 2 log 2 2 2 log 2 1
72
k 1
2k
1 .01829649667637074039...
(5)
.01831563888873418029...
e 4
.018355928317494465988...
3 (7) (2) (5) (3) (4) MHS (6,1)
Hk
(k 1)
k 1
6
.018399137729688594828...
(2k ) (2k ) 1)
k 2
.018399139592798207065...
(2k ) (2k ) 1)
k 2
.01840295688606415059...
.01840776945462769476...
7
(2) coth
8
4
3
512
(x
0
2
1
6
2
k 2 k k
(4k 2) 1
k 1
dx
4) 3
Hk
1
54
k 1 ( k 1)( k 2)( k 3)( k 4)
7( 3)
4
k
.01856087933022647259...
4
16
192
k 1 ( 2 k 1)
.0185185185185185185185 =
1 .01868112699866705508...
(k ) (k ) 1
k 2
5
1
1
3arctanh k
3
2
k 1 4 ( 2 k 1)( 2 k 3)
( 3)
1
.01878213911186866071...
3
64
k 1 ( 4 k )
dx
log 3 1
.01884103622589046372... log 2
5
x x3
2
8
2
.01874823366450212957...
log 2 log 3
1
1
2
3
4
30 4 3
k 2 36 k 6 k
( k ) 1
=
6k
k 2
i
1 1
i
1
1 .01898180765636222260... H 1 / 4 H 1 / 4 H 1 / 4 H 1 / 4
4 2
2
2
2
( 4 k 1)
1
=
5
k
2
k 1
k 1 2 k k
2 (3)
log 2 x
.01923291045055350857...
dx
6
125
x x
1
.01891895796178806334...
1 .01925082490926758147...
(5)
( 6)
k 1
( k )
k6
Titchmarsh 1.2.13
3 .01925198919165474986...
.019300234779277614553...
.01931537584252291596...
=
.019378701873...
e
dx
x 4 1
e ( x 2)
2 2
0
1 (1) 7
9
(1)
32
8
8
k (2k 1)
64k
k 1
log 2 3
3
2 log 2 2
1 1
2
3
log
log log
Li2
3 8
2
4
3
2
( 1) k
4
2
k
k 2 2 ( k k )
1
3
k a non trivial k
int eger power
.01938167868472179014...
1
2
12
G
2 16
2
7
.01942719099991587856...
5 8
1
.019534640602786820175...
219 10 2 72 (3)
1728
.01939671967440508500...
3 ( 3)
2
( 1) k 1 k
3
k 1 ( k 2 )
3
( 1) k 1 k 2
3
128
k 1 ( 2 k 1)
( 1) k ( 2 k 1)!!
( 2 k )! 4 k
k 2
k (k 1)(kH 2H)(k 3(k 4)
k
k 1
k 1
.01956335398266840592...
J 3 (1)
.01959332075386166857...
14
2
1
6 log 2 Li2
2
9
3
.01963249194967275299...
3 i 3
3 i 3
4
1
1 i 3
(3) 1 i 3
3
6
2
2
=
=
1
6
3
k 2 k k
integer power
306 .01968478528145326274...
.01972588517509853131...
.01982323371113819152...
5
3
(3k 3) 1
k 1
1
ω a non trivial 1
( 1) k 1 k 3
2
k
k 1 2 ( k 1)
(k )
3
k 1 k
1
2
( 1) k 1
2
9 108
k 1 ( 3k 3)
4 17
1
( 4, 3)
4
90 16
k 1 ( k 2 )
k
k 2
3
1
(3) 1
1
.019860385419958982063...
.0198626889385327809...
3 log 2 1
4
2
64k
k 1
3 7 4
8 1920
x
1
5
3
1
4k 2
[Ramanujan] Berndt Ch. 2
dx
x3
3
3
3
k2H
log ( 1) k 1 k k
64 32
4
3
k 1
log 5
1
1 5
log
1 .0199234266990522067...
r (5)
2
2
5
2 5
k2 1
k 2 (2 k ) (2 k 2)
1 .0199340668482264365...
2
2
6 8
k 2 ( k 1)
k 1
1
.02000000000000000000 =
50
1
1 .02002080065254276947...
k 0 2k
3
(2 k 1)
k
.01990480570764553805...
.02005429455890484031...
2 7 log 2
9
24
1 dx
1 log1 x ( x 1)4
x
dx
log x 1 x
4
2
2
.02034431798198963504...
.02040816326530612245...
1 .02046858442680849893...
(2 k 1)!!
10 1
1
9 3
k 1 ( 2 k 1)!! 2 k 3
1
49
62 (5)
63
a(k )
6
k 1 k
Titchmarsh 1.2.13
.02047498888852122466...
4 (5) 4( 4 ) ( 3) 1
.020491954149337372830...
( 3)
( 3)
(6)
1 .0206002693428741088...
J385
1
8
csc
9
9
x
0
k2
5
k 1 ( k 2 )
(1 ( k ) )
k3
k 1
1
4
n not squarefree n
dx
1
9
7 (3)
1
1
2 2 (2)
4
8
32
64
3
.02074593652401438021...
7 (3)
1
1
( 2)
4
8
32
64
3
2 .02074593652401438021...
.020747041268399142...
e
5
2 e 1 4
Berndt 6.30
B2 k
(2k )!4
k 1
k
1
1
2
log x
1 x
0
log 2 x
dx
x6 x2
4
dx
1 .02078004443336310282...
13 (3) 2 3
1
1
( 2)
3
27
54
81 3
1
(3k 2)
k 1
3
Berndt 7.12.3
1
=
33 .02078982774748560951...
.020833333333333333333 =
1 log 2 x
dx
2 0 1 x 3
4
16
3
1
48
( k !) 2 3k
k 0 ( 2 k )!
1
1
1
1 .020837513725616828...
2 ( 3) 1
1
5
2
2 k 1 2 k k 3
( 2 k 3)
=
2k
k 1
1
1
1
1
1 .02083953399112117969...
cos
cosh
k
4
4
2
2
2
k 0 ( 4 k )! 2
1
(4 k ) 1
.020839548935264637084...
coth
cot
6 4 2
4k
2
2
k 1
( k )
3 .02087086732388650526...
k 1 k !
3
log 2 x
csc 1 2 cot 5
2 .02093595742098418518...
dx
125
5
5
x 1
0
=
2
4 3 2 25 3 5
125 5 5
197 3 (3)
.02098871933468264598...
108
2
1 .02100284076754382916...
1 1 1
,3,
8 2 2
log 2 x dx
1 x5 x 4
1
log 2 x
0 2 x 2 dx
1 1
1
Li3
Li3
2 2
2
=
i 9 i 3 1
i 9 i 3
1
9 18 6 3 6 18 6 3 6
1
=
3
k 1 ( 3k 1) 1
(k ) 1
1 1
.02108081020345922845...
Li5
5
k k
k
k 2
k 2
691
( 11)
.021092796092796092796 =
32760
.02103789210760432503...
5/ 2
1
47
k (k 1)
1 (1) 2
3
1 .021291803119572469996...
2
3
3k
3 k 1 (3k 1)
k 1
.02127659574468085106...
.02129496275413122889...
4k k
k 2
7
.02134847029391195214...
.021491109059244877187...
.021566684583513603674...
(k ) 1
1
1
log 1
4k
k 1 4 k
3
csch 2 sin 3
2
sech
k2 1
2
4
k 0 k 4
k 2 2k 2
2
k 1 k 2k 3
1 .021610099269294925320...
3
3
3
arctan 4 x
log 2
dx
(3) 2 log 2
4
6
12 0
x4
1 .02165124753198136641...
2 log
.0217391304347826087...
5
1
2
4arctanh 2 Li1
3
4
5
1
46
60 .02182669455857804485...
1 .02210057524924977233...
1
k 0
k
k 3 Hk
k
k 1 2
42 26 log 2
2 2 arcsin
16 (2k 1)
2k
1
k 0 32 ( 2k 1) k
1
2 2
k
7
log 3 x dx
.02219608194134170119...
5
30720
x x
1
1
.02222222222222222222 =
45
1
2 ( 3) 29
.02222900171596697005...
2
8
2
16
k 1 k ( k 1)( k 3)
2 2 1
i 5i 2 1
i 5i 2
.02224289490044537014...
9 3 3 2 9 3 3 2
54
9
4
i (1) 5 i 2 1
i (1) 5 i 2
1
18 6 3
2 18 6 3
2
=
k
1
1 (3)
.022436419216546791773...
12 2 2
k 2
=
3
2
( k 1) (3k ) 1
k 1
( 2k )
4 (2k 2)(2k 3)
k 1
k
1
1
1
24k 2 1 48k 3arctanh
12k 2 log1 2
6 k 1
2k
4k
1
.02258872223978123767...
.02271572685331510314...
.02272727272727272727
=
.0227426994406353720...
.02277922916008203587...
.022891267882240749138...
11
( 1) k 1 k
4
k 1 ( k 1)( k 2 )( k 3)
1
log 2
5
log x
4 dx
3
24
(
x
1
)
0
1
44
11
1
1
( 2) ( 4) 6
4
4
4
k 2 k k
k 1 k ( k 1) ( k 2 )
/4
17 3
log 2 sin 4 x tan 4 x dx
16 2
0
4 log 2
3 (3)
3
197
37 6
2 (7) 11 4
(9)
(5)
(3)
24
2
120
7560
Hk
6
k 1 ( k 1)
Borwein-Devlin, p. 63
9 2 3 log 2 log 2 2
8 12
4
2
13
1
3
.02291843300216453709...
log 3
3
8
2
k 2 9 k k
1
1 .0229247413409167683... 4
k 2 k 15
1
4 ( k )
1 .0229259639348026338... k
4
2k
k 1 ( 2 1)k
k 1
.02289908811502851203...
.02297330144608439494...
1 .02307878236628305099...
.02309570896612103381...
1
(k k 2 )
k 2
( 2 k 1) 1
9k
k 1
2
50G 43 28 log 2
71
128
128
1536
k
4
2
(2 k 1)!!
1
k 1, k 3 ( 2 k )!! 2 k 6
1
2 2 sin 2 sec2
64
2 k 1 ((2 k 1) 2 2) 2
log
1
1 log 2 , a zero of ( s )
2
2
Edwards 3.8.4
31 (5) 7 ( 3) 7 ( 3) log 2
2 log 2
8
32
4
48
48 4
Hk
=
4
k 1 ( 2 k 1)
log k
log 2
( 2k ) 1
1 .02313872642793929553... 2
2
2k 1
k 2 k 1
k 1
log 2
log 2
1
1
H 2 k 1 (2k ) 1
arctanh
=
4
k
2
k 1
k 2 k
2
1 .02310387968177884861...
4
4
5
( 1) k 1 k 3
216
5k
k 1
1
1
2 (2 3 )
1 .02316291876308017646...
2
2
36
(12k 11)
k 1 (12k 1)
.023148148148148148148 =
=
log x dx
x12 1
0
233
coth 2
1
4
1920
32
k 3 k 16
1
.02325581395348837209...
43
2k
1
3 log 2 2
k
1 .0233110122363703231...
3
48
4
k 1 4 ( 2 k 1) k
.02317871150152727739...
1
=
arcsin x log x
dx
x
0
.02334259570291055312...
x 2 log x
dx
x
x
0 e e 1
3 2 3 (3) 2 (3) 2 (3)
(1) k 1
27
1 .02335074992098443049...
18 log 2
2
2
k 1 k (k 1 / 9)
5 log 2
1
.02336435879556467065...
k
2
36
6
k 1 2 (9k 18k )
( 1)k
=
k 0 (2 k 1)(2 k 2 )( 2 k 4 )(2 k 5)
.02343750000000000000
=
.02346705930540378299...
3
128
( 1) k k 3
3k
k 1
2
sinh 2
K ex 107b
log 3 x
1 x5 dx
k2
2
k 1 k 4
26 (3)
4 3
1
1
5
( 2)
27
27
81 3 4
3
2 (3)
8 3
1
4 3 i Li3 1 i 3 3 7i Li3 1 i 3
2
3
2
81 3 6( 3 i )
2
log x
=
1 x6 x3 dx
.02351246536656649216...
=
28567
.02353047298585523747... 2 ( 3)
( 2 ) 7
12000
1
log 2 x
dx
x8 x 7
.02375236632261848595...
4
1 log 2
Li4
21 (3) log 3 2
2 24
24
S (k ,3)
= 1
k!k
k 3
1
.0238095238095238095
=
B3
42
dx
2 115 (1) k
.02385592231300210713...
6
2
5
12 144 k 0 (k 5)
1 x x
1 .023884750384121991821...
90
2 log 2 2
2
1
cosh
2
2
1
1 .02394696928321706214...
1
k 1
2
1
2
(2 k 1)
( jk 2) 1
j 4 k 1
.02402666421487355693...
k
k 2
6
1
( ( s) 1)dx
log k
( 1) k (2 k 1)
.02408451239117029266...
2 k ( k 1) / 2
k 0
s6
3
1
1 k
2
k 1
1 .02418158153589244247... 16 log 2 4 ( 2 ) 2 ( 3) ( 4 )
=
k 1
HW Thm. 357
2k
k 1
( k 4)
5
1
k4
2k
21/ k
6
k 1 k
1 (2) 1
1
G 2
1
1 .02434757508833937419...
( 3)
4
8 64 256
4
6144
G 2
3 7 (3)
1
1
=
( 3)
4
8 64 128
32
6144
1
.02439024390243902439 =
41
2035
.02439486612255724836... (3,5) (3)
1728
1 1 1 4 4 4
x y z
=
dx dy dz
0 0 0 1 xyz
2 .02423156789529607325...
3 .02440121749914375973...
.02461433065757607149...
( k 3)
e1/ k
3
k!
k 0
k 1 k
4 3 (3)
log 2 x dx
5
16
x x3
1
(2 k 1) 2
4
k 0 ( 4 k 1)
1 .02464056431481555547...
.02475518879810900399...
2 2 (1 log 2)
61 6
72
.02481113982432774736...
2
k 1
7 .02481473104072639316...
.0249410205141828796...
.024991759249294471972...
k
2
4
72
64 log 2 12 log 2 2 22 (3)
k 1
k
k 1
k ( k 1)
2
3
Hk
(2 k 1) 2
1
( k 2 )( k 3)
Hk
k (k 1)(k 2)(k 3)
5
(k )
5
k
log
6 6
k 2 6 k
43 log 2
log
2
3 log 3
3 (1)
4
12
2
(1) k (k ) 1
2k k (k 1)
k 2
.02500000000000000000
=
1
40
.0252003973997703426...
3
( 2 ) ( 3) ( 4 )
2
=
k
k 2
5
1
k4
( 1) ( k 4) 1
k 1
k 1
.02533029591058444286...
.02540005080010160
=
1
42
1000
3937
.02553208190869141210...
= meters/inch
( 3k ) 1
8
k 1
k
8k
k 2
1
3
1
8
4430
k
( 1) k k
2187
2
k 1
1
.025641025641025641
=
39
( 1) k 1 3k
3
3
1 .02571087174644665009... 2
arcsinh
7
2
2k
k 1
k
k
2 .02560585276634659351...
1 .02582798387385004740...
2
8
csc 2
cot
2 4 2
2
k (2k 2)
=
2k 1
k 1
(k )
1 .02583714140153201337... ( 6) ( 7 ) 1 7
k
k 1
.0258653637084026479...
.02597027551574003216...
1 .02617215297703088887...
( 2k
k 1
.026242459644248737219...
J840
HW Thm. 290
6
2( 5) ( 2 )(3) ( 4 ) (3) ( 2 ) 4
1
( 2 1)
2 16
4 2 2
8
csc
1
(8k 1)(8k 1)
k 1
8
x
0
dx
1
8
161 G
x 5 arccot x log x dx
900 6
0
1 2
128
k64(2k )
24
k 1
k
Hk
(k 2)
k 1
1
.026227956526019053046...
1
1) 2
2
k 1
( x) 1dx
6
k 2 k log k
5
.02584363938422348153...
1
2
4
GR 0.239.7
1
38
1
7
.02632650867185557837...
2
2e 2
.0263157894736842105
=
( 1)
k
k 0
2k k 2
( k 1)!
3k k 2
3
241 .02644307825201289114... 12 e
k 1 k !
.02648051389327864275...
.02649027604107518271...
.02654267736969571405...
=
1 .026697888169033169415...
=
1 .02670520569941729272...
.02671848900111377452...
.02681802747491541739...
2
1
log 2 k
3
k 1 2 (8k 24)
3 G
( 1) k 1 k
3
64
2
k 1 ( 2 k 1)
3 ( 3) 7
( 1) k
3
4
8
k 0 ( k 3)
1 1 1 2 2 2
x y z
0 0 0 1 xyz dx dy dz
log
csc
2
2
1
log1 2
2k
k 1
( 2k )
k 1
2k k
dx
1 x( x 1)4
2
81 3
2
5
dx
x4
Hk
k
k 1
x
4 ( 7 ) ( 2 ) (5) ( 3) ( 4 )
( , )
5 3
6
13 (3)
1 ( 2) 7
2
( 2 )
18
216
3
6
=
=
10 3 (3)
1
4i Li3 1 i 3 2 3 i Li3 1 i 3
2
2
2
81 3
3( 3 i )
log 2 x dx
1 x5 x2
2
.026883740540405483253...
1
12
3
log
5
2
(1) k 1
k 1 2k k
6 (2k 1)
k
1
1 ( 3) 1
6 .02696069807178076242...
6
4
81
3
k 0 (3k 1)
1
.027027027027207207027 =
37
1
log3 x dx
0 x3 1
.02715493933253428647...
.02737781481649722160...
(k ) 1
k 2
2
(2 k )!
4
64 768
3 5
.02737844362978441947...
2 32
.02742569312329810612...
1 .0275046341122482764...
( 1) k
2
k 0 ( 2 k 5)
8
.02707670528833012617... G
9
log x dx
x6 x4
1
1
1 2 k cosh
k 2
k ( k 1)
2(2 k 1)
k 1
4
1
k
J349
/4
sin
4
x tan 2 x dx
0
1
Li2 (1 e)
4
B2 k
(2k 1)!
k 0
.02753234031735682758...
x log x
3 log 2 2
log 2
dx
2
2
0 cosh x
.02755619219153047054...
(5)
(5)
p prime
log p
1 log k
p5 1
(5) k 1 k 5
(k )
6
k 1 k
3 .0275963897427775429...
=
.02768166089965397924...
cosh
8
289
.02772025198050593623...
k 2
1 .02772258593685856788...
(k )
k
6
0
e
e
2
k
(2 k )!
GR 1.411.4
k 0
x sin x
dx
e4 x
1
1
Li k k
k 1
6
(1) k 1
3 3
(1) k 1
3
3
64 2 k 1 (4k 3) (4k 1)
(1) k / 2
3
k 0 ( 2k 1)
1
1
.02777777777777777777 =
36
k 0 ( 2 k 1)( 2 k 2 )( 2 k 4 )( 2 k 5)
k
=
k 0 ( k 1)( k 2 )( k 3)( k 4 )
( 1) k
(k )
(k )
.027855841799040462140... k
k 2 4 (k )
k 1 4 k 1
k 1 4 k ( 4 k 1)
15 (5)
( 1) k
.02788022955309069406... 1
5
16
k 0 ( k 2)
J326, J340
=
Prud. 5.1.4.3
K ex. 107c
1 .02797279921331664752...
2 .02797279921331664752...
19 .02797279921331664752...
1 .0281424933935921577...
.02817320866780299106...
k2
7 e 18
k 0 k !( k 3)
k4
7 e 17
k 0 ( k 2 )!
7e
1
sinh k
(2k ) 1
csc e
1 log sin
2
k
e
k 1
3 (3)
log 2 x dx
x 2 dx
5
4x
128
x x
e 1
1
0
1 .02819907222448865115...
.02835017583077031521...
=
.02839399521893587901...
.02848223531423071362...
.0285714285714285714
=
.02857378050946295008...
.02874500302121581899...
1
1 .02876865332981955131...
c 2 k 1
.028775355933941373288...
.02883143502699708281...
2
.0290373315797836370...
=
k
2
1
c
Li k
c 1 k 2
k 1 3
(1)
2
k
(k 1)!2
k 1
3 (3)
2
log 2
2
4
k
log 3 x
1 ( x 1) 4 dx
1
2
3 log x dx
log1 x
0
(ck ) 1
13
4 e
1
18 .02883964878196093788...
1
7
8 log 2 2 2 log 1 2
cot
16
8
(k )
1
k
2
k 2 8
k 1 64k 8k
1 2 cos1
1 12 (cos1)
cos k
k
GR 1.447.1
5 cos1
4 cos1 5
k 1 2
4
3 4
( 1) k 1 k
2 e
k 1 ( k 3)!
1
35
log k
(5) 5
k 1 k
1
2
19
log 2 log (3)
x 2 log 2 x arctan x dx
54 108 216
27
2
16
0
12
2
1
7
2
2 1
7
4 log 2 (1) (1) ( 2 ) ( 2 )
6
3
3 72
6
6
3
1 (2) 9
(2) 2
10
5
1000
log 2 x dx
1 x5 1
.029076134702187599206...
.0290888208665721596...
3 (3)
4 3
e
0
108
dx
2 x1 / 3
(x
2
0
1
dx
9) 2
sinh 3
3
1
( k 2) 2
7 3
k 1
1
.029280631484544157522...
19 log 2 3 6log 6 (1) 2
12
3 .02916182001228824928...
=
k 2
4
k 2
.02941176470588235294...
.029524682084021688...
k (k 1)
1
1
48 16e 2
log k
5
k 2 k 1
9 .02932234585424892342...
k
1 4k (2k 1) log1 2k
.02929178853562162658...
.029292727281254639...
k 2
1
1
(k ) 1
2
k
( 1) 2
k
k
( k 4)!
k 0
( ( k ) 1) 2 1
1
34
c3
1 4
12 2 (2) 8 (3) 3 2 (2) 6 (4)
24
Patterson ex. A4.2
7 (3) 56
1
2
3
4
27
k 2 ( 2 k 1)
.0295255064552159253...
=
1
1
=
0
.02956409407168559657...
=
1 .02958415460387793411...
.029648609903896948156...
log 2 x
dx
x6 x4
x 4 log 2 x
dx
1 x2
GR 4.261.13
1
1 (1) 5
1
(1)
6
6
4 36
1 (1) 5
(1) 4
6
3
36
( 1) k 1
2
k 1 ( 3k 2)
log x dx
x6 x3
1
1
3 3 1
HypPFQ ,1,1, , ,
2 2 2 8
1 9 (3)
6
8 2
( 2k )
1
k 0
2k (2k 1) 2
k
2k
4 (2k 1)(2k 3)
k 1
k
1 .02967959373171800359...
.029700538379251529...
.029749605548352127353...
1 .0297616606527557773...
3/ 2
log x dx
1 3
1
4
16 4 4
0 1 x
2 9
24
( 2 k 1)!!
2
9
3 8
(2 k )! 4
k 2
log 3
3 3
3 3
log x dx
1 x3
2 39
4
16
3
k
9 log 2
4
1
=
1
(k ) (k 1)
4k
k 2
x dx
3
0
e3x 1
GR 3.456.1
GR 4.244.2
0
.0299011002723396547...
1
k ( k 1)( k 2)
k 1
2
J241, K ex. 111
3 log 2 log 2 2 5
Hk
k
2
2
4
k 1 2 ( k 1)( k 2 )( k 3)
2
3
H k2
.0300344524524566209...
log ( 1) k k k
2
27
2
k 1
(k )
6
.0300690429769907224... log
( 1) k k
5 5
5 k
k 2
.0299472777990186765...
=
k 1
1 .0300784692787049755...
1
1
5k log1 5k
e
3
e , 0,1
erf 1 1
2
2
.03019091763558444752...
=
=
.03027956707060529314...
(2k )!!
k 1
e
k!4
erf 1
2
k 0 ( 2k 1)!
1 1
(3) 1 i 1 i
2 2
1
(3) (2 i ) (2 i)
2
1
(1) k 1 (2k 3) 1
5
3
k 2 k k
k 1
2 .0300784692787049755...
(2k 1)!!k!(2k 1)
3
1024
k
x 2 dx
0 e4 x e 4 x
16G 2 2
1 .030296955002304903887...
log 2 3
3
9
3
1/ 2
arcsin 2 x dx
x2
1 / 2
.03030303030303030303
=
1 .03034552421621083244...
1 .03034552421621083244...
.03044845705839327078...
1
33
6 ( 3)
7
e
e
( 3)
( 2 ) c2
42
j5
1
1
1
1
cos
sin
.03060200404263650785...
64
4 16
4
1 .03055941076...
2 .03068839422549073862...
2
2
1 2( 3)
=
( 1)
k
Berndt 9.27
J314
( 1)
k 1
.03087121264167682182...
.03095238095238095238
=
.03105385374063061952...
k
5k 5k 2
3
k 2 k ( k 1)
( k 2 1)( ( k ) 1)
k 2
.030690333275592300473...
k
(2 k )! 16
k 1
2
2
1
1
log 2
4
3
x3
( 1)
k 2
k
(k ) 1
kk
2x 2x
dx
240 8
1
0 e e
13
1
420
k 0 ( 2 k 1)( 2 k 5)( 2 k 9 )
3
( 1) k 1
1
3
32
k 1 ( 2 k 1)
33 2 9( 3)
( 1) k
3
48 48
24
k 1 k ( k 2 )
15 (5) 45 (3)
( 1) k 1
.031125140377033351778...
140 log 2 126 5
5
8
2
k 1 k ( k 1)
log 2
1
(k ) 1
( 1)
.03117884541829663158...
4
6
k 2 k ( k 1)( k 2)
2 k 1
2 (2 k )
1
2
5 .03122263757840562919...
sinh
k
k 1 ( 2 k 1)!
k 1 k
2
( 1) k 1 k
.03122842796811705531...
2 log 2 3
2
6
k 1 ( k 1)( k 2 )
1
(1) k 1
.03124726104771826202...
csch 4 2
32 8
k 1 k 16
(5k )
1
.03125002980232238769... k k
5
k 1 2
k 1 32 1
.03111190295912383842...
.03125655699572841608...
1 .03137872644997944832...
.03138298351276753177...
1 .03141309987957317616...
.03145390200081834392...
2
1
2 log 2 2 8 Li3
2
3
1
5
k 1 ( k !)
35 2
1
4
126
5
5
3
9
k 1 k ( k 1)
1
1
cosh
k
4
k 0 ( 2 k )!16
1 5
1 (1) 5
9
9
2, 2,
(1)
8
8
8
64 8
64
2
( 1) k 1
2
k 1 ( 4 k 1)
log x dx
= 6
x x2
1
=
.031667884637975851999...
cos1sin 1 ci2
.03202517057518619422...
1 log
=
( 1)
k 1
cos x sin x
dx
x2
1
2
coth
sinh 2
k
k
k 2
2
1
1
log 1 2
k
1
k 1
(2 k ) 1
k
2k
1
.032049101862383653901...
r (k ) 1 14k 76k 168k
3
8
k 0
1
1
Borwein-Devlin. p. 36
where r (k ) k
2 (k 1)
32
7
2
3
.032067910200377349495...
.032080636429384244827...
=
.032092269954397683...
.03215000000000000000
=
.03224796396463925040...
2 5 log 2
1
6
64
12
log x
( x 1) ( x 1) dx
4
1
3
1
1
64 2 G 2976 (5) ( 3) ( 3)
4096
4
4
/4
0
x 3 log tan x dx
527
2 log 2
7350
35
1
log 2 x
dx
32
x5
1
12 log
3 29
2
6
( 1) k 1
k 1 k ( k 2 )( k 7 )
( 1) k 1 k
k
k 0 2 ( 2 k 6)
.03225153443319948918...
.032258064516129
=
.032309028991669881698...
.03233839744888501383...
.032355341393960463350...
.032411999117656606947...
.03241526628556134792...
1
3
1
31
MHS (3,2,1) 3 2 (3)
2
8
2
=
e
x
x log x dx
0
42 2
8
0
x 2 (1 x)
dx
x8 1
/4
1
8 4 2 log 2 9 (3) 24 G x 2 log cos x dx
0
6144
(5) 3 ( 3) 2( 4 ) 5 ( 2) 15
2 log 2
203
(6)
48
k
k 1
2
1
( k 1) 5
5 2
1
2
2
2
4
k 1 k ( k 1) ( k 2 )
2k
log 2 G
1
1 .03263195574407147268...
k
Berndt 9.6.13
2
4 2
2
k 0 k 8 ( 2 k 1)
1
1
242 (3)
G5 1
1 .0326605627353725192...
J309
5
5
243
k 1 (3k 1)
k 1 (3k 1)
1
1 .03268544015795488313... k 3
k 1 k
.03259889972766034529...
.03269207045110531343...
.03272492347489367957...
3 5
4
6
96
x
0
6
dx
64
19 log 2
( 1) k 1 Hk
72
3
k 1 ( k 2 )( k 4 )
2
log x dx
6
.03289868133696452873...
x x
300
1
.03283982870224045242...
.03302166401177456807...
.0331678473115512076...
J1 4
4
36 log
4k
( 1)
k !( k 1)!
k 0
5
8
4
k
( 1) k 1 k
k
k 0 4 ( k 1)( k 3)
7( 3)
4
16
192
2k
2 .03326096482301094329...
6
k 1 k ! k
1 .03323891093441852714...
.033290128624160141531...
3
=
k
(2 k 1)
k 1
4
3 i 3
3 i 3
3 2 1
(1 i 3 )
(1 i 3 )
2 6 6
2
2
( 1) ( 3k 2) 1
k 1
k 1
k
k 2
5
1
k2
1
B2 B4
30
1
1 .03348486773424213825...
4
k 1 k ! k
.0333333
=
1 .03354255600999400585...
.03365098983432689468...
=
3
30
1 (1) 1 13 (3) 2 3 3
3
27
81
729
1 (1) 1
k
( 2 ) 1
6
3
3
3
162
k 1 ( 3k 1)
.033749911073187769232...
5
3 log 2
4
3
.03375804113767116028...
5 ( 2 ) ( 3) ( 4 ) (5)
log(1 x 6 )
0 (1 x)2 dx
1
.03388563588508097179...
1 .033885641474380667...
.03397268964697463845...
.03398554396910802706...
.03399571980756843415...
.03401821139589475518...
1
k5
k 2
( k ) 0 ( k )
2k 1
k 1
pq ( k )
2k
k 1
3 2 log 2 log 2 2
1
Li3
2
2 12
2
2
(2 k 1) 1
1
1
sinh
k
(2 k 1)!
k
k 1
k 2
1
( 1) k
J 4 ( 2)
F
,
5
,
1
24 0 1
k 0 k !( k 4)!
k
1
k ( k 1)
k 1
=
5
6
1 (1) 5
(1) 11
12
12
144
log x dx
x6 1
1
LY 6.117
.03407359027997265471...
log 2 5
1
k
2
16 k 1 2 (8k 16)
/4
sin
4
x tan x dx
0
2k
1
1
1
HypPFQ , 1, 1, 2,2, k
2
4
k 0 k 16 ( k 1)
2
1
3 log 3
.03421279412205515593...
2 log 2 3
3
2
k 1 36 k k
1
1
1
1 .034274685075807177321...
e erf 1 erfi1 sinh 2 dx
x
2
e
1
1 .03421011232779908843...
1 .03433631351651708203...
3
( k !) 2 4 k
log 2 3
2 1 k 1
4
4
k 0 ( 2 k )!( 2 k 1)
J376
Berndt Ch. 9
dx
6
1 .03437605526679648295...
csc
7
x 1
7
7
0
1
.03448275862068965517...
29
1 1
( 1) k 1
.03454610783810898826...
e 3
k 1 ( k 3)!
2 .034580859539757236081... 12 log 2 2
1
( k 1)( k
)
2
3 (3)
( 1) k
3
.034629994934526885352...
2 log 2
4
3
4
2 12
k 2 k k
1 ( 2) 7
( 1) k 1
( 2 ) 3
.03467106568688200291...
3
8
8
1024
k 1 ( 4 k 1)
k 0
1
1 .03468944145535238591...
(sinh ) cosh cos 3
2 2
sinh
cosh 1 1 cos 3 1 cosh 1 cos 3
=
4 3
1
= 1 6
Berndt 4.15.1
k
k 1
2 .03474083500942906359...
1 e 1/ k
1
1 .03476368168463671401...
2 1/ k
k
k e
k 2
(2 k 1)
Re
ik
k 1
1/ k
1 e
1
2 .03476368168463671401...
2 1/ k
k
k e
k 1
4
sin x
arctan x dx
0
3
k2
( 1)
( k ) 1
k!
k 2
k
=
( 1)
k 2
k
k
( k ) 1
( k 1)!
.03492413042327437913...
Ai ( 2)
1
H ( 4) k
1
1 .03495812334779877266... 2 Li4 k
k
4
2 k 0 2 (k 1) k 1 2
.035034887349803758539...
=
.035083836969886080624...
.0352082979998841309...
1 .0352761804100830494...
=
.03532486246595754316...
.03536776513153229684...
.03539816339744830962...
.03544092566737307688...
.03561265957073754087...
.035683076611937861335...
.03571428571428571428
=
.035755017483924257133...
.03577708763999663514...
1 1 1 i
1 i
1 i
1 i
2
2
2
2 4 2
1
k 1
( 1) ( 4 k 1) 1 5
k 1
k 2 k k
1
1
(k ) 1
log 2
kk
k 2
( 4) 3 ( 6)
2 ( 3)
( 2 ) ( 3)
( 2) ( 3)
2 (5)
4
4
2
Hk
5
k 1 k ( k 1)
5
2 3 1 csc
AS 4.3.46, CGF D1
12
11 2
( 1) k
2
3
32
k 2 ( k 1)
1
9
3
( 1) k 1
J244, K ex. 109c
4
k 1 ( 2 k )( 2 k 1)( 2 k 2 )
1 (2) 4
5
125
(5) 1
(5)
1 i
(1) k (2k 1)
i
2 k 1
2
k 1
1
28
1
( k )
log (5k )
5
k
p prime p
k 1
2
25 5
( 1) k ( 2 k )! k 2
( k !) 2
k 1
( 1) k ( 2 k )! k 3
( k !) 2
k 1
1 .03586852496020436212...
k (4k 2) (4k 1) (4k ) (4k 1) 4
k 1
1
.03596284319022298703... 5
k 2 k 1
.03619475030276797061...
H ( 3) k (k 2)
k
k 1 2 k ( k 1)
2
32
4
384
( 1) (5k ) 1
k 1
k 1
7 ( 3)
16
k2
4
k 1 ( 2 k 1)
.03619529870877200907...
.03635239099919388379...
.036382191549123483046...
2 7 log 2
8
1 dx
2
( x 1) 3
log1 x
1
( 1) k
2 k 1
( 2 k 1)
k 1 2
1
1
arctan
2
2
sin(sinx 2 xx)cos x dx
1
1
log 1 2
2 4 4 2 2
3/ 2
0
Prud. 2.5.29.27
.036441086350966020557...
k
k 2
6
k
1
( 1) (6k 1) 1
k 1
k 1
.03646431135879092524...
1
6 1 H ( n) k
log k
5
5 k 1 6
n 1 5
.03648997397857652056...
3
1
2 2 log 2
2
2
(k ) 1
1
1
1
6k
2k
k 2
k 2
(k )
1 1
4
k log 1
.03661654541953101666... log
5k 5k
5 5
k 2 5 k
k 1
.036557856669845028621...
2 (2k 1)
1 .03662536367637941437...
1 (1) 1
6
36
k
2k arctanh
1
2
k 1 ( 6k 5)
1
log x dx
x6 1
0
2
( 1) k 2 2 k 1
.03663127777746836059...
e4
k!
k 0
2
k
.036683562016736660896... 7
(1) k 1 (7 k 2) 1
k
1
k 2
k 1
3
3 1
( 1) k 1
.03676084783888546123...
2
3
128 32 2
k 1 ( 4 k 1)
.03681553890925538951...
3
dx
2
256 0 ( x 4) 3
( 2k )
1 7 (3)
k
2
4
4
k 1 4 ( 2k 1)( 2 k 2)
1
.03690039313500120008...
2 log 2
5 2
1 p 1 p 2 p 3
1 .03692775514336992633... (5) ( 4)
1
p 2 p 3 p 4
p prime 1 p
.03686080059124710454...
(1) k 1
5 (1) k 1 k 1 1
2 k 1 3 2k j 1 j 2
k 2 5 2k
k
k
k
k
2
Borwein-Devlin, p. 42
(4)
p prime
.03698525801019933286...
.037037037037037037037 =
1
27
1 p 1 p 2 p 3
1 p 1 p 2 p 3 p 4
6
.03705094729389941980...
.037087842300593465162...
.03717576492828151482...
.03717742536040556757...
2 .03718327157626029784...
.03722251190098927492...
.037286142336031613937...
.03729649324336985945...
1 .03731472072754809588...
1
(8k 3) 1
3
5
k 2 k k
k 1
(3k )
1
k
3k
k 1 3
k 1 27 1
1
(7k 2) 1
2
5
k 2 k k
k 1
( 6k 1) 1
k log(1 k 6 )
k
k 1
k 2
32 3
5 1 2
1
1
3
( 2)
3
8192
16 k 0 (16k 3)
1
k 2 2k 2
csch sin 3 2
3
k 1 k 2 k 2
3 7
(1) k
1
9
k
log k 2
2 8
4
k 2 2 ( k 1) k
k 1 3 ( 4k 8)
coth 2 csch 2 tanh 1
e 2 e 2
e2 e 2
1 16 k
B2 k
2 k 0 ( 2 k )!
1 3 2
1
.03736229369893631474...
2
3
2
64
k 1 ( 4 k 1)
=
.03741043573731790237... 1 2 ( 4 ) ( 3)
1728
k
4
7 (3)
1
1
( 2)
432
3456
4
1
(12k 9)
k 1
3 i 3
1 1 3 i 3
2
3 4 6 2
1
= 5
(6k 1) 1
1
k 2 k k
k 1
1
1 1
(1) k 1 (3k 1) 1 4
=
2 k 1
2 k 2 k k
.03742970205727879551...
3
J373, K ex. 109d
( k 2)
k 1
.03742122104674100704...
AS 4.5.67
3
(5k ) 1
e
k 5
1
k!
k 2
( 5k ) 1
.03743548339675301485...
log(1 k 5 )
k
k 1
k 2
.03743018074474338727...
k 1
3 log 2 19
.03744053288131686313...
4
20 8
.03756427822373732142...
.03778748675487953855...
27 .03779975589821437814...
.03780666068310387820...
.037823888735468111...
.037837038489586332884...
=
=
(3)
32
1
k 2 4 k ( 4 k 1)
( 1)
k 2
k 1
( k ) 1
4k
log 2 x
x2
dx
1 x 5 x 0 e 4 x 1dx
1
16
48 3
k 1 2k
k
(x
2
0
dx
3)3
6
1
1
1
( 2)
3
1458
3 k 1 (9k 6)
16 29
( 1) k
k
3
e
k 0 ( k 4 )! 2
3 ( 3)
9
( 1) k
2 log 2
5
3
4
4
k 2 k k
(1) k 1
3
k 1 k ( k 1) ( k 2)
1
k
2
k 1 2 3k 9 k 6
1 2 log 2
( 1) k
3
2
3
k 1 27 k 3k
1
(5k ) 1
5
k 2 k 1
k 1
( 4 k 1) 1
log(1 k 4 )
k
k
k 1
k 2
1
8
cos 2 1
2
7
(2k 1)
k 1
.037901879626703127055...
.0379539032344025358...
.03797486594036412107...
.03803647743448792694...
1
1
3
( 2)
3
1024
8 k 1 (8k 5)
.03804894384475990627...
.03810537240924724234...
1
log 2
2
2
4
.038106810383263487993...
[Ramanujan] Berndt Ch. 2
G
11
8 144
xe
x
log x sin x dx
0
(1) k
2
2
k 0 ( 2 k 1) ( 2 k 5)
Prud. 5.1.21.42
1 . 03810687225724331102...
Hk
1
(10) (5) 2
2
1 .0381450173309993166...
=
.0381763098076249602...
.03835660243000683632...
( 5)
k 1
k
5
1
1
9 5 i 2 5 5 9 5 i 2 5 5
4
4
1
9 5 2i 5 5 1 9 5 2i 5 5
4
2 4
2
5
k
5
k 2 k 1
1
80 4 2 48 log 2 6 ( 3) 3
3
k 1 k ( 2 k 1)
1 log 2
1
1
k
2
2
8
k 1 32 k 16 k
k 1 2 (8k 8k )
1
=
log(1 x)
( 2 x 2)
2
dx
GR 4.201.14
0
(1) k 1
k 0 12 k 11
1 .03837874511212489202...
.0384615384615384615
=
.0385018768656984607...
=
31 .03852821473301966466...
.0386078324507664303...
1
cos 5 x e x dx
26 0
sin 2
cos 2 sin 1 cos1
cos 2
2
(1) k 1 4k k 2
J1 / 2 (2) J 3 / 2 (2)
(2k )!
k 1
3
3
1
1
x dx
2
2
2 0 (1 x )(e 2 x 1)
1
=
4
0
Andrews p. 87
log x
dx
2
log x x 1
GR 4.282.1
2
.038622955050564662843...
1 (1) 1
2 log 2
(1)
108
9
9 3
6
3
.03864407768699789287...
31 3 2
log x
4
dx
36
(
1
)
x
x
1
(1) k 1 k
2
k 1 (3k 1)
1 .03866317920497040846...
8
3
48
/2
x
2
sin 2 x dx
0
7
21 ( 3)
28 .03871670431402642487...
log 2
8
16
2
2
4
64 k 3 20k 2 8 k 1
2 k ( 2 k 1) 4
k 2
k 3 ( k )
2k
k 2
=
(1) k 1 k
3
k 1 ( k 2)
.03876335736944358027...
2 (2) 3 (3) 2
1
=
.038768179602916798941...
.03879365883434284452...
.03886699365871711031...
.03895554778757944443...
.038978174603174603
=
.0390514150076132319...
.03906700723799508106...
=
x 2 log 2 x dx
log 2 x dx
0 ( x 1)2 1 x 2 ( x 1)2
(3)
3
1
8
2 log
2
2 1
1
0
2
1
dx
2
2
16 log x x 1
1 1
5
( 1) k 1
log 1 2 k 1
k ( 2 k 1)
2 2
4
k 1 2
7 ( 3)
1
2
216
k 1 ( 6 k 3)
3929
1
100800
k 1 k ( k 5)( k 8)
3
(3k 2) 1 1
2 1 ek
k!
k 1
k 2 k
1
3 4 2 ( i ) 2 (i )
8
5
1
1
(2 i ) (2 i ) 5
8 2 4
k 2 k k
2 arctan
=
(4 k 1) 1
k 1
( 3k 2) 1
log(1 k 3 )
k
k2
k 1
k 2
2 21
k
.03915058967111741409... 1
( 3)
3
16 16
k 1 ( 2 k 3)
1
2
( 1) k
.039155126213126751348...
2
2
32 48 3 216
k 0 ( 3k 1) ( 3k 5)
25 log 5
11
( 1) k 1
25 log 2
k
.03929439142762194708...
2
4
k 1 4 k ( k 1)( k 2 )
1
= k
k 1 5 ( 2k 4)
.0391481803713593579...
.03939972493191508632...
21 2 2
32
(k
k 2
2
1
1)3
GR 4.282.9
.03945177035019706261...
.039459771698800348287...
12 2
(1) k 1
2
2
54
k 1 (3k 3)
2 log
k
1 .03967414409134496043...
log(1 x 3 ) log x dx
0
k 1
k 1 (2k ) 1
k 2
ei e i
30
2
5
( 2)
1
coth 2csch 2 1
2
=
2
2
2 cos1
1 .03952133779748813524...
3 .03963550927013314332...
x
k 2
2
2 log(1 k 2 )
2
1 k
k 2
=
9
4
1
(1)k 1 2k (2k 1
2
2
k 1 k 2
1
3 log 2
1
1 .03972077083991796413...
3 arctanh k
3
2
k 0 9 ( 2 k 1)
1
= 1 2
[Ramanujan] Berndt Ch. 2
3
2
k 1 64 k 4 k
1 ( 2) 3
1
.03985132614857383264...
2
250
5
k 0 (5k 3)
k 1
.03986813369645287294...
=
2 .03986813369645287294...
2
k 2
2
(1) k 1 k (k 3) 1
3
k 1
4
1
2
3 k 1 k (k 1) 2 (k 2) 2
2
13
4
5
3
4
(1 x 2 ) log x
0 x 1 dx
1
.04000000000000000000
=
1
25
.0400198661225572484...
(3,4) (3)
251
1 log 2 x
5
dx
216
2 1 x x4
1 1 1
=
x3 y 3 z 3
0 0 0 1 xyz dx dy dz
.04024715402277316314...
( 2 k 1)
k 1
1 .04034765040881319401...
4 .04050965431073002425...
.040536897271519737829...
.040634251634609178526...
=
.04063425765901664222...
1 .04077007007755756663...
.04082699211444566311...
=
.04084802658776967803...
.04101994916929233268...
1 .04108686858170726181...
.04113780498294783562...
.04132352701659985...
.04142383216636282681...
3 10
2k
(4)
7
(3) 2
Hk
3 (6)
MHS (5,1)
5
4
2
k 1 ( k 1)
13
1
( 2k ) 1
2
30 8 k 2 16k 1
16k
k 1
1 (1) k
2 k 0 2k 7
1 1
1
( 1) k k
sin cos
k
2 2
2
k 1 ( 2 k 1)! 4
23 sin 1 5 cos1
k4
( 1) k
( 2 k 1)!
16
k 1
Titchmarsh 1.2.14
(3) 1 2 f 2k(2k )
k 2
1
3
k 2 k 2 ( jk )
3 log 3 log 2
( 1) k ( k )
1
1
1
2
2
4
3
6 k 1 6 k k
6k
k 2
1
1 383
( 1) k 1
168 cos 92 sin
k
2
2
2
k 1 ( 2 k )! 4 ( k 2 )
Li1 e 2i Li1 e 2i
x
4
dx
81
54 2
0
B2k
k
k 1 ( 2 k )! 2
1 1
e
tanh
2 2
2 1 e
(1)
k 1
k 1 k
e
J944
.04142682200263780962...
1 .04145958644193544755...
.0414685293809035563...
7 (3) 3
1 ( 2) 3
1
3
4
16
64
128
k 1 ( 4 k 1)
2 log3 3
1
1
2 Li2 Li2
6
2
3
3
3
1 2 e
1
cos
3e
3
3
2
2
( 1) k 1
k 1 ( 3k 1)!
.041518439084820200289...
( 1) k
1
tanh coth 4
2
12 4
2
2
k 2 k k
.04156008886672620565...
26 (3)
4 3
1
4
2 (2)
3
27
27
81 3
1
log 2 x
dx
x5 x 2
1
26 (3) 4
1
1
( 2 ) 2
3
27
27
81 3
3
k 1 (3k 2)
3
2 .04156008886672620565...
1
=
log 2 x
0 1 x3 dx
=
.04156927549039744949...
=
.04160256000655360000...
.04161706975489941139...
.04164186716699298379...
2 .04166194600313495569...
.04166666666666666666
=
=
x 2 dx
0 e x e 2 x
i 3 i 3 1
i 3 i 3
1
( 2)
6 2 3 2 6 2 3 2
3
1
5
2
k 2 k k
( 2k )
1
k
2k
2
1
k 1 5
k 1 5
1
1
1
1
1
( 1) k 1 k
sin
cos
sinh
cosh
4 2
2
2
2
2
k 1 ( 4 k )!
k 1
1
1
( 1)
cos
cosh
1
GR 1.413.2
2
2
k 1 ( 4 k )!
k
k 1 k ! H k
1
1
C132
24
k 0 ( 3k 1)( 3k 4 )( 3k 7 )
k
Prud. 5.3.1.2
(1) k 1 k
e (1) k
k 1
1
=
1 .04166666666666666666
=
k 13
e k (1) k
k 1
25
1
k
24
k 1 k ( 2 2 )
(1)k 1
1 .04166942239863686003...
k 1
1 .04169147034169174794...
.04169422398598624210...
.04171115653476388938...
( 2 1)
8
1
(k
2
)!
1
1
cos1 e
cos1 cosh 1
2
2
4 4e
( k )
1
j
k!
k 2
k 2 j 2 ( k )!
1 .0418653550989098463...
.04188573804681767961...
1
(4 k )!
k 0
5 2 2 log 3
1
2
arctan 2
log
16
8
4
5 2 2
2
arctan 1 2 arctan 1 2
8
.04171627610448811878...
x
4
2
sinh 1 sin 1
e
1
sin 1
8
16 16e
8
2
3
e
cos
3 3 e
2
3
1
9
log
6
7
x
4
2
dx
x4
k
(4k )!
k 1
1
(3k 1)!
J804
k 0
dx
x2
( 1) k
.04189489811963856197... 5
k 2 k log k
3 6
721 .04189518147832777266...
4
1
1
cos k
.04201950582536896173... log 2 2 cos1 log 2 sin
GR 1.441.2
k
2
2
k 1
9
( 1) k 1 Hk
2
.0421357083215798130... 4 log 2 log 2
4
k 1 ( k 2 )( k 3)
1
e 1
1
2(e1 / 2 e 1 / 2 )
1 .0421906109874947232... 2 sinh
k
2
e
k 0 ( 2k 1)!4
1
= 1
GR 1.431.2
4 2 k 2
k 1
1
.04221270263816624726... 4 cot 4 coth 4
2 4 2
2
2
1
=
4
k 2 2k 1
1 .04221270263816624726...
k 1
=
(4 k )
2
k
2k
k 1
1
4
1
1
4 cot 4 coth 4
2 4 2
2
2
(4 k ) 1
k 1
2k
1 .042226738809353184449...
1
1
1
2
2
k
k2
k ( k 1)
2
2k
k 1 2 1
k 1 2
[Ramanujan] Berndt IV, p. 404
2 .04227160072224093168...
16 2 2
( 1)
( 1) k 1
2
( k 1 / 4) 2
k 1 ( k 1 / 4)
k 1
.0422873220524388879...
.04238710124041160909...
.04252787061758480159...
Bk 2 k k 2
k!
k 0
log 2
1
4
24
k 1 ( 4 k 3)( 4 k 1)( 4 k 1)( 4 k 3)
1
1
1 1
1 1 2
2
=
2
k 1
(2 k 1)
2 k 1
k 1
1
k k
2
1
8
12
4
.04257821907383586345...
log
125 125
3
.042704958078479727...
.04271767710944303099...
6
2
4
2 log 2
7 ( 3)
4
1
k (2 k 1)
k 1
3
k
(2 k 1)! 4
k 1
x
2
k
dx
1
4
1 2 (2) 3 (4)
3
10
2
1
1
csc
2
2
1 .042914821466744092886...
e x dx
1 e 2 x
Marsden Ex. 4.9
( 1) k 1 k 2
k
( k 2)
k 1
1
2 3
(1 x)3
3
1 .04310526030709426603... 3 5 log 2
log
dx
log
1 x6
2
2 3
0
1
log 3
1
.0431635415191573980...
6 12 3
4
k 1 ( 3k 2 )( 3k 1) 3k ( 3k 1)
.04299728528618566720... 16 log
k 2 Hk
4k
k 1
k 1
arctan 2 log 3
4
4
4
2
.0428984325630382984...
( 1)
1
1
1
cosh sinh
2
2
2
.04282926766662436474...
J242
5 .04316564336002865131...
2
GR 0.238.3, J252
e
.0432018813143121202...
3 58
2
9
k 2
(k ) 1
k
4
1
1
Li k k
k 2
4
4
2 1
2 1
.04321361686294489601...
1
2
.043213918263772254977...
e i 2i (1)i cos(2 log i ) i sin( 2 log i )
.0432139182642977983...
Mel1 4.10.7
(21/ 4 1) 1 / 4
211/ 4 3 / 4
.04321740560665400729...
4
e
k2
e
( 2 k 1) 2
J114
k 1
k 1
1
1
1
log
tanh
( 2 k 1)
( 2 k 1)
e
2
2
k 0 e
(k!)3
2 4 1
1 .04331579784170500416... HypPFQ 1,1,1, , ,
3 3 27 k 0 (3k 1)!
1 i 3
1 i 3
1
1 / 3
1 4 / 3 1 4 / 3
1 .04338143704975653187... 1 2
3
2
2
( 3k 1)
1
=
k
4
2
k 1
k 1 2 k k
.04324084828357017786...
arctanh
23 13
5 log 2 2
kH k
log 2
k
4
2
2
k 1 2 ( k 1( k 2 )( k 3)
2
2
1
.043441426526436153273...
arcsinh1 k
3
2
k 1 2 ( 2 k 1)( 2 k 3)
k 1
k 1
.04344269231733307978... ( 1) ( 4 k ) ( 4 k 1) 5
k 1
k 2 k k
1
.0434782608695652173913 =
23
(k ) 1
2 2
.04349162797695096933...
Li2
k 2
k k
k 2 2 k
k 2
log 3 log 2
1
.043604011980378986376...
3
4
3
k 1 27 ( 2k 1) 3( 2k 1)
.04341079156485192712...
[Ramanujan] Berndt Ch. 2
1
1 .043734674009950757246...
arctan(e 1)
e
x
0
1 .04377882484348362176...
( 4)
(5)
( k )
k 1
k5
1
2 e x 2
3 log 2
1
.04382797038790149392...
4
8 12
Titchmarsh 1.2.13
1
k 2 4 k ( 4 k 1)
( k ) 1
k 2
4k
1 .04386818141942574959...
.04390932788176551020...
( k !) 2
16
1
arcsin
k
4
15
k 0 ( 2 k 1)! 4
/4
23
8
sin 3 x tan 2 x dx
6 2 3
0
( 1) k 1
( 1) k 1
7 216
3
( k 1 / 6) 3
k 1 ( k 1 / 6)
1 .04393676209874122833...
3
(1) k 1
k 1 ( k 1)! ( 2 k )
.04398180468826652940...
Titchmarsh 14.32.1
1
( 1) k
2 csch 2
2
k 0 k 1
k
e
e
1 .04416123612010169174... e
k 0 k !
1
( 1) k 1 k 2 2 k
.04419417382415922028...
4k
k
16 2
k 1
1 .04405810996426632590...
.044205282387762443861...
2
.04427782599695232811... 2 2 log 2 3
4 log 2
3
1
4 48
2
.04438324164397169544...
( 1)
k 1
( 2 k 2)
k 1
2
x
1
5
14
log 2 (2) (3) (4)
3
1
dx
5
5
4
4
k 2 k k
2 x x
2k
k 16
k 1
dx
x3
9 .04441336393990804074...
( k ) 1 ( k ) 1
k 2
2
2
arccosh x
.044444444444444444444 =
(1 x ) 4
45
1
( 3)
1
.0445206260429479365...
3
27
k 1 ( 3k )
3 1
dx
.0445243112740431161...
2
( x 1) 3
32 4
1
9 log 3 5
1
k
2
4
k 1 4 k ( k 1)( k 2 )
1 1
1
5
1
.04462871026284195115...
log Lik k 1
5
4
k
5 5
k 1
k 1 5
k 1 2
3
arcsinh 1
( 1) k 2 k
.04482164619006956534...
k
4
8 2
k 1 4 ( 2 k 1) k
( k 1)
1
1
log 1
1 .04501440438616681983...
k
2k
2 k
k 1
k 1 k
.04456932603301417348...
9 log 2
k
1
k (2 k 1)
.04507034144862798539... 1
.04510079681832739103...
1 .0451009147609597957...
1 .04516378011749278484...
2 .0451774444795624753...
.04522874755778077232...
.04527529761904761904
=
.04539547856776826518...
1 .04540769073144974624...
.04543145370663020628...
.045452882429679849...
3
k
391 53e
144
2e
2
k 1 ( 2 k 1)!( k 3)
1
1
k
2 2 arctanh
2 2 k 0 8 (2k 1)
li( 2 )
7
H
8 log 2
kk 2
2
k 1 2
3 log 3
1
2 k 1
1 log 2
2
k (2k 1)
k 1 2
1217
1
26880
k 1 k ( k 4 )( k 8)
( 4 ) (5)
1
1
coth 3/ 2 2
2
2
k 0 ( k )
2 log 2 5
(2k 4)!
1
k
3
12 k 2 (2k )!
k 1 2 (6k 12)
log1 p p
2
2
p prime
1
22
1
.04547284088339866736...
7
7 ( 4 ) 3 ( 3)
( 1) k 1 k
.04549015212755020353...
4
8
4
k 1 ( k 1)
17
dx
.0455584583201640717...
3 log 2 x x
e (e 1) 3
8
1
.045454545454545454545 =
.04569261296800628990...
2
1
( 6k )
2
36
k 1
1
1
.0458716234174888797...
log 2 1
16 16 2
32 2
1
log x
dx
= 2
2
2
16 log x x 1
0
.04596902017805633200...
216
9
( 2)
=
18 3
1
27 k
k 1
3
1
GR 4.282.10
3 3i 7 i 3
3 3i 7 i 3
log 3
6
18 3 6 18 3 6
10
3 47
1
log
k
3
2 36
k 1 3 k ( k 1)( k 3)
(k )
5
( 1) k k
.04603207980357005369... log
4 4
4 k
k 2
.04599480480499238437...
=
( 1)
k
(k )
1 .0460779964620999381...
1 ( 2 )
k
4 k
1
.04607329257318598861... I 3 ( 2 )
6
k 2
=
k 1
1
log 1
4k
1
k !( k 3)!
(2 k 2)
1
4k
Dingle 3.37
k 1
2
cot
2
2k
4
k 1
1
k2
2k
log 2
1
8
2
k 1 ( 4 k 2 )( 4 k 1) 4 k
1
=
2j
1
j 1 k 1 ( 4 k 1)
k 1
.0461254914187515001...
J251
J1120
5
1
tan
F2 k 1 (2k ) 1
2
2
5
k 1
3i 3
5i 3
5 4 log 2
.046413566780796640461...
cot
cot
6
3
6
4
4
1
2 .04646050781571420028... k
1
k 0 3 3
1 .046250624110635744578...
. 04647598131121680679...
3 2G
8
( 1) k
4
k 2 k k
2
2k
k
k
k 0 k 16 ( 2k 1)( 2k 3)
1 3
1
2
12
k 1 ( 6 k 1)( 6 k 1)
1 1 (1) k (k!) 2
.04659629166272193867... 2 F1 2,2, ,
2 4 k 1 (2k 2)!
.04655015894144553735...
2 .04662202447274064617...
2
log 2
2 12
1
=
0
.04667385288586553755...
2
/2
log sin x dx
2
log 2 x dx
GR 4.261.9
1 x2
11
4
e
GR 4.224.7
0
( 1) k 1 k 2
k 0 k !( k 2 )
5 log 2 (1) k 1
.04672871759112934131...
18
3
k 1 3k 9
.046748650147269892437...
csc ( 1) csc ( 1)
1/ 4
12k
k 1
2
1
30k 18
3/ 4
2
Hk
5
k 1 ( k 1)
(k )
.046842645670287489702... k 2
k 2 k
1
1 .046854285756527732494...
k 2 k ( k 1) log k
.04682145464761832657...
=
m 2 k 2
m
1
log k
( x) 1 dx
k
(k )
1
2
k
( k 2)! k ! k I
k 2
.046943690640669461497...
k 2
1 .04685900516324149721...
k
k 1
2
1
1
1 2 arctan
2
2
2
/4
0
sin 3 x
dx
1 cos2 x
sin 3 0
3
3/
8 .0471895621705018730... 5 log 5
.04704000268662240737...
2k
(2 k 1)!!
1
k
k
3
k 1 ( 2 k )!!4 ( 2 k 1)
k 1 k 16 ( 2 k 1)
1
1
1
1 .04719755119659774615...
arccos ( 1) k 1
6k 5 6k 1
3
2
k 1
1
=
k 0 ( k 1)( 2k 1)( 4k 1)
.04719755119659774615...
1
2k
=
k
k 0
0
.04732516031123848864...
1 .04740958101077889502...
.047430757278760508088...
93648
.04747608302097371669...
5 .04749726737091112617...
1
k 16 (2 k 1)
=
J328
dx
6
x 1
0
x 4 dx
x6 1
0
x1/ 2 dx
x3 1
1
(i ) (i )
4
30( 4)
4
a(k )
5
93
31
k 1 k
k (2k )
1
2 2 3 3
72
36k
k 1
10
2
Titchmarsh 1.2.13
.04761864123807164496...
.047619047619047619
=
.04794309684040571460...
.04821311371171887295...
.04828679513998632735...
.048298943674391117963...
.04831135561607547882...
log 4 x
7 4
9 (3)
dx
( x 1) 4
3
90
1
1
21
1
1
5
( 3) 5
3
3
4
k 2 k k
k 1 k ( k 3) ( k 2 )
1
1
log 2 (2) 1 2 log 1 2
k
k 2 k
log 2 1
4
8
1
k 1
k 1
2 1
(k!) 2
18 2 k 1 (2k 2)!
=
1
k
4k 2 6k 2
2k
k 1
k
log x dx
5
1
x2
k3
6
k 1 ( k 1)
.04852740547184035013...
( 3) 3 (5) 3 ( 4) ( 6)
.04855875496950706743...
24 log 2 3 2 41
log(1 x ) x 2 log x dx
108
0
1
.04871474579978266535...
.04878973224511449673...
1 .04884368944513054097...
3 cos1 sin 1
k4
( 1) k 1
( 2 k 1)!
16
k 1
2035
log 2 x
2 (3)
6
dx
864
x x5
1
( 2 ) ( 3)
3
tanh
8
64 log 2
3
3
222 .04891426023005682...
3
2
k
k 1
5
x
0
3/ 2
Li2 ( x ) 2 dx
k
2 (k
k 2
(1) k (k ) 1
2k (k 1)
k 2
x
(2 k ) 1
k 2
(4k 2)(4k 4) 2 (8k 8)
3 19 log 2
2 log 3 3 (1)
2 4
2
1 1
i
i
1
1 1 3
2
5 2 2
k 2 4k k
k 1 ( 2 k 1) 1
= ( 1)
4k
k 1
1
3 ( k )
1 .0483657685257442981... k
3
2k
k 1 (2 1)k
k 1
1 (1) 2
( 1) k
(1) 7
.04848228658358495813...
2
3
6
36
k 0 ( 3k 4 )
.04832930767207351026...
2
1
k4 k3
k
1
2
1) k
.04904787316741500727...
k
( k 1)( k 2)
( 2 ) 2 ( 3) 4
k 1
=
( 1)
k 1
k 1
1 .04904787316741500727...
( 1)
k 1
k 3
3 .04904787316741500727...
4 .04904787316741500727...
=
.04908738521234051935...
5 .049208891519142449724...
.0493061443340548457...
=
.049428148719873179229...
k 2 ( k 2) 1
( 2 ) 2 ( 3) 3
=
9 k 2 11k 4
k 2 ( k 1) 3
k 2
k 2 ( k ) 1
Hk 1
2
k 1 k
k 1
(2) 2 (3)
3
k 2 ( k 1)
H k H k 1
k 1 k ( k 1)
( 2 ) 2 ( 3) 1
64
( 1)
1/ 4
csc ( 1)
1/ 4
k 1
27 k
k 1
i csc ( 1)
3/ 4
1
3k
3
( 1) k
4
k 2 k 1
1 2
1
7 6 3 log 3 27 log 2 3 12 (1)
3
8
Hk
=
k 1 k ( k 1 / 3)
k 1
1
log n k
.049472209004795786899... 1 ( 4) 4
k4
k 2 k log k
n 1 ( n 1)!k 2
263
( 1) k 1
.04952247152318661102...
315 4
k 1 2 k 9
2 .04945101468877368602...
2
x 2 dx
0 ( x 4 4) 2
49 e
k4
k
16
k 0 k !2
log 3 1
( 2 k 1)
2
2
32 k 1
k 1
dx
2 x 4 x 2
4
k ( k 1) 1
3
sech 3
1
3 3
2
e e
9
( 1) k k 4 2 k
k
.04971844555217912281...
128 2
k 1 4 ( 2 k 1) k
.04966396370971660391...
3 7
.04972865765782647927... 3 log
2 6
.04974894456184419506...
.04976039488335674102...
=
.04978706836786394298...
.04979482660943125711...
.04984487268884331340...
2
.04987831118433198057...
2
4
k 1
12
1 1
Lik
3 3
4
3 log 2
1
5
k 2 k log k
2
k 1
log(1 x )
dx
(1 x) 2
0
1
2 log 2
(1)
1 5
6
2
3 5 5 1
1
HypPFQ 1, , 2, , ,
18
2 2 2 4
1
e3
( 1) k 1 k 2
23
14
k
e
k 1 ( k 2 )! 2
5 log 2 19
1
k
6
36
k 1 2 k ( k 2 )( k 3)
1
.04987030359909703846...
(1) k 1
k 2 4k 3
(1) k 1 (k!) 2
k 1 ( 2k 1)!( 2k 1)
( x) 1dx
5
2 4 log 2
( 1) k 1 k
2
k 1 ( k 1) ( k 2 )
.05000000000000000000
1
9
=
1 2
k
20 k 4
k ( k 6)
=
2
k 1 ( k 3)
1 .05007513580866397878...
.05008570429831642856...
.05023803170814624818...
.05024420891858541301...
J1061
21/ 2 31/ 4 1/ 2
CFG F5
( 3)
24
51 2 ( 3)
1
3
48 24
2
k 1 k ( k 2 )
3 ( 3)
( 1) k 1 k 2
( 2 ) log 2
3
4
k 1 ( k 1)
2 .05030233543049796872...
1 log (k )
k 2
2
.05037557702545246723...
.05040224019441599976...
12
log 2 2 (2) log 2
6
.05051422578989857135...
.05066059182116888572...
1 .05069508821695116493...
=
.05072856997918023824...
2 .05095654798327076040...
1 .05108978836728755075...
k 2
(1) k log 2 k
k2
1
(2 k 1)
k 1
.0504298428984897677...
2
1 i 3
1 i 3
1
1 i 3
1 i 3
2
4
4
=
(2)
8 2G
(3) 1
4
2
3
1
2
4
1
1
3 log 2 log(1 x 4 ) log x dx
0
2
log x
dx
x5 x 3
x 2 dx
0 e2 x (e2 x 1)
1
22
1 (1) 1
1 (1) 1
3
(1)
25
100
5
10
5
2 2
1
1
9
(1 )
5
125 16 25
1
I 4 (2)
k 0 k !( k 4 )!
2
sinh
1
(5k 4)
k 1
2
LY 6.114
1
2
1 2k
2
k 1
1/
1
e e 1/
cosh
2
1
(2 k )!
k 0
2k
AS 4.5.63
2 .05120180057137778842...
.051297627469135685503...
21/ k
5
k 1 k
1
21 (3) 4 2 log 2 16 G
128
/4
=
x log cos x dx
0
.05138888888888888888
=
.05140418958900707614...
.0514373600236584036...
1 dx
2 13
x
1
2
192
log x dx
x5 x
1
3 log 2
2 16
2
1
x 2 e 2 x log x dx
16 8
0
4 9
( 1) k 1
k
3 4
k 1 3 k ( k 1)( k 2 )
2
3
1 .05146222423826721205... 2
csc
5
5 5
7
k 2 4k 1
.05153205015748987317... ( 2 ) 6 ( 3) 6 ( 4 )
4
8
k 2 ( k 1)
=
( 1)
k 1
H
k
k 1
1 .0515363785357774114...
( 3)
k 3 ( k 1) 1
Berndt 5.8.5
(( k 1) 1)
k 1
k (2k 1)
1 (1) 4
6
(1)
20
25k
5
5
k 1
13700
k
.05165595124019414132... 5040
( 1) k 1
e
k !( k 7)
k 1
.05160484660389605576...
GR 4.355.1
24 log
log1 x
.05145657961424741951...
37
720
2 .05165596774770009480...
2
4
csc 2
2 2 2
1
=
4
2
1
k 1 2 k 2 k 2
7 ( 3)
( 3)
1 .05179979026464499973...
8
/2
x log tan x dx
=
0
1
2
k ( 2 k 2)
2k
k 1
cot
1
3
k 0 ( 2 k 1)
2
Hk
k
k 1 2 k
2
.05181848773650995348...
=
2 .05226141406559553132...
.05226342542957716435...
.05230604277964325414...
5
96
4 (3)
(6)
.052631578947368421
k 1
( k )
k 2
6k
2
0
k3
Titchmarsh 1.7.10
sin 2 k
k!
k 1
si (1) sin 1
(1) k 1 k
2
k 1 ( 2k 1)!( 2k 1)
k
k
k 2
)
k 1 2 (1 2
1
=
19
jk
jk
j 1 k 1 2
k0 ( k )
2k
k 1
1
10
1
1
log
arctanh
2 k 1
( 2 k 1)
2
9
19
k 0 19
1
1 log 2
.05274561989207116079...
8 6
4
k 1 ( 4 k 2 )( 4 k 3)
.05268025782891315061...
.052878790640516702047...
( k )
e cos3 sin(sin 3)
3 5 5 1
(1) k 1 k!
1
HypPFQ 1, , , ,
18
k 1 ( 2k 1)!( 2 k 1)
2 2 2 4
1
1
1
.05239569649125595197...
3
3k
e 1
k 1 e
k 1 cosh( 3k ) sinh( 3k )
5 6 log 2
x dx
log
.05256980729002050897...
16
x 1 x3
2
4 .0525776663698564658...
.05238520628289183021...
J385
( 1) k 1
k 1 k ( k 2 )( k 4 )
2
3
x sin 2 x dx
4 .05224025292035358157...
2
3
1 cos x
0
log 3 log 2
1
.05225229129512139667...
2
4
3
4 3
k 1 36 k 6 k
dx
= 6
5
4
x x x x3 x2 x
1
.05208333333333333333
178
1
1
(2 k 1)!!
225 5
k 1 ( 2 k )!! 2 k 5
.05290718550287165801...
1
4 2
3
35 (3) 16G 2
2
2 ((k2k)1)
log 2
k 1
log 3 log 2
( 2 k 1)
12
3
4k
k 1
4k
K148
4
1
3
3
k 2 4 k k
1
= k
k 1 2 ( 4k 12)
.05296102778655728550...
2 log 2
.05296717050275408242... 1
.05298055208215036543...
1 .053029287545514884562...
74
720
( 2 k 1) 1
k 1
4k
( 1) k
4
k 0 ( k 2)
3
log 2 x
G 2
dx
32
( x 1) 2
1
2
16 2 2
2
64
csc 2
8
k 1
1
(8k 1)
2
1
(8k 7) 2
.05305164769729844526...
6 .0530651531362397781...
.0530853547393914281...
1
6
2
( 2 k )!! 2 k
k
3
k 1 ( 2 k 1)!! 3
3 ( 3) 7
( 1) k
2
3
2
4
k 2 ( k 1)
1 2
log 2 x dx
x log 2 x dx
= 4
0 1 x
x x3
1
2 3 2 arcsin
1 .053183503816656749...
( jk 1) 1
j 3 k 1
1 .053252407623515317...
8 log 2 2 ( 2 ) ( 3)
2k
k 1
.05357600055545395029...
( jk 5) 1
j 1 k 1
.05358069953485240581...
1
( k 3)! k !
k 1
.05361522790552251769...
128
.05362304129893233991...
csc 2
2 2 sin
4 2
2 2
( k ) 12
k3
k !!
.05362963066204526106...
k 0 ( k 4 )!
1
2 .05363698714066007036...
k 1 Fk 1
k 2
( k 3)
k 1
2k
log 2 1 i 3 7 i 3 1 i 3 7 i 3
6
3
12
4
12
4
1
=
3
k 1 ( 2 k 1) 1
(2 k )
2 .05339577633806633883... 2 log log 2 2 log csc
k 1
k
2
k 1 2
1
= 2 log 1
2k 2
k 1
1
.053500905006153397...
k 0 ( k 4 )! k !
1 (1) 2
log x
(1) 9
dx
.05352816631052393921...
5
10
x5 1
100
1
.05330017034343276914...
1
4
k3
5 .0536379309867527384...
x( x 1) ( x) 1 dx
2
1
5 1 3 1
1 5 1
(1 i ) Ei , 1F1 , , k
4 4 4 4
4 4 4 k 0 k!4 (4k 1)
2 7( 3)
1
k
.05391334289872537678...
3
16
27
k 2 ( 2 k 1)
43867
3 .05395433027011974380 =
( 17 )
14364
log 3 1
log x
dx
.0539932027501803781...
8
12
( x 2) 3
1
1 .0536825183947192278...
1 .05409883108112328648...
3
3
1 log
2
4
kHk
k
k 1 3
(1 )
1 .05418751850940907596... 1
k ( k )
k 2
5471
1
.054275793650793650
=
100800
k 1 k ( k 3)( k 8)
2
(k ) (k 1)
.054298855026038404294...
log 3
3k
3 3 18
k 2
2
.054612871757973595805...
.054617753653219488...
6 .0546468656033535950...
2 log
4
7 (3) 1
8
8 2
1
1
log 1
e
e
3
3
2 log 2
( 2k )
2k (2k 2)4
k 1
k
dx
x
1)
e (e
x
1
1 (1) 7
2
(1)
6
3
12
1
=
1 .05486710061482057896...
1
log 1 3 log x dx
x
0
1
2 1
( 2 k 1)!!
(2 k )!!
k 1
2k
( 1) k 1
k 1 2 k 8
(k )
1 .05491125747421709121... (5) ( 6) 1 6
k
k 1
1
H ( 2) k
1
1 .05501887719852386306... 5 Li2 k
2
k
5
k 0 5 ( k 1)
k 1 5
4
k
.0550980286498659683... 28 log 8 k
3
k 0 4 ( k 1)( k 3)
.05490692361330598804...
log 2
7
2
24
J166
HW Thm. 290
.05515890003816289835...
log 2
4
.0551766951906664843...
2
0
1
dx
2
4 log x 1 x 2
(k ) 1
1
1 .05522743812929880804...
k 2
( k 1)! k e
(2 k )
k 1
1
2
k I1 1
k
2k
k !( k 1)!
k 2
2
GR 4.282.7
1/ k 2
1 1
k 1
5
( 1) k ( 2 k )! k 3
.05524271728019902534...
( k !) 2 4 k
64 2
k 1
2 6 ( 3)
k
.05535964546107901888...
3
48
k 1 ( 2 k 2 )
9 .0553851381374166266...
82
1 .05538953448087917898...
2
7
coth 2
2
6
3
32 2
3
2 .05544517187371713576...
1
=
.0554563517369943079...
.05555555555555555555
=
1 .05563493972360084358...
.05566823333919918611...
=
.055785887828552438942...
2 .05583811130112521475...
.0558656982586571151...
2
log x
dx
4
1
0
x
2
2
k 2 k 2
( 1)
k 1
k 1
2 k (2 k ) 1
2
log x
dx
2
x 2
x
0
x 1 2
log x dx
4
1
x
0
2
GR 4.61.7
( 1) k 1 k 2 2 k
11
2
k
4 2
k 1 4 ( k 1) k
1
18
1
cos 2 cosh 2 2 sin 2 2 sinh 2
2
4k
k 0 ( 4 k )!( 2 k 1)
( 1) k
1
2
csch 3 2
18
9
k 0 k 9
1 H ( n) k
1
5
log k
4
4
4 k 1 5
n 1
Hk
k
k 1 2 1
1
k
k 2 4 ( k )
38 .05594559842663329504... 14 e
1 .05607186782993928953...
1 1
1
cosh e1 / 3 e 1 / 3
k
3 2
k 0 ( 2k )!9
2 .05616758356028304559...
5 2
24
log(1 x 2 )
0 x(1 x) dx
k 1
5
k 2 k log k
.05633047284042820302...
.05639880925494618472...
5
( x) 1 dx
4
1 8 log 2 2 8 log 2 log 5 2 log 2 5 4 Li2
1
1
1 4 Li2
5
4
( 1) k 1
k
2
k 1 4 ( k 1)
1
x log x
dx
0 x4
=
=
.05650534508283039223...
1 .05661186908589277541...
=
e 1
4
x tan x
dx
2
4
x
0
GR 3.749.1
3
3
3 1
3
3
1
1
log log 2 Li2 log Li2
2 2
2
2
2
2
3
2
H k (k 1)
k 1
3k k
i i i 2
i
log 2 Li2 (e 2i ) log( x sin x ) dx
2
2
12
2
0
1
2 .056720205991584933132...
1
73 .05681827550182792733...
3 4
4
2
coth
csch 2
3
4
1
4
4
1) 2
k 2
3
( 1) k
( 2 k 3)!
.05685281944005469058...
log 2
4
( 2 k )!
k 1 ( k 1)( k 3)
k 2
1
=
k 1 2 k ( 2 k 1)( 2 k 2 )
.05683697542290869392...
(k
k 1
(2k ) 1
k 1 k
( 1) k 1 k 2
8
.05696447062846142723... 3
e
k 1 ( k 2 )!
1
( 1) k
.05699273625446670926...
csch sech 4
8 8
2
2
k 2 k 1
1
1
.05712283631136784893...
( 2 ) ( 3) 4
3
2
k 2 k k
=
2
J249
=
( 1) ( k 3) 1 dz( k ,2)
k 1
k 1
k 1
7 675
120
4
.05719697698347550546...
.05724784963607618844...
1 .05725087537572851457...
G
16
e
4x
0
3
log x
4
x3
x
1
x dx
e4 x
1
Ei (1) Ei ( 1)
2
1
(2 k 1)!(2 k 1)
1
=
sinh x
SinhIntegral (1)
dx
x
0
1 dx
x
sinh x
1
7 2 ( 3)
r ( n)
3
5 .0572927945177198187...
2
k 1 n
( 3)
74
2
.0573369014109454687...
2 log 2
4
4
720 12
.05754027657865082526...
1 .0578799592559688775...
4
cos 4 x
dx
2
x
1
17 .05777785336906047201...
.05796575782920622441...
GR 3.749.2
=
log 2 (1 x )
0 1 x dx
0 F1 ;1; 5
I 0 (2 5 )
7(6) (3)2
4
2
log 2
2
2
( 1)
cos k 3
3
k 1 k
1
log 4 2
4
( 1) k
5
4
k 2 k k
e
14
k5
.0576131687242798354...
( 1) k 1 k
243
2
k 1
1
1 .05764667095646375314...
Li3 ei / 3 Li3 e i / 3
2
.05770877464577086297...
GR 8.432.1
k 0
k 1
k 1
2
k 1
5k
2
k 0 ( k!)
Hk
k5
(2 k 1)
2 k 1
(2 k 1)
Berndt 9.9.5
1
1
arctanh 2 k 2 k
k 1
( k 1)
k 1
=
log log x dx
(1 x ) 2
1
.05800856534682915479...
k 2
.05807820472492238243...
(k )
k
5
GR 4.325.3
(5) 1
3 7
2 6
k 2
( 2 k 1)!!
(2 k )! 3
k 2
k
(k ) 1
k
5
1
1
Li k k
k 1
5
.058086078279268574188...
/4
=
0
.05815226940437519841...
sin 3 x
dx
1 sin 2 x
3 ( 3)
23
2 .0581944359406266129...
1
1 i
1 i
1 2 arccoth 2 i arctan 1
i arctan 1
2
2
2
1
1 ( k )
Berndt Ch. 5
k!
3 2
1
.058365351918698456359... 2 Li2 4 log
2 3
2
k 1
(1) k 1 k 2
k
2
k 1 2 ( k 1)
1 .05843511582378211213...
1 5 1
2 F1 1, , ,
4 4 4
.05856382356485817586...
4
k 0
k
1
(4 k 1)
( 2 k 1)
2k 1
x cot x
2
dx
4
e 1
x 4
0
k 1
.05861382625420994135...
4 .05871212641676821819...
.0588235294117647
=
.05882694094725862925...
4
GR 3.749.2
, volume of unit 4-sphere
24
1
1
sin 2 arctan
17
4
(4)
2 ( 4)
cos 4 x
dx
ex
0
(1) k 2 4( k 1)
k 0
(k ) log k
k 1
k4
.05886052973059857964...
.05889151782819172727...
1
1
2
1
1
log
arctan
18 9
3 9 2
2
1
9
1
log arctanh
2
8
17
( 1)
k 1
17
k 0
k 1
2 k 1
kH 2 k 1
2k
1
( 2 k 1)
Hk sin k
k
k 1
3
.05897703250591215633... log
4 4
1 .058953464852310349...
(k )
4
k 2
k
1
1
log 1
4k
k
k 1 4 k
3 .05898844426198225439... 3 (5) 4
(3) 6 log 2 2
6
2
1
1
Hk ( k 1) 1
2 3 4
2k 1 k
k
k
k 1
7 4
( 1) k 1
.05918955184357786985...
Re Li4 (i )
4
11520
k 1 ( 2 k )
1
1
.05936574836539082147...
8 3 k 1 (2k 1)(2k 1)(2k 3)
1
=
2
k 1 16k 16k 3
1 .05940740534357614454...
3 .05940740534357614454...
4 .05940740534357614454...
.059568942236683030025...
e2
e
1
erf
2
2
J240, J627
1
k !!
k 2
e
1
k!!
1
erf
2
2 k 0 k!! k 1 k!
e
k
1
e 1
erf
2
2
k 0 k !!
1 1
1
(k ) 1
2 ( 1) k
k
k 2
e
3
9 log 3
1
4 log 2
4
4
k 0 ( k 1)( 2 k 1)( 3k 1)
log 2
3
(1) k
.059705906160195358363...
( 3) ( 3) 3 log k
4
4
k 1 k
43
1
.0597222222222222222222 =
720
k 2 k ( k 1)( k 4 )
1 .059638450439128955916...
.05973244312050459885...
.05977030443557374251...
1 .05997431887...
2
16
/2
(1 2 log 2 2 log )
10 ( 2)
j4
x log x dx
0
7 ( 4 )
3 ( 3)
8 log 2
8
2
( 1) k 1
2
4
k 1 k ( k 1)
J311
.06000000000000000000
=
4 .06015693855740995108...
3
50
e erf 1
( 2 k )!!
(2 k 1)!! k !
k 1
1
=
0
x
e dx
1 x
e 1
k!4k
1 e erf 1 , 0,1
2 2
k 1 ( 2k )!
5
1
1
( 1) k 1 k 2
.06017283993600197841...
arctan
k
18 2 2
2
k 0 2 ( 2 k 1)
5 .06015693855740995108...
.06017573696145124717...
.06034631805191526430...
.06041521303050999709...
1 .06042024132807165438...
2123
1
35280
k 1 k ( k 3)( k 7 )
5 sin 1 6 cos1
k4
( 1) k
16
( 2 k )!
k 0
3
2
Hk
2 6 log 3 log 2 ( 1) k 1 k
3
2
2 ( k 1)( k 2 )
k 1
1 1
(ck ) 1
log
c
c
k
1 n n
c 2 k 1
c2 n2
112 9 2 24 log 2
x 2 log(1 x 2 ) log x dx
108
0
1
.06053729682182486115...
.06055913414121058628...
3
512
.060574229486305732161...
k 1
(k ) log k 315
(3)
k (k )
2 4
k0 ( k )
k
k 1 2 1
3
( 2 k 1)!!
1 .06066017177982128660...
1
k
2 2
k 1 ( 2 k )!! 9
( 1) k
= 1
2 k 5
k 0
5 .06058989694951351915...
3 3
1
k
2 4
k 1 3 k ( k 1)( k 2 )
(1) k 1
= k
k 1 2 ( 2k 1)
1
1
k 1 ( 2 k 1) 1
.06097350783144797233... ( 1)
arctan
2k 1
k
k 1
k 2 k
.060930216216328763956...
2 log
CFG B4, J166
1
( 1) k 1
.061208719054813641942... sin
2 k 1
4
k 1 ( 2 k )! 2
5
4
4 log 2
.061385355812633918024...
27 81 3
81
2
( 1) k
2
2
k 0 ( 3k 1) ( 3k 4 )
4 log 2
3
1 sech
3
3
2
( 1) k
= 4
k 2 k k
1 9 6 2 24 2 40
.06154053831284500882...
3
36 24 2
.06147271494065079891...
.06158863958792450009...
1 .06160803906011000253...
=
.06160974642842427642...
=
.06163735046020626998...
.061728395061728395
=
.06173140432470719352...
.06177135864462191091...
.06196773353931867016...
1 .06202877524308307692...
.06210770748126123903...
1
304
4
105
( 1)
0
sin 2 x
dx
(1 sin x ) 2
k
2k 9
k 0
2 (1)
1
1
k
1
(1) 1
2
2
16
2
2
k 1 ( 2k 1)
k (2k 1)
2k 1
k 1
3
1/ 4
csch 21/ 4
3 / 4 csc 2
4 42
( 1) k
4
k 2 k 2
1
1
( 1) k 1
9 8 cos 4 sin
k
2
2
k 1 ( 2 k )! 4 ( k 1)
5
k4
( 1) k 1 k
81
5
k 1
k
( 1)
HypPFQ[{},{1, 1,1}, 1]
4
k 0 ( k !)
( 1) k 1
35 40 log 2 6 ( 3) 4
4
k 1 k ( k 1)
2k k 2
2 3
k 1
( 1) k
k6
25 5
k 1
arccsch
2
4
3
16
1
log 2 x
dx
x4 x2
65
1
.062346338241142771091...
csch 2 2
16 4 2
8 .0622577482985496524...
/4
1
0
x 2 log 2 x
dx
x2 1
( 1) k 1
2
k 1 k 8
.06238347847451615361...
( k ) 1 ( k 2) 1
k 2
.062400643626808666895...
.062500000000000000000 =
9450
12
210 (8) (4) (kk) log k
4
k 2
1
16
k
k 2
3
=
e
k 1
=
(x
=
k
(1) k
1 dx
4 9
x
log1 x
1
=
cos 2x
e
2
0
1 .06250000000013113727...
dx
Prud. 2.5.38.9
kk
1
22
k
2
log 2 2
H
k k1
12
2
k 1 2
4
11
28 2
84 14 ( 3) 4 (5)
.06269871149984998792... ( 6)
90
3
1
= 6
4
k 1 k ( k 1)
1 .06269354038321393057...
1
2
1
4k
k 1 2
k 1
.062515258789062500054...
x
1
k
k 1
.06251525878906250000...
k 1
x dx
2) 3
0
( k 1) (2k 1) 1
2
k
1
5
(1 k 2 ) 2
4
2
2
1 .062714148932708557698...
( x) log x dx
1
1
.062783030996353104594...
log(1 x
12
) dx
0
3
kH
3 2
2 2
2kk 1
log 2
log
2
4
2
2 2
k 1
2
4
35
1
.06290376269772511922... 56
5 ( 3) (5) 5
4
6
18
k 1 k ( k 1)
log 2 2
( 1) k 1 ( k 1)
.06310625275909953582...
log 2
2
k 1
k 1
4 .0628229009806368496...
(1) k 1 log k
k (k 1)
k 1
.0632539690102041...
.063277280080096903577...
1
G 19
x 3 arccot x log x dx
32 4 72
0
10 2
1
35 4
4
45
3
k 1 k ( k 1)
1
1
1
1 .06337350032394316468... 8 4 sinh 8 cosh
k
2
2
k 0 ( 2 k )! 4 ( k 1)
.06332780438680511248...
.0634173769752620034...
.0634363430819095293...
1 .06345983311722793077...
.06348038092346547368...
1 .06348337074132351926...
=
.06364760900080611621...
.06366197723675813431...
.0636697649553711265...
4
4
1
1
1
( 3)
4
2
1536
1536
k 0 ( 4 k 2)
11
1
k
2e
2
k 1 ( k 3)!
k 0 k !( k 2 )( k 3)( k 4 )
8G
1
Berndt Ch. 9
log 2 3
3
3
k 0 2k
2
(2 k 1)
k
1
k ( k 3)
k 1 2
1
1
I0
k
2
2
k 0 ( k !) 16
( k 12 )!
e
2
k 0 ( k !)
1 2
( 1) k 1 k
arctan
k
2 5
k 0 4 ( 2 k 1)
1
5
log p
1 log k
(4)
4
4
( 4 ) k 1 k
( 4)
p prime p 1
(k )
4
k 1 k
.063827327695777400598...
=
2 log 2
2
12
21
( 4)
1 .06387242824454660016...
2
( 6)
2
(1) 2
3 .06387540935871740999...
3
12 .06387540935871740999...
1
3
(1)
1
2
( 1) k
3
2
k 2 k k
1 .06388710376241701175...
1
k
k 1
4
7 ( 3)
log 2
64
4
(1) k 1 0 (k )
.06400183190906028773...
2k
k 1
( 3) (5)
1 .06404394196508864918...
2 (4)
.0639129291353270933...
.06407528461049067828...
.06413507387794809562...
Hk
(2 k 1)
k 1
3
5
9
( 1) k ( 2 k )! k 3
( k !) 2 2 k
9 3
k 1
28log
2
2 28arccsch2
.064205801387968452356...
125 125 5
125
125 5
k3
k
= ( 1)
2k
k 1
k
.06415002990995841828...
2k
.06422229148740887296...
1
20
5 2
( 4 ) 2 ( 3)
3
.064274370716884653601...
7 log 2 2 log
13
2
k
k 1
3
1
( k 1) 4
(1) k 1 k 2
(k 1)(k 2) (k 1) 1
k 1
log 2 1
( 1)
3
6
k 0 3k 9
1 dx
= log 1 6 7
x x
1
k
.06438239351998176981...
1 ( 3) 2
1
.06446776880150635838...
4
3
486
k 0 ( 3k 2)
k ( k )
.064483605572602798069... ( 1)
2k
k 2
1
1
(2 k ) 1
.06451797439929041936...
2
( 1) k 1
2
e 1 1
2k
k 1
.064710682787920926699...
4 2 2 1
.06471696327987555495...
x 2 log x
4
dx
2 2 Ei ( 1) 3
e
ex
0
4
x 2 (1 x) 2
0 x 8 1 dx
1
1 .06473417104350337039...
=
1 (1) 1
3
5
7
(1) (1) (1)
8
8
8
8
64
1 ( 1) 1
2
(1) 3
8
8
32
8
(1) k 1
(1) k 1
(1) k / 2
2
(4k 1) 2 k 0 (2k 1) 2
k 1 ( 4k 3)
1
1
3 log 2
log(1 x 3 )
.06487901723815465273...
dx
2 3 3
2
(1 x) 2
0
=
.06498017172668905180...
.06505432440650839036...
.06505816136788066186...
.06506062829357551254...
.06514255850624644549...
4
6
k2 1
( 4 ) ( 6)
6
90 945
k
k 1
Ei (1) 1
( k 1)
1 ( 1) k
e
( k 1)!
k 1
2
log k
( 4)
k4
k 1
11 3 log 3
1
( k ) 1
2
( 1) k
12
18
2
3k
k 2 9 k 3k
k 2
log 2 2
3 log 2
2 1 2 1 1 (3)
log
Li2 Li3 Li3
3 2 3 2 3
4
5
2
16
log 2 (1 x )
dx
=
x ( x 4)
0
1
2
k
2
( k 2) 2
k 1
2
(2 k )!!
1 .06519779945532069058... 6
3
2
3
k 2 ( 2 k 1)!! ( k k )
.06519779945532069058...
5
.06528371538988535272...
G
2 8
( k 1)
2
( 1) k
2
k 1 ( 2 k 1)
log x
dx
2
1) 2
(x
1
.06529212022186135839...
.06530659712633423604...
.06537259256...
.06544513657702433167...
.065487862384390902356...
.06549676183045346904...
sin 2 ( k / 2)
1
1
k 1
log sec ( 1)
2 k 1
k
2
10
( 1) k k
6
k
e
k 1 ( k 2 )! 2
( 1) k log 2 k
k
k 2
241 8 log 2 log 2 2
(1) k 1 H k
144
3
2
k 5
k 1
1 (1)
(1) k
(1) 1
2
4
2 k 0 (k )
2
J523
1
2 311 / 6
1/ 3
1
3 3i 2
3
=
(1)
k 1
31 / 3 i31 / 6
2 3 1 31 / 3
3 3i 2
2
(3k ) 1
k
3
k 1
.06557201756856993666...
=
.06567965740448090483...
.06573748689154031248...
.065774170245478381098...
.06579736267392905746...
.0658223444747044061...
.06598267284983230587...
.06598587683871048216...
x
.06598803584531253708...
e e
6
1
.06604212644480172199...
.0660913464480888534...
.0661733074232325082...
k 2
1
3k 1
3
dx
x x 4 x3
5
1
3 arcsin
1
3
2
20
csc
5
4 5
( 2 k 1)!!
(2 k )!!3 (2 k 1)
k
k 1
cot
5
1
2
2 ( 3) ( 4 ) 4 ( 2 ) 10
(5k
k 1
k
k 1
.06620909207331664583...
=
.06633268955336798335...
9 3
81log 3
4
2 (3) 3 (1)
3
2
2
1
3
2
k 1 k ( 3k 1)
2 log 2 19
( 1) k 1
3
36
k 1 k ( k 2 )( k 3)
7 ( 3)
128
(2 k ) 1
( 1)( 1) csc 1
log
2
2k k
k 1
1
2
( 2)
2
150
25
k 1 (5k )
2
5
Hk
36 24
k 1 k ( k 1)( k 2)( k 3)
2
19
2k
e
16 48
k 0 ( k 4 )!
log 2 1
1
2
4
8 2 k 1 16k 12k 2
=
81
2
1
J840
1
( k 1) 4
csc 1
2
2
2 ( 1) cos1 ( 3 ) sin 1
2 2
cot 1 (2k ) 1
2 3
2( 1)( 1)
2
2k
k 1
1 ( 3) 3
( 3) 1
6
4
4
256
1
1) 2
2
1
k
k 1
log 3 x
x4 x2
2
2
1
.06637623973474297119...
.06640625023283064365...
9
log
10
1
22
p prime
p
1
(2 k )
( 4 k 2)
k
k
4k 2
2
1
k 1 4
k 1 16 1
k 1 4
2 3
( 1) k ( 2 k 1)!!
.06649658092772603273...
3 4
( 2 k )! 2 k
k 2
1
.06642150902189314371...
.06660601672682232541...
e
k 1
ek
log 2 2
log 2 (1 x )
.06662631248095397825... 1 log 2
dx
2
(1 x ) 2
0
1
2 .066646848615237039218...
.066666666666666666666 =
1
5
11
116 3 ( 2) ( 2)
1728
12
12
1
15
k ( k 6)
=
( k 2)( k 4)
J1061
k 1
2k
16
1
1
3, k
2
15
k 0 4 ( k 3) k
1
8
1
log arctanh
.06676569631226131157...
2
7
15
1
= 2 k 1
( 2 k 1)
k 0 15
(3)
log 2 x
x 2 dx
.06678093906442190474...
4
dx 3 x
18
x x
e 1
1
0
1 .066666666666666666666 =
1
2k
1 2
k 2
k 1 ( k )
3k
k 1
1
1 .06687278808178024267... k 2
k 1 k
1 .06683721243768533963...
.06687615866565699453...
3 .06696274638750199199...
2k
1
2 log 2 3 4 3 4 log 2 7 k
k 1 k 16 k ( k 1)
2 2 log 2 2 log 3 2
1
4 Li3 3 (3)
2
3
3
1
=
log 2 x
0 ( x 12)( x 1) dx
K148
2 .0670851120199880117...
3
15
k (2 k ) 1
csc2 1 cot 1
2
.067091633096215553429...
2
2
4
4
( 1)
2k
k 1
i
1 .06711089410508528045...
Ei e i Ei ei 1
2
i
sin k
i
i
= 1 0, e 0, e
2
k 1 k!k
.067519906888675983757...
=
12 .06753397645603743945...
1 5
2
arc cot(1 5 ) arc coth 2 arctan
5
4
(1) k 1 Fk Fk 1
4 k (2k 1)
k 1
4G
3
8
1
2 log 2
1
2
2 log x dx
log1 x
0
.067592592592592952592 =
.06759686701139501638...
.0676183320811419985...
10 .06766199577776584195...
.067678158936930728162...
169
1
2700
k 1 k ( k 3)( k 6)
1
1
(2 k )
cot
2
k
2 10
5
k 1 25k 1
k 1 25
90
k2
( 1) k 1 k
1331
10
k 1
1
9k
cosh 3 ( e 3 e 3 )
AS 4.5.63
2
k 0 ( 2 k )!
1
5
11 2 6 H , 2 9 log 3 12 log 2 3 3 (log 432 6)
72
6
=
Hk
(6k 1)(6k 1)
k 1
( 1) k 1 k ( 2 k 1)
16k
2
2
k
16
k 1
k 1 (16 k 1)
( k 1)
k2
1 .06771840194669357587... ( 2)
( k 1) 1
k 1 k 1
k 1 k ( k 1)
.06770937508392288924...
.06775373784985458697...
.06788026407514834638...
.06797300991731304833...
e
2e
2
2
2e
1
cos(2 log x )
dx
1 x2
0
cos t
1 t
2
dt
AS 4.3.146
0
1
2 ( 1)
6
(k ) 1
( k 1)( k 2)
k 2
Adamchik-Srivastava 2.22
.06804138174397716939...
.06808536722795788835...
1
( 1) k 1 k 2 2 k
8k
k
k 0
6 6
=
dx
x( x 1)
3
e
2x
1
dx
e2 x
( 1) k 1 H k
k 1 ( k 1)( k 3)
5
.06814718055994530941... log 2
8
1
1 e 2
log
4
1 e 2
x
2
4
dx
x3
1
1 .06821393681276108077...
ee
e
1
k !e
ke
0
2 .06822709436512760885...
(k ) 1H
k 2
.06826001937964526234...
.06830988618379067154...
.06834108969889116766...
2
6
2
4
4
2 k 1
coth
1
(
2
0
7 3 log 2
72
( 1) (2 k ) 1
1
4
2
k 1 k k
k
k 2
dx
log 2 x )( x 2 1)
GR 4.282.3
2
log x
dx
x4
1
919
1
13440
k 1 k ( k 2 )( k 8)
( k )
.06838993007841232002...
k
k 2 2
e1/ e e 1/ e
1
1
1 .06843424428255624376... cosh
2k
e
2
k 0 ( 2 k )! e
1 i 3
1 i 3
8 (3)
Li3
Li3
1 .06849502503075047591...
9
2
2
1
3
log(1 x )
1
1
.06853308726322481314... log log 2 Li2 Li2
4
2
2
x 5
0
.06837797619047619048...
.0685333821022915429...
sin 3
3
1 2
k
k 2
k 2 2k 2
2
2k 1
2 3
k 1 k
k
2
2 .0687365065558226299...
2 HypPFQ {1,1, 1,1,1,1},{2 , 2 , 2 , 2 , 2 , 2}, 2
5
k 1 k ! k
log k
.06891126589612537985... ( 4) 4
k 1 k
1 .068959332115595113425...
2
5
2
4
csc
5
5
5 5
x
0
dx
1
5
.0689612184801364854...
1 .0690449676496975387...
1 .06918195449309724743...
.0691955458920286028...
8 4
1
729
1
k 1
2
1
7
2
(3k 1)
4
1
4
(3k 1)
( 2 k 1)!!
(2 k )!!8
k 1
k
3
29
log 2
log x sin x
dx
2 8
4
ex
0
log 2
7
.069210168362720747484...
(3) (3)
8
8
log(2 k 1)
3
k 0 ( 2 k 1)
Prud. 5.5.1.5
12 log 2 3 14
x 2 arcsin x log x dx
54
0
1
.0693063727312726561...
.06934213137376400583...
1 ( 2) 7
( 2 ) 3
8
8
512
log 2 x
1 x 4 1
.06935686230685420356...
1
31 / 3 i31 / 6
i
3
3
2
2 311 / 6
2
31 / 3 i31 / 6
2 3 2 31 / 3
3 3i 2
2
( 3k ) 1
1
=
3
k
3
k 1
k 2 3k 1
1
.069397608859770623540...
HypPFQ{1,1,1,1},{2, 2, 2, 2},1
3
k 1 k!k
.06942004590872447261...
32 2
x 2 dx
0 ( x 2 2)3
2
1
4
.0694398829909612926... 3 9 log 3
18 2
2
3
6
k 1 k ( 3k 1)
1
k (2k )
5(5 2 5 )
.06946694693495230181...
50
25k
5 2
k 1
.06955957164158097295...
=
.069628025046703042819...
.06973319205204841124...
(1)
1 1 4 log 3 2 (3)
1
log 2 2 log 3 log 2 Li2 Li3
2 4
3
4
4
2
log 2 x
1 x 1 dx
3 7
G
2 8
32 4
2 3 1
27
3
(x
1
2
1
x log
2
0
dx
x 1) 2
x arctan x dx
1 .06973319205204841124...
2 3 2
27
3
=
k 0
k
1
3 1
,
2 F1 2,2,
2
2 4
5
log 2
( 1) k
( k ) 1
( 1) k
12
2
2 k 1
k 0 2 k 8
k 2
1
1
2
k
2
k 1 8k 20k 12
k 1 2 (3k 6k )
=
k
2k
3
3 .06998012383946546544...
.07009307638669401196...
1
dx
log1 x ( x 1)
3
1
.07015057996275895686...
7 4
9720
(k )
.07023557414777806495...
(2 k )!
1
log 3 x
dx
x4 x
k 2
12 .070346316389634502865...
.0704887501485211468...
.070541352850566718528...
e 1
2
k 1
e
x
sin x dx
0
1
3
log 3 log cosh
3
2
(3k ) 1
k 1
3k
1
1
log1 3
3 k 2 k
/4
1
1
1
192 2 G ( 3) (3) x 2 log tan x dx
0
3072
4
4
1 .07061055633093042768...
1 .07065009697711308205...
ee
ee 1
1
1
1
k 2k
1
4 Li2
4
.0706857962810410866...
cosh
H (2) k
1
k
k
2 3
k 1 4
k 0 4 ( k 1)
4 ( 2 ) ( 3) ( 4 )
k
k 2
=
1
4
k 1 k ( k 1)
=
1
log(1 x) log3 x dx
6 0
5
1
k4
1
3 2
9
3
1 9 2
1 log log 3 3(log 3 log 2) 4 Li2 Li2
4
2
2
2 2 3
(1) k 1 H k
= k
k 1 2 k ( k 1)( k 2)
.070698031526694030437...
3 2 log 2 2
log5 x dx
179 .0707322923047554885... log 2
GR 4.264.3
18
( x 2)( x 1)
0
2
.07073553026306459368...
9
sin 3k
3
i
3i
3i
.0707963267948966192...
log1 e log1 e
2
2
k
k 1
1
sin k
1 .0707963267948966192...
GR 1.441.1, GR 1.448.1
2
k
k 1
sin 1
sin 2 k
= arctan
2
1 cos1
k
k 1
k
1
2
2 .0707963267948966192...
2
k 0 2 k 2
k
2
2
1 (2) 4
( 2) 3
.07084242088030439606...
10
5
1000
1
log 2 x
x 4 x 1
( 1)
3 3
2
log k 2
8 4
3
k 2 2 ( k 1)
arctan 2 log 5 2
log x sin2 x
.07101537321990997509...
dx
5
20
5
ex
0
k
.07090116891887671352...
.07103320989006310636...
( 1)
k 2
k
Fk 1 (2 k ) 1
k 2 2 k 1
3 .0710678118654752440... 5 2 4 k
k
k 0 8
7 .0710678118654752440...
50 5 2
326
( 1) k
.07130217810980315986... 120
e
k 0 k !( k 6)
.071308742298512508874...
(3)
4
8 log 2 2 log 2
2
2
6
6 log 2 (1 x ) log x dx
0
i
sin k
I 0 2 ei I 0 2 e i
2
2
k 1 ( k !)
60
F
(1) k 1 k 2kk
.07134363852556480380...
841
4
k 1
1
1
.0713495408493620774...
16 8
k 1 ( 4 k 3)( 4 k 1)( 4 k 1)
1
log x
dx
= 2
2
2
4 log x x 1
0
1 .07133434403336294393...
1
J239
GR 4.282.8
.0714285714285714825
=
.0717737886118051393...
1
14
3
x2
3x
dx
432
e e3x
0
1
1
1
1
1
1
2
2
3
3
2k
1
.07179676972449082589... 7 4 3 k
k 1 16 ( k 1) k
.071791629712009706036...
.07189823963991674726...
k 2
1
k
3
1 ( 3) 3
( 3) 7
8
8
4096
10 3
.07190275490382753558...
8
3k
log 3 x
1 x 4 1
/4
sin
2
x tan 2 x dx
0
1 1
1
4
log Lik
4
3
4 4
k 1
log k
.071995909163798022179... 4
k 2 k 1
9
k2
.072000000000000000000 =
( 1) k 1 k
25
9
k 1
.07192051811294523186...
.07202849079249295866...
( k ) 1
6
k 2
.07215195811269160758...
2 9
( 1) k
2
12
k 0 ( k 3)
2
k 1 cos k
= ( 1)
k2
k 1
log x
= 3
dx
x ( x 1)
1
.07246703342411321824...
8
=
e
3x
0
1 .07246703342411321824...
.072700105960963691568...
( 1) k
4
2
k 2 k k
x
dx
e2 x
2 3
12
GR 3.411.11
(1 x 2 ) log(1 x )
dx
0
x
1
3
8 6 3
.07270478199838776757... 1 2 arctan
( 2k ) 1
k 1
1
2
9
k
4
k 1
9k
k 2
k 1
( 1)
( 2 k 1)
k
1
2
1
9k
k 1
2
1
18k 8
.07277708725845669284...
1 ( 3) 3
( 3) 4
5
10
1000
1
log 3 x
x 4 x 1
1
log k
lim log 2 n
n 2
k
k 1
n
.072815845483677...
.07284924190995026164...
=
Berndt 8.17.2
1 1
1
1
1
2 2
( 1) k 2 k k
1
1
1
(k ) 1
2
k
k 2
.072900620536574583049...
x log x
1
1 Li2
dx
x
3
3
0
.07296266134931404078...
1
1
5 3
1
2 4 4
2k (1) k 1
k
k 1 k 4 ( 4k 1)
2
2k 1
1
K
1 .07318200714936437505...
4 k 0 k 64k
1
1
1
(1 i ) (1 i ) i i
.07320598580844476003...
4
2
2
2
.0732233047033631189...
cos2 x
dx
x
1
0
=
e
2 2
8
.07325515198082261749...
.073262555554936721175...
=
1 .07330357886990841153...
=
755 .07330694419801687855...
.07344910388202908912...
cos x
e
2
0
x
1
dx
1 ( 3) 1
( 3) 3
4
4
20736
4
e4
(1)
k 1
Prud. 2.5.38.9
1
log 3 x
x4 x2
k
4 k
k!
1
(k ) 1 1
2 1F1 1, 2, 3,
(1) k
k
2 k
2k
k 2
k 2 8k
1
9
1 log
2
16
120 I 6 ( 2 ) 2670 I 7 ( 2 ) 8520 I 8 ( 2 ) 8000 I 9 ( 2 )
3025 I10 ( 2 ) 511I11 ( 2 ) 38 I12 ( 2 ) I13 ( 2 )
k4
2
k 1 ( k !) ( k 5)
k 1
.07329070292368558994...
7
4
2
cosh 2
.07345979246907078119...
2
18
2
12 3
1
(12k 7)
k 1
(k!) 2 (2k )
(2k )!
k 1
3
log 2
.07355072789142418039...
3
10
3 3
(1) k 1 H k
.073553956728532...
2
k 1 ( 2k 1)
2
1
2
(12k 5)
J346
1 .07351706431139209227...
.07363107781851077903...
.07366791204642548599...
.07387736114946630558...
.07388002973920462501...
.07394180231599241053...
.07399980675447242740...
1 .07399980675447242740...
.07400348967151741917...
.07402868138609661224...
2k
3
1
k
128
k 0 4 ( 2 k 1)( 2 k 3)( 2 k 5) k
ci( )
5
4
( 1) k 1
k
2
e
k 1 ( k 2 )! 2
35
48 2
/4
8
11
sin x tan 4 x dx
3 3 2
0
2
k2
2
sinh 2
k 1 k 1
1 .0741508456720383647...
1 .07418410593764418873...
2
log 2 (1 x )
x ( x 1)( x 2)
2
27
=
2
log 2 2 log 3 2 log 3 2
1
1 5 (3)
(log 2) Li2 Li3
2
2
2
3
8
0
.074074074074074074074 =
CFG B5
(1) (i ) (1) ( i )
sinh 2
Hk
2
2
3 6 log 3 log 2 k
3
3
k 1 3 ( k 1)( k 2)
1
1
=
( 1) k
k 0 3k 8
k2
( 1) k
2
k 0
k
k3
( 1) k Li 2 ( 2) Li 3 ( 2)
2
k 0
k
log 2 x
log 3 x
dx
1 x 4
1 x 4 dx
2 (5)
2 ( k )
5
(10)
k 1 k
2 log 5
1
1 1/ 5
log
5
5
1 1/ 5
Titchmarsh 1.2.8
Fk Fk 3
k
k 1 4 k
( 1) k
3 ( k ) 1
k 2 k
.07418593219600418181...
2 .07422504479637891391...
(1)
5 .074304749728368200293...
1/ 5
1
1
Li k k
3
k 2
1
2/5
(1) (1)3 / 5 (1) 4 / 5
k 1
x
( x) dx
1
.07438118377140325192...
1
5
log
3
4
1
k
k 1 3k 5
dx
(3x 1)(3x 2)
1
1
14
7
( 1) k
csch
2
2
7
2
k 0 2 k 7
3
log 2 7 (3)
1 .07442638721608040188...
(2) log 2
3
4
1
H ( 3) k
1
= 2 Li3 2 k 3
k
2
k 1 2
k 1 2 k
.07442417922462205220...
log 2 x
=
dx
2x2 x
1
1 .07446819773248816683...
x2
0 2e x 1 dx
e2 log1 e 2
1
( k 1)e
k 0
k 1
1 csch1
(1)
2 2
2
2
k 1 k 1
184
4
7 (3)
.07473988678897301721...
log
27
9
2
4
1 .0747946000082483594... Li2
5
2k
.07454093588033922743...
1 .07483307215669442120...
2
16
3 .07484406769435131887...
2
1 (1) 1
G
4
2
16
16
27 3
k (k 1)
k 1 2k
k
(1) k 1 k 3
(k 1) 1
k
k 1 2 ( k 1)
1
2
k 0 ( 4 k 1)
1
log x dx
x4 1
0
1
(1 k 4 ) 2
k 1
k 2
3 i 3
2 1 1 3 i 3
.074859404114557591023...
2
3
6 3 2
2 1 1
1
=
(1)1 / 3 (1) 2 / 3 4
3
6 3
k 2 k k
.074850088435720511891...
( 1) k 1 k ((4 k ) 1)
k
1
5
1 k
4
=
=
1
1
k 2 k k
2
5
( 1) (3k 1) 1
k 1
k 1
.074877594399054501993...
35 3 2
72
1
2
k 1 k ( k 4)
1
x
0
3
log(1 x ) log x dx
.07500000000000000000
=
1 .07504760349992023872...
.075075075075075075075 =
2 .07510976937815191446...
.07512855644747464284...
3
40
1
K1 / 2
e
2
5
B5
66
1
4
k 0 ( k !!)
1
(3)
log(1 x 4 ) log x
dx
16
x
0
1 .07521916938666853671...
2(5) d 2 (k )k 5
Titchmarsh 1.2.2
k 1
1
1
1
1
( 1) k 1 k 2
cos
cos
k
4
2
2
2
k 1 ( 2 k 1)! 2
1 .07548231525329211758... 5 ( 3) 3 ( 2 )
( 4)
.0757451952714038687... ( 2 ) ( 3)
( 2 ) ( 3) 2 (5)
4
( 1) k 1 k 3
4 log 3
.07580375925340625411... 1
2
3
2
k 1 27 k 3k
1
=
2
9k
k 1 k 3k
2
3
2
2
.07522047803571148309...
( 1) k 1 k 3
k !2 k
8 e
k 1
93
1
.07591836734693877551...
1225
k 1 k ( k 2 )( k 7 )
( 1) k 1
31
1/ 4
.0760156614280973649... 20e
k
2
k 1 k ! 4 ( k 2 )
1
.07606159707840983298... 1
90
.07581633246407917795...
.07615901382553683827...
1 .07615901382553683827...
( 4) 1
( 4)
( 1) k 1 k ! 4 k
erfi 1 1
e
( 2 k )!
k 1
1
k 1 k
dx
( 1) 4
erfi 1
x
e
2k
1 x
k 1
0 e
k !
k
.07621074481849448468...
4
k 1
(2 k 1) 1
2k 1
1
k 1
1
2 log k 1 k
k 2
Hk
k ( k 1)
k 1
4
Berndt 2.5.4
log 2
= 1
2
1
arccoth k k
k 2
=
2 x e x log x sin x dx
0
.07646332214806367238...
i
i
1
3 i
3 i
1 1
2
2
2
4 2
(1) k
1 log 2 3
k 2 k k
37
( 1) k
.07648051389327864275... log 2
b( 7)
60
k 0 k 7
1
=
2
k 1 4k 27 k 30
=
x
1
1 .07667404746858117413...
=
8
GR 8.375
dx
x7
1
1
2
2
2
e 1
2
1
1
( 1) k 1 (2 k ) 1 Im (1 i )
2
2 k 1
k 1 k 1
coth
J983
=
sin x dx
ex 1
0
sin log x 1
=
0 1 x dx
1
1
2 .07667404746858117413...
coth
2
2
2
2
e 1
1
3
= 2
( 1) k 1 (2 k ) 1 Im (i )
1
2 k 1
k
k 0
1 5
.07668525568456209094...
5/ 2 2
1
.07671320486001367265...
1 log 2
4
/2
=
0
1
2
k 1 16k 8k
sin 3 xlog(sin x)
1 sin 2 x
dx
56
k2
( 1) k 1 k
729
8
k 1
1
.076923076923076923
=
13
2
.07697262446079313824... G G
.07681755829903978052...
2 ( 4k
k 1
k
1
2
4k )
GR 4.386.2
.076993139764246844943...
p prime
(k )
k 1
k
p4
log (4 k )
.077022725309366050752...
19 7 5 arctan 1 5 2 7 2 5 arc cot 1 5 3 3 5 arc coth 2
4
20(3 5 )
k
1
(1) F k Fk 1
= k
k 1 4 ( 2 k 1)( 2k 1)
1
.0770569031595942854...
=
9
( 3, 3)
8
1
1 x 2 log 2 x
dx
2 0 1 x
1
( k 3)
( 3)
k 0
3
(1, 3, 0)
GR 4.261.12
1 1 1
x2 y2 z 2
0 0 0 1 xyz dx dy dz
1
7
1
1
.07707533991362915215...
log arctanh
2 k 1
( 2 k 1)
2
6
13
k 0 13
2
( 2 k 1) 2
.07710628438351061421...
4
128
k 0 ( 4 k 2)
139
1
.077200000000000000000 =
1800
k 1 k ( k 3)( k 5)
=
.07720043958926015531...
.07721566490153286061...
4
16
1 ( 3) 1
256
4
1
1
2
1
log
2
0
x
log3 x
1 x 4 1 dx
x
dx
(1 x ) 2
GR 4.283.4
x dx
(1 x )(e2 x 1)
0
=
2
1 ( x 1) dx
Andrews p. 87
2
1
.0772540493193693949...
0
.07730880240793844225...
.077403064078615306111...
4
T( 4)
1260
9
( 3)
log 2
16
2
k2
(2k 1) 1
k 2 k 1
Adamchik-Srivastava 2.24
.07743798717441510249...
1 erf
1
2
( 1)
k
(2 k 1)
k !4
k 1
k 1
1 .07746324137541851817...
1
k !! k
k 1
.07752071017393104727...
3
log( 2 cos1)
( 1)
k 1
.07755858036092111976...
=
5 .07770625192980658253...
.07773398731743422062...
3 .07775629309491924963...
.07777777777777777777
=
k 1
cos 2 k
k
2
2
1
log 5
log
1
4
10
3 5
5 4 5
(k )
1
k
2
k 2 5
k 1 25k 5k
9 1/ 2
(1) k 1
5
1
log 2
k
4
2
k 1 k ( 2k 1) 4
0 ( k )2
0 ( mn )
k
2
2 mn
k 1
n 1 m 1
4 arctan
7
90
( 1) k 1 e k
k!
k 0
.07784610394702787502...
cos e
.07792440345582405854...
2 2 cos1 sin 1 ( 1) k
k 1
1 .07792813674185519486...
=
=
GR 1.441.4
105
1 p
4
p prime
( k )
( 4)
4
k
(8)
k 1
q
k
( k 1)( 2 k 1)!
4
4
Berndt 5.28
Titchmarsh 1.2.7
q squarefree
.07795867267256012493...
8
2
2 log
9
3
( 1) k 1 k 2
k
( k 1)
k 0
2
2
50G 43 1
1 (2 k 1)!!
.07796606266976290757...
128
7
k 1 2 k 7 ( 2 k )!!
1
2 .0780869212350275376...
log
1
(k )
1 .07818872957581848276...
e1/ k 1
k
k 2 k !
k 1
.07820534411412707043...
2e
3
cos 3x
dx
2
1
0
x
J385
( 1) k 1
1
2
2
csch sech sinh 2 2 2 2
2
12
2
2
k 1 k ( k )
i
i
1 i
1 i
1 .07844201083203592720... 1 1
2
2
2
2
3
( 1) k 1 k
.07844984105855446265...
k
4 3 8
k 1 3 ( 2 k 1)
.0782055828604531093...
sin 2 sinh 2
.07847757966713683832...
2 2 cosh 2 cos 2
1
1
( 1) k 1 (4 k ) 1
4
1
k 2
k 1
17819
1
.0785670194003527336860 =
226800
k 1 k ( k 1)( k 10)
2
(2 k 1) 1
.078679152573139970497...
log 2 6 (1)
3
2
k 2
k 1
1
1
3
= k log 1 2 k
k
2k
k 2
=
k
1
.07882641859684234467...
ci (1) log 2 cos1 log 2
log 2 x sin x dx
0
.07889835002124918101...
k
k
1 2
k 1
(2k 1) 1
2
log 2 6 (1)
k2
3
2
k 1
1
1
.07896210586005002361...
4 2 24 log 2 2 27 k
2
12
k 1 2 ( k 2)
3 ( 3) 2
( 1) k 1 k
.07907564394558249581...
3
4
12
k 1 ( k 1)
1
.079109873067335629765... log ( 4) log
4
p prime
1 p
1 .07891552135194265398...
. 07912958763598119159...
HW Sec. 17.7
3 G 3
3 2
3
1 3
3
(1) 3 / 4 (1)
(1)1 / 4 (1)
cot
log 1 (1) 3 / 4
512
32
512
8
64
8 512
8
3
3 (3)
7 3
5 3
(1)1 / 4 (1)
(1) 3 / 4 (1) Li3 (1) 3 / 4
512
2
8 2
8 512
/8
0
.07921357989350166466...
=
.07921666666666666666
=
.079221397565207165999...
.07924038639496914327...
x3
dx
sin 2 x
(k )
4
log ( 1) k k
3 3
3 k
k 2
3k 1
1
log
3k
k 1 3k
7
96
Dingle 3.37
1 dx
2 9
x
log1 x
1
53 (6) 3 2 (3)
24
2
1
1
1
( 1) k k
2 sin
cos
k
2
2
2
k 1 ( 2 k 1)! 2
MHS (3,1,2)
.079332033399540433998...
(3x) 1 dx
1
( 1) k k
k 1 ( k 1)( k 2 )
1
( 2 k 1)
=
3
16 k
k 1 16 k k
k 1
.07944154167983592825...
3 log 2 2
(1) k 1
k 1 2k k
2 k (2k 1)
k
=
.07957747154594766788...
1
4
cos( / 2 x)
dx
2 x
e
1
0
1 ( 2 ) 3
.07970265229714766528...
5
125
3 log 3
1
4
.07998284307169517701... 3
(1)
3
2
3
2 3
1
=
log(1 x ) log x dx
3
0
.080000000000000000000 =
2
25
(k )
10
k 1
k
1
.080039732245114496725...
log 2 x
251
( 2) (4) 5
dx
2 (3)
x x4
108
1
1
k (3k 1)
k 1
2
1
=
x 3 log x
dx
1 x
0
32 / 3 3 9
7
1 .08012344973464337183...
1
6
2 .08008382305190411453...
.08017209138601023641...
.0803395836283518706...
4
1215
k 1
1
(k ) 1
k
3
k 2
.08035760321666974058...
( 2 k 1)!!
(2 k )!!7
k
log 3 x
dx
x4 x
log 3
1
2
6 3 6
=
1
(3k 2)(3k 3)
k 1
1
k 2 3k ( 3k 1)
log 2 2 log 2
(1)
k 1
x
1
6
dx
x5 x 4
log k
k
k 2
4
(1) k 1
log
k (4k ) 1
k 1
cosh 2 cos 2
1
log 1 4
k
k 2
1
k 1
(5k 1) 1
4
1 ( 1)
k 2 k k
k 1
1
H
96 log 2 18 log 2 2 55 ( 1) k 1 k
36
k 4
k 1
1 ( k )
( mn )
mn
k
3
n 1 m 1 2
k 1
3
log k
k 2 6 k ( k 1)
1
2 cos1 ei e i
2
1
1
k B2 k
2
4 2( e 1)
k 1 ( 2 k )!
2
.080362945260742636423...
=
.08037423860937130786...
.080388196756309001668...
.0805396774868055356...
1 .08056937041937356833...
1 .08060461173627943480...
.08065155633076705272...
.080836672802165433362...
10
1 x2
50 10 5 5 2 arctan( x 5 ) dx
x
0
1
( 1) k
4
k 2 k log k
.081045586232111422...
.08106146679532725822...
1 log 2
1
1
k 1 2k ( k ) 1
k 2
K ex. 125
2
=
log ( x ) dx
GR 6.441
1
1
1
1 dx
log x 1 x 2 log x
0
1
=
.081019302162163287639...
GR 4.283.2
3
1 1
1
log k
2
5 k 1 3 k
5
log5 x
8 6
( 5)
dx
120 (6) 1
63
1 x
0
1
122 .081167438133896765742...
.08126850326921835705...
13
15 4
( 1) k
k 0 2k 7
1
dx
8
x x6
/4
tan
6
x dx
0
.081317489046618966975...
(2k 1) 1 dx
1
.08134370606024783679...
i
6
.08150589160708211343...
log 3
1
log 2
2
4
e
3 (3)
k
1 coth
cot
3 4 i cot
3 4 i
2
6
2
2
2
k
= 6
( 1) k 1 (6k 2) 1
k 2 k 1
k 1
1
( 2 k )!!
.08135442427619763926... 9 2 arcsin 1
k
3
k 1 ( 2 k 1)!! 9 ( 2 k 1)
1
x dx
2 .08136898100560779787...
2
log 2
2x
0
3
1 .08163898093058134474...
.081812308687234198918...
32
5
192
0
1
( 1)
k 0
x
dx
(e 1)(e x 2)
x
1
1
3
3
(2 k 1)
( 2 k 2)
(sin x x cos x)3
dx
x7
k3
(1) k 1 (7 k 3) 1
7
k 2 k 1
k 1
(1) k
4
1
1 .08194757986905618266...
sin
2 k 0 k!(k 12 )16 k
3
k
.08197662162246572967... 15 log 6 k
2
k 1 3 ( k 1)( k 2 )
1
1
3e
1
1
.081976706869326424385...
coth 1
2
2(e 1)
2
e 1
2
Prud. 2.5.29.24
.08183283282780650656...
Bk
(2k )!
k 1
1 .081976706869326424385...
=
.082031250000000000000 =
.08217557586763947333...
1
1
e1/ 2 e 1/ 2
coth
2
2
2 e1/ 2 e 1/ 2
B2 k
k 0 ( 2 k )!
21
k2
( 1) k 1 k
256
7
k 1
1
log 2
( 1) k
2 6 3
6
k 0 6k 8
.0822405264650125059...
1 .08232323371113819152...
x
9
1
dx
x3
log 2
log 3
1
1
log 2 log 3
Li2 Li2
3
2
2
2
2
.08220097694658271483...
AS 4.5.67
2
12
4
90
2
log 2 2 1
1
k
2
2
2 k 1 2 (2k 4k 2)
2
k 2
1
k2
k
(4) MHS (2,1,1)
=
H ( 3) k
k 1 k ( k 1)
=
36
17
=
1
k 1 4 2 k
k
k
1
9
3
k 1 4 2k
k
k
42 2
1 .082392200292393968799...
.0824593807002189801...
=
.08264462809917355372...
1 k 1 1
2
k 1 2 2k j 1 j
k
k
( 1) k
1
4k 6
k 0
7
2
4
.08248290463863016366... 5
3
.08257027796642312563...
Borwein-Devlin, p. 42
( 1) k k 2 2 k 1
8k k
k 0
( 1) k k 2 k
k
k 0 8 ( k 1) k
1
2 sin 2 sinh 2
coth
16 8
8 cos 2 cosh 2
(
8
k
4
)
1
k 4 1 k 4
k 1
k 2
k 1
10
( 1) k
121
10k
k 1
(1) k 1 k
(k 1) 1
.082681391910818588188... 4 4 log 2 log
k 1 ( k 1)( k 2)
1 .08269110766346817971...
1 Hk
k!
2
H ek
k 1 k!
.082710571850225464607...
1 .082762193260924580122...
6 .082762530298219680...
x log x
1
6
dx
log 2 1 2 (2) 2x
e
24
1
0
6e
2
lim
n
1
log n
( 6k 2) 1
=
=
.082936658236923116009...
=
15 .08305708802913518542...
122 .08307674455303501887...
.0831028751794280558...
.08320000000000000000
=
.08326043967407472341...
1
k 3
k 2 log(1 k 6 )
1
1
1
1
1
cosh 1 / 4 sin 1 / 4 cos 1 / 4 sinh 1 / 4
1/ 4
2
2
2
2
16 2
1
1
1
sin 1 / 4 sinh 1 / 4
2
2
8 2
2k k 2
(1) k 1
(4k )!
k 1
7
6
4
41
k k k
k 1 ( 2 k 1)
( 1)
( 1)
( k 1)!
( k 1)!
e
k 1
k 1
5
log k
(5) ( m)
k 2 k ( k 1)
m 2
( 1) k 1 Hk
5
5
log 2 k
2
6
k 1 5 ( k 1)
276
k4
( 1) k k
3125
4
k 1
2
3
log 2 log 2
1 15
2 Li3 (3)
2 36
18
3
log 2 (1 x )
0 x( x 3) dx
1
=
k 2
4
k
k 2
1
7 (3) 3
3
( 2)
64
8
32
4
7 (3) i
Li3 (i ) Li3 (i )
8
2
1 2
2
x log x
log 2 x
dx
0 1 x 4
1 x 4 1 dx
k 1
.08285364400527561924...
p prime n
(7k 3) 1 k
k 1
.08282567572904228772...
1
37
.08282126964669066634...
1 p
Berndt 2.9.7
.083331464003213147...
(k )
k
k 2
.083333333333333333333 =
=
4
1
12
e
1 .08334160052948288729...
.08334985974162102786...
1 .08334986772601479943...
.08335608393974190903...
2 .08338294068338349588...
k
(6k 2) 1
log (4k )
k 1
k
k 2
4
x
1
k 2
Prud. 2.5.38.9
1
(4 k ) 1
1
4
k
k 1
k 2
1
cos1 cosh 1 2
k 0 ( 4 k )!
.08339856386374852153...
k 1
25
H4 4 k (2 k ) 1 1
12
k 1
k !!
2
k 1 ( k )!
257
k3
( 2) 9 ( 3) 27 ( 4) 27 (5)
5
32
k 1 ( k 3)
k!
2
k 1 ( k )!
1
5
log(1 x )
2
1
log log 2 Li2 Li2
3
3
3
x4
0
.08337091074632371852...
(k )
dx
2
0
2 .083333333333333333333 =
(4)
2
Li k
2
1 2
k 2
k 1
1 .08343255638471000236...
.08357849190965680633...
1 .08368031294113097595...
.08371538929982973031...
57 .08391839763994994257...
8103 .083927575384007709997...
1 .08395487733873059...
1
cos 4 2 cosh 4 2
2
(k )
1
p
4
k 2 k
p prime 4 1
2k
k 0 ( 4 k )!
1
cosh 2 cos 2
1 4
2
k
4
k 2
2
47 log 2 21 log 2 85
k 2 Hk
k
2
2
4
k 1 2 ( k 1)( k 2 )( k 3)
21e
e9
H ( 3) 3/ 2
( 1) k
1 G
2
k 1 ( 2 k 1)
.0840344058227809849...
k ( 2 k 1)
16 k
k
2
2
16
k 1
k 1 (16 k 1)
1 k
3
k k 1,
8 k 1 2
4
=
=
=
log x
dx
4
x2
x
1
.08403901165073792345...
=
.084069508727655996461...
3 .084251375340424568386...
.08427394416468169797...
B2 k
1
2 log 2 sin (1)k 1
2 k 1
(2k )! k
cos k
2
k
k 1
1
5 2
16
8
.08439484441592982708...
.084403571029688132...
2
32
.084410950559573886889...
.08444796251617794106...
=
k 1
2
.0848054232899400527...
2
( 4 k 1)
) 1
k
k 2
e
k 4
4
1
k 1
1
k 2
cos1 si (1)
log 2 log 2 i log 2 i
(3k 1) 1
k
2
1
1
.084756139143774040366... 1 cot
2
2
1
(4 k 3)(4 k 2)
k!
k 1
.0848049724711137773...
Borwein-Devlin, p. 82
cos x
dx
x2
2
1
(4 k ) 1
4
log
log(1 k 4 )
k
sinh
k 1
k 2
.08452940066786559145...
(4 k ) 1
k 1
k4
2
3
k 1 ( k 1 / 4)
(5k 1) 1
k 1
AS 4.3.71
( k
k 2
1
kk
2 k
k!e k
k 1
1
2 2
2
3
.08434693861468627076...
Adamchik (29)
e
1
1
3
k Li k
k 2
2
( 1) k 1 B2 k
(2 k )!
k 1
i log i e log i
4 2
log 4 2
1 21
log 2 2
6 Li4 (3) log 2
2
15
4
2
4
2
/4
2
J271
log 3 (1 x )
0 x( x 1) dx
17
.085000000000000000000 =
200
1
.08502158796965488786...
2 arctan
2 4
k
4 .0851130076928927352...
k 2 dk
1
=
2
1 .08514266435747008433...
/4
0
sin 2 x
dx
1 cos2 x
dx
( x)
1
.08515182106984328682...
178
1
225 6
2
1
(2 k 1)!!
(2 k )! 2 k 6
k 1
2
J385
7 (3)
.085409916156959454015... 12
4 log 2
log(1 x 2 ) log 2 x dx
2
2
0
41
1
.08541600000000000000 =
480
k 1 k ( k 2 )( k 6)
2
5
log( x 2 1)
.08542507002951019287...
1 3
dx
24
x ( x 1)
0
1
5 2
1 .08542507002951019287...
24
1 .08544164127260700187...
=
log( x 2 1)
0 x 2 ( x 1) dx
1
1
k
2
k 0 ( 2 k 1)! 2
1
1 2 2
2 k
k 1
2 sinh
1
11
5
1 .085495292598484041001...
16G 8 2 3 (1) (1)
144
12
12
.0855033697020790202...
4 (4
k 1
k
2
k 1
k2
1
log x dx
1 x 2
2
1)k
1 .08558178301061517156...
x
1
k
5 1
Ei(1)
4 3
3
20 .08553692318766774093... e
1
2 .08556188259741465263... ( k )
k 1 2
2k
.0855209595315045441...
( 2 k 1)
(1) k 1
2
k 1 k!( k 2)
Berndt Sec. 4.6
u2 ( k )
k
k 1 2
log k
.085590472112095541833... 4
2
k 2 k k
=
.085628268201073866915...
.08564884826472105334...
.08569886194979188645...
=
(3)
2
2
24
5
48
HkHk
k (k 1)(k 2)(k 3)
log 2
3
3
3 3 4
k 1
( 1) k
k 0 3k 7
x
1
8
dx
x5
5 i 3
log 2 1 1 i 3 3 i 3
3
6
12 4
4
5 i 3
1 i 3 3 i 3
12 4
4
(1) k
3
k 2 k 1
( 1) k
k
k 2 2 ( k )
.08580466432218341253...
1 .08586087978647216963...
.08597257226217569949...
.08612854633416616715...
1 .08616126963048755696...
3 .08616126963048755696...
3
4
2
1
sinh 1
cos k
1 k
2 cosh 1 cos1
k 1 e
3 log 2
3
( 1) k 1
3
360
k 1 k sinh k
1
1
e 2 2 cosh 1 2
e
k 0 ( 2 k 1)!( k 1)
1
1
1
e 2 cosh 1 4 sinh 2 2
e
2
k 0 ( 2k )!
1 sin 1
1
.086213731989392372877...
csc2
8
2
3
( 1) k 1 k B2 k
(2 k )!
k 1
log 2 log 2 2
.08621540796174563565...
48 8
4
4
.086266738334054414697... sech
1 .086405770512168056865...
.086413725487291025098...
GR 8.366.5
/2
log sin x sin
2
2
x dx
0
7( 3)
4 2
(1 log 2) 2 log 2
4
64
4
/4
log 2 G
cos x sin x
x dx
4
2
cos x sin x
0
Hk
(2 k 1)
k 1
3
/4
=
0
x2
dx
(cos x sin x) 2
/4
=
log cos x dx
GR 4.224.5
0
.086419753086419753
=
7
81
.086642070528904716459...
.086662976265709412933...
.086668878030070078995...
1 .086766477496790350386...
.086805555555555555555 =
.08683457121199725450...
.08685154725406980213...
.086863488525199606126...
1 .08688690244223048609...
.087011745431634613805...
2 .087065228634532959845...
9
k 1
( x) 1
2
.086643397569993163677...
(k )
2x
1
k
dx
log 2
1
1
k 3
2
8
k
k 1 2
k 1 32k 16k
7
1
coth 4
(4 k ) 1
8 4
k 2 k 1
k 1
(3k 1) 1
1 3
ek 1
k!
k 1
k 2 k
2
2k
1
2
8
8 log 2 4 log 2 k
3
3
k 0 k 4 ( k 1)
k3
k 1 ( k 1)( k 2 )( k 3)( k 4 )( k 5)
1
k 0 k ( k 1)!( k 2 )!( k 3)!
25
288
1 2 log 2
8 32
2
(3k 1) 1
k 1
k
log x
( x 1) ( x 1) dx
log1 k
k
3
1
k 2
1
3
3
log
csc
2
2
2
64
3
3 (2 k ) 1
k
k 1 2
k
/2
( 2 log 2 1)
e2/e
log(sin x) sin
2
x cos2 x dx
0
2
k
k !e
k 0
k
2arcsinh1 2
( 1) k 1 k 2 k
k
4
k 1 4 ( 2 k 1) k
1
1
3 log 2
( k )
.08744053288131686313... 1
2
( 1) k k
8
4
4 k 1 4 k k
4
k 2
.08713340291649775042...
=
x
5
1
.087463556851311953353...
dx
x x3 x2
4
30
343
( 1) k 1
k 1
k2
6k
11
6k 8
1 .087473569826260952066... ( 3)
5
4
3
96
k 1 k 6 k 8 k
1
1
1
k
.08757509762437455880...
2 sinh
cosh
k
2
2
2
k 1 ( 2 k 1)! 2
1 .087750469214439700994...
.087764352700090443963...
.08777477515499598892...
.087776475955337266058...
.087811230536858587545...
2 .087811230536858587545...
.087824916296374931495...
.087836323856249096291...
.087981169118280642883...
1 .088000000000000000000 =
.08800306461253316452...
13 8
13
(8)
113400
12
H ( 4) k
k4
k 1
1
1
( 4 k )
k
k
k
4k
k 2 4 1
k 1 4 ( 4 1)
k 2
( 2k )
log
1 3 (3)
2
k
3
18
2
k 1 4 k ( 2k 3)
log G
k
2 ( 2 ) ( 3) 2
3
k 1 ( k 1) ( k 2 )
( k 1) ( k )
3k 1
2 ( 2 ) ( 3) 3
2
2 k 2
k 1 k ( 2 k 1)
k 4
1
1
2 2 7 arcsin
2 2
k 1 2 k k
2 (2 k 1) k
k
24
( 1) k
k 0 k !( k 5)
log 2 2
6
3
3
136
125
3
pf (k )
k4
J1 2 3
k 1
.08802954295211401722...
65
e
.088011138960...
0
2
e
log 4 x
1 x 2 dx
1 dx
6 4
x
log1 x
1
2
x sin x
dx
ex
( 1) k
k 0
1
7
cos
6
2
3k
k !( k 1)!
7
1 (2k 1)
k 1
2
.08806818962515232728...
6 .08806818962515232728...
4
16
6
1
4
log 3 x
dx
x4 x2
1
3
log 3 x dx
0 x 2 1
log x dx
4
x 1
16
0
=
x 3 dx
0 e x e x
1 .08811621992853265180...
4
sinh
k4
(4 k ) 1
2
2
i
2
i
exp
4
k
k 2 k 1
k 1
.08825696421567695798...
Y0 (1)
.08839538425779600797...
23 log 2
72
3
.088424302496173583342...
1 x2
0 log(1 x) (1 x)4 dx
1
GR 4.291.23
( ) 1 where S is the set of all non-trivial integer powers
S
.0884395847555822353...
( k ) ( k ) 1
k 2
1
k j 1 k j
.08848338245436871429...
MHS (4,2)
.088486758123283148089...
3 log 6
19
log
6
2
.08854928745850453352...
1
5cos1 3sin1
2
.08856473461835375506...
1
log 2 tan
2
.08876648328794339088...
1 2
2 24
4 2
(1) k 1 2k k 2
(k 1) 1
k 1 ( k 1)( k 2)
( 1) k 1 k
k 1 ( 2 k )!( 2 k 3)
( 1)
k 1
k 1
(2 2 k 1 1) B2 k
(2 k )! k
AS 4.3.73
1
x log(1 x
2
) log x dx
0
1
=
x log x log(1 x ) dx
0
1 .08879304515180106525...
log 2
2
2k
k 4
k 0
1
=
arcsin x
0 x dx
1
=
0
x arcsin x
dx
1 x2
/2
k
1
(2 k 1) 2
log sin x dx
0
Berndt 9.16.3
1
=
log x
dx
1 x2
0
GR 4.241.7
1 x 2 dx
0 log x 1 x 2
1
=
GR 4.298.8
/2
=
log(2 tan x) dx
GR 4.227.3
0
/4
=
log(tan x cot x) dx
GR 4.227.15
0
=
dx
log(coth x) coth x
GR 4.375.2
0
.088888888888888888888 =
4
45
.08894755261372487720...
k ( k 1) k k
( k )
k 2
1
j
k 2 j 2
=
j
1
( 1) (mk m) 1
k
k 1 m 2
.08904125208589587299...
1
=
0
.08904862254808623221...
.0890738558907803451...
2
1
x 2 dx
1 e3x 1
2
3 1
16 2
sin k cos3 k
k
k 1
1
erf (1) 1
e
(k ) 1
( k 1)
k 2
.089222988242575037903...
log 2 x
dx
x4 x
x log x
dx
1 x3
.089175637887570703178...
2 (3)
27
2
sin k cos 4 k
k
k 1
e x
1 x 2 dx
2
1
k Li k 1
2
k 2
2
1
2 9 log 2 2 3 log 3 2 log 2 3 log 2 log 3 4 Li 2
3
4
1
=
log1 x / 2 log(1 x / 2) dx
0
1 .0892917406337479395...
e 1 1
I 0 I1
2 2 2
.08936964648404897444...
( 1)
k 2
k
(k )
k
2 k
2
k 2k
k
k 1 k!4 k
1
1
Li 2k 2 k
k 1
2
(2k 1)!!
(2k )!! (k 1)!
k 1
1 .08942941322482232241...
.08944271909999158786...
2 5 1 3
3 1 1
K
3
2 3 2
4 4
1
( 1) k k 2 k
k
k
5 5
k 0 16
2
3
1
1 x 4 dx
0
dx
1
e
0 ( x)
k 0 ( k 1)
.08948841356947412986...
dx
0 ( x)
.08953865022801158500...
2 log 2
319
7
2940
( 1) k 1
2
k 1 k 7 k
1
2
log(1 2 )
3
4
2
( 1) k
dx
=
8
x x4
k 0 4k 7
1
.08958558613365280915...
.089612468468018277509...
1 .08970831204984968123...
10
2
8 log
3
3
90
1
4
180
2 ( 4)
.089738549735380789530...
(1) k k
k
k 0 2 ( k 2)
k 1
10
45k
k 1 k 15k
3
15
2
2
f (k )
Titchmarsh 1.2.15
k4
1
k (k 1)(k 2) log k
k 2
1 .08979902432874075413...
(k ) 1
k 2
7 .0898154036220641092...
1 .08997420836724444733...
k
3
1
1
Li k k
k 2
3
4
1
erfi
2
k !4
k 0
k
1
(2 k 1)
2
9
100
.0900000000000000000000 =
( 1)
k
9k
k
k 1
(k )
2
1
log 1
( k 1)
2k
k 2
k 1 k
1 log 2 1
1
1
.090029402624249725308...
i i i i
2
2
2
2
8
2
2 .09002880877233363966...
k 2
sin 2 x
0 e x e x 1) dx
=
1
.09005466571394460992... ( 2) log 2 2 Li3
2
2
2
k 1
k
k
( k 1) 3
57
log x
dx
4
1
x
512 2
0
2
1
5
.09016994374947424102...
11 5 5
2
5 5 1
3 .09016994374947424102...
10 cos
10 cos 5
5
5
2
5
4
24 .09013647349572026364...
11 5 5
5
2
47
(1) k
.09018615277338802392...
log 2
60
k 0 k 6
1 2k 1
k
k
5
k 0
11 .09016994374947424102...
x
=
7
1
k 1
2
1
18k 20
dx
x6
13
.090277777777777777777 =
144
4k
1
k ( k 3)( k 4)
k 1
.090308644735282059644...
1 5
10 1 5 arc cot 2 2 5 2 5 arc coth 1 5 5 5 arctan h
4
20 1 5
Fk Fk
= k
k 1 4 ( 2 k 1)( 2k 1)
1
1 .09033141072736823003...
coth
2
k2
k
k 2 2 ( k 2)
2k (1) k 1
1 1 4
.09039575736110422609... 1 2 F1 , , , 1 k
3 2 3
k 1 k 4 (3k 1)
1 .090354888959124950676... 16 log 2 10
3
.090397308105830379520...
7
343
1
( 1, 0 )
.090411664984819155127... Li
0
2
.090430601039857489999...
3
(1) k
log k
k
k 1 2
1 (1) 2 1
1
2
3 4
9
k 2 ( 3k 1)
( k 1) ( k ) 1
3k
k 2
1
4
.09045749511556154465... 2 4 arctanh log
2
3
=
4
k 1
k
1
k ( 2 k 1)
.09049312475579154852...
csch( k )
k 1
.09060992991398834735...
1
log
2
2
(k ) 1
k 2
2k k
=
1 1
log 1
2k 2k
k 2
1
e 2 I 2 (2) 1F1 , 2, 4
2
5 .090678729317165623...
.09079510421563956943...
1
1
log(e 1)
e
.0909090909090909090909 =
1 .0909090909090909090909 =
.09094568176679733473...
.09095037993576241381...
.091160778396977313106...
1 .091230258953122953094...
ck
k!
k 1
dx
x
1)
e (e
x
1
k 1
e(e 1)
( 1) k 2
(e 1) 3
ek
k 1
1
11
12 F3k
11 k 1 6 k
2
7
2 7 ( 3)
k
3
16
k 1 ( 2 k 1)
1
6
1
1
log arctanh
2 k 1
2
5
11
( 2 k 1)
k 0 11
.090857747672948409442...
1 2k
k 0 ( k 1)! k
tan
21 1
k
2
1
3k 3
2
5 k 0
21
1
.09128249034461018451...
15 4 2 12 coth 12 2csc h 2
192
K148
k (4k ) 1
k 1
=
k
k 2
2
3
1
(1 k 4 ) 2
(1) k
1
.091385225936012579804...
6
2
108 k 0 (3k 3)
k 1 2k 2
k
k
.09140914229522617680...
5e
log x
4
x
x
1
k2
k 1 ( k 3)!
27
2
1 .091537956897273237144...
1 5 5 1
sin x 5
5 dx
8
2
5 0 x
3 log 2 7 2 8G k ( (k ) 1)
.09158433725626578896...
4
8 36
16
4k
k 2
4 cos1 1
cos k
.09159548440788735838...
k
17 8 cos1
k 1 4
1
.09160199373136531664... 4
k 2 k 2
1
G
1
7
3
2 .091772325701657557483...
sech
cosh
2
2
2
1 .09174406370390610145...
.09178052520743498628...
.09180726255210907564...
coth
1
4
2
=
k
k 2
0
1
4
k
(3k 1) 1
k 1
.09197896550006800954...
1 (1) 4
5
25
7 .09215686274509803
=
k 1
sin 2 x
x
x
1
.09189265634688859583...
.092000000000000000000 =
1 k
2e e
1
1
1
2 cosh
3 2 sinh
8
2
2
.09199966835037523246...
3 i 3
3 i 3
1
2 2
3
2
2
k2 k 2
2
k 1 k k 1
1
1
23
250
2
1
2
k 1 (5k 1)
cos x
ex
0
3617
B8
510
k2
k
k 1 ( 2 k 1)! 2
x
1
dx
1
5
2
1
k 1
.09216017129775954758...
5
24
64
5
.0922121261498864638...
.0922509828375030002...
4
.09246968585321224373...
.0925925925925925925
=
.09259647551900505426...
1 dx
2 7
x
log1 x
1
log 4 x
x4 x2
1
( 1)
log 2
k
k 0
log(1 x )
0 (1 x)2 dx
1
=
log 2
5
3
36
2
k
( k 1)( 2 k 1)
1 dx
2
2
( x 1)
log1 x
1
log 3 3 1
1
4
36
3
k 1 ( 3k 1)( 3k 3)
2
5
k
( 1) k 1 k
54
5
k 1
(2 k )k
2k
k 1
1 .092598427320056703295...
(3k 1)
k 1
.09262900490322795243...
4 8 log 2 17
12
(1) k 1
k 1 k ( 2k 1)( k 2)
.092641694853720059006...
.09266474976763326697...
1 .09267147640207146772...
1 .09268740912914940258...
1 .09295817894065074460...
15
12
(2 k 2) 1
log(1 k 2 )
k
k2
k 1
k 2
( k !) 2
8
1
arcsin
k
7
2 2
k 0 ( 2 k 1)! 2
1
3
k 2 k 7
2 log 2 12 log Glaisher
16 4
1
.09296716692904050529... 6 Li3 2
3
.09309836571057463192...
log 2 x
1 3x 3 x 2 dx
e1/ k ( k 1) 1
k 2 ( k )
k!
k2
k
k 2
k 1
1
log 10
cot
2 10 20
5
10
6 .093047859391469...
2
2k
1
2
k
k 0 k 16 ( k 1)
k 2 (2k 1) 1
k 1
k
=
=
1
2
1
4
2
cos log sin cos log sin
5
5
5 5
5
5
k
( 1)
dx
8
x x3
k 0 5k 7
1
3
(1) k 2k 1
I 2 (2)
1F1 ( ,2,4)
.0932390333047333804...
2
e2
k! k
k 0
21
1
.09328182845904523536... e
8
k 0 k !( k 2 )( k 4 )
18G 13 1
(2 k 1)!! 1
.09331639977950052414...
32
5
(2 k )! 2 k 5
k 1
.09334770577173107510...
22
8
e
1/ 3
( 1) k 1
k 1
J385
k3
k !( k 2)
3e
pf (k )
k
2
3
k 0
5 6 log 2
1
.09345743518225868261...
9
k 1 k ( 2 k 1)( 2 k 3)
3
k2
(k )
.093750000000000000000 =
( 1) k 1 k Li 2 ( 3) k
32
3
k 1
k 1 8 1
1
(k ) 1
.093840726775329790918...
log 32 5 ( 1) k
k ( k 1)
2
k 2
2 .09341863762913429294...
2 k 1
1
2
( 2k )
k 1 2
sin
(
1
)
k k 1
(2k 1)!
k 1 k
2 .09392390426793432431...
11 4 3 5 2 4 5
360
4
6
2
6
4
k 1 cos k
= ( 1)
k4
k 1
9 (3) log 2 1
(2 k )
.094129189912233448980...
2
k
4
2
6
k 1 4 ( 2 k 3)
.094033185418749513878...
.09415865279831080583...
1 2 log 2 log 2 2 (1 log 2) 2 (1) k 1
k 1
1 csc 1 ( 1) k 1
.09419755288906060813...
2 2
2
2
k 1 k 1
4
1 / 4
(4 k 1) 2 (4 k 1) 2 1
1 .09421980761323831942...
2
2
16 2
k 1 ( 4 k 1) 1 ( 4 k 1)
1479
1
.09432397959183673469...
15680
k 1 k ( k 1)( k 8)
Hk
(k 1)(k 2)
J1058
2 .09439510239319549231...
.09453489189183561802...
=
2 .09455148154232659148...
.09457763372636695976...
.094650320622476977272...
2 .09471254726110129425...
.094715265430648914224...
.094993498849088801...
.09525289856156675428...
.095413366053212024...
2
1
arccos
3
2
1
2
k 1
log
k
2
3
k 1 3 k
k
(1)
(1) k 1
1
k
k
k
2
k 2 2 k
k 1 2 ( 2 k 2)
k 1 3 ( 2k 2k )
3
real root of Wallis's equation, x 2 x 5 0
( k )2 k
k
k 1 3 1
(i ) ( i )
Re (i )
2
1
arccsch
4
4
1
4
4k 1
(2 k 1)!!
2
2
(2 k )! (2 k 1)(2 k 2)
k 1
(2)
1 log k
2
2 k 2 k 2
2
2
2
6
5
k 1
1
1037
105
2
1 2k
1
k
k 0 24 k
2
k 1
k
1
(2 k 7)
(2 k 1)!!
(2k )!!6
k 1
k
( 1) k
k 1 2 k
k
1 .0955050568967450275...
.095542551491662252...
1
e Ei ( 2) eEi ( 1)
e
1
3
10 .095597125427094081792...
(1)
11 .095597125427094081792...
(1)
4
3
.09569550305604923590...
k 1
( 3k )
2k 1
Berndt 9(27.15)
(2k )!!(22k k (12)!!k 1)
1 3
1 .09541938988358739798... ,
2 4
1 .095445115010332226914...
J393
4 log 2 2 log 2 2
8 2 arctanh
J145
1
x2
0 e x ( x 1) dx
k
k
.09574501814355474193...
k 3
3
1
8
5
3 2
.09587033987177004744...
.095874695709279958758...
2
.09589402415059364248...
dx
x4
tanh log x
1
1
2G log 2 4 log(1 x 2 ) log xdx
2G
4 .09587469570927995876...
0
1
1
log 2 log 1 2 log x dx
x
2
0
1 H ( n) k
1
4
log k
3
3 k 1 4
n 1 3
12
k2
( 1) k 1 k
125
4
k 1
4
5 (5)
log x
dx
.09601182917994165985...
4
x x
54
1
.096000000000000000000 =
.096023709153821012933...
1 5
5 3 5 arc cot 2 2 5 2 5 arc coth 1 5 5 5 arctan h
4
20 3 5
F k Fk 1
= k
k 1 4 ( 2 k 1)( 2k 1)
1
.096188073044321714312...
.096202610816922143434...
1 .096383556589387327993...
.09655115998944373447...
1 (1) 3
log x
(1) 7
dx
64
8
8 1 1 x4
6
( 3)
2(5) (2)(3)
Hk
(k 1)
k 1
=
.096573590279972654709...
=
=
MHS (4,1) MHS (3,1,1)
log 2 1
2
4
( 1) k
k 0 2 k 6
1
k 2
(k 1)
k 1 2
4
1
4
k 2 k j
( 1) k 1
4 k ( k 1)
k 1
( 1) k
k 0 ( 2 k 2 )( 2 k 4 )
k 1
1
k
k 2 j 1
4
j
J368
=
=
1
k ( k 1)( k 2 )
k 1
/4
dx
1 x 7 x 5 0 sin2 x tan x dx
2
=
(
2
0
1 .09662271123215095765...
=
x dx
0
1 dx
4 5
x
log x dx
log 2 x )(1 x 2 )
GR 4.282.4
( 1) k log k
k 1
k 1
2
9
W2
=
5
log1 x
1
.0966149347325...
tan
1
1
=
/4
log x dx
x log x dx
1 ( x 1) 3 0 ( x 1) 3
=
GR 1.513.7
k
2
k 0
k!
k
( k 1)( 2 k 1)!!
2 ( k !) 2
(2 k 2)!
J313
1
1
6k 5 6k 1
J338
k 1
=
2 .09703831811430797744...
log x dx
x6 1
0
2 log 2
3
log 3 2
2
1
2 Li3 2 Li3
3
2
3
1
log 2 x
=
dx
( x 12 )( x 3 2 )
0
e 2
(k )
2
k
e
k 1 e 1
( 1) k 1 k
.097249127272896739059... k k
k 1 2 ( 2 1)
e2 3
2k
1 .09726402473266255681...
4
k 1 ( k 2 )!
e2 1
2k
2 .09726402473266255681...
4
k 0 k !( k 2 )
.097208874698216937808...
1 .097265969028225659521...
.0972727780048164...
(k 1)
2k
k
1
4
k 2 k 3
k 1
J277
k 0
3 log 2
2k
k 1 k !( k 5)
2
4
1
4k 1
1
arcsin
2
(4k 1)
4k
.0974619609922506557...
.0976835606442167302...
.097777777777777777777 =
.097869789464740451576...
.09802620939130142116...
.09809142489605085351...
=
.0981747704246810387...
1 .09817883607834832206...
.09827183642181316146...
.09837542259139526500...
.09845732263030428595...
1 (4) 7
( 4 ) 3
8
8
37268
=
xyz
1 xyz dx dy dz
0 0 0
.0984910322058240152...
k 2
1 .098595665055303...
1 .0986122886881096914...
log 4 x
1 x 4 1
5 2 csc 2
(1) k 1
2
4
k 1 k 4k 2
22
1
225
k 1 k ( k 2 )( k 5)
731
1
9e
30
k 1 ( k 1)!( k 6)
i
sin 3k
Li2 (e 3i ) Li2 (e 3i ) 2
2
k 1 k
2
k 1
3
3 log 2 3
2
12
k 1 4 k 2 k
( k ) ( k 1)
( 1) k
2k
k 2
sin 3 k cos3 k
dx
2
32
( x 4) 2
k
k 1
0
2i
csc(log ) i
i
5
log
4
k
166
3
192 log k
3
4
k 1 4 ( k 3)
3 (3)
(1) k
1
1 (3) 3
4
k 2 k
1 1 1
(k )
k4 k2
(2 k ) (2 k 1)2
k 1
2k
log 3 2 arctanh
1
2
4
k 0
k
1
( 2 k 1)
1
= 1
3
k 1 27 k 3k
2k
2
= Li1 k
3
k 1 3 k
[Ramanjuan] Berndt Ch. 2, 2.2
J 74
=
sin x
2 cos x dx
0
1 .09863968993119046285...
1
3 Li2
3
Paris constant
1 .098641964394156...
1
H (2) k
k
2 2
k
k 0 3 ( k 1)
k 1 3
1
.09864675579932628786...
1 .098685805525187...
.0987335167120566091...
.098765432098765432
=
.098814506322626381787...
1 si (2)
log x sin2 x dx
2
4
0
Lengyel constant
2
( 1) k
2
2
24
k 2 ( k 1)
8
log 4 x
k k
( 1) k
dx
81
8
x4
k 1
1
coth
8
5
16
4
1
2
1 .09888976333384898885...
J401
1
16k
k 1
2
1
( k )( k 3) 1
k 2
5 .09901951359278483003...
.09902102579427790135...
.099151048958717950329...
.099151855335609679902...
2 .09921712010141008052...
26
log 2
1 1
1
k
2
7
7 k 1 2 k
k 1 28k 14k
1
(k ) 1
e 1
1 H
k
e
e k 2 e
log 2
1
( 1)
4
3 3
4 e
(k ) 1
k ( k 2)
k 2
k 2
1 k 1
k 0
( ( k ) 1) 2
2k
k 2
k2
(k )
2k
7 .0992851788909071140... k
2
k 1 2 1
k 1
.09926678198501025408...
29809 .09933344621166650940...
( 1) k
9
7715
( 2 ) 5 ( 3)
1728
1
.099445877615933685923...
2
2
p prime p p 1
.0993486251243290835...
k
( k 5)
k 1
3
2 .099501138291619401819...
log
3 3
2
.099501341658675...
( 1)
k 1
.099586088986234725...
.0996136275967890683...
.0996203229953586595...
( 1)
k
k
k 0
3k 1
1
log
3k
3k
Prud. 5.5.1.17
( 2 k 1) 1
( 2 k )!
k 1
1 .0995841579311920324...
16 2
( k 14 )!
4 log 2
3
9
3
k 1 ( k 4 )! k
Hk
2 4
k
2 log ( 1) k
5 k 1
4 ( k 1)
4
log 2
8
1 G
2 2
1 .09975017029461646676...
x tan
3
x dx
0
3
e Ei(1)
2
(k 1)! k
1
csc h sinh
2
2
4k 2 1
2
k 0 4k 4
.09963420383459667011...
/4
1
k 2
csc 2
3
( 1) k 1 k 2
.0997670771886199093... 2
Ei ( 1)
e
k 0 ( k 1)( k 1)!
1
( k 2 )! 2 k
6 .0999422348144516324... e I 0 (1)
( k !) 2
k 0
(k )
1
.09995405375460116541... log
k
k 2 k
GR 3.839.2
.100000000000000000000 =
1
10
k (k 5)
=
(k 2)(k 3)
J1061
k 1
8 .100000067076033613307...
.10000978265649614187...
.10015243644321545885...
.10017140859663285712...
.10031730167435392116...
1 / 0.1234567891011121314 , inverse of Champernowne’s number
1
1
1
Li10 ,10,0 k 10
10
10
k 1 10 k
k
| ( k )|( 1)
9k
k 1
( 3)
12
2
(k ) 1
3
1
1
1
2 log 1
2
12
k
k
k
k 3
k 2 2k
.100391216616618625526...
.1004753...
93 (5) 5 5
log 4 x
4
dx
8
128 1 x 1
a non trivial
1
2
, Goldbach’s Theorem
integer power
1 .10055082520425474103...
3 .10062766802998201755...
.100637753119871153799...
.10068187878733366234...
.10085660243000683632...
3
10
1 1 1
x1 xy yzz
3 2
4
16
2
2
2
8
dx dy dz
0 0 0
1
1
Li4 ,4,0
10
10
2 2
2
10
k 1
1
k 4
k
1
G 3
x arctan x log x dx
2 4
0
3 2 log 2
16
1
log x
( x 1)
3
dx
0
( k )
2
1
k 2
2 log 2 13
.10098700926218576184...
3
36
.10096171...
k
( 1) k 1
k 1 k ( k 1)( k 3)
( 2 k 1)!!
.1010205144336438036... 5 2 6
k
k 1 ( 2 k )! 3 ( k 1)
2k
1
1 .1010205144336438036... 6 2 6 k
k 0 12 ( k 1) k
.1010284515797971427...
( 3) 1
2
1
.10109738718799412444...
.1011181472985272809...
12 log 2 2 log 2 6 log 2 6
3
64
2
=
7 .10126282473794450598...
3
0
coth 3 2 coth csch
2
k 4 ( k 4 1)
k (4 k ) 1 4
3
k 1
k 2 ( k 1)
log (1 x) dx
2
K3 (1)
.10128868447922298962...
1
Li3
10
.10132118364233777144...
2
1
1
,3,0
k 3
10
k
k 1
k
2
(2)
(1) log k
.101316578163504501886...
2
k
2
2
k 2
10
(1) k 1
4
3
log 2
k
3
3
k 1 k ( 2k 1)3
1
( 3k )
.101560303935709566...
( 1) k 1
3
11k
k 1 11k 1
k 1
1
2 5
( 1) k
.10159124502452357539...
csch 5 2
10
5
k 0 k 5
.10148143668599877803...
.10169508169903635176...
log (2 k )
k 2
2 .10175554773379178032...
k 1
.10177395490857989056...
G
9
=
k
k!
1
(12 k 9)
k 1
x dx
0 e 3 x e 3 x
2
1
2
(12 k 3)
log x dx
4
x 2
x
1
1
( 1) k 1 k
1
1
k
.10187654235021826540...
arctan
3
2
2
k 0 2 ( 2 k 1)
2
k H
8 20
4
1 .10198672033465253884...
log k k
9 27
3
k 1 4
( k )
.10201133481781036474...
k
k 1 2
5
(k )
.102040816326530612245... =
k
49
k 1 7 1
e
e e 1
( 1) k e k
.102129131964484887998...
ee2
k 0 k !( k 2 )
.1021331870465286303...
.10218644100153632824...
.10228427314668489686...
1613 e
k3
k
3
k 0 ( k 2 )! 3
5
log 2
( 1) k
28
14
84
k 0 ( 2 k 1)( 2 k 8)
k
1 log 2
(1)
1
2
3
k 0 3k 6
k 1 12k 6k
75
=
x
7
1
1 .10228427314668489686...
.10246777930717411874...
4 log 2
3
/2
k 1
1 2 cos1
2
e
log 2 x sin log x
dx
1
x2
sin(3x) log tan x dx
0
e
1
0
x 2 sin x
dx
ex
1
2 4 log 2 log k k 1 (k ) 1
2
k 2 2 k
1
.10253743088359253275...
k
k 1 (10 k )
1
1
1
.10261779109939113111...
Li2 k 2 ,2,0
10
10
k 1 10 k
37
( 1) k 1
.10277777777777777777 =
2
360
k 1 k 6 k
1
1 dx
5
= x log(1 x ) dx log 1 7
x x
0
1
.10253725064595696207...
.10280837917801415228...
2
( 2)
96
16
1
(4 k )
k 1
2
.102953351968223325475...
1
k
dx
x4
2 3(k
1
3 (3)
( 3) 3
( 3) 1
8 24 G 4 2 log 2
6144
256
4
4
/4
=
x
0
2
log sin x dx
2
k)
1
.103171586152707595114...
1 .10317951782010706548...
=
1 .10322736392868822057...
x log x
1
1 Li2
dx
2
0 x2
1 i
i
1
1
H 1 / 4 H 1 / 4 H 1 / 4 H 1 / 4
4 2 2
2
2
2
( 4 k 1)
k
4
k
2
k 1
k 1 2 k 1
2k
1
G
2 2 log 2 35 (3)
16
k 1 2k 3
k
k
2 .10329797038480241946...
.10330865572984108688...
5
5k (3k ) 1
3
k 2 k 5
k 1
( 1) k
106
1
8 2 arctan
k
15
2
k 0 2 ( 2 k 7)
1 .10358810559827853091...
1 log (2 k )
k 1
.10359958052928999945...
(3)
4
1
=
0
2 .10359958052928999945...
=
2 2 (3) 2
1
2
log 2 x
dx
x4 x2
x 2 dx
1 e3x e x
2
x log x
dx
1 x2
GR 4.262.13
7 ( 3)
1
2 ( 3) 2
3
4
k 0 ( 2 k 1)
1
log 2 x
0 1 x 2 dx
GR 4.261.13
=
.10363832351432696479...
1 .10363832351432696479...
.10365376431822690417...
.10367765131532296838...
.10370336342207529206...
x 2 dx
1 e x e x
k2
3
k 1
1 ( 1)
( k 1)!
e
k 1
( 2 k 1) 2
3
( 1) k
( k 1)!
e
k 1
cos ex
dx
e
2e
1 x2
0
10 1
9 4
2
k5
( 1)
( k 1)!
k 0
k
AS 4.3.146
2
1
(2 k 1)!!
k 1 ( 2 k )!! 2 k 4
log 2 2
2
log 2
2
log 2
2
2
8
4
=
x e
2 x2
log 2 x dx
0
.10387370626474633199...
=
11 2 cot 2 coth 2
24
16
k
k 2
4
1
4
4 (4k ) 1
k 1
k 1
5 8 log 2 2 log 2 2
H
( 1) k 1 k
4
k 3
k 1
k
G 1
( 1) k
.10399139854430475376...
2
2
4 8
k 1 ( 4 k 1)
dx
.10403647111890759328... 6
x x3 1
1
.1039321458392100935...
1 .1040997522396467546...
( 4k )
k (k 1)
k 1
3
dx
.10413006886308670891...
2
( x 2) 3
64 2
0
1
1 .10421860013157296289... k
k 0 3 ( 3k 1)
.10438069727200191854...
2
24
log 2 1
k 1
=
2
k 1
4k
k
1
2
( 2 k 1)
( 1)
k 3
Hk
k (k 1)(k 2)
log 10!
2
k2
.10452866617695729446...
2
sinh 2
k 1 k 2
2
log 2 3
x log x sin x
.10459370928947691247...
dx
2 8
4
4
ex
0
15 .10441257307551529523...
.10459978807807261686...
=
1 k!(k 1)!
1
3 3 2 k 1 (2k 2)! k 1 2k
(4k 2)
k
dx
1 x5 x 4 x3
(1) k 1 k
k 1 ( 2k 1)!( 2k 1)
.1046120855592865083...
si (1) sin 1 2
k 1
( k )
2k
1
=
x log x sin x dx
0
1/ 8 1
1
1 1
e I 0 I1 1
1 F1 ,2, 1
2 2 4
2
8
8
(k 12 )!(k 12 )!
=
k 1 ( 2k 1)!( k 1)!
8
9
H
.10469603169456307070...
log ( 1) k 1 kk
9
8
8
k 1
1 dx
1 .1047379393598043171...
erf 1 erfi1 cosh 2 2
x x
4
1
.10464479648887394501...
=
.104742177484448455438...
1 dx
2 cosh 4 3
x x
1
1 2
13
5
4 20 14 2 (1) (1)
256
16
16
=
log x dx
4
x 4
x
1
3814279 .1047602205922092196...
e
ee
1 .104780232756763784223...
k
k 2
2
Hk
log k
.10492617049176940466...
( 1) k 1k 3 (3k ) 1)
k 1
.10493197278911564626...
617
5880
k 3 ( k 6 4 k 3 1)
( k 3 1) 4
k 2
1
k ( k 1)( k 7)
k 1
k2
.10498535989448968551... 71 43 e
k
k 1 ( k 1)! 2 ( k 3)
(k )
1
.105005729382340648409...
k Li3 1
3
k
k 2 ( k 1)
k 1
(2 k )
1
.10500911500948221002... log
k log 1
16k 2
2 2
k 1 16 k
k 1
1
1 x x2
dx
=
2
1 x 1 x log x
0
1 .10503487957029846576...
1
k 1
2
1
k ( k 1)
GR 4.267.5
.10506593315177356353...
7
( 2)
4
1
4
2
k 2 k k
=
(2 k ) 1
k 2
=
ω a non trivial
integer power
5 .1050880620834140125...
1
2
1
( k ) 1
k 1
.1052150134619642098...
.105263157894736842
=
.10536051565782630123...
1 .1053671693677152639...
=
1 .10550574317015055093...
.1055728090000841214...
.1056316660907490692...
.10569608377461678485...
.105762192887320219473...
2
k ( k 2) 1
(k )
2
k 2 k
2
5 3 log 2
8
4
.10516633568168574612... 10
.10518387310098706333...
k 2
k ! 2
.10513961458004101794...
1 .10517091807564762481...
k 1
k 1
1
k ( k 1)
13
8
.10513093186547389584...
( 1)
2
k 2
k
1
( k 2 1)
e1/10
sin 1
8
( 1) k 1 k 3
k 1 ( 2 k 1)!
/2
ci sin x log x dx
2
2
19
0
1
,1,0
10
k
k 1
1
1
2 arctanh
2 k 1
19
( 2 k 1)
k 0 19
1
(k )
2 k
k
2
2
k 1 ( 2 1)k
k 1
k ( k 2) Hk
( 3) ( 2) ( 3) 2 (5)
( k 1) 4
k 1
2
( 1) k 1 ( 2 k 1)!!
1
( 2 k )! 4 k
5
k 1
( 3k ) 1
k
k
3
2
k 1
k 2 2 k 1
2
1
x 3 e x log x dx
4
0
log 10 log 9
1
10
k
i ( 3)
1
1
(1 i ) ( 3) (1 i ) i
4
( k i)4
6
k 1 ( k i )
.10590811817894415833...
=
.10592205557311457100...
1 .10602621952710291551...
.10610329539459689051...
.10612203480430171906...
2 log 3
2 log 2
2 log 2 log 3 log 2 2
log 2 3
3
3
( 1) k 1 kH k
k
k 1 2 ( k 1)
8
1
4 log 2 k
3
k 1 2 ( 2 k 6)
4
1
sinh 1
4
16k 2
k 1
1
3
log 2 26
1 dx
log 1 2 6
10
5
75
x x
1
.10618300668850053432...
(1)
k 1
(k 1) 1
k2
k 2
1
.10620077643952524149... 4
( s) 1 ds
k 2 k log k
4
.10629208289690908211...
4e
2
cos x
dx
2
4
x
0
/2
=
cos(2 tan x) sin
2
x dx
GR 3.716.4
0
2 .10632856926531259962...
k 2
( k ) 1
k 2
1
log 2 log 2 2
2
2
( 1) k kH k
=
k 1
k 1
.10634708332087194237...
2
1
log(1 x )
1
.10640018741773440887... log 2
Li2
2
x3
12
0
1
.10642015279284592346...
i (1 ) ( 2 i ) i (1 ) ( 2 i ) ( 2 ) ( 2 i ) ( 2 ) ( 2 i )
8
k ( k 2 1)
k 1 2
= ( 1) k ( 2 k 1) 1 2
3
k 1
k 2 ( k 1)
24
1 11k 11k 2 k 3
.10649228722599689650... 24 (5) 14 ( 3)
( 2) 1
5
( k 1) 5
k 2
2
=
( 1) k ( k 1) 1
k
k 1
4
.10666666666666666666
=
.10670678914431444686...
x
4
arccos x dx
0
1 3
3
csch
6
12
2
.106843054835371727673...
1
8
75
log 2 3
3
( 1) k 1
2
k 1 4 k 3
1 log26 15 3 log2 3
6
(1) k 1 2 k k
k 1 2k
(k 1)(2k 1)
k
=
.106855714568623758486...
( 1)
k
(k ) 1
2k 1
k 2
k arctan
k 1
1
1
1
3k
k
( 1) k
1
10
5
csch
2
10
20
2
k 0 2 k 5
2 k 1
2
k 2
(1)
1 .10714871779409050301... arctan 2 arcsin
2k 1
5
k 0
.10691675656662222620...
1 .1071585896687866549...
H ( x) 1)
x
2
.10730091830127584519...
1
2 8
( 1) k 1
2
2
k 1 ( 4 k 1)
=
=
=
1 .10736702429642214912...
.10742579474316097693...
1
2
k 1 16 k 1
( 1) k
k 0 4 k 6
1
1 x 7 x 3
k 1
GR 0.232.1
16 k
28
1 4 log
.1076723757992311189...
10 6
4
5
1
k
k 1 5 k ( k 1)
one-ninth constant
e
k
( k 2)! 2
k 1
( 2 k )
3
.1076539192264845...
3 .1077987001308638468...
GR 0.237.2
1
e I 0
2
k
( k 12 )!
2
k 0 ( k !)
(1) k 1
k
k 1 4 ( k 1)
.10801497980775036754...
4
coth
2
i
i
1
1 1 1
2
2
2
k 1
( 1) k 1
(2 k ) (2 k 1)
3
4k
k 1 4 k k
k 1
1 e 2 e sinh 1
(1) k 2k
8
4
k 0 ( k 3)!
( 1) k
3
3 1
log
k 2
2
2 2
k 2 2 ( k k )
k
3
( 1) k 2 k
k
k
16
k 0 12
=
.10808308959542341351...
.10819766216224657297...
.1082531754730548308...
32
(1) k 1
2
9
k 1 ( k 3 / 2 )
1
1 .10835994182903472933... k
k 1 4 ( k 1) 1
H
1 .10854136010382960099... k k
k 1 2 1
2
1
.10874938913908651895...
1 4 e x sin 2 x cos2 x dx
16
e
0
.10830682115332050466...
4G
( ( k ) 1) 2
k2
k 2
27 4 3
.10905015894144553735...
48
.10900953585926706785...
.109096051791331928583...
.10922574351594719161...
71 6
108
2
1 dx
3 5
x
log1 x
1
1
2
k 1 k ( k 3)
log 1 7 (3)
2
4
4 2
k 1
x
2
log(1 x ) log x dx
0
( 2k )
4
1
k
k ( 2 k 2)
1
.10928875430471840710...
x 6 dx
0 1 x12
7
k
( 1) k 1 k
64
7
k 1
1
k
1
1 .10938951007484345298... sin
ecos(1/ 2 ) sin sin
2
2
k 1 k !
.109375000000000000000 =
( 1) k 1
1
2
csch 2 2
12
4
k 1 k 2 k 3
k
1
2k
4 2 5
( 1)
k
.10947570824873003253...
6
k 1 4 ( k 2) k
.10946549987757265695...
( ( k ) 1) 2
2k
k 2
.10955986393152561224...
2
.109575787818588751201...
432
12 3
1 (1) 1
2
(1)
3
6
144
( 1) k
2
2
k 0 ( 3k 1) ( 3k 3)
=
log 2 x
1 2 x3 x 2 dx
.10960862136441250153...
1
2 4 Li3
2
.10965469252512710826...
1
Ei ( e2 ) Ei (1)
2
( k )
.10967200...
2
k 2 k 1
1
2 .1097428012368919745...
2
k 2 k log k
9
1
.109756097560975609756 =
82
2 cosh log 9
1
e
e2 x
dx
0
.10981384722661197608...
.1098873045414083466...
.109944999939506899848...
log 2
4
( 1)
k
e 2( 2 k 1) log 3
7
(1) k
1
2
12 k 0 k 5 k 1 4k 14k 12
arctan 2
2
/4
J943
k 0
x
1
6
dx
x5
2
sin x
1 sin
2
0
x
dx
4
5 log 512 11 5 11log 11 5 2 7 2 5 log 11 5 3 5 log
3
51 5
1
(1) k 1 Fk Fk 1
=
4 k k (k 1)
k 1
.11005944310440489081...
1
k
k 2
.11008536730149237917...
3
3
log
2 2
k
k 1
64
3 ( 3) 2
( 1) k
2 log 2 3 4
3
4
12
k 2 k k
1 ( 1) 1
3
5
7 log(1 2 )
.11037723272581821425...
( 1) ( 1) ( 1)
8
8
8
8
256
4 2
.11030407191369955112...
(1) k
2
2
k 0 ( 4 k 1) ( 4 k 3)
=
9 .1104335791442988819...
83
1 .11062653532614811718...
1 .11072073453959156175...
( 3)
( k )
4
( 4)
k 1 k
(2 k 1)!!
1
k
2 2
k 1 ( 2 k )!!2 ( 2 k 1)
=
( 1)
k 1
4 k 3
( 1)
4k 1
Titchmarsh 1.2.13
2k
1
k 8 (2k 1)
k 1
k
k 1
k 1
=
(1) k / 2
k 0 2k 1
=
( 1) k
1
2 k 3
k 0
J76, K ex. 108c
Prud. 5.1.4.3
=
x
0
=
0
(1 x
0
/2
=
Seaborn p. 136
dx
2
x 2
1
=
dx
1
4
dx
0 2 x 2 1
0
x 2 dx
x4 1
dx
2
) 1 x2
d
1 sin
0
2
1 1
(k )
2
log k log 1
3k k
3 3
k 2 3 k
k 1
k
( 1)
.11083778744223266...
3
k 0 k 4
1
( 3k )
.11094333469148877202...
( 1) k 1
3
10 k
k 1 10 k 1
k 1
.11074505351367928181...
.111001751290904447718...
9 ( 4 ) 6 ( 3) ( 2 )
.11100752891282199021...
4
k2
4
k 1 ( k 3)
65
16
log 3 2
3
( k )
.11100942712945975694...
3
k 2 k ! k
.11100821732964315991...
.11105930793590622477...
1 .11110935160523173201...
.11111111111111111111
=
2
3
1
e Li2
e
=
.11118875955726352102...
.1112477908543131171...
.111387978350712564526...
.1114472084426055567...
=
=
=
1 .1114472084426055567...
=
.11145269365447544048...
k 0
k
log x
1 x 4
(k )
3
k 1
e
1
9
1
k
/2
log(sin x) sin
k
2
1
(k )
9
k 1
k
1
1
16 G 2 2 log 2 21 (3)
64
1
12 (3)
4 log 2 5
8
2
2
4
log
x cos x dx
0
(k )
6
k 1
1
( k 1) 2
9 44
4
9
/4
x
2
tan x dx
0
( 2k ) 1
k (k 1)(k 2)
k 1
(1) k 1 k 2
(k 1) 1
k
k 1 2 ( k 1)
1
1
1
1
1
1
2
2
2
1
1
1 cot
1
2
2
2
2
1 1
1
H
H
2 2
3
1
( 2 k 1) 1
3
2k
k 2 2 k k
k 1
1
1
1
1
1
2
2
2
1
( 2 k 1)
3
2k
k 1 2 k k
k 1
2 log 3 2 2 log 2
1 3
2 Li3 (3)
2 2
6
3
3
=
.11157177565710487788...
=
.11157214582108777725...
.11163962923836248965...
1 .1116439382240662949...
=
=
=
log 2 x
1 (x 2)(x 1)2
1
5
1
1
log arctanh 2 k 1
2
4
9
( 2 k 1)
k 0 9
i
Imi log 1
2
(1) k 1 k
i (1)
i
i
1 (1) 1
(2k 1)
12
9k
3
3
k 1
1
4
k 1 k 5
1
3i 3 3i 3 1 i 3 1 i 3
2
2
2
2
3 3 3i
1
1 1 (1) 2 / 3 (1)1 / 3 1 (1)1 / 3 (1) 2 / 3
3
1
1
( 1) k 1 (3k 1) 1)
2
1
2 k 1
k 1 k k
1 ( 1) k 1 (3k ) (3k 1))
k 1
( 1) k
.11168642734821136196...
k 0 5k 6
.1119002751525975723...
1
Li4
9
.11191813909204296853...
x
7
1
dx
x2
1
9 4
k 1
( k ) 1
k
k
5
k 2
2
( 2 k 1) 1
3
2 2
)
2k
k 2 k (1 k
k 1
( 2)
k (2 k )
16k 2
.11207559668468037943...
2
2
32
16 k
k 1
k 1 (16 k 1)
1
i
i
1
.11210169134154575458... 1 1
2 2
2
k 1 k (1 k )
( k )
.11211354880511828217... k 1
1
k 1 2
.11196542976354232023...
1 .11225990481734629821...
H (k 1) 1
k 1
6 .1123246470082041...
( 2)
k
e1/ k
k 1 Fk
4 .11233516712056609118...
=
5 2 3 (2) d (k 2 )
(4) k 1 k 2
12
Titchmarsh 1.2.9
1 p 2
p (1 p 2 )2
.1123768504562466687...
.11239173638994824403...
=
=
2 .11259134098889446139...
.11269283467121196426...
=
1 1 1
=
xyz
dx dy dz
2 2 2
y z
1 x
0 0 0
.11270765259874453157...
e
8
1
1 dx
1 dx
sinh 2 9 sinh 5
x x
x x
2e 2
21
1
1 2
21 3 2 csc 2
24
1
2
sec
csc
sin 2 3 2 21sin 2
48
2
2
( 1) k
4
2
k 2 k 2 k
21/ k
4
k 1 k
3 ( 3)
( 1) k
3
32
k 0 ( 2 k 2)
1
1
k
Li3 (i ) Li3 ( i ) cos
2
2
k 1 k
1
Li3
9
2
9
k 1
1
k3
k
log 2 G
16 8
2
2
( k 2) 1
.11281706418194086693...
( k )
k 2
.112741986560723906051...
.11281950399381730995...
. 11292216109598113029...
1
1
log( 2 e 1) 1
2
e
1 2
4 72
1
(2k 1(4k 1)(4k 3)
k 0
1
0
1 e x 2
2 e x
H k H k 1
k (k 1)(k 2)(k 3)
k 1
1
k
, ,1 k
4 .11292518301340488139...
k 1
3
4
( 1) k 1 k
.11304621735534278232...
3 log k
4
3
k 1 3 ( k 1)
1
1 .1131069910407629915...
( x) 1 dx
3/ 2
dx
2
1 .11318390185276958041...
.11319164174034262221...
1
k k k k4 k3 k2 k 1
k 0
4
log
3
k
.11324478557577296923...
8
7
6
5
( jk 4) 1
j 1 k 1
4 .11325037878292751717...
e
1 .113289355783182401858...
(1) k
k 4 S1( k ,4)
2
3 log 3 3 1
(k 1) 1
2
2
5
6k
k 1
5
5
Hk k
1 log ( 1) k 1 k
36
6
5
k 1
k
( 1)
k 1
k 2 k
log k
k
k 2 k !2
1
3
J104, K ex. 110e
2 log 2
2
2
2
k 1 k ( 4 k 1)
1
1
=
k
k 1 k ( 2 k 1)( 2 k 2 )
k 1 2 ( k 1)( k 2 )
.113513747770728380036...
.11356645044528407969...
.11357028943968722004...
.11360253356370630128...
.11370563888010938117...
2 log 2
k 1
3
k 1 4 k k
(1) k
2
k 2 k k
=
=
=
dx
1 ( x 2 x)2
( 2 k ) ( 2 k 1)
k 1
4k
e
x
1
dx
(e x 1) 2
| ( k )|( 1) k
9k 1
k 1
16
( 1) k
6
e
k 0 k !( k 4)
.1138888888888986028...
.11392894125692285447...
e
log 3 x
1 x 2 dx
(1) k
k 2 k ( 2k 1) log k
.1139565939558891...
.11422322878784232903...
9
7 23/ 4
csc 23/ 4 csch 23/ 4
112
224
( 1) k
4
k 2 k 8
=
.11427266790258497564...
=
.1143602069785100306...
=
2 .11450175075145702914...
=
.114583333333333333333 =
.11466451051968119045...
.11467552038971033281...
.11468222811783944732...
.11477710244367366979...
3 .11481544930980446101...
3 .11489208086538667920...
.11490348493190048047...
.11508905442240150010...
.11512212943741039107...
=
4 8 log 2 8 log 2 log 3 2 log 2 3 3 log 3 1
Hk
k
k 1 4 ( k 2 )
1
1
Li2 k 2
9
k 1 9 k
2
1
6 Li2
log 2 3
3 3
1
Ei (1) Ei ( 1) 2
k 0 ( 2 k 1)!( 2 k 1)
1 3 3 1
2 SinhIntegral (1) 2i si (i ) 2 HypPFQ , , ,
2 2 2 4
11
1
96
k 1 k ( k 2 )( k 4 )
k
22
4 log 2 2 4 log 2
2 k
2
3
k 1 2 ( k 2 )
1
(1) k 1
csch
2
2 2 6
6
k 1 6k 1
( 1) k 1 (2 k 1)!!
2 log 2 5 4 log 2
(2 k )! 4 k k
k 1
1
1 1
1
cos sin
16
2 8
2
( 1) k 1 k 2
k
k 1 ( 2 k )! 4
2 tan 1
1
sinh k
1
Ei (e) Ei 1
e
2
k 1 k ! k
J 2 (1)
(1) k
3
k 2 k 1
1
3
4
6
cot
4 cos log sin
cot
10
5
5
5
5
1
8
12
2
4 cos log sin 4 cos
log sin
10
5
5
5
5
1
16
2
log sin
4 cos
10
5
5
2
9
3
4
5
10
10
5
=
1
(5k 1)(5k 2)
k 1
log(e 1) 1
log x
dx
e
x e2
0 ( )
1
.11524253454462680448...
.11544313298030657212...
.1154773270741587992...
5
log 3 2 1 2
1
1 7 (3)
log 2 log 3 (log 2) Li2 Li3
2
2
3
2
8
log 2 (1 x )
=
x ( x 2)
0
1
.11552453009332421824...
log 2
6
=
2
log 2 x
1 x 2 1 dx
24k
k 1
1
2
12k
1
62
k 1
k
k
dx
( x 1)( x 2)( x 4)
0
3 2
.11565942657526592131...
256
3
2 3
.11577782305257759047... log 2 6
log
2
2 3
1
=
log(1 x ) dx
6
1 dx
6 2
x
1
1 dx
6 2
x
1
1 5
1
1
log 2
arccsch 2 2
2
2
2
k
(1) (2k )!!
1
(1) k 1
= 2 k 2
(2k 1)!! 2k 2
k 0 2
k 1 2k 2
4 k
k
J143
( 1) k
2 k 1
( 2 k 1)
k 1
(k )
(2k 1) 1
.11593151565841244881... log 2 k
k 1
k 1 2
k 1
(2k 1)
= k
k 1 4 ( 2k 1)
.11591190225020152905...
log1 x
log1 x
0
.1157824102885971962...
1
1
arctan
4
2
2
1 1
k log 1 2
k k
k 2
=
dx
x
cos x 1 2 x
j3
0
1 .1159761639...
1
=
J311
.11621872996764452288...
1 .1165422623587819774...
=
.116565609128780240753...
.1165733601435639903...
.11683996854645729525...
.11685027506808491368...
.117128467834480403863...
=
.11718390123864249466...
2
9 27
4
12
sin 3k
k3
k 1
2
i
Li3 (e 3i ) Li3 (e3i )
2
1 1
sin x 4
cos
dx
3 4
8
x4
0
7 ( 3) log 2 1
4 2
2
4
(2 k )
4
GR 1.443.5
( 2 k 2)
2k
k
arcsinh 2
1
( 1) k 1 k
k 2 (2 k 1)
2 2
2 3
k 1
( 1) k 1 Hk
7
8
log
8
7
7k
k 1
2 1
1
1
J247, J373
2
2
2
16 2 k 1 (( 2 k 1)( 2 k 1))
k 1 ( 4 k 1)
1
3
6 (3) (3) (3) 6 (3) 2 (3) ( 3) (3)
3
(4)
k 1
k
(k ) log3 k
k 2
k3
5 2
32
3
( 3) 24 log 2
k
k 1
3
1
( 2 k 1) 2
15
( 1) k
128
3k
k 1
13
( 1) k
.11735494335470499209...
12 90
k 0 ( 2 k 1)( 2 k 7 )
2
1
1
.11736052233261182097...
arctanh k
3
2
k 0 4 ( 2 k 1)
1
(1) k 1
8 3 csc 3 2
.11738089122341846026...
6
k 1 k 4k 1
k
4
.117187500000000000000 =
.11738251378938078257...
8 .11742425283353643637...
2 .11744314664488689721...
2G 1 1
2
3
4
12
4 ( 2) L ( 2)
2(4)
2
k 1
.117571778435605270...
.1176470588235294
=
(3) (2)
2
17
2
(2 k 1)!!
1
k 1 ( 2 k )!! 2 k 3
1/ k 4
( 4 )
4
r(k )
2
k 1 k
3
Hk
(k 2)
k 1
2
J385
1
( 1) k 1
1
k
,1,0
k
9
k 1 9 k
k 1 8 k
1
1
= 2 arctanh
2 2 k 1
( 2 k 1)
17
k 0 17
1 (k 1)(k 2)
(k 2) 1
1 .11779030404890075888...
2 k 1
k
9
.11778303565638345454... log
8
.11785113019775792073...
.117950148843131726911...
1 .1180339887498948482...
=
.1182267093239637759...
.11827223029970254620...
=
.11827410889083245278...
=
.118333333333333333333 =
2 .11836707979750799405...
.118379103687155739697...
.118438778425057529626...
=
1
6 2
/4
/4
0
0
2
sin x cos x dx
sin 3 x
dx
tan x
1 1
i
i
Li2 Li2 Li2
2 4
2
2
2k 1
5
1
k
2
2
k 0 k 20
1
k 1 1 F2 k 1
( 1) k
3
cos1 sin 1
2
k 1 ( 2 k )!( 2 k 2 )
1
1 (1 ) sin 1 (cos1 1) log(2 2 cos1)
2
cos k
k 1 k ( k 1)
G log 2
( 4 k 1) ( 2 k )
k
4
k 1 16 ( 2 k 1)
1
1
2 k arctanh
2 arctanh
2k
4k
k 1
71
1
600
k 1 k ( k 1)( k 6)
1
k 2
log
k
k 1 k
7 4
Li4 (i ) Li4 (i )
5760
5 3
13 (3)
1 ( 2) 5
1
( 2 )
36
432
162 3
6
3
k
(1)
3
k 0 (3k 2)
.118598363315566157860...
72 5
11 5
64
14 4 5 log
11 5 log
log
6 3 5
2
8
27
(1 5 )
53 5
1
K148
(1) k 1 Fk Fk
k
k 1 4 k ( k 1)
=
.11862116356640599538...
1 e,1
x
e x
e dx
1
( 1) k 1 (2 k 1)!!
.11862641298045697477... 1 log 1 2 1 arcsinh 1
k 1 ( 2 k )! ( 2 k 1)
J389
( 1) k 1 2 k
k
k 1 4 ( 2 k 1) k
=
log1 k 2
.11865060567398120259... Hk 1 ( ( 2 k ) 1)
1 k2
k 2
k 2
k3
1 .11866150546368657586... 2 e 3 Ei (1)
3
k 0 k !( k 1)
2 2 1
log x
dx
2
8
4
(
1
)
x
x
0
1
4 .11871837492687201437...
.11873149673078164295...
4
2
3
( 1) k
k 0 2k 5
1
1
.11877185156792292102... log 2
8 2
2
5 .11881481068515228908...
0
1
dx
6
x x4
/4
tan
4
x dx
0
x 2 arctan x
dx
x 1
2
( k 1)!!
k 0
k
1
GR 4.241.11
( k 1)!!
k!
k 0
4 51
( 3) 3
15
8
7 .11881481068515228908...
.1189394022668291491...
1
log 3 x
dx
x4 x3
x3
0 e2 x e x 1 dx
.11899805009931065100...
(2 x 1) 1 dx
1
.11910825533882119347...
.11911975130622439689...
5
36
2
144
2 sin 1 1
2
e
1
log 2
x 2 arccot x log x dx
18
0
e
log 2 x coslog x
dx
1
x2
1
( 1) k 1
e2 1
e2 k
k 1
.11925098885450811785... ( 4 ) (5) 2
.11920292202211755594...
cos(ex )
dx
ex
0
.119366207318921501827...
3
8
.1193689967602449311...
9 .11940551591183183145...
.1194258969062993801...
.11956681346419146407...
.11973366944845609388...
.11985638465105075007...
.11995921833353320816...
.12000000000000000000
=
1 .12000000000000000000
=
.12025202884329818022...
.12025650515289120796...
.12041013026451893284...
.12044213230101764656...
.1204749741031959545...
1 .12049744137026227297...
=
.1205008204107738885...
.1205922055573114571...
( 1)
k 1
1 ( k )
2k 1
k 1
4
4
2 8G
144
1
(12 k 9)
k 1
2
( 1) k 1 k
k 1 ( 2 k 2 )!
k
( 3) ( 4)
4
k 1 ( k 1)
( 1) k 1 k
1
1
sin
k
4
2
k 1 ( 2 k )! 4
Ei (1)
( 1) k 1 ( k 1)
e
k!
k 1
3
(k )
k
25
k 1 5 1
FF
28
k kk 2
25
4
k 1
( 1) k
1
1 1
4
arctan log 2 k 1
2
2 2
5
k ( 2 k 1)
k 1 2
2 k ( 1) k 1
73 3
k
15
k 1 k 2 ( k 3)
cos1
sin 1
2
2
1
Hk
( 3)
2
12 2
k 1 k ( k 1) ( k 2 )
( 1) k
HypPFQ {},{1,1,}, 1
3
k 0 ( k !)
( 1) k k
e
e log( e 1) e
k
e 1 k 0 e ( k 1)
H k 1
coth (1 i )
2
2
2
k 2 k 1
i
2
2
(1 i ) (1 i ) (1) 1 i (1) 1 i
4
1
(1 log 2)
x arcsin x log x dx
8
0
2 log 2
47
5
300
1
k 0 ( k 1)( k 5)
( 1) k 1
2
k 1 k 5k
1 dx
= log 1 6
x x
1
1 .12065218367427254118...
1 .1207109299781110955...
3
1
x
4
log( x 1) dx
0
( 1) k
2
k 0 k 3
log 2
1
(4 k 1) (2k )
2
8k
4 2
2 2
k 1 8k 8k 1
k 1
1
6k 2
1
=
2
2
2
8k 2 1
k 1 2 k 1
k 1 ( 2 k 1)(8k 1)
.12078223763524522235...
tan
1
4
3
log log
log
2
2
2
=
1 dx
1
x
2 e 1 e 2 x x
0
=
x
sinh 2 xe
2
x
0
GR 3.427.3
dx
cosh x
GR 3.553.2
3 ( 3)
( 1) k 1
12 log 2 10 3
3
2
k 1 k ( k 1)
1
.12092539655805535367... 4
k 2 k 6
3
( 1) k
.12111826828242117256...
3
256
k 0 ( 4 k 2)
1 2 k
( 1) k
.12112420800258050246...
k
k2
k 1 1 2
k 2
.1208515214587351411...
1
1
coth 2
6 24
22
5
.12114363133110502303... log
6
.12113906570177660197...
.1213203435596425732...
=
k
k 1
/4
0
.121606360073457727098...
2
x dx
(2 k 1)
4k 1
4 (2) g 2
1
1
(1)
9
2
9
3
k 1
1 .12173301393634378687...
1
=
0
1
(k 2 )
( 1) k 1 k 2 k
k
k 0 4 ( k 1) k
3
2
2
sin x tan
2
log x
dx
x3 1
1
x log x
dx
x3 1
2
.12179382823357308312...
( 3)
2
.12186043243265752791...
4 log
3
3
1 1
,1, 3
2
2
2 2
(1) k 1
k
k 1 2 ( k 2)
(1) k
k
k 0 2 ( 2k 6)
1
3k 2
k 1 k k
3
k
2
3
14
a(k )
1 .12191977628228799971...
( 3) 4
Titchmarsh 1.2.13
15
k 1 k
1
i
1 i
i
i
.12200602389514317644... 1 1 H H
2 3
2 3
3
3
=
(1) k 1 (2k 1)
=
9k
k 1
3
.12202746647028717052...
3
6
9 log 3
6 log 2
2
1
.12206661758682452713...
csch 2
8 4
sin x cos x
=
dx
ex 1
0
1
log1 ( x 2)
0
3
dx
( 1) k 1
2
k 1 k 4
4 3 3
1
1
( 2 ) 2
1 3
9
3
k 0 (k 3 )
( 1) k 1 ( 3k )
1
.122239373141852827246...
3
k
9
k 1
k 1 9 k 1
(k )
1 .12229100107160344571... ( 4 ) (5) 1 5
k
k 1
(k )
= 1 4
k
k 1
( 1) k
.12235085376504869019... 1
log 2 2
2
k 2 2 k k
( k )
2 .12240935830266022225... k 2
k 2 k
( 1) k 1
2 1
.12241743810962728388... 2 sin
k
4
k 1 ( 2 k )! 4
6
( 1) k 1 k
.12244897959183673469...
49
6k
k 1
( 1) k 1
1/ 6
1 .122462048309372981433... 2
1
6k 1
k 1
55 .12212239940160755246...
26 (3)
HW Thm. 290
1 17
1
2 arcsinh 2 2 log 2
4
4
.12248933156343207709...
1
1
1
( 1) k
arctan k
2
4
8 k 0 16 (2 k 1)
x
8 log 2 11
1
log x dx
x
2
.12263282904358114150...
36
(1) k 1
k 1 2k k 2
4 k
k
.122479299181446442339...
=
1
.1228573089942169826...
.12287969597930143319...
.1229028434255558374...
.1229495015331819518...
.1230769230769230769
1
2
x 2 log 1
0
3
dx
x 1
log( x 1) log x
dx
x4
( 1) k 1 k 2
k
k 0 ( k 1)! 2
log 2 2 log 3 2 ( 3)
log 2 1
2
3
4
7
2
e
log 2 (1 x )
0 x (x 1)2 dx
1
sin 2 2
( 1) k 2 k
1
2
k 0 k !( k 2 )
5 5
( 1) k 1
32
1 5
48
k 1 ( k 2 )
8
1
=
( 1) k e 3( 2 k 1) log 2
65
2 cosh log 8
k 1
4 .12310562561766054982...
17
1 .12316448278630278663...
3
1
erfi
2
3
2 .12321607812022000506...
.123456789101112131415...
1
k !3 (2 k 1)
k 0
k
1 1
1
4 2
2
2
k (2k 1)
2k
k 1
( 2k
k 1
2k
2
1) 2
Champernowne number, integers written in sequence
10
k
( 1) k k 4
k
81
2k
k 1 10
k 1
37 6
.12346308879239152315...
2 ( 3)
22680
2
1
1
=
( 6) ( 2) ( 4) 3 ( 2) 2 ( 2)
3
3
3
1
(2 k )
.12360922914430632778... 2 k k
k 1 3
k 1 9 1
.123456790123456790
J943
=
18 MI 4, p. 15
2
Hk
4
k 1 ( k 1)
.12370512629640090505...
.12374349124688633191...
1 .123912033326422...
8 .1240384046359603605...
.12414146221522759619...
.12416465383603675513...
=
=
529 .124242424242424242424 =
.12427001649629550601...
=
=
.12429703178972643908...
.12448261123279340605...
.124511599540703343791...
.12451690929714139346...
1 .124558536969386481587...
.1246189861593984036...
( 1) k 1
1
2 ci log 2
k
2
k 1 ( 2 k )! 4 ( k )
355
k
( 2 ) 4 ( 3)
3
108
k 1 ( k 4 )
1
1 1 ( x) dx
66
( 1) k 1 Hk
3 24
log
k
2
3
k 1 3 ( k 1)
1 i
i
1 i
i
1 1 H H
2 4 2
4 2
2
2
1
2
k 1 2k ( 4k 1)
( 1) k 1 ( 2 k 1)
2 2 k 1
k 1
174611
B20
330
coth 1
1
(i) ( i)
4
2 4
1
1 i H 1 i 1 i H 1 i 3
4
1
1
1
3
4
3
2
1
k 2 k k k 1
k 2 k k
k 2 k 1
k 1
4
( 1) kHk
4
1 log
25
5
4k
k 1
5
5
H
log 2 k k
2
4
k 1 5 ( k 1)
(k )
( 1) k 1 k
8 1
k 1
1
1
log 2
9 3
k 1 ( 6k 4)( 6k 1)
3
4
log 2
11 log 2
9
(3)
8
1
arcsin 3 x
x dx
1
15
k
k
2 k 0 2 (k 1)(k 3)
J263
1 .124913711872468221...
8 log 2
2 2
1
12 2
2
3
k 1 k ( 2k 1)
1
log 2 x
1 1
,3, 4
dx
512 16 4 0 x 16
1
.12493815628119643158...
( 1) k 1 k
k
k 1 2 1
2
2
( 1)1/ 4
( 1)1/ 4
i
.12497829888022485654... sinh
sin
cos
cosh
4
4
2
2
2
sin k / 2
=
k
k 1 ( 2 k )! 4
.12497309494932548316...
.12500000000000000000
=
=
1
8
k
1) 2
k 1
Hk
k 1 ( k 1)( k 2)( k 3)
(4 k
J364
2
=
=
k5
k
(1) k
k 1 e
(k )
k
k 1 4 1
1
=
x
3
arcsin x arccos x dx
0
=
1 dx
2 5
x
log1 x
1
1 .125000000000000000000 =
4 .125000000000000000000 =
.1250494112773596116...
9
H ( 3) 2
8
33
k3
k
8
k 1 3
1 ( 2 ) 12 ( 4 ) 6 ( 3) 8 (5)
.125116312213159864814...
.12519689192003630759...
2
6
15
2
( 2)
1
4
6 9 3 2
0
k3
5
k 1 ( k 2 )
(1 ( k ) )
k2
k 1
( 2)
( 4)
/2
(1 sin x ) 2
dx
(2 sin x ) 2
1
1
1
(2)
3
8
8192
k 0 (16k 2)
( 1) k 1
.12521985470651613593...
k
k 1 ( k 1)! 2 ( 2 k )
.12521403053199898469...
1 .12522166627417648991...
2 4
x4
2 (2) (4)
dx
4
3 45
0 sinh x
2 .125353851428293758868...
6
4
9 (5) 2
17 24 (3) 2 (3) 2 9 (3) 97 5 1
2
96
4
22680 288 16
H k H k 2
k4
k 1
=
1
Ei (2) Ei (1)
e
1 .1253860830832697192...
1
2
n not squarefree n
1
e x dx
0 (1 x)
Titchmarsh 14.32.1
2
2
Hk
k
6
k 1 2
1
1
(2) 1
.12546068941849408713...
3
6
3456
k 1 (12 k 10)
2 .12538708076642786114...
log 2 2
csc 3
1
( 1) k 1
2 2
6
18
k 1 k 9
3
5
1
7 3
.12549268916822826564...
arctan
log
6
3
18
3 12
1 .12547234373397543081...
.12552511502545031168...
(k )
k 2
k
4
1
2
dx
x3
1
k 1
1 (k ) (k ) 1 1
3
4
k 2
=
x
Li k k
.1255356315950551333...
k 2 n2
1
( 1) ,
(k )
nk
where S is the set of all non-trivial integer powers
S
=
1
a nontrivial
1
int eger power
3 .125552388163504646336...
.12556728472287967689...
3 (3) 2 1
2
12 2
HkHk
k ( k 2)
k 1
5 1
7 1 1
1
2 F1 2,2, ,
2 F1 3,3, ,
2 4
2 4 3
2
4 4 5
4
1
1 5
1
arccsch2
log
25 125
25
2
5
2
k 1 k
= ( 1)
2k
k 1
k
=
72
4
6
9 ( 3) 3 (5) 28
2
15 945
(k )
1
1
.12573215444196347523... k 2 Li2
2k 2k
k 2 2 k
k 1
.12560247419757510714...
2 .12594525836597494819...
.12596596230599036339...
.12600168081459039851...
2
9
sinh 2
2
1 ( k 2)
k 1
1
1
2
( 2)
3
9
1458
k 1 (9 k 7)
1
1
Li4 k 4
8
k 1 8 k
2
k
k 1
6
1
( k 1) 3
1
12
log 31 5 log
1 2 5 2 5
20
6 5
1
22
22
2 5 5 arctan 13
10
2
5
arctan
13
10
5
5
dx
= 3
x x 2
2
.12613687638920210969...
.1262315670845302317...
5 2 4
1
21
5 (3) (5) 5
3
2
30
k 1 k ( k 1)
7 (3)
1
1
1
(2)
3
4
512
128
1024
k 1 (8k 6)
2
1
3
1
1
3
.126321481706209036365...
log 2
dx GR 4.325.5
2 log log
x
1 x x
1
3
0
3
.12629662103275089876...
.1264492721085758196...
.12657458790630216782...
3
1
log 2
2 3 3
3
1 3 (2) 4 (3)
( 1) k
k 0 3k 5
x
1
6
dx
dx
x3
( 1) k ( k ) ( k 1)
k
2
k 2
4k k 2k 1
k 2 ( k 1) 3
k 1
=
11 .12666675920208825192...
3
11
2
3 1
6 2
dx
1 x
7
2
.12687268616381905856... 11 4 e
2
2 .12692801104297249644... log1 e
1
( 3k )
.1269531324505805969... k k
3
k 1 2
k 1 8 1
2
4
3
1 .12700904300677231423...
4 i 4 i
3 3 3 3
1
1
.12702954097934859904... Li3 k 3
8
k 1 8 k
1 .12673386731705664643...
.1271613037212348273...
12 / 11
0
3 log 2
4
8
1
1 (3k 1)
k 1
1
2
k 1 16 k 4 k
2
( k )
k 2
4k
=
x
4
1
.12732395447351626862...
3 .12733564569914135311...
dx
x x2 x
3
2
5
2
2(2)
1/ k 2
k 1
.127494719314267653131...
(2 k 1)
2k k
k 1
.12755009587421398544...
( 4 ) 10 ( 2) 2 ( 3) 15
k
k 1
4
13 (3)
4
1 ( 2 ) 1
3
216
432
1296 3
1/ 2
1/ 2
1
e e
1
cosh
k
2
2
k 0 ( 2 k )! 4
1
1 2
2
(2 k 1)
k 0
3
.12759750555417038785...
1 .12762596520638078523...
=
(1) k 1
k 1
1
k 1 2
(4) 1
.12764596870103231042...
(2) 1
.1276340777968094125...
1 .1276546553915548012...
4 log 2
1
=
1
( k 1) 3
2
1
( 6k 4)
k 1
3
AS 4.5.63
J1079
(1) k 1
k
k
k 1 2 2 1
6
1
3
2
k 1 2 k k
( k 1)
k 1
2k
dx
Li ( x ) x
2
2
2
0
.12769462267733193161...
1
2 arcsin 2
4
.12770640594149767080...
1
5
log
4
3
.12807218723612184102...
1
( k 1)!( k 1)!
(2 k )!4 k
k 1
x dx
4
1
x
2
0 ( k )
k 1
2k
1
2
3
.12812726991641121051...
4
12
4
28 .12820766517479018967...
2
.12850549763598564086...
k
1
(x
0
2
dx
1)( x 2)( x 2 3)
2
3 ( k )
2k
k 1
2
1
k 2
k 1
k 1
1 .1283791670955125739...
k
3
k 1
sin 1 ci (1) cos1 si (1) (1 ) sin 1
K ex. 123
1
=
x log x sin(1 x ) dx
0
1 .12852792472431008541...
(1)1 / 4
i cot (1) cot (1)
4
1/ 4
3/4
k2
1
( 1) k 1 (4 k 2) 1
4
k
1
2
k 1
k 1
2 log 2
1
1
1
.12876478703996353961...
2
k
3
3
k 1 6k 9 k 3
k 1 2 (3k 3)
=
=
1
.12878702990812596126...
5
6
.12893682721187715867...
2
1
1 dx
3 4
x
log1 x
k 1
1
k ( k 2)
( 1) k
0 F1 ;4;1
k 0 k !( k 3)!
1 (2) 2
1
.12895651449431342780...
3
5
250
k 0 (5k 2)
1
.12897955148524914959...
k
k 1 (8 k )
2 k 1 k
88
.12904071920074026864... 8
( 1) k 1
k 16k
5 5
k 1
.1289432494744020511...
J3 (2)
LY 6.117
1 1
log 2 x
Li3 (4) 3
dx
2 8
x 4x2
1
1
1
.12913986010995340567... Li2 k 2
8
k 1 8 k
1
1 .12917677626041007740... 2 k 1
k 1 k
27
1
3
1
3
.12920899385988654843...
log
(
)
5
3
2
k 1 9 k k
1
1 .12928728700635855478... 7
6
5
4
3
2
k 0 k k k k k k k 1
.129111538257100692534...
.12931033647404047771...
1
1 3 24 1 3 log1728 3 3 log 3 24
4
3
33 3
1 3 log 64(2 3 ) log(2 3 )
2 3
4
2
(1) k 1 (k 1)
=
12k
k 1
2
( 1) k 1 k
log 2
2
12
k 1 ( k 1)
k 1
( k ) ( k 1)
=
3
2
2k
k 1 4 k 2 k
k 2
1
1
log 2 x
x log2 x
x log x
=
dx
3 dx
3 dx
( x 1)
( x 1)
( x 1) 2
0
1
0
.1293198528641679088...
J347
e1/ k
4
k 1 k
.12950217839233689628...
e
.12958986973548106716...
( 3)
2
12
1
4
k
k 2
6
2k 1
k5 k4 k3
=
k (2 k ) (2k 1)
k 2
2 .12970254898330641813...
1
( k !)
k 0
3 .12988103563175856528...
HypPFQ {},{1,1},1
3
1
.12988213255715796275...
.12994946687227935132...
1
tanh i i i
2
2
1
3
2
k 2 k k k
1
6
(3k ) (3k 1)
k 1
CFG A28
arccos2 x
7 (3)
1 .13004260498008966987... G
log 2
dx
(1 x 2 )(1 x )
2
8
4
0
.13010096960687982790...
1
2
2
1
7 ( 3)
4
2k 1
(2 k 3)
3
8
k 0
3
Hk
1 .13020115950688002...
k
k 1 3
1
1
k
.13027382637343684041...
sinh
k
4
2
k 0 ( 2 k )! 4
5 5
1 (1) 5 5
3 5 (1)
.130287258904574144837...
2
2
2
1 5
=
(1)
k 1
.13030594417711116272...
k
Lk k (k 1) 1
2 2 1
4 2
0
x(1 x)
dx
1 x8
1
(k ) 1
.13033070075390631148...
log 2 1 2
2
k 2 k k
k 1
1
= 1
( k 1) log
k
2k
k 2
1
2
.13039559891064138117... 10 3
3
k 1 k ( k 1)
( k )
1
.13039644878526240217...
j j
k 2 k ( k 1)
k 2 j 2 k ( k 1)
1 .13039644878526240217...
( k ) 1 ( k ) 1
0
k 2
1
= j
k 2 j 2 k 1
( k )
m
m 1 k 2 k
=
K ex. 127
(mk m) 1
k 1 m 2
( jk ) 1
j 2 k 1
( k ) 1
k 2 k ( k 1)
( k )
k 1
k 2
2 .13039644878526240217...
( k ) ( k ) 1
k 2
.13039943558343319807...
0
2
log 2
4 32
2
=
2 .13068123163714450692...
.13078948972335204627...
=
2
x dx
GR 3.839.1
0
k
2
8
4 log 2
2
(1 2 )
log(1 2 )
49 28
7
7
1
=
Prud. 5.1.7.24
k 1 k (8k 7 )
1
( 1) k
.13086676482635094575...
csch 2 2
8 2
k 0 k 4
3 2i 3
1
cos 3 2i 3 cosh 3
1 .131074170771424458336...
cos
3
2
2
2
.13086510517299719078...
x tan
log k
(1 ( k )) log k
2 2
(1 k )
k2
k 2
k 2
j log k
k2j
j 1 k 2
3e
1
k 1
4
4e
k 0 ( 2 k )!
1
3 log 2 3 log 2 12 (1) 1
6
1
1
1
k (k ) 1
k k 2 log 1
(
1
)
2
k2
k
k 2
k 2 3k
1 .13046409806996953523...
/4
=
1 k
3
1
3
(k 1)
cos 1/ 4 cosh 1/ 4
1 .13114454049046657278...
2
k 1
.131263476981215714927...
1 .131279000668548355421...
.13129209787766019855...
2
4
k
(4 k )!
k 0
1
4G 6 arcsin 2 x log x dx
0
i ( 1) cos ( 1)1/ 4 i ( 1)1/ 4 cos ( 1) 3/ 4
3/ 4
1
7
1
8
=
1 .13133829660062637151...
.131447068412064828263...
=
.131474973783080624966...
.13150733113734147474...
4 .1315925305995249344...
.13178753240877183809...
Hk
k 2
k
k 1
1
k
k 1 k k !
1
( 2 ) (2 i ) ( 2) (2 i ) (3, 2 i ) (3, 2 i )
2
x 2 cos x
0 e x (e x 1) dx
7 ( 3)
1
3
64
k 1 ( 4 k 3)
( 1) k
3
( k ) 1
k
k 2
1
k 2 2 ( k )
8
k 1
.13179532375909606051... 4
k 2 k log k
log 7 3
3
5
arctan
6
6
3
3
x
2
1
1
4
3
k log k
k 2 k log k
2
4G
=
1 ( k )
k 2
1/ 2
dx
1
3
1 ( 3) 3
( 3) 1
4
4
4
384
k
log 2
( 1)
.13197175367742096432...
1
4
2
k 0 ( 2 k 2 )( 2 k 3)
1
=
2
k 1 8k 6k 1
.131928586401657639217...
=
7
8
(3) Li3 Li3 log log log 8 2 Li2
8
8
2
7
7
8
1 dx
2
0 log(1 4 x ) dx 1 log1 x 4 x3
4
( s) 1) ds
3
( 1) k 1 k 2
( k 1 / 2)
k 1
4
1 .13197175367742096432...
=
=
log 2
( 1) k 1
4
2
k 1 2 k ( 2 k 1)
1
2
k 1 8k 10k 3
(1) k / 2
k 1
k 1
1
=
Prud. 5.1.2.5
1
4 dx
x log1 x
0
=
J154
1
log1 2 x( x 1) dx
0
=
.13197325257243247...
3 .13203378002080632299...
.1321188648648523596...
.1321205588285576784...
.13212915413764997511...
.13223624503284413822...
.13225425564190408112...
.1323184679680565842...
11 .13235425497340275579...
.13242435197214638289...
.13250071473061817597...
25 .13274122871834590770...
arctan x
dx
2
x
1
ie i
sin k
i
2i
i
Li3 (e ) e Li3 (e )
3
2
k 1 ( k 1)
3 log 3
( 13 )
1
GR 8.336.3
3
2
( 13 )
2 3
2
2
k 1 kH k
1 log (1)
9
3
2k
k 1
1 1
( 1) k 1
2 e k 1 ( k 2)!
6
7
( 1) k 1 Hk
log
7
6
6k
k 1
1
4
k 2 k 7
( 5k )
k
2
k 1
5
1
cos3 k
(i 2 ) Li3 (e3i ) 3Li3 (ei ) (1) k 1
8
4
k3
k 1
5815 3
k6
e
k
729
k 0 k !3
log( 2 )
3
2 log 2
1
21
7
14
8
1 .132843018043786287416...
( 1)
k 1
k 1
(k )
2k 1
( 1) k
k 0 ( k 3)( 3k 2 )
1
1
( 1) k e 2( 2 k 1)
2
2
2 cosh 2
e e
k 0
9
1 .133003096319346347478...
4
1
2 3 log 2 2
.13301594051492813654... 2 log 2
3 k 2
2
4
2
k 1 2 k ( k 1)
5
2
3
.13302701266008896243... 1
cot cot
log sin log sin
16
8
8
4
8
8
.13290111441703984606...
( 1) k
k 0 4k 5
=
1 .13309003545679845241...
.13313701469403142513...
1 .13314845306682631683...
x
1
4 log 2
2
0
8
x
6
dx
x2
dx
2 x
(1)
8
e
1
k
k 0 k !8
1
k !! 2
k 0
k
1
.13314972493191508633...
1
12 2 x log x arctan h x dx
16
0
.13316890350812216272...
1
csch
2 2 5
5
.1332526249619079565...
1 .1334789151328136608...
J943
( 1) k 1
2
k 1 5k 1
2
2 2 log 2 log 2 2
3(5) (2)(3)
k 1
Hk
k
k 1
4
k
Hk
( k 1)( k 2 )
2 k ( 1) k 1
5
2
.13348855233523269955...
log 2 log 1 2 k
12
3
k 1 k 4 k ( k 2)
1 .13350690717842253363...
(2k ) (2k 1) 1
k 1
1
1
log 8 log 7 Li1 k
8
k 1 8 k
1
1
= 2 arctanh
2 2 k 1
15
( 2 k 1)
k 1 15
k 1
( 1) kHk
3
3
.13355961141529107611...
1 log
16
4
3k
k 1
.13353139262452262315...
.13356187812884380949...
(3)
9
6 .13357217028888628968...
log(1 x 3 ) log x
dx
x
0
1
2k 1
k k ! k
k 1
K148
1
1 1
1
(2 k 1)
.13360524590502163581... 1 1
2 2
2k
k 1
1
=
2 2
k 1 k ( k 1)
8
4
(1) k 1 k
(k 1) 1
.133790899699404867961...
log
9
3
k 1 ( k 1)( k 2)
1 .13379961485058323867...
7
2
arcsin
2
7
2k
k 7
k 0
k
1
(2 k 1)
.1338487269990037604...
.1339745962155613532...
.13429612527404824389...
1
sin 2 x dx
0 e x
( 1) k 1 ( 2 k 1)!!
3
( 2 k )! 3k
2
k 1
1
k
log
2
k 1
k 2 ( k 1)
1
2 3 coth csch 2 3 2 csch 2 3 coth 8
16
1
2
3
k 1 ( k 1)
coth 2 1
e4 3
1
4
2 2
4
8
8( e 1)
k 1 k 4
1
.13402867288711745264...
2
cos 2 2 sin 2 5
5
10e
=
.13432868018188702397...
.134355508461793914859...
2
27 3
x
3
0
1
.13451799537444075968... arctan 2
e
.13458167809871830285...
3
dx
27
e
x
2
dx
e x
k 1
( 1)
k
2
k 1
1
1 .13459265710651098406...
arcsinh 1
J951
1
1 .13476822975405664508... k k 1
k 1 k 2
arcsinh 2 1
1
2k 2
k 1
1
x
x /2
dx
Prud. 2.3.18.1
0
2 .13493355566839176637...
.13496703342411321824...
=
e
e x
dx
4
1 x4
0
2
11
1
2
2
12 16
k 1 ( k 1)
1
1
2
2
4
2 2
)
k 1 k ( k 2 )
k 2 k (1 k
J400
=
( k 1) (2 k ) 1
k 2
Hk 2
1 .13500636856055755855...
k 1 2 k
k
cos1
( 1) k k 2
4
k 1 ( 2 k 1)!
3
(1) k 1 H E k
1
.13515503603605479399...
log
3
2
2k
k 1
.13507557646703492935...
.13529241631288141552...
20 .13532399155553168391...
.1353352832366126919...
1 1
Li 3 3
k 1
k
2
49
x log x
dx
3
9
x
0 1
Ai (1)
1
2
1 .1352918229484613014...
2 cosh 3 e 3 e 3
1
( 1) k 2 k
( 1) k 1 2 k ( k 1) ( 1) k 2 k ( k 3)
e2 k 0 k !
k!
k!
k 0
k 0
( 1) k 1 k 2 k
=
( k 2)!
k 1
=
log 3 x
dx
3
x
e
(
)
0
1 .1353359783187...
k 2
.13550747569970917394...
=
4
(k )
2 cosh
(k )
e e
(1)
k 1
22 k 1 (2k 1)
k 1
cos 2 x
cosh x dx
GR 2.981.3
0
.135511632809070287634...
1 .13563527673789986838...
.13574766976703828118...
1
1
1 1
1
2 4
4
4
9
e x dx
1 e 2x
0
I 2 (1)
cosh 11 1
1
1
1
1 dx
sinh 2 sinh 1 tanh sinh 4 5
4
2
2
4
2
x x
1
k!
.13579007871686364792...
k 0 k ! 1
163
1
.13583333333333333333 =
1200
k 1 k ( k 1)( k 5)
.13577015870381094462...
5 .13583989702753762283...
k ( k ) 1
3
2
k 1
(1) k 1 2k k
(k 1) 1
k 1 ( k 1)( k 2)
k2
.13593397770140961534... 11 e 18
k
k 1 ( k 2 )! 2
.13587558784724491212...
5
1
log
2
6
1 i 1 i
2 sinh
(1) k
(1) k 1
2
= 2
k 2 k 1
k 1 k 2k 2
.13601452749106658148...
1
=
cos(log x )
dx
(1 x ) 2
0
GR 3.883.1
=
=
cos(log x )
dx
(1 x ) 2
1
sin x
dx
x
1)
e e
x
0
16 23
( 1) k
e
4
k 1 k !( k 4 )
(k )
1
1 .13607213441296927732... 2 Li2
k
k 2 k
k 2
.13607105874307714553...
1
3 .13607554308348927218... 2 ( 4) 2 Li4
2
.13608276348795433879...
.13610110214420788621...
=
1 .13610166675096593629...
1 .136257878761295049973...
.13629436111989061883...
1
log 3 x
0 ( x 2)( x 1) dx
( 1) k k 2 k
8k k
3 6
k 0
1
( 3k )
( 1) k 1 k
3
8
k 1 8 k 1
k 1
3i 3
3i 3
2 3
3 3i
1 log 2
6 3
3
6( 3 3i ) 4 6( 3 3i ) 4
1
4 e1/ 4 1
k
k 1 ( k 1)! 4
k !k !
16
16
1
1
arcsin
k
15
4
15 15
k 0 ( 2k )!4
k 0 k 2k
4
k
5 ( 1) k
( 1) k
2 log 2 3
GR 1.513.7
4 k 2 k k k 0 ( k 1)( k 2)( k 3)
1
=
k
k 2
.13642582141524984691...
1 1
Lik
k 1
2 2
1
1
(1) k (k )
1 2 2
k
k 1 k k
k 2
1
2 (k 1)
1
(1)
k 1
2 .13649393614881149501...
( k ) ( k 1) 1
1
k 1
.13661977236758134308...
1
2
=
( 1)
.13678737055089295255...
=
1 .13682347004754040317...
.13685910370427359482...
.13695378264465721768...
.13706676420458308572...
.13707783890401886971...
sin 3
3
2
=
72
4k 1
(2 k 1)!!
(2 k )!! (2 k 1)(2 k 2)
13 (3)
2 3
1 (2) 2
1
3
3
27
54
81 3
k 0 ( 3k 2)
5
2 5
k2 1
coth
4
2
4
2
6
2
k 1 4 k k
( 1) k
(2 k ) (2 k 2)
k
k 1 4
1
k3
( 1) k 1 (5k 3) 1
5
1
2
k
k 1
k 1
2
1
( 3)
6 2
3
2
k 1 k ( k 1)
3
1
1 3 log k
4
k 1 4 k ( k 1)
k 2
1
(6k 3)
1
(12k 3)
k 1
1 k
k 1
2
2
.13711720445599746947...
14 .13716694115406957308...
(3) (k ) log k
k3
2 (3) k 1
9
2
2
1
1
2
(12 k 9)
1
k 1 2k 2
4 k
k
1 dx
= log 1 6
x x
1
=
2
J385
3
k 1
k 1
.13675623268328324608...
2
1
(2 k 1)!!
k 1 ( 2 k )!! 2 k 2
2
J391
J149
1 .137185713031541409889...
.13737215566266794947...
.13744801974139900405...
.13756632099228274...
.13786028238589160388...
2 .13791866423119022685...
.13793103448275862069...
1 .13793789723437361776...
12 .13818191912955082028...
2
log 2 2 2 log 2
7 (3)
8 log 2
2
2
2
2
( 3) (5)
( 3)
2
log 2
1
9 12
2
k 1 k (8k 6)
k
( 1)
3
k 2 k 2
1
e 2( 2 k 1)
2 sinh 2
k 0
4
2
2
4
x dx
csc
5 5 5
5
5
1 x5/ 2
0
4
29
Hk
k (2 k 1)
k 1
2
AS 4.5.62, J942
(1) k 1 F2 k
4k
k 1
e1/ 4
2
e
x2
cosh x dx
0
log1 x dx
2 1 3
12
0
.13822531568397836679...
log 1 e 1
ek
k 1
1 .13830174381437745969...
1
1
log 1
ek
e
k 1 ek
( k )
=
k
I2 2 e
1
F ;3, e
20 1
e
1
k 1
k 1 k
5 3
(3)
36
81 3
ek
k 0 k !( k 2)!
1 .13838999497166186097...
1 .13842023421981077330...
.1384389944122896311...
2 log 2 2
( 1)
1
1
1
3
3
3
(3k 1)
(3k 2)
(3k 3)
4 dk
k
K ( k ) log k
0
9 3 9 log 3
4
log 2
.13862943611198906188...
5
1 .13847187367241658231...
k
k 0
1
2
12
( k 13 )!
2 )! k
3
(k
k 1
.13867292839014782042...
4 log 2 2 log(2 3 )
1 2k
k
k k
16
k 1
GR 8.145
=
k 1
1 .13878400779449272069...
.1388400918174489452...
( 2 k 1)!!
k
k
(2 k )! 4
( 1) k (12 k 2 1)
k ( 4 k 2 1) 2
k 1
dx
4
x 16
16 2
0
2 G log 2
( 1) k 1 k
1
5k
k 1 k ( k 2 )( k 3)
k 1
k2
=
k 1 ( k 1)( k 2 )( k 3)( k 4 )
e pf (k )
2 .13912111551783417702... 2 e 2 e
2k
k 0
4
1
20k 2 5
(1) k 1 k!k!
.13918211807199192222... 1
arcsinh
2
5k
5
k 1
k 1 ( 2k 1)!
.138888888888888888888 =
.1391999869582814821...
5
36
2arcsinh 1 2 log 1 2 2 log 2 2
=
( 1) k 1 ( 2 k 1)!!
k 1 ( 2 k )! k ( 2 k 1)
.13920767329150225896...
.13929766616936680005...
.13940279264033098825...
1
3
csch
6 2 6
2
2
1 erf (1)
e
5
1
4 4e
.13943035409132289...
(3)
5
2
4
/4
0
x 2 tan 2 x
dx
cos2 x
( 1) k 1
2
k 1 2 k 3
e
x2
dx
1
.1394197585790642108...
1
1 dx
1 dx
1 sinh x 2 x 7 2 1 sinh x x 4
3 1
F1 2,2, ,
2 4
9 3
2
(k!)
2k
k
=
k 1 ( 2k 1)!
k 1 2 k 1
k 1 2k
k
k
1
E2 k
1 .13949392732454912231... sec
( 1) k
2
( 2 k )! 4 k
k 0
log 2 log 3
H
.13949803613097262886...
2 kk 2
3
12
k 2 4
2 .13946638410409682249...
1 log 2 2
1
G
3
4
2 16
4
3
2
GR 3.839.4
3 .13972346501305816133...
log e e
1 cos1 2 sin 1
sin x dx
2
5
5e
e2 x
0
7
=
50
1
=
( 1) k e ( 2 k 1) log 7
2 cosh log 7
k 0
1
.1398233212546408378...
.14000000000000000000
=
( 1)
k 2
=
x
1
1 .1405189944514195213...
5
23 .14069263277926900573...
18 .140717361492126458627...
.14095448355614340534...
2
1
3
log(2 3 )
2
3
1
3 (2k 1)
k 0
k
k
9
k 1
k
sinh
Shown transcendental by Gelfond in 1934
k
2k
(2k )!
k 1
1
3
1
8 24 G 2 2 log 2 9 (3) ( 3) ( 3)
2048
4
4
0
2 .14106616355751237475...
2k
e i 2i
/4
=
( k ) 1
3 arctanh
=
k
dx
x4
9
64
2 .14064147795560999654... ( 9 )
.14062500000000000000
/2
1
2 4 log 2 18 2 (3) 93 (5) x 3 log sin x dx
128
0
1
.14002478837788934398...
4
1
.14004960899154477194.. 2 k
Berndt 6.14
1
k 1 e
5
1
(1) k
log 2
.14018615277338802392...
6
k 1 2 k ( 2k 1)
k 0 k 4
1
=
2
k 1 4k 10k 6
.14002410170685231710...
J943
x3
dx
tan x
e
.14111423493159236387...
1
2 2
k
k 1
.14114512672306050551...
2k
cos3 k
1
i 3
3i
i 3
3i
log 1 e 1 e 1 e 1 e
k
8
k 1
2 2
Li2
k k
k 2
1 .14135809459005578983...
2 k ( k ) 1
k2
k 2
7 .1414284285428499980...
10 .141434622207162551...
51
2 2
1
2 log 2 2 4 log 3 4 Li2
2
3
. 14147106052612918735...
2 .14148606390327757201...
4
9
1
log 2 x
0 ( x 12)3 dx
2
2k
k
k
k 0 k 16 ( k 1)( k 2)
3log 2 2 log 3
3
( 1) k 1 / k
k 1
( 1) k
k
k 0 2 ( k 5)
k sin 6 k
.1415926535798932384... 3 ( 1)
k
k 1
k sin 4 k
1 .1415926535798932384... 2 ( 1)
k
k 1
.14155012612792688996...
32 log
3 77
2
6
1
=
arccos
2
x dx
0
/2
x
=
2
sin x dx
0
3 .1415926535798932384...
=
,
=
1
1
1
1
48 arctan 128 arctan 20 arctan
48 arctan
49
57
239
110443
=
1
1
1
1
176 arctan 28 arctan
48 arctan
96 arctan
57
239
682
12943
1 1
2 2
Borwein-Devlin p. 74
Borwein-Devlin p. 74
50k 6
k 0 k 3k
2
k
=
Borwein-Devlin p. 94
3k 1
8
(
k
)
1
k
k 1 4
k 1 ( 4 k 1)( 4 k 3)
dx
e x / 2 dx
x
=
1 x2
e 1
=
=
Vardi, p. 158
x
1 sin x dx
0
=
dx
2 cos 2 x
0
=
log1 x 2 dx
0
=
log1 x
0
log(1 x
2
)
0
2
3
dx
1
dx
x2
GR 4.295.3
logx 2 (e 1) 2
dx
0
x2 1
=
1 x2
= log
1 x 2 dx
x
0
1
2
GR 4.298.20
=
1
log x log1 2 dx
x
0
=
log( x 2 (e 1) 2 )
dx
0
x2 1
1
=
arccsc x log
2
x dx
0
3 1
6 .1415926535798932384... 3 2 F1 2,2, ,
2 2
7 .1415926535798932384...
12 .14169600000000000000
4
= 12
2 k 1
k 1 2k
k
2214
15625
k6
k
k 1 6
2k k
k 1 2 k
k
1
.141749006226296033507...
log 2 (1 x ) log 2 x dx
0
log 2 2
log 2
2
32 4
8
/4
= x tan x tan x dx
4
0
.14179882570451706824...
Bk k
e 1
k!
k 0
1
( 1) k
.14189705460416392281... arctan
2 k 1
7
( 2 k 1)
k 0 7
.14189224816475113638...
(1)
=
k 1
k 1
=
2
arctan
2
( k 2)
[Ramanujan] Berndt Ch. 2, Eq. 7.5
1
arctan 2( k 3)
k 1
1 .142001361603259308316...
.142023809668304780503...
.1421792525356509979...
1 .14239732857810663217...
.142514197935710915709...
1 .14267405371701917447...
.14269908169872415481...
.1428050537203828853...
[Ramanujan] Berndt Ch. 2, Eq. 7.6
7 (3) 2
k ( k 1)( ( k ) 1)
8
2
2
2 k 1
k 2
(k )
( 1) k 1 k
7 1
k 1
(2k 1)!!
1 3
4 1 2 log 2
4 4
k 1 ( 2k )!k ( 4k 1)
4
11
2 log 3 2 log 4 2
1 21 (3) log 2
6 (4)
6 Li4
2
4
4
4
log 3 (1 x )
0 x dx
.14260686462899218614...
2
1
=
J152
GR 3.797.1
8
2k
k 1
2
25
(k ) (k )
csc
2
5
1
4
log 3 x
1 x 1 dx
2
1
(5k 1)
k 1
(x
1
2
2
1
2
(5k 4)
dx
1) 2
2
14
2
log
3
81 27
(1)k
k 1
Hkk3
2k
( 1) k ( k ) 1
.14280817593690705451...
k2
k 2
1
.142857142857142857
=
7
1 .14327171004415288088...
3 .1434583548180913141...
.14354757722361027859...
1
1
k Li k
2
k 2
3G
log e e
3
216
.14359649906328252459...
(k ) 1
k 1
( k )
3 .14376428513040493119....
k 2 Fk
k 3
1
1 1
2 log 1
k
k
k 2 k
1 ei
cos k
ei
1 .143835643791640325907... e
cos(sin 1)
e e
2
k 0 k !
= cos(sin 1)cosh(cos1) sinh(cos1)
1
4
1
1
.14384103622589046372...
log arctanh 2 k 1
( 2 k 1)
2
3
7
k 0 7
dx
dx
= 3
x x
( x 1)( x 2)( x 3)
2
0
cos 1
.14385069144662706314...
5
2e 4
cos 4 x
2 2 dx
)
(1 x
.143954174750746726243...
5
2
5 5
10 3 5 log 5 5 log 2
25 11 5 log
4
8
53 5
5
1
=
4
k 1
1 .14407812827660760234...
1 .14411512680284093362...
.14417037552999332259...
Fk F k
k (k 1)
5
Li2
6
3 log 2 2G
2
2
4
( k 1) ( k 1)
4k
k 1
1
1
Li4 k 4
7
k 1 7 k
=
k
8k 1
2
k 1 k ( 4k 1)
GR 1.449.1
K146
.14426354954966209729...
.14430391622538321515...
2 log
4
( 1) k 1 k
k
k 1 2 ( k 1)
2
dx
e x
x
3 2
2 3
e
x4
0
GR 3.469.3
e x x log x dx
2
=
0
3 .14439095907643773669...
k 2
2
( k ) 1
2
.14448481337205342354...
e e 1/ e 1 e 1/ e
.14449574963534399955...
3 (2 k 1)
k 1
( 1) k 1 k
k
k 1 ( k 1)! e
H ( 3) k
k
2k
4
k 1 k ! k
2
3 Li3 (3)
.144713210092427431599...
9
2 .14457270072683366581...
.144729885849400174143...
1 log log
log 2 x dx
1 x3 3x 2
( 2k )
4 ( 2k 2 k )
k 1/ 2
k 1
log
1 .144729885849400174143... log (1)
k
2k
k
e
k 1
k
Prud. 5.5.1.17
k 0
1
3
31 (5) 32 5,
1 5
2
k 1 ( k 2 )
1
1
( 1) k 1 ( 2 k )
1 .14479174504811776643... 2 cos
k
( 2 k 2 )!
k 1 k
k 1
8
4 log 2
2
.14490138006499325868...
( 2 1)
log(1 2 )
25 10
5
5
1
=
k 1 k (8k 5)
.14476040944446771627...
.14493406684822643647...
2
6
3
2
1
3
2
k 2 k k
( 1) ( k 2) 1
k 1
k 1
Hk
(2 k ) (2 k 2)
2
4k
k 2 k k
k 1
4x
dx
=
2 2
(1 x ) (e 2 x 1)
0
=
Prud. 5.1.7.23
1
=
log(1 x
2
)
0
1 .14493406684822643647...
2 .14502939711102560008...
2
6
1
2
dx
x
GR 4.29.1
( 1) ( k ) ( k 1) 2
k
k 2
2/3
(1) k 1 k 7
2k
k 1
.14540466392318244170...
381
2187
.14541345786885905697...
2 log( e 1)
2
1
ke
k 1
2k
GR 1.513.3
1 (1) 3
8 2 5
1
7
2
( 1)
8 25
5
5
25
5
25
1
=
2
k 1 (5k 2 )
1
1
1
.14552316993048935367... Li3 , 3, 0 k 3
7
7
k 1 7 k
.14544838683609430704...
1 .145624268262139279409...
2
3
12
32
=
2
11
1
3 log 5 8 arctan 2 44
25 100
(k )
.14581354982799554765...
3G 1 3 2
2 7 (3)
log 2 G
3
4
4
18 2
3 16
Hk
(4 k 3)
k 1
.14573634739282131233...
k 2
.145833333333333333333 =
k !( k 1)!
k 1
7
48
1
2
k 1 k 4 k
xe
x
log x cos 2 x dx
0
1
2
k I1
1
k
2k
1
k 0 ( k 1)( k 5)
( 1) k 1
2
k 3 k 4
1
=
x
3
log( x 1) dx
0
=
1 dx
log1 x x
5
1
53
log 56 (6) 140 (4) 56 (2)
24
( 2k ) 1
=
k 4
k 1
.14583694321462489756...
.14585774315725853880...
log 2 1 2G 1
2
4
2
.14588643502776689782...
(1) k 1 k 2
(2k 1)
2k
k 1
2
1
(2 k 2)!!
(2 k )!! 2 k 2
k 2
J385
73 5
4
2
log 2 2
.14606785416078990650... 2 log 2
1
2
2 3
3 .1462643699419723423...
.14589803375031545539...
.1463045386077697265...
2
4
4
2 log 2
( 1) k 1 Hk
k 2
k 1
1
k (2 k 1)
k 1
2
GR 0.236.7
1
=
log(1 x
2
) log x dx
0
.14630461084237077693...
1
3
log 2
2
2
2 2 arctan
( 1) k 1
k
k 1 k ( 2 k 1) 2
1
8
k 2
cos x
dx
.14641197161688952006... x / 2
e 1
0
.14632994687169923278...
.146443311828333259614...
.1464466094067262378...
.1464539518270309601...
k
4
cosh sinh csch
4
2
(1) k 1 k 2
2
2
k 1 ( k 1)
1
1
2 2
2 2 2
4
e
1 2 cos1 sin 1
log x sin log x
dx
2
2e
x2
1
1
=
xe
x
sin x dx
0
1 .14649907252864280790...
.146581405847371179872...
2 .146592370069285194862...
.14665032755625354074...
1
1
1
PFQ {1,1,1},{2,2,2},1
e x log 2 x dx
2
20
k 1 k!k
1 log
9
16
6
2
5
2
(1) k 1
(k 1) 1
k
k 1 2 ( k 1)
cos x
3 / 2 cos x dx
0
24 13 cos1 20 sin 1
( 1) k 1 k
k 1 ( 2 k )!( k 2 )
1 .14673299472862373219...
e
k 1
.146997759396759645699...
2 .147043391355541844907...
1
k /2
1
Berndt 6.14.1
3
4 2 2
1
3
3
8
x dx
1
e
2 x
0
(1) k 1 k 4
2
3
k 1 ( k 1 / 4 )
32
i (1)
i
.14711677137965943279...
(2 i) (1) (2 i) (2, 2 i ) (2, 2 i )
4
4
k
k 1
= (1) k (2k 1) 1
2
2
k 1
k 2 k 1
=
1
x sin x
dx
x
2 0 e (e x 1)
(1) k 1
k
k 1 2 2
.1471503722317380396...
.14718776495032468057...
.14722067695924125830...
=
9 log 3 1
40
10
(sin x x cos x)3
dx
0
x6
Prud. 5.2.29.24
log 2 2 2
1
log 2 log 3 Li2
2
2
12
1 1
log 2 log 3 log2 2 Li2
2 4
log(1 x )
dx
x2
0
90
1
4
90 ( 4) 1
1
=
12 .147239059010648715201...
.14726215563702155805...
3
64
.14729145183287003209... 1
1
x
3
arccos xdx
0
Ei (1) 1
e
( 1)
k
k 1
Hk
( k 1)!
1
=
e x 1 x log x dx
0
.14747016658015036982...
( 1) k 1 k 2 (3k ) 1
k 1
.14758361765043327418...
k 3 ( k 3 1)
3
3
k 2 ( k 1)
1
arctan
2
1
Plouffe’s constant, proved transcendental by Barbara Margolius
.14766767192387686404...
9k
3
1
( 3k )
9k
8
(1) k
.14775472229893261117... 5
k
e
k 0 2 ( k 3)!
2 arcsinh 1
1
.14779357469631903702...
2
2
( 1) k 1 ( 2 k 1)!!
=
2
k 1 ( 2 k )! ( 4 k 1)
k 1
1
k 1
2 arcsinh1
2 1
log 1 2
2
2
2
2
1 .14779357469631903702...
1
=
1 x 2 dx
0
(1) k log k
k2 1
k 2
3
1
log 3 1 3
2
k 1 9 k k
( 2 k 1)
9k
k 1
k
1/ 4
4 3e
k
k 0 ( k 1)! 4
H5 / 2 ( 3 )
.147822241805417...
.14791843300216453709...
=
.14792374993677554778...
1 .14795487733873058...
.14797291388012184113...
1 tan 2
7
8 2
( k )
1 .148135649546457344478... k
k 1 2 k
1 .14812009937000665077...
.148148148148148148148 =
4
27
3 .14821354898637004864...
2
1
coth 2
4
4
k 0
k
k 1
2
4k
k 1
2
J375
1
2
2
1
4k 7
(1) k ( k 1)
2k
k 0
(k 2)
( k !)
2
1
k
k 1
2
1
I0 2
k
1
1
1
Li2 ,2,0 k 2
7
7
k 1 7 k
1
1 10
.14834567213507945656... 4 2 arctan
k
2
3
k 0 2 ( 2 k 5)
.14831179749879259272...
1 .14838061778888222872...
27
3
log 3
1 1 1
1
hg 2
18
2
3 3
3 k 1 3k k
(1) k ( k )
=
3k
k 2
.14839396162690884587...
3
1
=
x
4
1
dx
x3 x2
1
3
2
4 4e
1/ 5
1 .1486983549970350068... 2
.14849853757254048108...
( 1) k 2 k
k 0 k !( k 2 )
1 .14874831559185321424...
1
k
k 0
.14885277443216080376...
.14900914406163310702...
.14901768840433479264...
8 .14912752141674121819...
.14918597297347943780...
2 k 2
k
16 (k 1)
16 ( 7 4 3 )
1
4 Li3 2
2
log 2 x
1 2 x 3 x 2 dx
( 1) k 1 (2 k 1)!!
1 1
2 log
2
(2 k )! 3k k
3
k 1
log k
3
2
k 2 k k
4 e3 7
3k k 2
9
k 1 ( k 2 )!
3 7
(1) k
k
9 log
2 2
k 0 2 ( k 1)( k 2 )( k 3)
1
1
= k
2 k 0 3 ( k 2)
.14919664819825141009...
8e
9/4
e
2
1
e
x2
sin 2 x cos x dx
0
k
3
3 k
(1) k 1
3
e k 1
k!
3 1
6 .14968813538870263774... 2 2 F1 2,3, ,
2 4
.14936120510359182894...
.149762131525267452517...
19
3 log 2
5
2
1 .14997961547450537807...
2 (k ) 1
k
k 2
3
k!(k 1)!
(2k 1)!
k 1
1
k 2 k ( 4 k 1)
(1) k ( ( k ) 1)
4 k 1
k 2
.15000000000000000000
=
3
20
(k ) 1
.150076728375356585727...
(1)k
2 (k 1)
k
k 2
.15017325550213874759...
.150257112894949285675...
2
3
(3)
8
sin
3
2
=
=
1
1
2k log1 2k
k 2
3
2
1 4k
k 1
(1) k 1 H k
2
k 1 ( k 1)
1
3
k 1 ( 2k )
1
1
log 2 (1 x 2 )
log(1 x) log x
dx
dx
0
x
x
1
0
1 1
1 .15050842410886528915...
=
log(1 xy )
dx dy
1 xy
0 0
2
1 (1) 1
5
(1)
log(1 2 )
16
4 2
8
8 2 2
i 2 Li2 i (1 2 Li2 i ( 2 1
=
2 k ( k !) 2
2
k 0 ( 2 k )!( 2 k 1)
/2
=
2
0
.15058433946987839463...
1
sin 1 cos1
2
=
( 1) k k
k 1 ( 2 k 1)!
1 dx
2 5
x
sin x
1
.15068795010189670188...
x sin x
dx
2 cos2 x
3 ( 3) 4
2 log 2 2
log 4 2
2 log 3 2
4
15
4
4
1 21
6 Li4
(3) log 2
2
4
1
.1507282898071237098...
=
log 3 (1 x )
0 x 2 ( x 1) dx
8 log 2 4 log 3 1
(1) k
k
k 1 3 k ( k 1)
1
2
csch
4 2 6
3
(1) k 1
2
k 1 3k 2
.150770165868941637996...
.15081749528969631588...
(k ) 1 (k 1) 1
k 2
Berndt 3.3.2
(1) k
.15084550274572283253... 3
k 0 k 3
110
1
1
.1508916323731138546...
,2,0 Li 2
729
10
10
2
113
k
.15097924480756398406...
2
3
36
k 1 ( k 2)( k 4)
1 .15098236809467638636...
=
3
3 log 3 2 log 2
10
10
5
1
log(1 x 6 )
dx
x6
0
1
2
k 1 6 k 5k
1
1
2
4 k 1 9k 9k 2
1
( k 1)(6k 1)
k 0
1
dx
2
2
12 3
k 1 2k
0 ( x 3)
4
k
7
7
1
6 1
6
.15116440861650701737... (3) Li3 Li3 log log log 7 2 Li2
6
6
7
7 2
7
H
= k k 2
k 1 7 k
( 4 k 1)
.1511911868771830003... 4 k 1
1
k 1 2
.15114994701951815422...
81 .15123429216781268058...
8
.15128172040710543908...
(1)
k 1
0 (k )
3k
k 1
1
log10
2
1
.15129773663885396750...
3
k 1 Fk k
1 .15129254649702284201...
.151632664928158355901...
1 .15163948007840140449...
1
4 e
k 1
8
k2
k!2 k
coth
2
k
(k 1)
k 2
2
csch 2
16
2
k 1 ( 2k ) 1
= ( 1)
4k
k 1
(1)k 1
k 1
k5 / 2
k 1
.151696880108669610301...
( 3) (5)
(4)
2 .15168401595131957998...
k2
k
k 1 10
5/2
4
25
4k 2
2
2
k 2 ( 4k 1)
.15169744087717637782...
.151822325947027200439...
.15189472903279400784...
8
/2
( 2 log 2 1)
=
1 .151912873455946838843...
2
x dx
0
2
e 1
4 log 2
9 6
3
log
log(sin x) sin
(1) k 1
2
k 1 2k 3k
1 dx
2 4
x
1
1
6
5
4
3
2
k 0 k k k k k k 1
log1 x
5
6
H
log ( 1) k 1 kk
6
5 k 1
5
log ( k )
.152020846736913608124...
k2
k 2
.1519346306616288552...
.15204470482002019445...
1+ 5
2 5 log
2
2
.152185252101046135100...
1
3
cos
5
2
6
1 (2k 1)
k 1
2
4 log 2 2 log 2 2
Hk
18
3
3
k 1 ( k 1)( 2 k 1)
2k
16
1
k
=
105
k 0 k 4 ( k 3)( k 4)
1 .15220558708386827494...
.1523809523809523809
2
( 1) k 1
k 1 2 k
(2 k 1) k
k
.152607305856597283596...
.15273597526733744319...
17 .152789708268945095760...
8
8
log
7
7
1 e2
2 4
Hk
8
k 1
k
2k
k 0 k!( k 4)( k 7)
( 1) 2
1 3 2
1
(2k )!!
arcsin
k
2
4
3 k 1 (2k 1)!!3
k 1
.15289600209100167943... k 1
k 2 k
1 .15281481352532739811...
.15289756126777578495...
e(e 1) 5
(e 1)3 e
k2
k
k 1 e
x2
1 e x dx
GR 4.384.9
.15300902999217927813...
3 (2) (3)
1
4
3
k 2 k k
1
k (k 1)
k 1
3
=
(k 3) 1
k 1
1 .15300902999217927813...
4 (2) (3)
(k ) (k 2) 2
k 2
1
1 1
1
cot
2
2 3
3 2 3
3
k 1
(2k ) (2k 1)
= 3
3k
k 1 3k k
k 1
log (3)
.15309938731499271977...
(3)
.153030552913947039536...
1 .15318817864647891814...
1 . 15326598908047301786...
1
si 1
2 2
4
16
2
2
arcsin x
arccos x dx
0
2
1
x 2 log x
dx
2 0 x 2 1
Borwein-Devlin, p. 54
2 .153348094937162348268...
( x y) 2
x y
0 y x y sinh( x y) log x y dx dy
coth 1 i (1 i ) (1 i ) 2 Im (1 i )
=
Borwein-Devlin, p. 53
1
1
k i k i
k 1
2
k 1 k 1
3 .15334809493716234827...
coth 1
4 .15334809493716234827...
coth 1 i ( i ) (i ) 2 Im (i )
.1534264097200273453...
=
1 log 2
( 1) k 1
2
k 1 ( 2 k 1) 2 k ( 2 k 1)
2 k 1
1
k log
2 k 1
k 1
=
1
k (8k 4)
k 1
=
2
2
k 2
1
k
(k 2 k )
J947
GR 0.238.2, J237
J128
( 2 k 3)! k
( 2 k )!
k 2
( 1) k
=
k 0 2 k 4
( 1) k 1
=
3
k 1 8k 2 k
1
( 2k )
1 4k 2 log1 2
= k
4k
k 1 4 ( 2k 1)
k 1
=
=
1
dx
5
x x3
=
0
=
/4
tan
1 sin 2 x
log x
1 x 2 dx
3
log sin x dx
x
Prud. 2.6.34.44
dx
log x 1 x
2
=
x dx
0
sin 3 x
2
K Ex. 109b
1 dx
1 log1 x ( x 1)2
1
0
log(1 x)
dx
(1 x) 2
GR 4.291.14
1
=
(1 x) arctan x dx
0
=
1
1
1
1 dx
2
2 log x 2 log x
0 1 x
GR 4.283.5
=
=
1 1 x e x / 2 dx
e
2 x
x x
0
dx
0 e2 x (e2 x 1)
GR 3.438.1
k4
1 .15344961551374677440... 2 J1 ( 2) 3 J1 ( 2) J 2 ( 2) J 0 ( 2) ( 1)
(k!) 2
k 0
(1) k 1 2k
=
k 1 ( 2k 1)! k
2
.153486153486153486
=
13
1 1 / 3
7 (7) 2 / 3
1
1 2 1 1
.1535170865068480981...
i
i
1
3
1
3
1/ 3
7
7
6 71 / 3
7
(3k )
1
= 3
(1) k 1 k
7
k 1 7 k 1
k 1
k
k2
.153540725195371548500... 2
1
k 1 k 1 k
.15354517795933754758...
(1) (7) (2) H ( 2 ) 6 (2)
1 .15356499489510775346...
e1 / 7
1 .15383506784998943054...
1/ 8
5369
3600
181 log 2
4 (3) 6 (2) 360 (1)
90 5
2
(k ) 1
=
k 2 k 4
k (2k )
2
12k 2
.15409235403694969975...
3 sin
csc
k
2
2
48
3
2 3 k 1 12
k 1 (12k 1)
2
9
k 1
.1541138063191885708... 2 (3) ( 1) ( k 1)(k 2)( ( k ) 1)
3
4 k 3
k 2 ( k 1)
.15386843320506566025...
=
( 2) 3
=
log 2 x
1 x 4 x3
1
=
x 2 log x
0 1 x dx
=
x2
0 e2 x e x 1dx
H ( 3) k
k
k 1 4 ( k 1)
.154142969550249868...
1
1
log 7 log 6 Li1 k
7
k 1 7 k
1
1
2 2 k 1
= 2 arctanh
(2k 1)
13
k 0 13
2
1
.15421256876702122842...
64 k 1 (( 2 k 1)2 4 ) 2
.15415067982725830429...
K148
J383
15 .15426224147926418976...
ek
e
k 0 k!
e
=
e
k 0
1 / k!
Not known to be transcendental
k 2
( k ) 1
k
k 2
2 1
.15443132980306572121...
(k ) log k
k 1
k
2
1 .15443132980306572121...
3
2 .15443469003188372176...
2k 1
1
k 2
2
10
( 1)
.154475989979288816350...
2 log1 k k ( k 1)
k 1
log (2 k 1)
k 1
2
40
H ( 2)3 / 2
9
3
( 1) k
.15457893676444811...
3
k 2 k log k
1
1 .1545804352581151025...
k 1 S 2 ( 2k , k )
1 .1545763107479915715...
7
( 1) k k 3 2 k
k
32 2
k 1 4 ( 2 k 1) k
1
.15468248282360638137...
3
k 1 (3k 1) 1
.15467960838455727096...
=
.1547005383792515290...
9
18 3
4 3 5 i 3 2 3 3i 5 i 3
6
6
k 1
2
( 1) k 2 k
1 k
3
k 0 2 ( k 1) k
log 3
1
6
18 3 3i
k 0
=
(2k )!
2 2k
4
( k!)
( 2 k 1)!!
(2 k )! 4
k 1
k
2
1 2k
csc k
3
3
k 0 16 k
(2k 1)!!
= 1
2k
k 1 ( 2k )!!2
13
1
=
84
k 0 (3k 1)(3k 10)
1 .15470053837925152902...
.15476190476190476190
1
2 .15484548537713570608...
3e 6
e
0
x 1/ 3
dx
AS 4.3.46, CFG B4
J166
K134
k4
7 .154845485377135706081... 3e 1
k 1 ( k 1)!
k (k 1)
8 .154845485377135706081... 3e
k!
k 1
.15491933384829667541...
.15494982830181068512...
.15555973599994086446...
.15562624502848612111...
=
1 .15572734979092171791...
(1)
k 1
k 1
2k k
k
k6
Re(i )
1 2 H
2
(2) (3)
(2) (3)
.155761215939713984946...
Hk
(4k 1)(4k 1)
k 1
k
2
k 1
1
2
k
216 18 3 2 54 log 3 72 log 2 (3)
(k 3)
1
(1) k 1
4
3
6k
k 1 6k k
k 1
cos x
dx
e (1 x 2 ) 2
(1)
k
(k ) 1
(k!) 2
2 cos t
1 t
2
dt
0
1
k 1 J 2
0
1
k
1
2
1
.15580498523890464859... 4 4 2 arctan
2 log Li2
2
3
2
k
1
( 1)
= k 2
k 1 2 k ( 2 k 1)
2k
k
.1559436947653744735... cos 2 ( 1)
( 2 k )!
k 0
dx
.15609765541856722578... 4
x x3 x
1
k 2
3 12
.154951797129101438393...
log 2 G
8
4
2
.15519690003711989154...
3
.15535275300432320321...
1 3
5 5
.1561951536544784133...
(k ) 1
k 1
H (k )
k k
2
k 1
k 2
.15622977483540679645...
2
k 2
1
1
4k 1 2k 2 log1 k 2k
k 1
GR 1.411.3
2
1
log1
k
7
.156344287479823877804...
coth
10 4
2
( 1)
k 1
(2 k ) 1
4k
k 1
e2
1 coth 1
1
2
2k
e 1
2
k 0 e
1 .15651764274966565182...
.15652368328780337093...
1
1
coth 1 1
1
2
2k
e 1
2
k 1 e
.15651764274966565182...
6 cos1 10 sin 1
23
2
k 1
.156643842100387720666...
2
2
k 0
1
Bk 2 k 1
k!
k 0
1
k
2
2
J951
1
(1) k 1
k 1 ( 2k )!( k 2)
1
e ee ee
e e cos 2 cos(sin 2)
2
2
4
1 .15654977606425149905...
1
k
2i
k
i
=
Re (k ) 1
2
k 2
2
k 2 4k 1
cos 3 x
cos 3 x
.15641068822825414085...
dx
dx
3
2 2
2
e
0 (1 x )
x 1
log 3 2 log 2 2 2 1 log 2
2 i
sin 2 k
k!
k 1
( 1) k 1
log 2 k
k
k 1
1 = Stieltjes const.
12 .1567207587610607447...
3 6
x
3
sin x dx
0
1 .15688147304141093867...
.156899682117108925297...
.15707963267948966192...
.157187089473767855916...
2 log
1
log x log 1 2 2 2 dx
e x
e
0
3
3
4
6
20
3
3
e 1
e
5x
0
1 dx
3
x3
log1 x
1
dx
e5 x
log( x 2 3)
3 .157465672184835229312... log(1 3 )
dx
x2 1
0
1 .15753627711664634890...
1 .15757868669705850021...
26 (3)
1
1
G3 1
3
3
27
k 1 (3k 1)
k 1 (3k 1)
3
4
2
x 2 dx
e
0
x2
1
.157660149167832330391...
=
.1577286052509934237...
.15779670004249836201...
.15783266728161021181...
9 .157839086795201393147...
.157894736842105263
=
.15803013970713941960...
.1580762...
1 2 2
1
(1)
9 6
3
x log x
1 x x
2
dx
GR 4.233.3
1
1
(1)1 / 3 Li2 ((1)1 / 3 ) Li2 (1) 2 / 3
1/ 3
1 (1)
2k
1
3
3
k 3
cos 1 ( 1)
4 k 0
( 2 k )!
k
1 k
2
k 2
2
1
k 1 k
(
1
)
2e1 /
k! k
k 1
8 log
3
19
1
1
1 dx
cosh 4 9
x x
4 4e
1
GR 1.412.4
1
2
ω a non trivial ( 1)
integer power
.158151287891164991627...
3 (3)
( 2)
2
.15822957412289865433...
3 (2k 1)
k 1
x log 2 x
0 (1 x)2 dx
log 2 x
1 x(1 x)2
Hk
k
.158299797338769411097...
1
k!
S ( 2k , k )
k 0
1
1
(1) k 1
csch 2
.15871527483457111423...
2 4
2
k 1 4 k 1
i
i
k 1 ( 2 k ) 1
.158747447059348972898... log 2 log 2 ( 1)
2
2 k 1
4k k
1 3
(1) k 1
.158806563699494307872...
csch 3 2
6
6
k 1 k 3
2
1
log x dx
4
2
16
x 1
k 1 ( 4k 1)
1
k
.15888308335967185650... 6 log 2 4 k
k 1 2 ( k 1)( k 2)
( 1) k
4 .15888308335967185650... 6 log 2
1
2
k 0 ( k 3 )( k 3 )
.15886747797947540615...
G
2
J125
k 2Hk
12 .15888308335967185650... 8 6 log 2
k
k 1 2
k2
40 .15890107530112852685...
k 1 Fk
B2 k 2 k
1 .1589416532550922853...
(2 k )! k
k 0
3 .15898367510013644053...
7 .15899653680438509382...
t4 (k )
k
k 1 2
I 0 (2 3 )
2
i 1 j 1
=
1
kj
3
k
(k!)
k 0
16
.15909335280743421091...
14 245
.159105544771044128966...
0 (k )
2
1
1
1
ijk
iijkl
1 i 1 j 1 k 1 l 1 2
j 1 k 1 2
11
o F1 ;1; 3
1
x
0
6
arcsin x dx
GR 4.523.1
2 log 5 1 5 log 5 2 5
5 5
Fk Fk 1
Fk Lk
k
k
k 1 4 k ( k 1)
k 1 4 ( 2k 1)
5
1
( 1) k 1
arctan 1 2 k 1
2
2
( 2 k 1)( 2 k 1)
k 1 2
13 16 log 2
1
.159137092586739587444...
12
k 1 k ( 2k 1)( k 2)
.15911902250201529054...
.1591484528128319195...
( 1)
k 1
k 1
9
1
H2 k 1
4 log 2 2 arctan
k
8
9
8
2 2
1
2
(3)
1 .15924845988271663064...
(5)
.159154943091895335769...
.159343689859175861354...
.159436126875267470801...
(2k ) (2k 2) 2
k 1
2k
2
32
5 2 log 2 log 2 2
12
3
3
4 2
1
2
(1) (1)
13 .159472534785811491779...
3
3
3
2
4
k 1 cos k
.15956281008284001011...
1 (1)
24 2
k2
k 1
( 1) k 1 Hk
k 1 k ( k 3)
.15972222222222222222
=
23
144
1
k (k 1)(k 4)
k 1
e
1
1
log coth k
2
4
k 0 e ( 2k 1)
1
(k )
2
k log k
.159868903742430971757... log 2 log 2 ( 1)
k
2
k
k 2
k 1 2 k
(1) 5
2 .15990451200777555816...
6
1 .15973454203768787427...
e arccoth e
.160000000000000000000 =
(1) k 1 k
4k
k 1
4
25
1 .160014413116984775294...
.1600718432431485233...
2 .1601271206667850515...
.16019301354439554287...
.16043435647123872247...
3 1
sin 3 x
dx
4 3 0 x 3
1
(k )
( log 4 log 5) ( 1)k k
5
4
k 1
log k log(k 1)
k2
k 1
(1) k 1
H
1
Li2 k 2 k k
6
k 1 6 k
k 1 7 k
16 7 log 2
1
k
9
3
k 1 2 k ( k 3)
.16044978576935580042...
2 3e
.1605922055573114571...
.1606027941427883920...
3
cos x
dx
2
3
x
0
24 log 2 7
1
2
60
k 1 2k 11k 12
2
1
x
0
4
1
log1 dx
x
( 1)
log 2 x
2 x
x
e
dx
0
1 x 2 dx
k 0 k !( k 3)
5
e
k
1
( 1)k
k 0 ( k 1)! 2 k !
sin 1 1
cos 2k
.160889766020364044721...
4
2
k 1 ( 2k 1)( 2k 1)
.1610391299195894597...
=
2
2
log 2 4
GR 1.444.7
2
2 2
log
2
2 2
=
(1) k 1
2
k 1 4k k
=
1 dx
4
0 log(1 x ) dx 1 log1 x 4 x 2
1
4 .1610391299195894597...
2
2
.1613630697302135426...
k 1
(1)
k
k 1
1
coth
2
.16126033258846573748...
2
2 2
log 2
log
2
2 2
1
1
4 dx
log1 x
0
1 1
log 2
log k
Lik
k
2
k 1 2
2 2
1
1
B2 k 2 k
1 2 2
1
2
k 1 k 2
k 1 ( 2 k )!
( 2k ) 1
.16137647245029392651...
2
2
J0
2
0
k
k
1
(2k )!(2k )! 2 I
k 1
.161439361571195633610...
=
=
1 .161439361571195633610...
e2 1
log sinh 1 log
2
e
2 k 1
2
B2 k
k 1 ( 2 k )! k
22 k 1 B2 k
k 1 ( 2k )!k
i
i
(1) k 1 (2k )
log 1 1
2k k
k 1
e2 1
(1) k 2k Bk
1 log sinh 1 log
k !k
k 1
2
3
Berndt 5.8.5
1
arctan 2 x dx
.16149102437656156341...
192
1 x2
0
.161745915929683120084...
=
2 6
log 17 12 2 3 arctan h
1
3
5
12 2
1
x
6
1
1
dx
x 6
2 .16196647795827451054...
1 .162037037037037037037 =
kk
k 1 2k
k
251
H ( 3) 3
216
1 .16204051536831577300...
(k ) (2k 1) 1
k 2
(1) k 1
1
.16208817230500686559... cos
1
k
k 1 ( 2k )!3
3
3 3
1
8 .16209713905398032767...
1
5
2
k 0 ( k 6 )( k 6 )
6
1
.162162162162162162162 =
(1) k e ( 2 k 1) log 6
37
2 cosh log 6
k 0
=
2 .1622134783048980717...
3 .162277660168379331999...
sin 6 x
dx
ex
0
2
2
1
2
k 1 k ( 2k 1)
4 log 2 2
10
k (k 2)
2k
k 1
J943
1 .16231908520772565705...
.162336230032411940316...
.162468300944839014604...
1
3
, 0,1
2
k 1 (k 12 )!
71
k3
13e
2
k 1 ( k 3)!
4 93 (5)
6
(1)k 1
=
k
(k
k!
1
2
)5
1
2k 1 2k 2k e
2 1 / k
2
k 1
2k 2
8 27(2k 1()1) 2(2k 1)
2 1
k
3
k 1
1
(k )
k 3
.16266128557107162607...
2e
k 1
.162651779074113703372...
2
e(erf 1)
x arcsin x
(1 x )
2 2
dx
GR 4.512.7
0
2
.16268207245178092744...
.16277007036916213982...
.162824214565173861783...
.162865005917789330363...
1 .16292745855318123597...
1
dx
4
2 log 2 log 3
8
x x3
1
1
4
( 1) k 1
2 3 arctan 2 log 2 k 1
2
5
( 2 k 1) k ( 2 k 1)
k 1 2
1
3
1
11 2 log 2 2
x log(1 x)
dx
96
8
1 x2
0
3 3 (3)
256
=
( 1)
k
k 0
.16301233304332304576...
.163048811670032322598...
4e
1 (2) 7
5
3
1
( 2 ) ( 2 ) ( 2 )
8
8
8
8
1024
1
1
1
1
3
3
3
3
(4 k 1)
( 4 k 2)
(4 k 3)
( 4 k 4)
xe
x2
sin x cos x dx
0
(k )
k 1
k
log (2 k 1)
.1630566660772681888...
.163224793...
k2
7 3e Ei(1)
k 1 ( k 2 )!( k 1)
( k )
2
k 2 ( k 1)
.16329442747435331717...
=
4 log 2
2
8
( 2 1)
log(1 2 )
3
3
9 6
1
k 1 k (8k 3)
Prud. 5.1.7.22
.163265306122448979592...
.16345258536674495499...
.163763357369443580273...
.16389714773777593436...
.163900632837673937287...
.16395341373865284877...
2 .16395341373865284877...
4 .16395341373865284877...
.16402319032763527735...
=
2 .16408863181124968788...
.1642135623730950488...
1 .16422971372530337364...
.16425953179193084498...
8
49
k
8
k 1
k
2
40
6
27
/2
x
2
cos3 x dx
0
17
(2) 3 (3)
8
k
(k 3)
k 1
3
3
(1) k 1 k
1 2 e
cos
3
(3k )!
9e
9
k 1
2
3 5
3
( 2k ) 1
log
log
k
8
2 2 k 1 4 k
3 e
1
2 2
1
e 1
k 1 k 4
1 e 1
B
coth
2k
2 e 1 k 0 (2k )!
3e 1
1
2 2
1
e 1
k 0 k 4
1 (1) 2
3 2
1
1
(1) 4
(1)
3
3
3
12
4
9
6
9k
2
2
k 1 (9k 1)
(k )
2
k 2 k 3
( 2 k 1)!!
5
2
k
4
k 2 ( 2 k )! 2
4
5
2 log 2 2
1 i
1 i
log 2
Li2
Li2
2
2
24 4
2
log(1 x 2 )
0 x(1 x) 2 dx
1
=
1 .16429638328046168107...
1
(k!!)
k 1
.164351151735278946663...
.164401953893165429653...
1
3
3 3
log 2
3
2
log 2
3
(1) k
k 0 3k 4
(1) H k
k
2 (k 1)
k 1
k
x
1
5
dx
x2
6 .16441400296897645025...
.16447904046849545588...
38
1
Ei(1) 1
e
1
=
0
1 .16448105293002501181...
.16449340668482264365...
2 .16464646742227638303...
.164707267714841884974...
.16482268215827724019...
(1) k 1 k
k 0 ( k 1)!( k 1)
x log x
dx
ex
1
1
log 2 2 2 Li2 k 2
6
2 k 1 2 k
2
1 dx
log 1 5
x x
60
1
2
4
45
H ( 2) k
k
k 0 2
log(1 x) log 2 x
x
0
1
2 (4)
7 (3)
2 log 2 4
(1 log 2)
8
8
128
(3)
1 log k
(3)
(3) k 2 k 3
(1) k
2
k 0 k!( k 2)
p prime
kH k
(2k 1)
k 1
log p
p3 1
(k )
3
k 1 k
=
.164895120905594654651...
1 .16494809158137192362...
(3) 1786050 3) (6)
(6)
12
1
4
.165122266041052985705...
( 1)
k 1
(k ) log k
k 1
k2
(k )
6k 1
.165129148016224359068... (3) (5)
k 1
9 .1651513899116800132...
84 2 21
k 1
2
k 2 k ( k k 1)
2 .16522134231822621051...
F (k ) 1
k 2
k
5 1
5
3
5
5
5
tan
2
2
2
2 10
1 2
3
(1) k 1
e cos
.16528053142278903778... 1
3e 3
2
k 1 (3k )!
Hk
2 .1653822153269363594... e Ei ( 1)
k 1 k !
.16542114370045092921... (1)
=
3
k 1
1 (3) 3
k 2 k log k
.16546878552437427...
1 .16548809348122843455...
1
log n k
k3
n 1 ( n 1)! k 2
1
I 0 (1) L0 (1) e e x arcsin x dx
2
0
.1655219496203034616...
1 .16557116154792148338...
2log 2 3 4 log 2 log 3 4 log 2 2
4
=
x
2
1
4
k 1
k
Hk
( k 1)
6(k1) 1 6(k1) 3
3
log 2 3
6
k
k
k 0
dx
x 2 1
.165672052444307559...
1
2 arctan 2 log 5 e x sin x cos x log x dx
10
0
1
2k 2
k 1
1
2 log 2 log3 2 1 1
.16585831801671439398... 1
Li3 1 Li3 (2)
12
12
2 2
2
6 csc e sin 2
3 .165673248894309178142...
1 k
2
log 2 x dx
= 3
x 2 x2
1
.165873416657810296642...
=
.16590906347585196071...
16 .16596749219211504167...
2
1
cosh1sin 1 cos1sinh 1 cos1 sin 1 e (sin1 cos1)
4
8e
k 1 k
(1) 4 k
(4k )!
k 1
9 log 3 2 3
63
50
30
50
250
1
1
( 2)
4
8
3k
k 1
3
1
5k 2
2
log x dx
3/ 2
x 1/ 2
x
1
k2
.16599938905440206094... ( 2) 4 (3) 4 (4) 1
4
k 1 ( k 2)
.166243616123275120553...
1 .166243616123275120553...
.166269974868850951116...
2
(2k 1)!!
1
1
k 1 ( 2 k )!! ( 2k 1)
4G
4G
J385
2
2k
1
k
k 0 k 16 ( 2k 1)
1 cos1cosh 1
(1) k 1 4k
(4k )!
k 1
GR 1.413.2
log 3 2
.16651232599446473986...
2
.16652097674818765092...
( 2)
.16662631182952538859...
2
4
log 2 log 2
2
8
.166666666666666666666 =
=
=
k2 1
4
3
k 1 4 k 2 k
2k
k 2
2
.16658896190385933716...
3 log 2
2
( k ) ( k 2)
=
( 3)
/4
0
x sin x
dx GR 3.811.5
(sin x cos x) cos 2 x
1
k
1
4
2 2 1 2
6
k
k 3
k 3 ( k 1)!
k 1 k
( 2k ) 1
4k
k 1
1
k
3
k 2 k k 1/ k
k 1 ( k 2)( k 3)( k 4)
(1) k
k 0 ( 2k 1)( 2k 5)
=
1
(1) k 1 2k
k
k 2 k!( k 2)
k 1 2 ( k 2) k
4
1 2
k
k 3
k ( k 4)
k ( k 6)
k 1 ( k 2 )( k 2 )
k 1 ( k 5)( k 1)
arccosh x
1 (1 x) 3 dx
=
=
=
=
1 .166666666666666666666 =
2 (4)
7
(8)
6
=
1 p 4
4
p prime 1 p
2 ( k )
4
k 1 k
J1061
HW Thm. 301
Berndt Ch. 5
sinh 1 sin 1
e
1
sin 1
1
2
4 4e
2
k 0 ( 4 k 3)!
2
(k ) 1
1
.16699172896087386807...
I 0
1
k !k!
k
k
k 2
k 2
.16686510441795247511...
1 .16706362568697266872...
1
4k
cos 2 cosh 2 cos (1)1 / 4 cosh (1)1 / 4
2
k 0 ( 4k )!
2 k (k 1)
22 .167168296791950681691... 2e
k!
k 0
2
arccos
2 .16736062588226195190...
cosh 2 cos 2
2 2
1 .16723171987003124525...
8
GR 1.212
sin (1)1 / 4 sin (1)3 / 4
1
4
k 1
3 1
11
5
.167407484127008886452... log 2 3 log
3 1
12
6
1
k
(1)
=
2
k 1 6k k
=
.16745771316555894862...
5 .16771278004997002925...
2
k 1
1 k
1
1 2(k 1)!
3
, volume of the unit sphere in R6
6
log
( k )
.16782559481552120796...
log 2 ( 1) k k
2
2 k
k 2
2 k 1
1
=
log
2k
k 1 2 k
9
3
1
1
.16791444558408471119...
cot 2 2
1
2
2
3
k 1 k 9
.16805750730968383857...
k 1
(k )
k
3
1
p prime 3 1
p
1
2
3
e
cos
3
2
e
((k 1)!)3
.16807806319774282939...
(3k )!
k 1
1 .16805831337591852552...
.16809262741929253132...
( 3) 1
( 3)
1 .168156588029466646...
log 2 k
k 2 2 k ( k 1)
1 .16823412933514314651...
k 1
4
Dingle 3.37
(3k ) 1
1
(3k )!
k 0
J803
.16823611831060646525...
arctanh
1
6
6
k 0
2 k 1
1
(2k 1)
AS 4.5.64, J941
5 i 3
4
1
log 2
2
6
3
6
i
3 3i 3
3
3
3
1
( 3k )
k
3
8
k 1 ( 2 k ) 1
k 1
2k
(1) k 1 2k (3k 1) 1
3
k 2 k 2
k 1
1
1
Li4 k 4
6
k 1 6 k
3 log 3
1
1
2 log 2
2
2 3
2
3
1
2
2
x x 1
1 x
1 log 1 x x 2 dx 0 log 1 x 2 dx
5 i 3
4
.16838922476583426925...
1 .168437795256228934...
=
.16846317173057183421...
1 .1685237539993828436...
=
.168547888329363395939...
.168609905834157724449...
.168655097090202230721...
2
=
1
2(2 k 1) 2
4 16
k 1
1
(1) k 1 2k
2 log 216 7
(k 1) 1
4
k 1 ( k 1)( k 2)
4 2 log
8(2 k 1)
2 1
8(2k 1)
k 1
4
2
4
4
2
2 1 8 log 2
1
2(2 k 1) 3
1
1
1
4 2
1
1
2 2 2 2
4
1
=
3
k 1 8 k k
(k ) 1
.16905087983986064158...
kk
k 2
1 1
1 .16936160473579879151...
1 / 5 4 / 5
.16870806500348277326...
.16944667603360116353...
(1) k
3
k 2 k 3
.16945266811965260313...
14
27 9
1
x
0
7 ( 3)
16
2
arcsin x arccos x dx
(2 k 1)
k 1
8k
.16945271999473895451...
.16948029848741747267...
=
=
(4k ) 1
k 1
(8k 4) 1
k 1
1
12
k 4
k 2 k
(16k 4) 1
k 1
k
k 2
2 cot
12 22 6 2 2
0
(16k 4) 1
k 1
Berndt ch. 31
x 3 log 2 xdx
ex
2k
3
3
1
arcsin
k
2
2
k 0 k 6 ( 2k 1)
1
k 1
.17005969112949392838... 2 log
k
k 2 k
1
1
.17032355274830491796... Li3 k 3
6
k 1 6 k
1
2
x dx
1
.170557349502438204366... 1
log(e 1) Li2 x
12
e
0 e 1
1 .17001912860314990390...
2 .17063941571244840982...
(k ) 1
k 2
23
5 / 4 cot 23 / 4 coth 23 / 4
14 2
8
= 4
8k (4k ) 1
k 2 k 8
k 1
1
( 2k )
1
.1706661896898962359...
coth 2
(1) k 1 k
6
3 2
9
k 1 9k 1
k 1
log 3
5 1 (1) 2
6k 1
.1707701846682093606...
2
2
6 3 12 9
3
k 1 3k ( k 1)
k ( (k ) 1)
=
3k
k 1
1 .17063957497359386223...
3
F
.17083144025442980463... kk
8
1
k4
11 .1699273161019477314...
20
1
1
2 2
1
2
k 1 k 4
1
1
= k tan k 1
2
k 1 2
3 .1699250014423123629... log 2 9
.16951227828754808073...
3
1
2
e
cos
9
2
3
e
( k 4 )
k4
k 2
1
1
4
4
4
k 2 k 1
k 2 k k
.1710822479183635679...
( k )
4k
k 1
.1711785303644720138...
2 .17132436809105815141...
1 .1713480439548652889...
.17138335479471051464...
1
8
Re ( i ) i (i )
cosh
1
3
1
3 (2k )!
k 0
k
(1) (k 1) 1
k 1
1 .17139260811917011128...
(3k 1) 1
(k ) 1
k 2
1
8
4
( k 1) ( k ) 1
d (k )k 4
Titchmarsh 1.2.1
8100
k 1
1 5
cosk
.171458091265465835370... log cos1 k
2
4
k 1 2 k
2k
1
(2k 1)!!
.1715728752538099024... 3 2 2 k
k
k 0 k 8 ( k 1)
k 1 ( 2 k )!2 ( k 1)
1 .1714235822309350626...
2 ( 4)
( 1) k 1 (2 k 1)!!
=
(2 k )! ( k 1)
k 1
=
1 (1) k
(k 2)
2 k 0 (2k )!
.17166142139812197607...
(2k ) 1
k 1
.17172241473708489791...
.17173815835609831453...
( k 1)
2
k
k 2
2
1
Li2 2 1
k
(3)
7
6 3 cos1 5 sin 1
e
2 k ( 1) k 1
k
k 1 k 4 ( k 1)
1
(1) k
2 k 0 (2k )!(k 2)
log3 x cos log x
=
dx
x
1
1
.17186598552400983788... 1 ( 2 i ) (2 i )
2
1
1
= (i ) (i ) 1 (1 i ) (1 i ) 1
2
2
1
( 1) k 1 (2 k 1) 1
= 3
k
k
k 2
k 1
=
(4k 1) (4k 1)
k 1
=
1 cos x
dx
x
x
1
e e
0
.17190806304093687756...
x
4
1
1 .1719536193447294453...
dx
x2 x
i
x dx
GR 3.418.1
Li2 (1)1 / 3 Li2 (1) 2 / 3 x
x
e
e
1
3
0
=
1 (1) 1 2 2
log x
dx
3
3
3
1 x x2
0
1
5 .172029132381426797...
1 .1720419066693079021...
2 9 (3)
4
GR 4.23.2
1
log 3 x
dx
3
0 ( x 1)
8
sinh
5
2
1
1 4(k 1)
k 1
3
log k
2
2
k 2
1 1
.17210289868366378217...
tanh
2 2
4
2
3 .1722189581254505277... e
1 .1720663568851251981...
k
(1)
k 1 k / 2
e
J944
k 1
.17224705723145852332...
.17229635526084760319...
k2
k 1 (3k )!
( 2 ) ( 3)
( 4)
Hk
k ( k 1)
3
4
k 1
k
2 4
.17240583062364046923...
k (2k ) 1
16
9
k 1 4
1
1
1
.17250070367941164573... 1
cot
2 2
1
2
2
k 1 k 2
1
1 1
.172504053920943245495...
3 log 3 li sin(3 log x) dx
10
2
x
0
k3
3
2
k 2 ( k 1)
1
2 .17258661797937013053... 3
k 1 Fk
.17254456941296968757...
.17259944116823072530...
(1)
k 1
k (3k ) 1
k 1
3
3
2 3
3 log 4 log 2
2
2
2
Hk
3 ( k 2)
k 1
k
GR 6.213.1
( 2k )
2k
k
k 1
(1) k 1 B2 k 4k
(2k )!2k
k 1
.17260374626909167851...
log sin 1
AS 4.3.71, Berndt Ch. 5
2 .172632057285762871628...
( ( 2 ))
(k )
.17264325482630846776...
.17273053919054494131...
.1728274509745820502...
(1)
k
3
k 2
k
5 5
e 3
log 2
2
1
1
Li k k
k 1
(1)
2
k 1
k!(k 3)
k 1
( 1) k 1 Hk
G
2k 1
k 0
Adamchik (24)
log(1 x 2 )
0 1 x 2 dx
1
=
.172855673055088999098...
4e
x
2
GR 4.295.5
cos 4 x
2 / 16
.17289680030426476...
log k
k
k
k 2
2
1 .17303552576131315974...
(2k ) (2k ) 1
k 1
=
( 2k )
k 1 n 2
n
2k
1
k 2
1
m k
m 1 k 1
2 2k cot k
2
2
1
k2 3
3
cot
2
4 k 2 2(k 1) k
k
2
2 Ei(1)
(1) k 1 kH k
.17305861469432215834...
Ei(1)
e
e
(k 1)!
k 1
=
.17311810051999912821...
( x) 1 dx
2
2
2 .17325431251955413824...
(3 / 2)
1 n
lim
h( m) n
n
(3)
n m 1
h(m) = lowest exponsent in prime factorization of m.
.173280780307794293319...
1
1
2 ei 2 e i
2
=
( k 1) 1 cos k
k 1
.17328679513998632735...
log 2
1
4
k 1 ( 4k 3)( 4k 2)( 4 k 1)
J253
(1) k
k 0 4k 4
=
=
1
(4s 1)
r 1 s 1
=
8(2k 1)
k 1
=
x
3
2r
J1124
1
2 ( 2 k 1)
[Ramanujan] Berndt Ch. 2
dx
x
5
1
1
=
x log x
dx
2 2
0 (1 x )
1 .1733466294835716297...
1
k!!k
k 1
.17338224470333561885...
k !k
2
3
4 log 2 3
1 1
2
(k ) 1
k 2
3 . 17343648530607134219...
GR 4.234.2
dx dy
1 x2 y2
1 1
Borwein-Devlin, p. 53
(1) k
3
k 0 2k 3
.17352520779833572367...
2 .173532954993580700771...
log 2 (1 x )
dx
0
x
1 .17356302722472693495...
eEi(1)
1
(k 1)
k 1
k!
BernoulliB (2k )
EulerE (2k )
k 1
.173749320202926737911...
.17378563457299202316...
(6k )
.17402964843834081341...
1
( 4)
4
(2) (3) 2 (5)
3 (3
k 1
kH k
(k 1)
k 1
.17412827332774280224...
k
k
1
1)k
k
.17417956274165000788...
1
Li2
6
.17426680583299550083...
arcsinh1
1
k 2
k 1 6 k
(1) k 1 H k
5k k
k 1
1
2
log 1 2
2
2
4
1
=
.17440510968851802738...
x 2 dx
0 ( x 2 1)3 / 2
2
6
3 3 9 log 3 6 log 4 36
=
(1)
k 1
(k 2)
6k
k 1
e1 / k
k
k 1
1
.174644258731592437126... 1 2
k 1/ 2
k 1
2 .17454635174140...
(1)k 1
.17472077024896732623...
(k ) 1
4
k 1
.17476263929944353642...
p prime
.17488106576263372626...
6k
k 1
1
p3
(k )
k 1
k
3log 2
2
4
2
log (3k )
1
k (8k 2)
k 1
3
1
k2
.1750000000000000000
1 .1752011936438014569...
=
7
40
e e 1
1
1
sinh 1
2 cosh sinh isin i
2
2
2
1
=
AS 4.5.62, GR 1.411.2
k 0 ( 2 k 1)!
1
GR 1.431.2
= 1 2 2
k
k 1
=
1 dx
cosh x x
2
1
.175311881551605975687...
3 log 2
2
1
3
(k 1) 1
k 1
4k
1 i
2 F1 1,1 i, 2 i, 2 i 2 F1 1,1 i, 2 i, 2
4
cos x
= x
dx
0 e 2
.17542341873682316960...
.175497994056966649393...
log k
(k 1)!
k 1
.175510690849480992305...
e
k 1
.175639364649935926576...
1
1
2k
1
e
2
3
.17575073121372975946... 8
8e2
.175781250000000000000 =
45
256
k 1
k
k 2 k!2
1 log n k
k
n 1 n! k 2 k!2
1
x sinh x
dx
ex
0
k2
k
k 1 9
1
3
9
2
1
2
log 2 log 3 Li2 log 2 Li3 Li3 Li3 (3)
2
4
3
3
3
2
( 2)
H k
k 1
= ( 1)
k
2 (k 1)
k 1
.175886808246818344795...
J 2 (2 3 )
1
(1) k e k
0 F1 ; 3; e
e
2
k 0 k!( k 2)!
(k ) 1
1
1
log1
.17593361191311075521... k
2k
k 2 2 ( k 1)
k 2 2k
.17592265828206878168...
1 .1759460993017423069...
i ( 1) 1 i
1 i
( 1)
2
2
4
x sin x
sinh x dx
0
.17606065374881092046...
6k
k 1
.176081477370773117343...
12 .1761363792503046546...
1 .17624173838258275887...
1 .176270818259917...
1 .1762808182599175065...
.176394350735484192865...
1
2 3
4
1
1
3
sinh
(1)
8
( )
(3k )
6k
k 1
1
3
k
(2k )!3
k 1
k 1
k
log 3 x dx
x 3 dx
0 x 2 1 0 sinh x
smallest known Salem number
larger real root of Lehmer’s polynomial
z 10 z 9 z 7 z 6 z 5 z 4 z 3 z 1
log 2
arctan x
1
dx
x6
20 20
10
1
Borwein-Devlin. p. 35
(1) k 1
1
k
22
k 1
1 .176434685750034331624...
3
log 8
( k 1) 1
.176522118686148379106...
( 1) k 1
2 2
2
k 2
k 1
1
1
=
k log 1 1
k
k 2 2k
1 1/ 2
log 2 1
4 2
1 1/ 2
1
= k
k 0 2 ( k 1)( k 2)( k 3)
3
.176528539860746230765...
log
(1) k 1
k
k 1 3 1
.17659040885772532883...
.1767766952966368811...
.176849761028064425527...
4 2
( 1) k k 2 k
4k k
k 0
e 1 /
( 1) k
k 1 ( 2 k 1)!( 2 k 3)
e
3
log x sin log x
1 dx
dx sin 5
=
x x
x
1
1
.17709857491700906705...
1
5 cos 1 3 sin 1
1 .177286727908419879284...
k 2
2
(k ) 1 k 1
J279
1
(1) k 1
.17729989403903630843...
6 3 8
k 0 (3k 1)(3k 5)
1
27
1 .17730832347023263216...
log 3 9 log 2
2
4
k 0 (2 k 1)[(2 k 1) 1 / 9 ]
H H
k
k 1
.17733145610396423590...
24 log 2 9 (3) 2 12
2
12
k 1 k ( k 1)
1
1
4 I 2 (2) 0 F1 ; 3; 2
k
2
k 0 k!( k 2)!2
(1) k
1
2
2
.177532966575886781764... 1
2
12
k 2 k
k 1 k ( k 2)
cos 2k
1
=
Li2 e 2i Li2 e 2i (1) k
k2
2
k 1
1 .17743789377685370624...
1
=
log x
0 xlog(1 x) log x dx 1 x 2 ( x 1) dx
=
x
e e
x
0
1
=
0
1 1
=
x
1
e
0
x dx
GR 3.411.10
ex
2x
dx
x log x
dx
1 x
xy
1 xy dx dy
0 0
2 .1775860903036021305...
1
1
k 1
k
3
2k 1
cos
J513
log(1 x)
dx
1 x2
log( x 2 1)
=
dx
x2 1
0
=
1
2 3 log(2 3 )
8
log 2
.17756041552698560584...
log( x 2 4)
0 x 2 4 dx
=
log(1 x 2 )
0 1 x 2 dx
GR 4.295.15
=
1 x 2 dx
log
0 x 1 x 2
=
x tan x dx
0
GR 4.298.9
/2
=
0
x2
dx
sin 2 x
GR 3.837.1
1
=
=
arcsin x
1 x dx
arctan x
dx
2
x
0
1 .177662037037037037
=
1 .17766403002319739668...
x
log sin dx
2
0
2035
H ( 3) 4
1728
/2
log(4 tan x) dx
0
7
1
1
ci log 2
2 k 1
(2k 1)
2
k 0 ( 2 k 1)!2
3
k
.17785231624655055289...
k 1 (3k )!
.17778407880661290134...
.177860854725449691202...
2 ( 3) ( 6)
2 ( 3)
1
n
3
, where n has an odd number of prime factors
[Ramanujan] Berndt Ch. 5
.17802570195060925877...
log 2 2
2
16 4
.17804799789057856097...
e
k 1
3 .17805383034794561965...
1 .17809724509617246442...
=
=
=
0
x 2 tan x
dx
cos 2 x
1
1
GR 3.839.3
Berndt 6.14.4
2k
log 4!
3
arctan 1 2
8
( 1) k 1
6k 3
sin
2
2
k 1 ( 2 k 1)
2
( k 1)
4 k 2 8k 4
2
1
3
k 1 ( k 2 )( k 2 )
k 1 4 k 8 k 3
dx
0 ( x 2 1) 3
1
=
/4
0
x 3/ 2
dx
1 x
J523
GR 3.226.2
=
.1781397802902698674...
sin 3 x
0 x dx
1
.17814029797808795269...
2
2
GR 3.827.4
2
24
log x sin x
dx
x2
0
Hk
k 2
k
6
k 1
( 2)
1
( k 1)
.1781631171987300031...
2
4 2
k 1 k ( k 1)( k 2 )
2
2
2k
e e
2 .1781835566085708640... cosh 2
2
k 0 ( 2 k )!
k2
10 .17822221602772843362...
k 2 k !!
11 .17822221602772843362...
.1782494456033578066...
e
1
erf
2
2
2
2
1
dx
arctan 2 4
2 4
x x2
1
3 e 3
2
(3)
k2
k 1 k!!
(2k 1) 2
4
k 0 ( 2 k 2)
144
4
k !k !k !
.178403258246176718301...
k 1 ( 3k )!
1
k2
.17843151565841244881...
log 2
(2 k 1) 1
16
k 1 k 1
25
1
3e
.178487847956197627252...
3
k 0 k!( k 2)( k 5)
4
5
H
.1785148410513678046...
log ( 1)k 1 kk
5
4 k 1
4
log 3
1
.1787967688915270398...
4
4 3
k 1 3k ( 3k 1)( 3k 2 )
dx
= 4
x x2 1
1
.17836449302910417474...
.17881507892743738987...
.17888543819998317571...
24
4
tan 1
2 arctan
1
2
2
5 5
1
sin 2 x
0 1 cos2 x dx
( 1) k 1 ( 2 k )! k
( k !) 2
k 1
GR 1.411.2
J250
2 .17894802393254433150...
2 (k ) 1
2
k
k 2
.178953692032834648497...
=
1 cot 1
1
2 2
2
2
k 1 k 1
(2k ) (1) k 1 22 k 1 B2 k
2k
(2k )!
k 1
k 1
.17895690327368864585...
1 .178979744472167270232...
8
erfi1 erf 1 sinh x1 dx
x
4
2 si ( )
2 sin x
dx
0 x
( 1) k 1 ( k 12 )!
( k 1)! 2 k
k 1
5 2 6
.17922493693603655502...
3
20
16 log
2
3
(1) k
k
k 0 2 ( k 4)
2 log 3 1
1 2
log 1
4
2e 4
e
.17928754997141122017...
(1)
k 2
1 e
k
1 ( 1) log( 1) log
145739620510
387420489
k 1
0
k
k 1
k
1
k ( k 1)
log 2 log 2
log 2 2
4
2
24
2
2
4
1 .17963464938133757842...
1
3
cot
6 4 3
2
4k
k 1
J149
2
e
=
k 10
10
5 .179610631848751409867...
.17974050277429023935...
x
(1) k 1 ek
k 1 ( k 1)!
.17938430648086754802...
.1795075337635633909...
dx
x
2)
e (e
e
2
1
(k ) 1
(k ) 1
.179374078734017181962...
376 .179434614259650062029...
3
1
.17905419982836822413...
.1792683857302641886...
GKP eq. 6.88
1
2
3
1
3
3
3
3
log (2 3 )
arctanh
4
2
4
2
3
k
k
k 0 3 ( 2k 1)
x log 2 xdx
0 e2 x
1
5
3 1 2 log 2
3
6
7
7
H
.179842459798468021675...
log kk
6
6
k 1 7
9
.180000000000000000000 =
50
1
5 (3)
arcsin x arccos2 x
dx
1 .18011660505096216475...
16
x
0
.1797480451435278353...
(2k 1)!!
(2k )!k (3k 1)
k 1
( 1) k 1
.180267715063095577924...
k
k 1 k ! 4 ( 2 k 1)
Titchmarsh 14.32.3
2
2k
k
. 18028136579451194155... 4
k
2
k 0 k 16 ( k 1)
12
2
2k 1
1 .18034059901609622604...
k
2 3
k 0 k 32
4
3
( 1) k k
.1804080208620997292... 2
k
e
k 0 ( k 1)! 2
1
.18064575946380647538...
10 5 5
(1 5 ) arccsch 2 5 arcsinh 2
50
20
5 1
log
32
k 1
(1)
=
k 1 5k 1
5 .180668317897115748417...
.18067126259065494279...
.1809494085014393275...
.18102687827174792616...
2
16 2 2
2
64
csc 2
3
8
x log x
dx
2
4
0 (1 x )(1 x )
log 3
8 3 24
cosh 1 1
3
1 2
k 2
1
(8k 3)
k 1
2
1
2
(8k 5)
2
.181097823860873992248...
e ( 2)
1
=
k
x
1
dx
8
3
1 dx
3 4
x
sinh x
1
2
1
GR 4.234.5, Prud. 2.6.8.7
.18121985982797669470...
(k 1) 1
2 (k 1)
k
k 1
1
1
k 2 log1 2k
k 2
3 .18127370927465812677...
.18132295573711532536...
2 I1 (2)
(1)
6
2k
1
(2k 1)! k
k 1
e1/ 6
dx
1 .1813918433423787507...
x!
1
1 .18136041286564598031...
1
1 1 4
21 / 3 2 F1 , , , 1 k
3 3 3
k 0 2 (3k 1)
1
e ( 5 5 ) / 2 2 e 5 3 5 1 5
4 .18156333442222918673...
5e 1 5
1 .18143677605944287322...
1 .18156494901025691257...
1 p
F kF!
3
k
k 1
k 1
Berndt 5.28
p prime
=
(3) (k )
(6) k 1 k 3
q 3
2
3
=
Titchmarsh 1.2.7
q squarefree
1 .18163590060367735153...
.18174808646696599422...
2
12
=
2
k 1
k
log 2 2
4
2
1
k ( 2 k 1)
2
3 log 3
3
5
2
2
2 3
3
2
25
5
cot
.181780776652076229520... 125
25 log10 (3)
2
5
6
.1817655842134115276...
GR 3.852.3
4 2 arcsinh 1 2 log 2
sin 2 ( x 2 )
0 x 4 dx
=
.181783302972344801352...
2
4
2
log sin
log sin cos
5
5
5
5
(k 3)
1
(1) k 1
4
3
5k
k 1 5k k
50 cos
2
18
3 log 2 2 16
4
9
27
4k
k 1
3
1
3k 2
.18181818181818181818
=
2
11
2
3 1
( 1) k
6
6 log 2 6 3 log
3
2
12
3 1
k 1 6 k k
( k )
.18199538670263388783... k
k 1 3
1
1 1 3 1
1 .18211814116655673118... HypPFQ ,11
, , , ,
2 4 4 16
k 0 4k
2k
.1819778713379401005...
log 2 2
( k 1)
( 1) k 1
12
2
k
k 1
k
(3 )
1
1
.182153502605238066761... k
k k
k
3
k 2 3 1
k 1 3 (3 1)
k 2
.18214511576348082181...
.182321556793954626212...
=
2
log 2
1
6
1
1
Li1 ,1, 0 k
5
6
6
k 1 6 k
1
2 arctanh 11 2 2 k 1
(2k 1)
k 0 11
log
(1) k 1 k
k 1 2k k
2
k
.182377638546170138737...
3 1
1
2 F1 2, 2, ,
2 8
4
.182482081626744776419...
11
log 2
3 (1) 3 (2 )
6 4
2
(1) k 1
.182487830587610500802... 3
k 1 k 3
1 ( 2)
(2 i) ( 2) (2 i )
4
1
= (3) 1 (3, 2 2i ) (3, 2 2i )
2
2
2
x cos x
dx
= x x
e (e 1)
0
.18254472613276952213...
.182770451872025159608...
( 3) 1
2
54
27 .182818284590452353603... 10 e
(2)
9
1
2
k 1 (3k )
log x
4
x
x
1
.18316463254842946724...
1
log(1 2 cos1)
4
J248
sin 2 k cos k
k
k 1
k 2
(k ) 1
k3
.183203987462730633284...
5
7 / 4 cot 21/ 4 coth 21/ 4
2 2
k
k 2
4
2
2
=
2 (4k ) 1
k
k 1
.18331367237300160091...
1 ( 3) 3
1
( 3) 2 3 8 2 log 2 96 G 36 (3)
512
4
4
1
=
arctan 4 x
0 x 2 dx
( 1) k ( k ) 1
.18334824604139334840...
2k 1
k 2
.183392750954659037507...
1 .18345229451243828094...
.1835034190722739673...
(1) k
k 0 k
2 4
k 0
( 1) k
2k 1
dx
log cot x
0
2 .183488127407812202908...
k 2
1 1
1 3
, ,
2 2 4
1
1
arctan
k
k
1
1 1
2 2
2
/4
=
k
GR 3.511
2
G
1
2
3
( 1) k 1 ( 2 k 1)!!
( 2 k )! 2 k
k 1
.183547497347006560022...
(1) k (k )
2k
k 2
.18356105041486997256...
coth 1
2
.183578490978106856292...
( 2k )
2k 1
( k )
2k
k 1 2
k 1
.18359374976716935640...
.18373345259830798076...
sin x
dx
x
x
1
e e
0
k 1
1
3
23 .183906551043041255504... e e
2 cosh
488 .183816543814241755771...
( 3)
( 2k )
1 (1) k (k )
4k 1
2
2k 1
.1839397205857211608...
1
k
2 e k 1 (2k 1)!
=
x dx
e
x2
1
=
.183949745276838704899...
1 .184000000000000000000 =
1 dx 1
1 dx
1 sinh x 2 x5 2 1 sinh x x3
5
20
tanh
5
2
148
125
3 .184009470267851952895...
1
k
3/ 2
k 2
.1840341753914914215...
k
k 2
.18430873967674565649...
.18432034259551909517...
(k / 2) 1
k 3
1
log
3
p prime
1 p
k
log16
3
4
2
5
3
4
1
x
dx
4 x
3 log 3
2
4
( k 12 )!
1 )!( 6 k 1)
2
(k
k 1
k 1
2 log 2 5
(1)
2
3
18
1 k 3k
(1) k
k 0 ( k 1)( k 4)
1 dx
2
0 x log(1 x) dx 1 log1 x x 4
8 (3)
4 3
.184471213280670619168...
9
81 3
2
(1)1 / 3 Li3 ((1)1 / 3 ) Li3 ((1) 2 / 3 )
=
1/ 3
1 (1)
1
HW Sec. 17.7
Titchmarsh 1.1.9
1
=
k 1
2k 1) / 2 1
k 1
k 1
.18424139854155154160...
(k )
3
log k
3 .18416722563191043326...
k
log (3)
=
k 1
1
4k 6
2
Fk k
k
k 1 4
1
3/ 2
1/ 2
k
k
k 2
4k
2
2 .184009470267851952895...
1
6
=
x log 2 x dx
0 x 2 x 1
.18453467186138662977...
1 .18459307293865315132...
3 2 20
32
27
4 k 2 (4 k 2 1)
2
3
k 2 ( 4 k 1)
k!
1
1
e1 / 4 erf
k
2 k 0 (2k 1)! k 0 (2k 1)!!2
1
=
k 2 ( (2 k ) 1)
4k
k 1
ex
e
x2
dx
0
(1) k 1 22 k 1 ( (2k ) 1)
1 .184626477442252628916...
(2k 1)!
k 1
.184713841175145145685... (3) (6)
1
2
k sin k
k 2
1 .184860269128474...
1 ( 6)
k 1 e
(1) k 1 ( (2k 1) 1)
k!
k 1
.184904842471782293011...
.184914711864907675754...
1
2
2
e
e 1 1 / e
8
8
1 log
49
7
1
( 3 / 2 )
.185066349816248591534...
2 .18528545178748245...
.18533014860121959977...
1
k 2
1 / k 2
k
x
x dx
k
e
k 1 e
1
kHk
k
k 1 8
1 dx
3 3
x
sin x
1
8 .1853527718724499700...
67
ek H k
k!
k 1
2
log 2 log 3 2 1
1
1
.18544423087144965373...
Li3 ( 4)
Li3
16
48
12
16 4
24 .18541655363135590105...
ee 1 Ei (e)
=
1
log 2 x
x3 4 x
1 .18559746638186798649...
2
1 .1856670077645066173...
2 k 1
2k
k
k 1 4 1
1
256103
H ( 3) 5
261000
k 1
1 .185662037037037037037...
1
32
csc
2
1
1 (k )
k
k
4 k 1 2 k
k 1 2 2
k2
2 2 sin 2
2
2
2
k 1 ( 2 k 1)
.185784535800659241215...
.18595599358672051939...
G log 2
2
8
/4
x tan x dx
(2k 1) 1
k 1
k
(1)k 1
GR 3.747.6
0
1
1
2
k log1 k
k 2
1
H
2 .186048141120867362993...
log 2 1 log(3 2 2 ) 21k1
2
k 1 2
k
3 ( (k ) 1)
4 .18605292651171959669...
e3 / k 1
k!
k 2
k 2
2
1
Hk
.186055863117145362029...
8 8 log 2 4 log 2 2
6
3
k 1 k ( k 1)( 2k 3)
.18618296110159529376...
(1) k
k
k 0 2 2
.18620063576578214941...
2
=
3
log 1 x
2k
k 1
1 x
1
3
3
1
(2 k 1) k
k
dx
0
.186232282520322204432...
sinh
2 3
.1864467513294867736...
4k
(4k 3)!
k 0
(2)
H k
k
k 1 6 k
2 3
1
log 6 2arcsinh
4
8
1 3
2
1
x
= arcsin x
dx
1 2x 2
0
( 3k )
.18646310636181362051...
4k
k 1
2 I 2 (2)
k 1 2k k
(
1
)
.18647806660946676075...
e2
k 1
k k!
1
( 1) k 1 (3k ) 1
.18650334233862388596... 3
k 2 k 1
k 1
.186454141432592057975...
=
3
1 .18650334233862388596...
log
GR 4.521.3
1 i 3
1 i 3
5 1
1 i 3
1 i 3
6 6
2
2
1
1
5
4
3
2
k 0 k k k k k 1
( 1) (3k ) 1
k 1
k 1
=
=
=
1
k
3
2 k 2 k 1
3
1 i 3
1 i 3
1
1 i 3
1 i 3
2
2 6
2
1
3 2 2 1 ( 1) 2 / 3 2 ( 1)1/ 3 2( 1) 2 / 3 2 ( 1) 2 / 3
6
1 .1866007335148928206...
.1866931403397504774...
k
1
k 1
1
1
2
1
1
1 1F1 , 3, 4 2 I 0 (2) 2 I1 (2)
2e
2 3e
2
2
e
k
=
(1)
k 1
k 1
.186744429183676803404...
.186775363945712090196...
1 .18682733772005388216...
1 .18683727525826858588...
1 2k
(k 2)! k
1
1
sin
4
2 cos(1 / 2)
6 3
7
log 2
6
tanh
7
2
x
5
1
(1) k (2k )! 2k 1
sin
2 k
2
k 0 ( k!) 4
dx
x 1
k
k 1
2
1
k 2
(k 11)!3
3 3 3 1
k 0
k
1
6 (3) 2 6 3 27
.186945348380258025266...
16
2k k
2 3
(1) k k
7 7
k 0
k 3
(k 1) 1
.18716578302492737369... k
k 2 2 ( ( k ) 1)
1
12
1
1 .18723136493137661467...
11 arcsin
11 121
2 3
(1) k 1
3
k 1 k (3k 2)
.18704390591656489823...
1 .18741041172372594879...
7
1
k 1 k 2 k
3
k
K Ex. 108d
.187426422828231080265...
2 log 2
24
3 (3)
16
/2
x
2
log sin x dx
0
.187500000000000000000 =
3
16
(1)
k 1
k 1
k
3k
(1) k 1
k 1 ( k 2)( k 2)
=
GR 0.237.5
k 2
(k )4k
=
16
k 1
k
1
i i 2
i
1 .187538169020838240502... 1
log 2 Li2 ( e2i ) log( x cos x ) dx
2 24
2
0
1
(k ) 1
.188016647161420393823...
(k 2)(k 1)
k 2
1
9
.18806319451591876232...
1 .188163855465169281367...
log 2
8
G
log(1 x)
dx
1 x2
1
/4
=
log(1 cot x) dx
GR 4.227.13
0
1 .18834174768091853673...
(1)k
k 2
.1883873799298847433...
=
=
(k )
(k 1)!
1
1
1/ k
k ke
k 1
1
1
log 1 2
2 2 2
1
1
1
1
2 2 arcsinh 1 1
arctanh
2
4
2
2
1
k
k 1 2 ( 2 k 1)( 2 k 1)
(1) k 2 4k B2 k
1 .18839510577812121626... csc1
(2k )!
k 0
11 2
.188399266485106896861...
6
1
.18842230702002753786... 4
k 2 k 10
k
(k 4)(k 2)
k 1
2
[Ramanujan] Berndt Ch. 5
.18872300160567799280...
=
=
2 log(1 2 ) 4 log 2 8
cot
2
3
4 log 2 2 log sin log sin
8
2
8
8
(k 1)
1
(1) k 1
2
8k
k 1 8k k
8
(1 2 )
Prud. 5.1.5.21
1
log(1 x 6 ) dx
=
0
4
16
( k 1) Hk
1 log
9
9
4k
k 1
1
.1887703343907271768...
2(1 e )
4
4 .188790204786390984617...
, volume of the unit sphere
3
sinh 2
2
3 .1889178875489624223...
1 2
k
3 2
k 2
.1887270467095280645...
1
1
2
k 1 k!( k 2)!
2
1
.189069783783671236044... 1 2 log k
3
k 1 3 k ( k 1)
.188948447698738204055...
I 2 ( 2)
J149
(1) k 1
k
k 1 2 ( k 1)
=
(1) k
1
4 k 3
k 0
.18930064124495395454... (i ) ( i ) (1 i ) (1 i )
2
1 .18920711500272106672...
4
1 .18930064124495395454...
(2 i ) (2 i)
.1893037484509927148...
1
1
4
3
(1)k
k 2
.1893415020203205152..
(1)
sin x dx
(k 2)!
2
erf 1
4
2
(k )
k 1
k 1
.189472345820492351902...
x
0
1 .18934087784832795825...
J147
e
1 / k
k 1
HkHk
k
1
2e
x e
1
2 x2
dx
2 1
2
k
k
(1) k 1 2k
k
k 1 2 ( 2k 1) k
2 arcsinh 2
2
Hk
= k
2
k 1 2 ( k 1)
.189503010523246254898...
1
2 .18950347926669754176...
k (k ) 1
2
2
k 2
.18950600846025541144...
.189727372555663311541...
(3) log 3 2
4
3
2
log 2 x
1 x 2 x dx
1 k (2k 1)
8k
1
1
1
1
k
2
2
4
2 k 1
8 2 2 2
k 1 (8k 1)
406 .189869040564760332...
log 2 (1 x)
dx
x( x 1)
0
1
2
1 e2
e
e ee
4
2
cosh 2 k
k!
k 0
csch
( 1) k 1
2
2
k 1 k 1
17
(1) k 1
.189957907718062725272...
csc 5
2
20
2 5
k 3 k 5
( 2k )
2
1
k
log1 2
.18995863340718094647... log
3 3
9k
k 1 9 k
k 1
k 1
(1)
(k ) (k 1) k 1 log1 1
.190028484997676054144...
k
k
k 2
k 2 k
.1898789722210629262...
1
2
3 1
3 1
1
1 .19020822799902279358...
k
k 2 1 3
.190086499075236586883...
1 .190291666666666666666 =
.19042323918287231446...
log
1
3 (4k 2)
k 1
k
28567
H ( 3) 6
24000
7
4 2 E 1
2
(k 1 2 )!(k 12 )!
(k 1)!(k 1)!2
k 1
.190598923241496942...
2k
15 8 3
1
k
6
k 1 6 ( k 2) k
(1) k
(k ) 1
k
k 2 2 1
7
1 .19063934875899894829...
3
.190632130643561206769...
k
.1906471826647054863...
1
arctan
2 tan 1
2
1
sin 2 x
dx
1 sin 2 x
0
(1) k
1
k
22
k 0
Ei (1)
9
1
e
.1906692472681567121...
4
2
2
k 1 ( k 2)!k
1
=
k 3 ( k 1)! 3k !
1 2
1
log 5 2 log 5 log 6 log 2 6 2 Li2
.190800137777535619037...
2
6
1 .190661478044776833140...
.190856278271211720658...
Hk
k
k
k 1
k 1
(1)
k 2
k 1 5 k
i ( 1) 1 i
2 i
2 i
1 i
( 1)
(1 )
( 1)
2
2
2
2
16
=
6
(1) k 1 k
= 2
2
k 1 ( k 1)
3
.190985931710274402923...
5
1 1
(k ) 1
Li2
.1910642658527378865...
2
k
k k
k 2
k 2
1
tanh 1
.19123512945396982066...
2
8
5
k 1 4 k 4k 5
k 1
(1)
.1913909914437681436...
k 1
3 .191538243211461423520...
.19166717873220686446...
.19178804830118728496...
3 .19184376659888928138...
.191899085506264827981...
1 .19190510063271858384...
.192046874791755813246...
22
k
8
2
(2 k )
k
5
k 1
2
4 log 2 2 log 3
dx
4
3
3
x x
1
(2) 1
( 3) 1
1
1
k 1 ( 2k 1)
(
1
)
sin
(2k 1)!
k
k 1
k 1 k
2
G
e
e
e 1
J152
.19209280551924242045...
log k
k
k 1 e
1
sinh csch 2
2
.192127760367036391091...
.1923076923076923076
=
5
26
=
1
2 cosh log 5
.192315516821184589663...
.192405221633844286869...
k2 1
2
k 0 k 2
sin 5 x
dx
ex
0
(1) e
k
(log 5 ) /( 2 k 1)
J943
k 0
3
3
3
H
.192406280693940317174... kk
k 1 8
1
(1) k k 2k
.19245008972987525484...
k
3 3 k 0 2 k
(2 k 1)!!
k
k 1 ( 2 k )! 3 k
.19247498022682262243...
2 log 6 2 log 3 6
.192547577875765302901...
csc 2 1
2 sin 2
8
1 .192549103088454622134...
k (2k )
k 1
3
26
.192694724646388148682...
2k
1 2e Ei ( 1)
x
e ( x 1)
x
2
dx
0
.192901316796912429363...
1 .193057650962194448202...
3 log
log
4
4
4
3
sinh
3
(1) k 1 log( 2 k 1)
2k 1
k 0
[Ramanujan] Berndt Ch. 8
1
2
1 9k
k 1
1
1
2
2
k 2 4k 2k
1
=
k 1 ( 2k 1) 2k ( 2k 1)
1
=
3
k 1 8k 2 k
(1) k
(1) k 1
5
=
k 0 k 3
k 1 4k k
.193147180559945309417...
log 2
1
2k (2k 1)
k 2
J236
[Ramanujan] Berndt Ch2, 0.1
K Ex. 107f
=
1
k
k
2
k 2
=
1
2 (k 1)(k 2)(k 3)
k 0
=
(k ) 1
2
k 2
k
=
dx
2 x3 x 2
=
1
=
x
1
dx
x ( x 1) 2
(2k 1)
22 k 1
k 1
J279
k
4
dx
x3
1 dx
2
x3
log1 x
1
x dx
(1 x ) sinh x
GR 3.522
2
0
=
dx
e e
2x
x
0
1 .193207118561710398445...
2 .193245422464301915297...
2 .19328005073801545656...
1
9822481
H ( 3) 7
8232000
2 2
3k
9
k 1 2k 2
k
k
e / 4 i i / 2
.193497800269717788082...
.193509206599196935107...
G
4
6
3
1 .193546496554454968807...
7 (3)
16
k 1
0
x1 / 3
0
1
k
x log tan x dx
dx
e
k!(2
/4
1)
e
k 1
1 / 2k
1
ek
41 .193555674716123563188... e
k 1 ( k 1)!
.19370762577767145856... (3) (7)
3
1
k 1 (3k ) 1
log e k 1
.193710100392006734616... ( 1)
k!
k 1
k 2 k
e 1
.193998857662600941460...
1 i 3
1 i 3
log
log 2 log
2
2
1
log
1/ 3
2/3
2 (1) (1)
1
k 1 ( 3k ) 1
= log 1 3 ( 1)
k
k
k 2
k 1
=
.194035667163966533285...
1
6
3
csch
6
3
2
(1) k
2
k 0 2k 3
.19403879384913797074...
( 1) k ( k ) 1
k2 1
k 2
1 k2
1 1 1
log 1
k 2 4k
k 2 2k
.194169602671133044121...
(1)k 1
k 1
.194173022150715234759...
.194182706187011851678...
.194444444444444444444 =
.19449226482417135531...
2 .194528049465325113615...
3 .194528049465325113615...
4 .194528049465325113615...
57 .194577266401621023664...
1
i
1 (1)1 / 4 1 (1)1 / 4
4
2
i
1 (1)3 / 4 1 (1)3 / 4
4
k
(1) k 1 (4k 1) 1
4
k 2 k 1
k 1
1 cot 2
1
2 2
4
2 2
k 1 k 2
k
1
7
1
k , 1, 0
36
7
k 1 7
k 1 k ( k 1)( k 3)
1
2
e2 3
2k k
2
k 1 ( k 2)!
2
e 1
2k
2
k 0 ( k 1)!
2
e 1
2k k
2
k 1 ( k 1)!
2k 1
2 e2 I 0 ( 2 ) I1 ( 2 )
k 1 k ( k 1)!
1
4e1/ 4
5 .194940984113795745459... 9
.194700195767851217061...
1 .194957661910227628163...
H ( 3) k
4k
=
2
erfi
(1)
k 1
k 1
1
2
k
k !4 k
k !2
k 0
k
1
( 2 k 1)
.195090322016128267848...
.195262145875634983733...
.195289701596312945328...
7
16
16
/4
2 2
sin 3 x
dx
4
3
0 cos x
cos
( 2)
3
cot
k2 1
4
2
k 2 3k k
1
3
(2k ) (2k 1)
k 1
3k
2k
.19541428041665277483...
sin
k (4k ) 1
k 1
.19545006939687776935...
x (2 x 1) 1 dx
1
Bk k
k 1 ( k 1)!
.195527927242921852033...
.195686394433340358651...
2
1 .195726097034987200905...
2
2 HypPFQ{1,1,1},{2,2,2},1
6
cot
log 2 x
1 e x dx
2
2
2 log 3 log 3 3 1
1
1
.19573254621533971315...
Li3 ( 3)
Li3
12
72
72
12 3
=
log 2 x
dx
x 3 3x
1
.19582440721127770263....
(1)
k
(k ) 1) 2
k
sin 1
(cos 1)/ 2
1 .195901614544554380728... e
cos
2
i
1 ei / 2
=
e
ee / 2
2
1
2 .196152422706631880582... 3 3 1 k
k 0 6
k 2
5 .196152422706631880582...
k 0
k
2k
k
27
.19621530110394897370....
1
csch
2 2 3
3
.196218053911705438694...
9 log 3 3 log 2
8
2
1 .19630930268377512457...
cos k
k !2
2
tanh 1
2x
sin
0
(1) k 1
2
k 1 3k 1
H 2k
k
k 1 9
dx
sinh x
GR 1.463.1
.19634954084936207740...
16
(1) k
4
k 0 ( 2k 1) ( 2k 1) 4
( 1) k 1
2k 1
sin
2
4
k 1 ( 2 k 1)
3
sin k cos k
sin 3 k cos2 k
k
k
k 1
k 1
2
2
x dx
x dx
0 ( x 2 1)3 ( x 2 4)2
=
=
=
=
=
e
1 .1964255215679256229...
K Ex. 107e
J523
dx
e 4 x
4x
0
H
2k
( ( 2 k ) 1)
k 1
1 .1964612764365364055...
4G
/2
=
0
2
4
1
arcsin 2 x dx
0 x 2
2
x cos x
dx
sin 2 x
GR 3.837.5
arctan 3 x
x
dx
1 x2
1
1 2k
HypPFQ ,{1,1}, 4 1
4 .19650915062661921078...
2
k 1 ( k!) k
2
3
13 (3)
2
log 3 (1) 1
.196516308968177764468...
9
6
27 3 18 3
3
Hk
=
2
k 1 (3k 1)
=
2
0
.196548095270468200041...
.196611933241481852537...
e
( e 1) 2
.1967948799868928...
( 1)
k 1
(k )
5k 1
2k
k!2
(1) k 1 k
ek
k 1
(1) k
k 2 k ( 2k 1) log k
k 1
k 0
3
2
1 .19682684120429803382...
.1968464433591154...
J 0 2 2 (1) k 1
GR 4.534
3 ( 3)
.196914645260608571900... 2
2
=
.196939316767279558589...
x2
0 e x e x 1) dx
x 2 dx
0 e3 x e2 x
dx
1 x3 x 2
9
( 1) k
k 2 k ! ( k )
.196963839431033284292...
25 cosh 1 27 sinh 1 13e
1
32
32
16 32 e
2 .19722457733621938279... 2 log 3
2 .19710775308636668118...
k5
k 1 ( 2 k )!
( 1) k 1 4 k
k 1 ( 2 k 1)!( 2 k 1)
5
2
1 .19732915450711073927... 8G 16 2,
4
1
2
(1) 1
17 .19732915450711073927... 8G
2
4
k 1 ( k 1 / 4)
.19729351159865257571... 1
.19739555984988075837...
1
(1) k
arctan 2 k 1
5 k 0 5 (2k 1)
k 1
1
(1) k
.197395559849880758370... arctan 2 k 1
5
(2k 1)
k 0 5
si ( 2)
2
=
1 .19746703342411321823...
.19749121692001552262...
1 .197629012645252763574...
.197700105960963691568...
.197786228974959953484...
.197799773901004822074...
1
arctan 2(k 2)
3 2
8 12
2
[Ramanujan] Berndt Ch. 2, Eq. 7.6
k ( (2k ) (2k 1) 2)
k 1
3 sin 1
k2
2 cos 1
( 1) k 1
2
( 2 k )!( k 1)
k 1
2
coth 1
2
4
4
k 1 16k 1
( 2k )
1
1
k
2 6 3
9
k 1 (3k 1)(3k 1)
k 1
1
kH
4 3 arccot 2 2 log 5 4 log 2 (1) k 1 k2 k
25
4
k 1
k
60 22e
k 1 k !( 2 k 10)
.19783868142621756223...
2
4
log 2
log 2 2 2
log x sin 2 x
dx
x
4
48
0
2
13 (3) 1 ( 2) 7
5 3 39 (3)
19 3
27
8
16
4
6 3
12 3
6
(1) k 1
=
3
k 1 ( k 1 / 3)
3 .19784701747655329989...
.19809855862344313982...
1
3
2
k 2 k k
( 1) (5k 2) 1
k 1
k 1
.19812624288563685333...
1 .19814023473559220744...
log k
3
k 1 k
( 3)
=
0
5
1
2 4 4
/2
sin 2 x
1 sin 2 x
dx
sin x dx
0
.198286366972179591534...
3
2 E (1) K (1)
(2k ) (2k 1)
2
k 1
.198457336201944398935...
H1 (1)
(1) k
k 0 ((2k 1)!!) 2 (2k 3)
2
( (k 1) 1) 2
2k
k 1
3e 4 1
4k k
4
k 1 ( k 1)!
.198533563970020508153...
41 .198612524858179308583...
(1)k 1
.198751655234615030482...
(1) k
k
k 0 3 2
.198773136847982861838...
csc 2 3
4 3
( 1) k
.19912432950340708603...
k 0 k ! k !!
17
66
(1) k
2
k 4 k 12
1
.199240645990717318999...
3 2 2e 2 Ei (1) e x x 2 log x dx
0
.199270073726951610183...
( 1)
k 1
.199376013451697954050...
k 1
log k
2k
k 1
k
(k )
k
log (2 k 1)
log 8
40
147 14
7
1
.19947114020071633897...
8
.199445241410995064698...
1 .19948511645445344506...
2 .199500340589232933513...
.199510494297091923445...
=
1
k ( 4k 7 )
k 1
2
1
2
log 2 log 3 log 2 3 Li2 Li2
6
3
3
2k
1
k
Berndt ch. 31
2 tan k
2
k 0
1
1
cos 2 CosIntegral (2) sin 2 SinIntegral (1) cos1
4
2
2
dx
0 e x x 2 4
2
sin 2
(1) k 1 k
3
k 1 k 2
x
x
root of ( x 1) e ( x 1) e
.199577494388453983241...
1 .199678640257733...
5 .199788433763263639553...
3
.20000000000000000000
=
1
1
sin 2 arctan
5
7
=
=
.20007862897291959697...
=
.2000937253541084694...
3 .2000937253541084694...
.2002462199990232558...
1
(k )
k
k
k 1 6
k 1 5 1
cos 2 xdx
log 4 xdx
0 e x
1 x
k ( k 5)
k 1 ( k 4 )( k 1)
e
J1061
1
(2 i) (2 i) (1 i 3 ) 4 i 3
6
2
4i 3
4i 3
(1 i 3 )
(1 i 3 )
2
2
4i 3
(1 i 3 )
2
3
k
( 1) k 1 ( ( 6k 3) 1)
6
k 2 k 1
k 1
( 1) k 1
2
3
k 1 3k k
1
1 dx
3
= log(1 x ) dx log1 3 2
x x
0
1
2 log 2 3
1
1
2 log 2
3
3
6
2 2 2 log(1 2 ) log 2
1
0
2
k 1
.2003428171932657142...
=
1 .20038385709894438665...
1
dx
3
log1 x
k
1
( 2 k 1) k
2 2 2 arcsinh1 log 2
(3)
6
2 2 2 log 3 log
729
1
2
8Li2 12 Li2
64
2
3
=
(1) k 1
k 3 StirlingS1( k ,3)
1 .2004217548761414261...
1
1
1
¼ ! ¾ !
¼
¾
.2006138946204895637...
1 log 2 1 i
i
i
3 i
3 i
i 1 1 i
2 2
2
8
2
2
2 2
=
=
1 1 i
i
i
1 i
1 1 tanh
2 2
2
2
8 2 2
2
3 log 2
coth
4
2
8
2
( 1)k 1
3
2
k 1 k k k 1
1
.2006514648222101678...
Ei( e) Ei( 1)
e
e x
dx
0
.201224008552110501897...
6 .201255336059964035095...
.2013679876336687216...
sin 2 sin 2 1
(1) k 4k
k 0 ( 2k )!( k 1)
3
5
9 e2
8
2k k
k 0 ( k 3)!
(( k ) 1)2
k!
k 2
1
6
3
csch
6 3
2
.20143689688535348132...
.2015139603997051899...
.201657524110619408067...
(1)k
3
k 1
.201811276083898057964...
=
.20183043811808978382...
.201948227658012869935...
.20196906525816894893...
=
1 .20202249176161131715...
2
cos x e x
dx
2
2
x
0
1 .20172660598984245326...
( 1) k
2
k 0 2 k 3
2
k
1
2
1
2
3 log 2 3 3 log 2 log 3 2 Li 2 3Li2
2
2
3
k 1
(1) H k
k
k 1 2 k ( k 1)
e 3
k2
8 8e
k 1 ( 2 k 1)!
e sin 1
sin k
(1) k 1 k
2
1 e 2e cos1
e
k 1
i
i
16 4 (3) (5) 8 1 1
2
2
1
( 2 k 5)
( 1) k 1
7
5
4k
k 1 4 k k
k 1
1
2G 1
1
.2020569031595942854...
1
1 x log 2 x
(3) 1 3
dx
2 0 1 x
k 2 k
GR 4.26.12
=
6 x 2 x 3 dx
0 (1 x 2 ) 3 e2x 1
1 1 1
=
Henrici, p. 274
xyz
1 xyz dx dy dz
0 0 0
1 .2020569031595942854...
=
=
=
1
3
k 1 k
MHS (2,1)
Hk
2
k 1 ( k + 1)
H k (2k 1)
2
2
k 1 k ( k 1)
(3)
3k 2 3k 1
2
3
k 1 k ( k 1)
Berndt 9.9.4
H ( 2) k
k 1 k ( k 1)
=
=
5 ( 1) k 1
5 ( 1) k 1 ( k !) 2
2 k 1 2 k 3
2 k 1 (2 k )! k 3
k
k
Croft/Guy F17
Originally Apéry, Asterisque, Soc. Math. de France 61 (1979) 11-13
( k !)10 (205k 2 250k 77)
64((2 k 1)!) 5
=
( 1) k 1
=
7 3
1
7 3
(k )
2 3 2k
2 32k
1
180
180
k 1 k e
k 1 e
Elec. J. Comb. 4(2) (1997)
Grosswald
Nachr. der Akad. Wiss. Göttingen, Math. Phys. Kl. II (1970) 9-13
=
(k )
1
2 3
4 32k 2 2 k 2 k
2
45
k 1 e
Terras
Acta Arith. XXIX (1976) 181-189
=
4 2
7
(2 k )
2 2
2
log 2
k
7
7
k 0 4 2 k 2
=
4 2 (2 k )
2 2
2 2
log
2
9 k 0 4 k 2 k 3
9
27
=
2 2
(2 k )
k 0
4 2 k 2)(2 k 3
k
Yue 1993
Yue 1993
Yue 1993
=
=
=
=
4 2
(2k )
k
7 k 0 4 ( 2 k 1)( 2 k 2 )
8 2
(2 k )
k
9 k 0 4 (2 k 1)(2 k 3)
2
3
Ewell, AMM 97 (1990) 209-210
Yue 1993
(2k 5) (2k )
4 (2k 1)(2k 2)(2k 3)
k 0
k
Cvijović 1997
4 2
3 2
(2k 5)(1 (2k ))
1 3 log
k
3
2 3 k 0 4 (2k 1)(2k 2)(2k 3)
Cvijović 1997
=
2 3
(2 2 k 1 1) (2k )
log 4 k
14 2
k 0 16 k ( 2k 1)( 2k 2)
4
Ewell, Rocky Mtn. J. Math. 25, 3(1995) 1003-1012
=
(6)
1 p
4
p prime
=
=
=
1 p 1 p 2 p 3
1 p 1 p 2
p prime
1
3
5
HypPFQ[{1,1, 1, 1},{ , 2, 2}, ]
4
2
4
1
2
1 log x
dx
2 0 1 x
(4)
=
GR 4.26.12
log 2 x
x
1 x 2 x dx 0 x log 1 e dx
1
=
log 2 (1 x)
0 x dx
1
=
log(1 x) log x
0
=
4
3
GR 4.315.3
/4
log(cos 2 x) tan x dx
GR 4.391.4
0
/4
=
dx
x
0
sec 2 x (log tan x) 2
dx
1 tan x
1
=
16
arctan x log x (log x 2) dx
3 0
=
1 x 2 dx
1 x 2e x
dx
2 0 e x 1 2 1 e x
0
GR 4.594
=
x 5dx
e
x2
1
0
=
2
e 3 x
dx
x
3 ee 1
=
1
e 3 x
dx
x
2 e e 1
GR 3.333.2
GR 3.333.1
0
=
Li e dx
x
2
2 .2020569031595942854...
(3) 1
k ( ( k ) ( k 2))
k 2
2k 2 k 1
3
k 2 k ( k 1)
1
( (16k 13) 1)
3
k 13 k 1
k 2
1
.20206072056927833979... 3
( (15k 12) 1)
14
k 2 k k
k 1
.20205881140141513388...
k
.2020626180169407781...
( 1)
k 2
.2020645408229235151...
.20207218728189006223...
.20208749884843252958...
.20211818111271553567...
.20217973584362803956...
.20218183904523934454...
.20230346757903910324...
.2025530074563600768...
=
k
log ( k )
k
1
( (14k 11) 1)
3
k 11 k 1
k 2
1
( (13k 10) 1)
10
3
k 2 k k
k 1
1
( (12k 9) 1)
9
3
k 2 k k
k 1
1
( (11k 8) 1)
8
3
k 2 k k
k 1
1
( (10k 7) 1)
7
3
k 2 k k
k 1
k
2
k 2 (k )
( 1)
e 2 k 1
k!
k
k 2
k 1
1
( (9k 6) 1)
6
3
k 2 k k
k 1
7
i
i
cot (1)1 / 4 cot (1)3 / 4
4 16 4 2 8
i
1
(2 i ) (2 i ) (1)1 / 4 (1)3 / 4
8
4
1
( (8 k 5) 1)
3
5
k 2 k k
k 1
k
1
1 1
.2026055828608337918... ,4,0 Li4 k 4
5
5 k 1 5 k
3 cos1
k3
.20261336470055239403...
( 1) k
( 2 k )!
8
k 1
2
(2 k )
.20264236728467554289...
2
2
k 1 (2 k )
=
1
1
0
0
x cos x dx x 2 cos x dx
=
dx
e
0
.20273255405408219099...
=
x1 / 2
log 3 log 2
1
arctanh
2
5
1
1
1
k
2 k 1
2 k 1 3 k
(2 k 1)
k 0 5
1 H (n) k
k
2 k 1 3
n 1
=
=
H k 1
k
k 1 3
AS 4.5.64, J941, K148
( 1) k 1
k 1
k
k 1 2
log x dx
(2 x 1)
2
1
1
=
( x ) sin x sin 5 x
x
0
.20278149888418782515...
GR 1.513.7
dx
i
2 e 1 / 2 2 e 1 / 2 2 e1 / 2 2 e1 / 2
4
=
(2k 1) 1sin k
k 1
.2030591755625688533...
.2030714163944594964...
1
( ( 7 k 4 ) 1)
3
4
k 2 k k
k 1
( 6k 3) 1
k 3 log(1 k 6 )
k
k 1
k 2
3 .203171468376931...
2 .2032805943696585702...
.2032809514312953715...
.2034004007029468657...
( x) 1
i i i i
tan(log ) i
i
3
log
4
root of
1 Ei ( 1)
( 1) k 1
2
k 1 k !( k 1)
( 1) k 1
k 2 ( k 1)! k !
.2034098247917199633...
.2034498410585544626...
(2) 3(3) 2( 4)
33
( 1) k
k 0 ( k 2 )( 3k 2 )
12
.20351594808527823401...
log (3k )
k 1
.2037037037037037037
=
.20378322349200082864...
2 .20385659643...
.20387066303430163678...
11
54
k 1
( 2 ) 2 ( 3)
=
.2040552253015036112...
4k
6
=
.20409636872394546218...
=
.204137464513048262896...
.20420112391462942986...
.20438826329796590155...
1
1 2
p ( p 1)
p prime1
32 2 2 4
768 log 2 16 ( 3) (5)
3
45
( k 5)
( 1) k 1
4k
k 1
5
3 5
3 5 5 2 5 5 log 5 20 5 log
4
6
2
5k
(k 2)
1
(1) k 1
2
k
5k
k 1
3
( 4 ) 4( 2) 4 coth 8
2
1
( 2 k 4)
( 1) k 1
4
k
4k
k 1
k 1
3 i 3
1 1 3 i 3
3 12 6 2
2
1
( ( 6 k 3) 1)
3
3
k 2 k k
k 1
( 5k 2 ) 1
k 2 log(1 k 5 )
k
k 1
k 2
(4 k 1) 1
1
k Li2 4
2
k
k
k 1
k 2
( 3)
H k
k
k 1 6
3
5
=
k 2
5
k 1
.2040955659954144905...
k
( k 2)
1
k5
1024 128
k 1
61 .20393695705629065255...
26
27
2
p
1
p 2 1 ( p 1) 6
p prime
1
k ( 3k 9 )
4k
6
2 .204389986991009810573...
2
log
log 2
1 .20450727367468051428...
e
4
[Ramanujan] Berndt ch. 22
x
2
2
e1 x dx
0
k2 2
2 sinh 2 csc h 2
k 0 k 1
5 .204869916193387826218...
2 k ( 1) k 1
2 log 1 2 2 2 2 log 2 3 k
k 1 k 4 k ( k 1)
k
.205074501291913924132... 4 log 2 log 2 k
(k 1) 1
k 1 2 ( k 1)
1
1 1
.205324195733310319...
, 3, 0 Li3 k 3
5
5 k 1 5 k
k
cos
2
( 2)
( 1) k 1
2
.205616758356028305...
2
2
48
8
4
k
k
k 1
k 1
1
= Li2 (i ) Li2 (i )
2
Hk
=
k 1 k ( k 1)
.20487993766538552923...
=
log x dx
x3 x
1
1
=
0
=
x log x dx
x2 1
1 dx
4
x
log1 x
1
( 1)k 1
k
1
k 1
1
1 k
6
k 1
.20569925553652392085...
1 .2057408843136237278...
2
73
coth k
180
k3
k 1
3
3 1 4
.205904604818110652966...
e x sin x 3 dx
5/3
2
3
0
.2057996486783263402...
2 1
.20602208432520564821... Li2
3 3
1
log 2 x
0 ( x 3)2 dx
Ramanujan
.2061001222524821839...
2
36
.2061649072311420998...
( k
49
720
2
k
k 1
2
1
( k 6)
1) 1
k 2
.206183195886038352118...
.206260493108447712133...
.2062609130638129393...
.20627022192421495449...
.2063431723054151902...
=
.20640000777321563927...
.20640432108289179934...
.2064267754028415969...
.2064919501357334736...
=
1 .206541445572400796162...
1
13
21 8 5 Fk Fk Fk
6 arc coth
log
11 k 1 6 k k
5 5
5
i (1)
i
i
(1) k 1 k
1 (1) 1
(2k 1)
8
4k
2
2
k 1
1
( (5k 2) 1) ReLi 2 (i )
3
2
k 2 k k
k 1
( 3k 2 )
1
k
5
2
6
k 1
k 1 6 k k
1
2 2 log 2 2 4 log 2 log 3 2 log 2 3 4 Li 2
3
k
( 1)
k
2
k 0 2 ( k 2)
1
k 1 ( 3k )
(
1
)
k
3
5
k 1
k 1 5k 1
( 4 k 1) 1
k log(1 k 4 )
k
k 1
k 2
3
3
1
coth
2
6
3 4
k 2 3k 1
( 2 k ) 1
( 1)k 1
3k
k 1
1
k
H
(
(
k
3
)
1
)
log
k
3
2
k 1
k 1
k 2 k k
k
1
3
(k ) 1 3
log (1 )
Srivastava
2
2
2
k
k 2
J. Math. Anal. & Applics. 134 (1988) 129-140
.2066325441561950286...
(3k ) 1
k
k 1
2
1
3
Li k
k 2
2
2k 2k
k
(
1
)
k k!
k 0
1
1 .20702166335531798225... 1 e erfi (1)
k 1 k !( 2 k 1)
.2070019212239866979...
I 0 ( 4)
e4
1
=
2
ex 1
0 x 2 dx
GR 3.466.3
5 .2070620835894383024...
ee 1
e
ek
k 0 ( k 1)!
3 .20718624102621137466...
4 .2071991610585799989...
(3)
2
25 2 3023
288
1728
7 (3)
2
H k H k 4
k ( k 4)
k 1
0
x dx
log2 (1 x )
0 sinh x
(1 x) sinh(log(1 x)) dx
1
2
1
1
erfi ( e ) e erfi
e
4 e
(5)
.2073855510286739853...
5
k 1 (2 k ) 1
.20747371684548153956... ( 1)
k (2 k 1)
k 1
1 .207248417124939789...
8
.20749259869231265718...
10 75
.207546365655439172084...
.2078795763507619085...
(
3
k 0
x
4
arcsin xdx
GR 4.523.1
0
(k )
( 1)
k 2
k
k ( k 1)
(k ) 2(k ))
k 2
i
i e / 2 (principal value) ei log i
cos(log i ) i sin(log i ) cosh sinh
2
2
1
.20788622497735456602...
2
3 .207897324931068989...
1 .208150778890...
.2082601377261734183...
.2082642730272670724...
sinh k
k !(2k 1)
1
1
log 2 2
2
2 .2077177285358922614...
.20833333333333333333
=
e e e 2 1/ e e 2 1
2e
1
4
k 2 (k )
3
32 2
cosh k
( k 1)!
k 0
dx
( x 2 2)3
/2
sin 5 x cos3 x dx
0
8
(4) 192 log 2 4 (3) 256
3
1
( k 4)
=
( 1) k 1
5
4
4k
k 1 4 k k
k 1
32
=
5
24
2
log(1 x )
dx
x5
1
.2084273952291510642...
.20853542049582140151...
.2087121525220799967...
e( Ei (2) Ei (1))
1
Li3 2
8
5 21
2
0
log(1 x)
dx
ex
log x
dx
3
2x
1
7
k 1
2
x
1
2k
1
k
( k 1) k
k 1
2k
( 1)
k
k 0 3 ( k 1) k
1
11/ e
1 .2087325662825996745... e
e
k
k 0 ( k 1)! e
i
i
( k 3)
.20873967247130024435... ( 3) 4 2 1 2 1 Re
k
2
2
k 1 (2i )
1
( 2 k 3)
=
( 1) k 1
5
3
4k
k 1 4 k k
k 1
log 2
e
=
1
I 0 (1) StruveL0 (1) esin x dx
6 .208758035711110196...
0
.2087613945440038371...
2
( 1) k 1
2
k 1 k ( k 1)
( k 3)
Re
k
k 1 (2i )
2 log 2 2
12
( 1) k
3
2
k 2 k k
=
J365
1
=
log x log(1 x )dx
0
1 .2087613945440038371...
2 .2087613945440038371...
2
1
2 log 2 1
12
2
2 log 2
12
H2 k
k ( k 1)
k 1
1
=
(1 x ) log(1 x )
dx
x
0
log 1
0
1
log x dx
x
=
log(1 x )log x
dx
x2
1
1 .20888446534786304666...
((k ) 1)
k 2
k 2
.208891435466871385503...
(1 ) cos1
=
1
log 2 e i log 2 ei
2
cos k
(k ) 1
k
k 2
GR 4.221.2
6 1 1
1
1
.20901547528998000945...
Li2 k
5 6 5
5 k 1 6 ( k 1) 2
1
k ( 4 k 1)
.2091083022560555467... ( 1)
5
k
4
k 1
k 1 4 k k
1 1 3 i
3 i
=
2
2 2 2
.2091146336814109663...
2
8
2
1
3
(2 k 1)
.2091867376129094839...
tanh
(2k 1)!
k 1
.2091995761561452337...
1 .2091995761561452337...
2
1
3 3
2
3 3
=
2k
k 0
4k
k 1
H (2) k
k
k 1 6
1
4k 3
2
1
1
sinh k k
k 1
/2
(1 sin x ) 2
dx
2 sin x
0
k!
k
k 0 ( 2 k 1)!! 2
1
( k !) 2
CFG D11, J261, J265
k 0 ( 2 k 1)!
(2 k 1)
k
9k 2
=
k 1 ( 3k 1)( 3k 1)
dx
dx
x
= 3
x 1
e e x 1
0
0
=
dx
2 sin x
0
x dx
3
1
x
0
=
GR 2.145.3
dx
2
x x 1
0
x
1
2
dx
x 1
.209200400411942123073...
13 4 5
4
14311 4955 5
2 5 arctan h
5
log
log
89
3
5046
5 5 5
1
( (k ) 1)
k 2
k 2
1 .20930198120402108873...
1 .20934501087260716028... =
81 9 3 3 2
2
2
2
2 log 2
4 2
( 1) k 1
2
2
k 1 ( k 1 / 9)
log 2 x dx
2 x2 1
0
.20943951023931954923...
.20947938452318754957...
.2095238095238095238
=
.209657040241010873498...
.2099125364431486880...
.2099703838980124359...
2 .2100595293751996419...
15
log 2
1
( k )
k
2 k 2 2 k
Prud. 2.5.29.24
k
k 2 j 1
1
j
2k
j
2k
22
1
1
k
105 k 0 (2 k 1)(2 k 9) k 0 4 ( k 2)( k 4) k
log
( 1) csc
(2 k ) 1
kk
k 1
72
k2
1
1
, 2, 0 Li 2 k
343
8
8 k 1 8
k log k
( 1)
k!
k 1
10 3
81 3
=
0
1 .2100728623371011609...
(sin x x cos x) 2
x6
1
log 2 x dx
0 x 2 x 1
log 2 x dx
x log 2 x dx
0 x3 1 0 x3 1
GR 4.261.2
log 2 x
dx
x 2 x 1
2 2
8
13 2
log 2 2
1
1 1 1
1
, 2,
Li2
8 2 2
48 2
8 2
2 2
1
=
.21007463698428630555...
log x dx
2
1
0
2x
(k )
k 1
k
(3)
log (3k )
k 1
4 3
1
6
1
.2103026500837349292...
k
k 1 (5k )
.21010491829804817083...
.21036774620197412666...
(k )
k3
( k 1)!
k
1
2 )! 4
(k
k 1
sin 1 ( 1) k
( 1) k k 2
4
k 0 4( 2 k 1)!
k 1 ( 2 k 1)!( 2 k 1)
2 .2104061805415171122...
(3) ( 7)
.210526315789473684
=
4
19
.2105684264267640696...
6(log 3 log 2)
8 .2105966657212352544...
2
(3)
20
9
( 1)k
k
k 0 2 ( k 1)( k 4 )
Titchmarsh 1.6.2
Dingle p. 70
.21065725122580698811...
12
( 1)k
k 0 ( 2 k 1)( 2 k 4 )
log 2 1
6
6
1
=
x
2
arctan x dx
0
.21070685294285255947...
1 1
3 3e
1
1 .21070728769546454499...
1 dx
3 7
x
cosh x
log(1 e
k 0
k
) k
( 1) k
1
2k
k 1
1 .21072413030105918014...
46 .21079108380376900112...
.2109329927620049189...
17e
1
2 (i ) 2 ( i ) 4 1
8
3 1
k
=
(2 i ) (2 i ) 4
2 8 4
k 2 k 1
1 1
=
(i ) (i )
2 8 4
=
((4k 1) 1)
k 1
.210957913030417776977...
.21100377542970477...
2 .211047296015498988...
1 .2110560275684595248...
1
(1) k 1 H k
k 2
4k k
k 1 5 k
k 1
4
2
= ( 2 ) log 4 log 5 log 5 Li2
5
1
1
,2, 0 Li 2 ( )
5
5
2 log log 2
.21107368019578121657...
7 .2111025509279785862...
1 .21117389623631662052...
.2113553412158423477...
x2
0 e x ( x 1) 2 dx
2 3e Ei ( 1)
E(¾)
(3k ) 1
k!
k 1
( 1) k 1 / k
k 1
e
1/ k 3
1
k 2
52 2 13
1
1
( 3k )
k 1
2k
k 1
( 2 k 1)!!
(2 k )!!
k
J166
1
Berndt 7.14.2
(1 )
2
(3k ) 1
1
.2114662504455634405...
3k log1 m 3
k
k 1
k 1 m 2 km
m 2
1
3
3
log 3 log cosh
= log
cosh
2
2
3
.2113921675492335697...
5i 3
5i 3
log
log
2
2
e
sin ke
.2116554125653740016...
2
k
k 1
.2116629762657094129...
=
1
8 .21168165538361560419...
.211724802568414922304...
Ei(e)
2
2
4
=
coth
4
3
3G
3 2
7 (3)
3
log 2 G 2
32 2
16
4
4
Hk
(4k 1)
k 1
2
(1) k !
k 3 k ! 2
16
.21184411114622914200... 8 log 2
3
.21180346509178047528...
1
k
k 0 2 ( 2k 8)
1
2 (k 3)
k 1
k
1
.211845504171653293581...
1
log 2 ci (2) log x sin x cos x dx
4
0
.2118668325155665206...
.21192220832860146172...
1
k 1 e k ( k 1)
2 e ( e 1) log(e 1)
3
8
( 1) k 1 k
( k 1 / 2)
4G
k
k 1
3
1
1/ 3
k 0
0
2
.21220659078919378103...
3
3 / 2
1 .21218980184258542413...
3
k
1
x sin
7 .2123414189575657124...
6 (3)
e
0
3
x
x dx
0
1
.21231792754821907256... log 3 2 log 2
2
3
2
x
3
1
x dx
e x 2
dx
x2
J149
=
e
0
.2123457762393784225...
e
1
.21236601338915846716...
dx
x1 / 3
(2 k 1) 1
2
1
1
2
k Li k
k
k
k 2
H log k
3 .21241741387051884997... k
k 2 k ( k 1)
( k )k
.21243489082496738756... k
k 1 2 1
cos 2 x dx
cos x dx
2
.2125841657938186422...
2
2
2e
x 1
x 4
0
k 1
AS 4.3.146, Seaborn Ex. 8.3
/2
sin(2 tan x) tan x dx
=
GR 3.716.6
0
=
cos(2 tan x) sin x
0
.2125900290236663752...
GR 3.881.4
log k
3
1
k
k 1
.2126941666417438848...
dx
x
1
Hk
log 2 log 2
2 k 1 4 k 3 k
2
10 3 2 24 log 2
( 1)k 1
3
2
108
k 1 k 3k
1
1
.2127399592398526553... I3 (2) 0 F1 (; 4;1)
6
k 0 k !( k 3)!
( 1) k 1 (2 k 1)!!
.21299012788134175955... 2 log 2 6 4 log 2
(2 k )! 2 k k
k 1
(1) k 1 2k
=
k
k 1 8 k
k
.21271556360953137436...
.2130254214972640800...
((k ) (k 1))
k 2
.2130613194252668472...
.2131391994087528955...
2
1
e
LY 6.114
2
( 1) k 1
k
k 1 2 ( k 1)!
7 (3)
( 2k )
2
k
4
k 0 4 ( 2k 1)( 2k 2)
Yue & Williams, Rocky Mtn. J. Math. 24, 4(1993)
.2131713636468552304...
1
3
erfi
9 / 4 e erfi
8e
2
2
2
e
x2
sin x cos2 x dx
0
( k 1)
1
1
hg( ) 2
( 1)k 1
7
7k
k 1 7k k
k 1
1
.21324361862292308081...
7
1
1
1 .21339030483058352767... k
2 k 1
1
k 1 2 ½
k 1 2
.2132354226771896621...
3 .21339030483058352767...
.21339538425779600797...
0 (k )
D(k )
,
D
(
n
)
0 (k )
k 1
k
k 1 2
k 1 2
k 1
4
log 2
1
2
9
3
k 1 4k 6 k
1
=
x 1 x 2 log x dx
GR 4.241.10
0
/2
=
log(sin x ) sin x cos2 x dx
0
sin 4
.2134900423278414108...
2
( 1) k 1 4 k
1
k 0 k !( k 2 )
2 log
1879
( 1) k 1
.21355314682832332797...
3
7560
k 1 k ( 3 k / 3)
( 1) k 1 2 k k 2
1
.21359992335049570832...
( 2 cos 2 2 sin 2 )
( 2 k 1)!
8
k 1
(1) k 1 2k 1 k 2
=
(2k )!
k 1
1 cot 3
1
.2136245483189690209...
2 2
6 2 3
k 1 k 3
.2136285768839217172...
1 11 13
k
, ,1
1F1
11 2 2 k 1 k!(2k 9)
.2137995823051770829...
511e 945
erfi 1
32
64
1 8
1
arcsinh
9 27
2 2
( 1) k 1
k 1 k 2 k
2
k
GR 4.384.11
.21395716453136275079...
1
4
k 1 6 k k
5k ((5k ) 1)
k 1
1 .2140948960494351644...
.2140972656978841028...
6k
k 1
.2140332924621754206...
(3k 1)
k
k 2
5
5
5
1
3
1
1
1 3
cosh
1/ 3
2/3
2
2
2((1) )((1) ) k 2 k
dx
1
1
1
k x
e 1 e k 1 e 1 e
1 .214143334168883841559...
( k ) ( k ) ( k ) 1
k 2
.214252808872002637721...
1 (1) 4
7
(1) 2 Root 64 48#1 #12 &,2
81
9
9
=
x
1
.2142857142857142857
=
1 .2143665571615205518...
3
14
k 2
.214390956724532164999...
2
27
.21446148570677665005...
log k
3
36
x
k (2k )
9k
k 1
dx
1
( 2 x) 1
x
9k 2
2
1) 2
(9k
k 1
dx
( k ) 1
1
1 log 2 1 3
1
3 1
1
2
2
2
8 2
2
2
2
( 1)k
= 3
k 2 k 2 k
( 1) k
.21460183660255169038... 1
4
k 0 2 k 3
( 2 k 1)!!
=
J387
2
k 1 ( 2 k )! ( 4 k 1)
.2146010386577196351...
( x) 1
2
log x dx
1 x 3
3
=
1
2 .21473404859284429825...
dx
4
x x2
/4
0
sin 2 x dx
cos2 x
1
arcsin x
(1 x)
2
dx
0
3
14
4
1 .2147753992090018159...
log 2 3 log 3 3 log ( x) dx
3
GR 6.441.1
.2148028473931230436...
3 log 2
log csc
2
2 2
(2 k )
1
= k
log 1 2
8k
k 1 8 k
k 1
log
(1) k
k
k 0 4 ( 2 k 4)
.21485158948632195387...
8 log 4 8 log 5 2
(( k ) 1)2
k!
k 2
(1) k 1
.215232513719719453473...
p , where p is the kth prime
p prime 2 1
.21506864959361451798...
.2153925084666954317...
( k )(( k 2) 1)
k 2
.2154822031355754126...
.2156418779165612598...
4 2
1
1
12
3 6 2
24 6
7( 3)
=
.2157399188112040541...
.2157615543388356956...
1 .2158542037080532573...
2 .21587501645954320319...
.21590570178361070...
2
/4
0
0
2
sin x cos x dx
sin 3 x
dx
tan 2 x
1
arcsin 2 x arccos2 x dx
0
4
4k
3
4
27
k 2 ( 2 k 1)
( k ) 1
( 1) k k ( k 1)
2k
k 2
4
k2
31(5)
7(3)
5
4
6
k 1 ( k 1 / 2 )
3
4
H
log ( 1)k 1 kk
4
3 k 1
3
12
2
2
( 2)
(k ) 1
2
k 2 ( k 1) 1
2
.21565337159490150711...
2
/4
1 1 e
e
2
2 2
( 1) k
k 0 k e
1 .21615887964567006081...
( k ) ( k 1) 1
k 1
.216166179190846827...
1 .2163163809651677137...
1 e2
sinh 1
4
4e
(1)
k 1
k 1
2k
(k 2)!
1
1
1
( 1) k
cos sin 1 sin 1
4
4
2
(2 k 1)
0
=
.21634854253072016398...
( 1)k
( 1)k
k
k
k 0 ( 4 k )!! 4
k 0 ( 4 k 2 )!! 2 4
4 2G
13 .2163690571131573733...
k
4
2
4
3
8
1
k 1 3 ( k 1)
3 log 3 3 log 2 1
=
=
( 1)k
k
k 1 2 k ( k 1)
1
x
0 log1 2
k2 3
2
k 1 k 2
2 .21643971276034212127...
(1) k 1 k 2 (k 1)
4k
k 1
(( k ) 1)2
k 2
.2163953243244931459...
7 (3)
2
k
1 k
k 1
2
GR 1.513.5
1
2
2
1
log(3 2 2 )
J266
32
k 1 (8k 7)(8k 3)
1
1
1 .2167459561582441825... log 2
2
6
k 1 4 k 3 k
k 0 ( k 1)( 4 k 1)
1 log 2 1
1
1
.216823416815804965275...
i i i i
2
2
2
2
8
.2167432468349777594...
=
.216872352716516197139...
cos2 x
0 e x e x 1) dx
(3) 2 log 2 2 log 5 2 log 2 log 2 5
1
5
.2169542943774763694...
4
5
Li3 Li3
Hk
k 2
k
k 1
sin 2
2
1 2
k
2
2
=
5
48 .2171406141667015744... =
.21740110027233965471...
93 (5)
x 4 dx
2
sinh x
0
2 9
4
k
2
k 1 ( k 1)( k 3)
1 .2174856795003257177...
1
k 0 k !( k 4 )!
24 I4 (2) 0 F1 (; 5;1) 24
log3 5
4
4
Li2 log
2
5
5
1
.217542160680600158911...
cosh2 sinh 2 cosh 1 csch2
4
( 1)k
.2178566498449504...
3
k 2 k 4
1 2
(1) k 1 Hk
.218086336152111299701...
log 2
2 24
k 1 k ( k 2 )
( 1) k 1
2
2
k 1 ( k 1)
i
2 e 2i 2 e 2i
4
2
2 .2181595437576882231...
5
1 .21816975871035137...
j2 2 g2
.218116796249920922292...
.2182818284590452354...
sin k cos k (k 1) 1
k 1
J311
5
1
1
e
2 k 1 (k 2)! k 0 k !( k 2)( k 4)
( 1) k e 2 k 1
k 0 ( 2 k 1)
22
1
(3) 48 log 2
8 64 4
3
3
k 1 4 k k
k 1 ( k 3)
= ( 1)
4k
k 1
1 .218282905017277621...
.2185147401709677798...
37 .2185600000000000000
1 .2186792518257414537...
arctan e
116308 Fk 2 k 3
3125 k 1 4 k
2 2
sinh
2 2
=
1
2
k 1
(k )
k
.218709374152227347877... ( 1)
k (2k 1)
k 2
6
6
H
.2187858681527455514... kk
log
5
5
k 1 6
2 .21869835298393806209...
arcsin k
2 log 5
136 4 arccsch 2
.218977308611084812924...
625
625 5
3 .2188758248682007492...
1
k
k 1
2
1
1
arctan
log1
k
k
k
k4
( 1)
2k
k 1
k
k
.21917134772771973069...
cosh 1
erf (1) erfi (1)
2
8
( 1)
.219235991877121...
kk
3
Hk
k 1 k ( 2 k 1)
8 log 2 4 log 2 2 2(3)
Ei( 1)
( 1)k
k 1 k ! k
=
2
LY 6.423
1
log dx
1 ex
1 e x 0 x dx
=
1
.2193839343955202737...
1 dx
2 4
x
sinh x
k 1
k 1
1 .21925158248756821...
dx
e
0
ex
=
xe
x ex
dx
0
2 .2193999651440434251...
.2194513564886152673...
(3) (6)
k 1
9 .2195444572928873100...
.21955691692893092525...
1 1 1
Lik
2
2 2
k
85
2 ( 2 ) coth
2
k 1 ( 2 k 2 )
= ( 1)
4k
k 1
( k 2)
= Re
k
k 1 (2i )
4k
k 1
4
.21972115565045840685...
e
5
1
1 dx
1 dx
cosh 2 7 cosh 4
x x
x x
4 4e 1
21
.2197492662513467923...
(1)
k 1
0 (k )
k!
k 1
1
.2198859521312955567...
1 ci (1) cos1 x log x cosx dx
0
.219897978495778103...
1
k2
((k
k 1
2
2) 1)
3 7
2265 .21992083594050635655...
4
( 1) k 1 H (3) k
.2199376456133308016...
4k k
k 1
.21995972094619680320...
=
3
2
2 log 2
6
24
2
2
2
log x sin x
dx
0
x
.22002529287246675798...
1
J (1)
2 1
.220026086659111379573...
log 2
2 log 2
24
log 2 2
2
log 3 2 ( 3)
6
3
(1) k 1 k
2 k
k 1 ( k !) 4
i
i
1
1
1
4
2 3
2 3
3 i 3
1 3 i 3
4 6
6
=
(1) k 1
3
k 1 3k k
.2200507449966154983...
.220087400543110224086...
k 2
.2203297599887572963...
(2 k 1)
2k k
J385
1 1
k log 1 2
2k 2k
k 1
1
1
coth tanh
2
4
2 2 4
2 2
1
(2 k )
=
Re
2
k
k 1 4 k 4 k 2
k 1 (2i )
coth
=
( 1) k
(4 k )
4k
1
1
4
k 1
i
7 1
.22037068922591731767...
(2 i ) (2 i ) (1) (2 i ) (1) (2 i )
4 64 8
16
1
= 3
4 2
)
k 2 k (1 k
k 1
2
(2 k 1)!! 1
2 log 2
k 1 ( 2 k )!! 2 k
4G
1 .2204070660909404377...
.2204359059283144034...
=
=
k
4
(3)(4)
1 (1) 1 4 2
6
27
3
1
5 2 (1) 2 / 3
Li2 (1)1 / 3 Li2 (1) 2 / 3
3
108
2
2/3
(1)
Li2 (1) 2 / 3
4
1 1
( 1) k
5
6 k 0 (3k 2) 2
36 3
=
.220496639095139468548...
.22056218167484024814...
.2205840407496980887...
.220608143827399102241...
1
x log x
log x dx
1 x3 1 0 x3 1 dx
3
8 2 2
3
e
dx
2 x2/3
0
1
2 .220671308254797711926...
( 1) k 1 kHk
k !2 k
k 1
2
log 2
1
x tan xdx
1
1
log1 x log
2
1
2 x tan x dx
0
arctan 2
4 2 4 arctan 2 2 3 log 2 3
12 2
2
x
dx
x log
2x 3
x dx
0
1
0
2
0
1
2
1 ( k )
k 2
0
x dx
e x
2x
Rei
2
1
3 ( 3)
2
4 log 2
6 log(1 x ) log 2 x dx
2
3
0
cos
1 .2210113690345504761...
e
1
1
2 Ei log 2 1
2
2 e
3 (3)
6 .220608143827399102241... ( 2) 4 log 2
2
.2206356001526515934...
1
( 27 3 3 2 2 27 log 3 8(3))
16
1
= 3
k 1 k ( 3k 2 )
2 205
.2213229557371153254...
(1) (5) (1, 2, 5) (2, 5)
6 144
.2211818066979397521...
1 .2214027581601698339...
e
5
2 .22144146907918312350...
2
=
=
x
2
x dx
x 4 1
dx
1
Marsden p. 231
4
/2
tan x dx
0
d
1 sin
log x
dx
x
Marsden p. 259
2
0
2
=
2
0
1
2
cosh x 2
0 cosh x dx
=
1
4 dx
log1 2 x
0
.22148156265041945009...
.22155673136318950341...
.221565357507408085262...
1 1
1
8
(k )
k
k 2
k 1
2
1
k k
2
1 5
7 3 5 arctan
3
5
arc
coth
2
2
arc
cot
1
5
4
10 3 5
k 1
(1) Fk Fk 1
=
4 k (2k 1)
k 1
1
1
log(1 x ) log 3 x
dx
0
x
1 ( 2)
( 2)
.22156908018641904867... ( 3) 1 ( 2 i ) ( 2 i )
4
x 2 sin2 x
= x x
dx
e (e 1)
0
6 .221566530860219558...
6 (5)
log 2 1
( 2 k 4 )! k 2
2
8 k 2 ( 2 k )!
( 2 k 1)!!
=
2
k 2 ( 2 k )! ( k 1)
1
1
3
( ( 3k ) 1) ( 3) 1 6
3
k 2 k 1
k 1
k 2 k k
.22157359027997265471...
.221689395109267039...
=
=
=
1
1 i 3 5 i 3
1 i 3 5 i 3
1
3
2
2
2
2
1 1
3 i 3
3 i 3
(1 i 3 )
(1 i 3 )
3
6
2
2
3
2
3 3i 3
5 i 3 1
5 i 3
2
2 3
3 3i 3 2
1
1 (1) 2 / 3 2 (1)1/ 3 (1) 2 / 3 2 (1) 2 / 3
3
1
(2 k )
.2217458866641557648...
(log 3 log 4 2 )
6
4k
k 1
2
k
2
.22181330818986560703... 2 log 2 log 2
k
6 k 0 2 ( k 1)2
=
1 .2218797259653540443...
k
k 1
2
k 1
log
k 2
97 6
2
2 (3)
22680
1
4
k 2 k 11
1 .221879945319880138519...
.221976971159108564...
.22200030493349457641...
(2 k 1) 1
k!
k 1
.22222222222222222222
=
2
9
=
( 1) k 1
k 1
Hk Hk
k4
k 1
e1/ k
1
k
k 2 k
2
1
k
x 2 arccos xdx
2 k 0
(k )3k
9k 1
Bk
.222495365887751723582...
k 1 ( k 1)!
k 1
1
2
2
1
H
log
arctan
( 1) k 1 2 kk 1
2
6
3
3
2
k 1
3
2
csc 1
cos 3 12 sin 1 9 k (22k k )
.222640410967813249186...
32
k 1
2
3e 1
k 1
2 .2226510919300050873...
4 2e k 0 (2 k )!
.2225623991043403355...
.2227305519627176711...
21 (3) 4
4
16
=
(1)
k 3
.22281841361727370564...
12 k
(2 k 1)
k 1
4
k ( k 1)( k 2)( k )
2k
G log 2
1
2
8 4 1
1
4
2 2
8
( 2 k 1)
=
3
2 k 1
k 1 8 k k
k 1
2 k ( k 1)
e2/ k 1
8 .22290568860880978...
k!
k
k 1
k 1
(k )
1
3
2 .2230562526551668354...
(9 log 3 3 ) 2
k 2
2
k 1 3k k
k 2 3
2 .22289441688521111339...
k 1
=
1
( k 1)( k
)
(1) k 1
1
1 1
log 5 log 4 ,1,0 Li1 k k
5
5 k 1 5 k k 1 4 k
k 0
.2231435513142097558...
2
3
1
1
= 2
2 k 1 2arctanh
9
k 0 ( 2 k 1) 9
.2231443845875105813...
dx
x
1
4e
0
K148
H ( 3) k
3 ( k 1)
k
k 1
.2232442754839327307...
( 1) k 1 k
( 1) k 1
k 1 ( 2 k )!( k 1)
k 1 ( 2 k 1)!( 2 k 2 )
2 sin 1 cos 1 2
1
=
x
2
sin xdx
0
log 2 x sin log x
1 dx
dx sin 4
2
1
x x
x
1
e
=
.22334260293720331337...
k 1
.2234226145863756302...
(2 k ) (2 k 1)
(2 k )!
( 1)k
k ! 1
k 0
.22360872607835041217...
(( k ) 1)2
k
k 2
267 ( 1)k k 9
e
k!
k 0
1
1
2
4
2 e e
( 1) k 1
= 2
k 1 k 2
98 .22381079275099866005...
.223867833455760676...
.2238907791412356681...
1
csch 2
4
2
J125
( 1)k
( 1)k 1 k 2
J0 (2 ) 0 F1 (;1; 1)
2
( k !)2
k 0 ( k !)
k 1
2
2k
1 2k
k
k 1 k
= ( 1)
( 1)
(2 k )! k
(2 k )! k
k 0
k 0
1 .223917650911311696437...
e (3)1
.22393085952708464047...
4
3
2 2
)
k 2 k (1 k
k 3 ( k )
( 1)
k!
k 2
3 .2241045595332964672...
2
k
(2k 1) 1
k 1
k
log(1 k 2 )
k
k 2
1 3k 1 k 2
e1/ k k 3
k 2 k
LY 6.115
.224171427529236102395...
3 log 8
(2 k ) 1
k (2k 1)
k 1
.224397225169609588214...
( 1)
k
(2 k 1)
k
k 2
.2244181877441891147...
.2244806244272477796...
=
.22451725198323206267...
1
1
2
k kLi k
2
2
k 1
kH
7
7
(1 log ) k k
36
6
k 1 7
5 log 2
2 (1)
3 3
2
( k 1) 1
1
1
1
k k 2 log 1
k 3
3k 2
k
k 1
k 2
e
.2247448713915890491...
1 .2247448713915890491...
3
1
2
3
2
(2 k 1)!!
k
k 1 ( 2 k )! 3
1 2k
k
k
12
k 0
( 1) k
1
6k 3
k 0
=
.22475370091249333740...
1 .2247643131279778005...
.2247951016770520918...
1 dx
sinh x x
5
1
1 cot 3
1
2 2
18
6
k 1 k 9
1
1
cot
2
2 4 2
2 2
k 1 8 k 1
.22482218262595674557...
.224829516649410894...
8
e
e
2 3
cot
3
k 2
1
3k 1
2
k 1
k 1
(2 k )
8k
( 2 k ) 1
3k
1
1
(32 3 2 24 log 2 27(3)) 3
81
k 1 k (2 k 3)
.225000000000000000
=
.22507207156031203903...
.225079079039276517...
.225141424845734406...
9
40
log 2
4 2 3
2
1
arctan x dx
3
0
3
1
1 1
2
4
4
1
1
dk
2G log 2 1 E ( k )
2 0
2 k
2
1
GR 6.149.1
.2251915709941994337...
.2253856693424239285...
2k
(k 1)!!
k 1
3 (3)
1
Li3 1 Li3 (i ) Li3 (i )
16
4
(1)1
=
1
log 2 x dx
x log 2 x dx
1 x3 x
0 x 2 1
x 2 dx
= 2 x
e 1
0
2e
1
2e 1 k 0 ( 2e) k
3
1 1
1 .22541670246517764513... 2
4
4
(k )
(k )
.22542240623577277232...
k 1 k ( k 1)
k 1 k 1
1 .225399673560564079...
1 .22548919991903600533...
2 1
coth(log )
2 1
1
.225527196397265246307...
4 2 arccot 2 2 log 3 2 log 2
18
(1)
k 1
k 1
kH2 k
2k
1
8
4 2
H2 k
4 log 2 log
k
7
7
4 2
k 1 8
.2256037836084357503...
1 .2257047051284974095...
(3k )
k1
.2257913526447274324...
.226032415032057488141...
log
2
1
8 6
( 2k )
2
k 1
2 k 1
k
arctan x
dx
x5
1
(1)
k 2
k
log k
K ex. 207
3 .22606699662600489292...
(1)
k 1
(3 (2 k ) 1)
k 1
8 .22631388275361511237...
.2265234857049204362...
2 .2265625000000000000
erfi 2
4k
k !(2 k 1)
4
k 0
e
12
285
1
1
=
,4,0 Li 4
5
5
128
1
.226600619263869269496...
.226724920529277231...
.22679965131342898...
.226801406646162522...
.2268159262423682842...
1 .2269368084163...
k4
k
k 1 5
.226589292402242872682...
1
3 5 Li 3 5 1 5 Li 1 2 Li
2
2
2
1 5
8
51 5
4
k 1
(1) Fk Fk 1
=
4k k 2
k 1
1 5
4 4
2
x e
4 x4
dx
0
1
36k 5
8 3
k 1
k 3H k
287 153
77
log 2 log 2 2 k
4
2
2
k 1 2 ( k 1)( k 2 )( k 3)
36k
2
7
2 2
4 log 2 2 log
2
8
2 2
1
= 2
k 1 8k k
1
H
72 log 2 2 168 log 2 149 k k
9
k 1 2 ( k 4)
root of ( x ) 5
cot
.22728072574031781053...
2
2
2, 3,
27
3
.227350210732224060137...
(k 1) 1
k 1
3k k
.22740742820168557...
Ai(-2)
.22741127776021876...
3 4 log 2
=
log 2 x
1 x 3 2 dx
1
1
log1
3k
k 1 k
1
( 1) k 1
k
2
2
k 0 2 ( k 2 )( k 3)
k 1 k ( k 1)
( 2 k 1)!!
2
k 1 ( 2 k )! ( k 1)
1 .22741127776021876...
4 4 log 2
4
k 0
=
1
k 1 k ( k ½ )
( k 12 )!
1 )!
2
k 1
3
2arcsinh
2
k
2k
1
2
( k 1) k
(1) k 1
2
k 1 k k 1 / 4
(1)
k 2
k
(k )
2k 2
1 .2274299244886647836...
4 .2274535333762165408...
1 .2274801249330395378...
=
k (k
( 1) k 1 3k
2k
k 1
k2
k
(1 / 4)
1
3 log 2
(1 / 4)
2
4
1
1
Hk 1
2
4
3 (5) 6
(3)
12 log 2 2
2 3 4
6
72
k
k
k 1 2 k 1 k
1 .227558761008398655271...
(k ) (k ) 1
k 1
k 2
1 .22774325454718653743...
Hk
k !k
k 1
1 .2278740270406456302...
2
1
k !(k 1)
k 1
1
log(2 2 )
,1, 0
2
1
3k 1
k (k )
.228062398169704735632... ( 1)
k arctan
2k 1
3k
k
k 2
k 1
1 .227947177299515679...
2 .2281692032865347008...
16 .2284953398496993218...
.2285714285714
7
e 1
erf 2
2
2
=
8
35
p prime
2k
k 0 k !!
1 p
2 2
1 p 2 p 4
2 (k )
2 ( k )
2 ( k )
1
k s
k 2 ( 2k )
s2 k 2
k 2 k ( k 1)
2
11 (5)
1
.22881039760335375977...
MHS (3,2) 3 2 MHS (2,2,1)
(3)
2
2
k j 1 k j
2 .22869694419946472103...
3 log 2 2 7 2
log(1 x 2 )
4
dx
x x3
4
2
48
1
G
( 1) k
.2289913985443047538...
2
4
k 0 ( 4 k 2)
1
1
=
2
2
(8k 2)
k 1 (8k 6)
.22886074213595258118...
x dx
= 2 x
e e 2 x
0
=
x log x
1 x
4
log x dx
3
x 1
x
1
dx
1
e
.2290126440163087258...
(log (e 1) 1)
e 1
H (2) k
.22931201355922031619... k
k 1 5 k
( 1) k 1 Hk
ek
k 1
.22933275684053178149...
.229337572693540946...
.2293956465190967515...
.22953715453852182998...
=
.22955420488734733958...
.229637154538521829976...
.22968134246639210945...
.2298488470659301413...
2 .2299046338314288180...
=
7 (3) 2
log 2 x
dx
2
x
x
8
12
(
1
)
(
1
)
1
1 1
1
log 1 k
2 e k 1 2e k
ek
I0 (2 e ) 0 F1 (;1; e)
2
k 0 ( k !)
3
k 1
log 2 ( 1) k
( k ) 1
2
k
k 2
1
1
log 1
k
k 1
k 2
1
1 1
1
( 1) k 1 k
cos sin
k
8
2 4
2
k 1 ( 2 k 1)! 4
3
k 1
(k ) 1
log 2 (1) k
2
k
k 2
( 1) k 1 k
1
1
sin
k
2 2
2
k 1 ( 2 k )! 2
1 1 cos1
( 1) k 1
sin 2
2
2
k 1 2 ( 2 k )!
1 dx
1 sin x 2 x 3
( 2 k )
1
1
cosh
2
k
k 1 ( 2 k 2 )!
k 1 k
GR 1.412.1
.2299524263050534905...
.2300377961276525287...
.2300810595330690538...
.23017214130974243...
.230202847471530986301...
24 3 log 2
25
5
10
2 1
2
4
0
k 1
xarccos x dx
(1 x 2 ) 2
1
5
cos
4
2
k 1
26
e
GR 4.512.8
5
1 (2k 1)
1
1
erfi
1/ 8
2 2
2e
2
16
1
k (4k 5)
2
( 1) k 1
2k
k 1
k ! 2 k
k
( 1) k
k
k 0 k ! 2 ( k 3)
log10
10
1
( 1)k
3 .23027781623234310862...
2 csch 2
2
2 k 0 4 k 1
1
.23027799638651103535... k
k 1 4 ( 2 k )
1
.2302585092994045684...
.23030742859234663119...
2 3
k
s 2 k 0 j 1
.23032766854168419192...
.23032943298089031951...
.230389497291991018199...
=
j s
5 5
1 2k
( 1) k 1
12
k 2 k
k 1
1
6
1 1 i
i
1 i
i
2
2
2
4 2
1
cos x
dx
x
1)
e e
x
0
2
1 (1) 1
3
(1)
.230636794909050220202... G 2
8
32
8
8
.2306420746215602059...
log 2
2
.230769230769230769
=
k4
k
k 1 k
1
1 2 x
0
3
sin x dx
13 0 e x
9 .2309553591249981798...
5
2
dx
cos x
x
/4
0
x dx
sin x cos x
.2310490601866484365...
log 2
3
=
1
1 .23106491129307991381...
.231085022619546563...
( 1) k 1
k 1 2 k k
2 k
k
( 1) k
k 0 3k 3
dx
dx
4
x x 0 (3x 1)(3x 2)
e
0
J292
dx
3
2x
cosh cosh sinh sinh cosh sinh
2
2
2
2
/ 2
ei ee
( k )
2
k 2 k ! k
=
1 .231141930209041686814...
i
6
1890
(3) 2
2
H ( 3) k
k3
k 1
.231274970101998413257...
log (2 k 1)
k 1
.2312995750804091368...
k !!
(k 3)!
k 0
1 .23145031894093929237...
2
12
2 log 2 (1 log 2 )
( k 1) Hk
2k k
k 1
1
(1) k 1 k
e1 /
k! k
k 1
1
.2316936064808334898... Ai
2
k 1
1
1
.23172006924572925...
2 ( k ) 1 log 1 Li2
k
k
k 2 k
k 2
.23153140126682770631...
2 .23180901896315164115...
1
2 ( k ) 1
k 2
.2318630313168248976...
2 log 2 2
k 0
1 .2318630313168248976...
2 log 2 2 1
(k 1)
2k
( k )k
2k
k ( k 1)
2 .2318630313168248976... 2 2 log 2 2
2k
k 0
k 1 1 ( k ) ( k )
1 .23192438217929238150... ( 1)
2k 1
k 1
k 1
.2319647590645935870...
.23225904734361889414...
.2322682280657035591...
.2323905146006299...
1
2
K (1)
6
9
x
2
arcsin( x 2 ) dx
0
351 14 3 126 log 3
1
588
k 1 k (3k 7)
k log k
( 1)
k ( k 1)
k 2
.232609077617500793647...
1 .2329104505535085664...
9e
k
12
2
k 0 k!( 2 k 8)
6 (3)
3
e
0
dx
x1 / 3
1
x 2 dx
0 e x e x / 2 1
16 (3) 18
1
3 .2329104505535085664...
log 2 x dx
16( ( 3) 1)
x
0 1
=
.23300810595330690538...
4 .23309653956994697203...
.2331107569002249049...
.233207814761447350348...
16 (3) 16
1
5
cos
4
2
2
(3)
5
1 (2k 1)
k 1
2
3
32
1
log 2
arctan x log x dx
4 48
2
0
(2 k )
4k
1 .2333471496549337876...
1 3 coth csc h 2 Im ( 2 ) (i )
1 .2334031175112170571...
arcsinh
2
1 .233527691640341023900...
I
k 0
2
.2337005501361698274...
x 2 dx
0 e x / 2 e x / 2 1
2
k 1
2 1 3
1
i (1 / 2 )
2
2
2
.23333714989369979863...
GR 4.512.8
8
k
(1) J k (1)
1
1
(2k 1)
k 2
2
(k 1)( (k ) 1)
2k
k 2
GR 4.593.1
( k 1)!( k 1)! 2 k
=
( 2 k )!
k 1
1
x 2 log x
=
dx
2
0 1 x
=
log x
dx
4
x2
x
1
1 .2337005501361698274...
2
8
k 2 ( k 2 1)
k!
2
3
k 2 ( k 1)
k 0 ( 2 k 1)!!( k 1)
=
Li2 1 i Li2 1 i
=
(2 )
=
J276
3(2)
1
k 2 ((2 k ) 1)
2
k
(
)
4
2
1
k 0
k 1
1
1
2
2
(4 k 3)
k 1 ( 4 k 1)
=
2k
k 1 2 k 2
k
k
=
(k j )
2k j
j 1 k 1
1
=
log x dx
x2 1
0
GR 4.231.13
=
log x dx
x4 1
0
=
arctan x dx
1 x2
0
=
arctan x 2 dx
0 1 x 2
=
arcsin x dx
0
1 x2
1
=
GR 4.538.1
dk
K(k ) k 1
GR 6.144
0
1
=
E ( k ) dk
0
.2337719376128496402...
(k )
k !2
k 2
k
GR 6.148.2
(k )
(2 k )!! e
k 1
k 1
1/ 2 k
1
1
2k
2 3 5 1 1 dx
1
PFQ , , , sin 3 2
4
x x
3 2 3 4
1
1
1
1
1
1
.23405882321255763058...
cot
1
2
2 2
2 2
2
2
k 1
( 2 k ) ( 2 k 1)
=
3
2k
k 1 2 k k
k 1
1
(k )
.2341491301348092065... k
0k
6
k 1 6 1
k 1
.23384524559381660957...
.234163311975561677586...
2
9
(1) 1
2
(1) 3 log 3
3
3
.23416739426215481494...
( 3k )
36k
6
Hk
2k
k 1
(2k 1)
k
1
6k 3
6
k 1
( 1)k
.23437505960464477539... k !
k 0 2
( 2k ) 1
3
1
k arctanh 1
log 2
.23448787651535460351...
k
2
2k 1
k 1
k 2
log k
.23460816051643033475... 3
k 2 k k
1
1
(3) 1
.23474219154782710282...
1
1
6
2
6
6
k 1
k
1
( 2 k 1)
5
3
6k
k 1 36 k 6 k
k 1
( 1)k 1
1 J0 (1)
2 k
k 1 ( k !) 4
1
4
3
16 4,
1 4
16
2
k 1 ( k 2 )
.2348023134420334486...
.2348485056670728727...
=
.234895471785399754782...
1 ( 2) 4
7
( 2 ) 16 3 cos 2 3 sin
729
18
18
9
9
=
log 2 x dx
1 x 3 1 x 3
2
.23500181462286777683...
.23500807155578588862...
3 log 2 log 5
dx
3
2
3
x x
1
2 sin 1
sin k
( 1) k 1 k
5 4 cos1
2
k 1
.235028714066989...
.2352941176470588
1 .2354882677465134772...
1 2
3
3
12 3 2 sin 3 csc
sec
36
2
2
( 1)k
= 4
2
k 2 k 3k
4
sin 4 x dx
=
17 0
ex
=
1
2 cosh(log 4)
(1) e
k
(2 k 1)2 log 2
J943
k 0
3
3 sech
2
k3
(3k ) 1
exp
3
k
k 2 k 1
k 1
k3
= exp log 3
k 1
k 2
z (k )
= 3
k 1 k
=
.23549337339183675461...
5 i 3 5 i 3
3 ( 1)1/ 3 ( 1) 2 / 3
2 2
3 (3)
2 log 3 2
4
1
log 3 (1 x )
0 x 2 dx
( 1) k 1
1
k 1
k
k
1
k 1 2 ( 2 1)
k 1 2
2 1 ( 1) k 1
( 1) k k ( 1) k 1
e 2 k 1 k !( k 2 ) k 2 ( k 1)! k 1 ( k 1)! k !
89
CFG D1
40
1
1
1
Li2 4 log 2 2 4 log 2 log 5 log 2 5 Li2
2
4
5
k 1
Hk
( 1)
k 2
k
k 1 5 k
k 1 4 k
.23550021965155579081...
.2357588823428846432...
.23584952830141509528...
.235900297686263453821...
=
=
1
0
log x
dx
x4
.2359352947271664591...
5 .23598775598298873077...
.23605508940591339349...
k
k
k 1 ( k 1)! e
(1 e ) e1/ e e
5
3
dx
1 x
6/5
0
1 log 2( 2 1)
2 log 2
2 2
/4
sin xlog(sin x)dx
0
.236067977499789696...
52
1
3
( 1) k 1 2 k
5 1
k 1 2 k 1 k
( 3k 1)
=
k
k 0 ( 2 k 2 ) k !8
1 .236067977499789696...
Berndt Ch. 3, Eq. 15.6
1 2k
k
k 0 5 k
2 .236067977499789696...
4 .236067977499789696...
3 2 1
12 log 2 9 log 3 3 3
.2361484197761438437...
5 2 1 2
3
2
6
224
(2) 5
7 (3)
2 .236204051641727403...
2
2 27
1
2
1
1 .2363225572368495083...
cot
2
4 2 6
3 k 1 3k 2
6k
k 1
3
1
k2
log 2 x
1 x3 2 x 1
( 1) k 1
.23645341864792755189... 3 2 cos 1 2 sin 1
k 1 ( 2 k )!( k 1)
3 e
k2
k2
1 .2365409530250961101...
k
4
k 0 k ! 2
k 0 (2 k )!!
.236352644292107892846...
1
2, 3,
32
csc 3
1
1 .236583454845086541925...
6
18
.236585624515848405511...
2G
2
12
1
2
( 1) k 1
2 2
k 0 k 9
log 2
log 2 2
2
(1) k 1 H k
k 1 k ( 2 k 1)
.2368775568501150593...
5 3
13 (3)
1 ( 2) 5
1
( 2 )
18
216
81 3
6
3
(1) k
x 2 xdx
= 2
3
0 e2 x e x
k 0 (3k 2)
.2369260389502474311...
=
log 2 x
1 x 3 1 dx
25
( 1)k 1 k 6
64 e k 0 k ! 2 k
2 .2369962865801349333...
4k
2k
k 1
.23722693183674748744...
k 4
k
1
9 (3) 2
log 3 x
x log 3 x
4
( x 1) 3
( x 1) 3
1
0
log(3 3 )
4 ( 1)k
.237462993461563285898...
2 3 k 0 k 5 / 2
.2374007861516191461...
/2
=
0
.23755990127916081475...
=
2
24
sin 2 x
dx
(1 sin x) 2
3 2 5 1
2 5 2
log
4
2
1
1
3 3 1
PFQ ,1,1, , ,
4
2 2 2 4
Berndt Ch. 9
(1) k 1
k 1 2k
2
(4k 2k )
k
16 3
3
k3
17 .2376296213703045782...
k 1 ( k 1)!!
1
2 137
.23765348003631195396...
2
30 1500 k 1 k ( k 5)
9 .2376043070340122321...
.2376943865253026097...
CFG D11
(( jk 3) 1)
j 1 k 1
98 .23785717469155101614...
.2378794283541037605...
.2379275450005479544...
2
24 log 2 2
12
0
e x x 3 dx
(e x 1) 3
1 (1) 1
(1) 2
6
3
144
GR 3.455.2
log x dx
3
x 3
x
1
( 2 ) ( 3) ( 2) 2
( k 1)
k ( k 1)
k 1
.23799610019862130199...
.2380351360576801492...
.238270508910354881...
6 .238324625039507785...
1
3
k 2 k log k
(s) 1ds
3
( 1) k
e
1
erf
2 k 0 k !!
2
1 146
1
8 2arctanh
k
2 15
k 0 2 ( 2 k 7)
9 log 2
e
2
.2384058440442351119...
9 .23851916587804425989... =
2
e 1
2 (2 2 3 log 2 2) log3 x dx
2x2 1
16 2
0
2
1 .2386215874332069455...
(1)k 1
( 2k )
k 1
.2386897959988965136...
.23873241463784300365...
.238859029709734187498...
.2388700094983357625...
2 .2389074401461054137...
2 .23898465830296421173...
.2391336269283829281...
.2392912109915616173...
=
k!
1 e 1 / k
k 1
2
( 1)k
2
k 0 k k 1
3
4
(1) k 1 k 2 (2k )
2 coth coth 3 csc h 2
32
2
2
2
4k
k 1
k3
1
3
(e )
e
16
k 1 ( 2 k 1)!
k H (3) k
2k
k 1
(3) (5)
( 1)k
(2 k 2)
2 cos1 sin 1
( 1)k
(2 k )!
k 0 ( 2 k )!( 2 k 3)
k 0
e
log 2 x coslog x
dx
1
x
Ei( 1) log( e 1) 1 1/ ke k
( k 3 )
k3
k 2
1
3
k 2 k 1
.23930966947430038807...
=
1
6
3
k 2 k k
=
(3k ) 1
.2394143885900714409...
1 cot 2
8
4
2 .2394673388969121878...
.239560747340741949878...
=
k 2
12
1
k3
(9 k 3) 1
k 1
k
k 1
2
1
2
4
(9 k 3) 1
k 1
2(3) 2( 4)
(3 i 3 )
(3 i 3 )
1
2 cot
cot
2
log
2
6
4
4
(1) k k 2
3
k 1 k 1
k
k 1
.2396049490072432625...
log
e
2( e 1)
J157
2 3
1
arcsinh
.23965400369905365247... 1
3
2
( 1) k 1 2 k
k 1 2 k
(2 k 1)
k
.2396880802440039427...
.2397127693021015001...
1 .239719538146227411965...
.2397469173053871842...
.2397554029243698487...
.23976404107550535142...
1
8
k 1
1
1
( 1)k 1
sin k
2
2 k 1 4 (2 k 1)!
1
k 1 k ( k )
log 2 k
(3) 3
k
k 1
1
( 1)k 1
2 sin 2
2 2 k 1 (2 k )! 2 k
1
1
J2 (2 2 ) 0 F1 (; 3; 2)
2
2
k
3
( 1)k 2 k
k 0 k !( k 2 )!
1
.2398117420005647259...
ci (1) log x sin x dx
GR 4.381.1
0
( 1) k
k 1 ( 2 k !) 2 k
=
7
7
3 (3)
log 12 (2) log
4
4
2
( 2k ) 1
=
k 2
k 1
1
1
4
2
= k log 1 2 k
k
2
k 2
.239888629449880576494...
1 .23994279716959971181...
.2399635244956309553...
.24000000000000000000
=
.24022650695910071233...
1 2 5 log 2
3 30
6
1
log 2 x
0 ( x 1)6 dx
1 1
2 4
k
6
1
, 1, 0 k
25
6
k 1 6
H
1 2
log 2 (1) k 1 k
2
k 1
k 1
,
2
k 1
Hk
(k 1)
k 1
(1) k 1
=
2k
k 1
=
2 k k 2
k
1
log(1 x)
0 1 x dx
1
=
GR 4.791.6
2
log(1 x)
log x
log x
0 1 x dx 1 x dx 0 e x 1
1
.2402290139165550493...
ex 1
2 log(1 e) 2 log 2 1 x
dx
e 1
0
1 .24025106721199280702...
3
25
(3)
.2404113806319188571...
5
.2404882110038654635...
1 .2404900146990321114...
1 ( 2) 1
3
( 2 )
100
4
4
H ( 3) k
( 1)
3k
k 1
1 1
1 / 3 2 / 3
k 1
4
1
1
log 24 8 5
arcsinh log 2
2
4
2
k
.2408202605290378657... 1 ( 2 ) 2(3)
3
k 1 ( k 2 )
.24060591252980172375...
=
( 1)
k 1
k 1
2 .240903291691171216051...
k 0
2k
(1) k
2 k 1
(2k 1) k
k 2 (( k 1) 1)
Berndt 5.8.5
1
( k 1)! (2 k )
Titchmarsh 14.32.1
k 1
.241018750885055611796...
.241029960180470772184...
2 log 3 3 1
3
6
2
(k 1) 1
k 1
3k
2
3 (3)
log 2
2 24
16
1
arctan x log
2
x dx
0
1
.241172868732950643445...
2 2 2 log 2 2 arcsinh 1 arcsinh x log x dx
.24120041818608921979...
1 2
6 3
0
13 .2412927053104041794...
257 e
32
k 1
( 1) ( k 2 )!
( k 1)! 2 k
k 1
k5
k
k 1 k ! 2
1
.241325348385993028026...
12
log 3 2 (3)
6
8
2
(k )
2
k 1
k
k2
1
log 2 2
5 log 2 5
k
k 2
4
8 k 2 2 ( k 1)
1
.24145300700522385466...
1
1
4
(1 x ) 2 dx
.241564475270490445...
log
1 x 2 log x
0
.2414339756999316368...
2
=
x log x x 1
log(1 x )dx
x log 2 x
0
.24160256000655360000...
k 1
1 .24200357980307846214...
1 .24203498624037301976...
GR 4.267.2
(2 k )
k
5 1
GR 4.314.3
1
2k
k 1 ( 5 )
15 33
6
2 (1 e)
e(1 2 )
Associated with a sailing curve. Mel1 p.153
e
x /
sin x dx
0
.24203742082351294482...
(2 (k ))
k 2
1 .2420620948124149458...
=
.242080571455143661373...
.24209589858259884178...
1
k
1) k
k 1
1 (k )
k
k 1 2 k
(2
log 2
k 1
sin8 x
0 x5 dx
2
( 2)
1
6
0
112 9 24 log 2
27
.242156981956213712584...
( 1)
k 1
.2422365365648423451...
3
128
(k )
4k 1
k 1
k 1
1 ( k )
2k
2
.24214918728729944461...
327 / 8
log
32
6
2k
log(1 2 k )
k
1
k `
x log x
dx
ex 1
1
x log(1 x ) log x dx
0
x 2 dx
log 2 x dx
0 e2 x e 2 x 1 x 3 x 1
( 1) k
3
2
k 0
1
3
c2 (3 (2) (3) )
6
.24230006367431704...
.242345452227360949...
k
Patterson Ex. A4.2
( 1) k 1 H e k
k!
k 1
1
3 .24260941092524821060...
k
k 2 (log k )
.24241455349784382316...
2k
k
k 1 8 ( k 1) k
.24264068711928514641...
3 2 4
k
18 3 2
4 .24264068711928514641...
k 1 k 1
k
k
k 1
8 k 4 3k 3 k 2 3k 1
2
2 .24286466001463290864... 8 13 ( 3)
k 3 ( k 1) 3
k 1
.24270570106525549741...
Li
k
=
(1) k ((k ) (k 2))
k
3
k 1
.24288389527403994851...
.243003037439321231363...
2 (3) (3)
3
2
(k 12 )!(k 12 )!
(2k 1)!
k 1
1
1 x2
3
0 x 2 arctan( x )dx
1126
2 log 2
.24314542372036488714...
2
9 7 5
9
4 7 2
1
2 .2432472337755517756...
120
48 128
=
=
k 3 ((2 k ) 1)
k 1
.2432798195308605298...
( k ) ( k 1)
5 e 8
8 .2436903475949711355...
9G
.2437208648653150558...
8 log
.2437477471996805242...
k 1
k 2 ( k 4 k 2 1)
( k 2 1) 4
k 2
k!
k 2
.24360635350064073424...
1
k (2 k 9)
( k 1)Bk
e2
2
(e 1) k 0
k!
.24346227069171501162...
1/ k e1/ k
1
e
2 1
k
k
k 1
k
k ! 2 ( k 2)
k 1
k
3
1
3 ,1, 3
2
2
log(1 2 )
4 2
2 2
(1) k
k
k 0 2 ( k 3)
(1) k
k 0 4k 3
dx
1 x 4 1
1
x 2 dx
0 x 4 1
=
3e
0
.243831369344327582636...
x
dx
e x
7 1
3
3
cot
2 2
2
2
.24393229000971240854...
k ( (3k ) 1)
k 1
.2440377410938141863...
5 .24411510858423962093...
.2441332351736490543...
k 2
k
3
(2 k ) 1
k 1 2
1
k 3 1 k 3
2
(1 )
1
1
2 , related to the lemniscate constant
2 4
(1) k 1
1
1 csch 2
2 2
4 e 2 e 2
4
2
k 1 k 4
=
sin 2 x dx
ex 1
0
log 9 2 log 3
9
9
k 12
.24433865716447323985...
(2 k ) 2
k 1
.24413606414846882031...
.24470170753009738037...
J137
2 2 log 2
( 2 k 1)!!
(2 k )! k (2 k 1)
k 1
.244795427738853473585...
.24483487621925456777...
.2449186624037091293...
.24497866312686415417...
6 .24499799839839820585...
.245010117125076991397...
.2450881595266180682...
G
8
2 log 2
32
35 (3)
128
/4
x log sin x dx
0
1
1
4 sin 2 k
4 k 1 4 ( 2 k 1)k
e 1
e 1
1
( 1)k
arctan 2k 1
4 k 0 4 (2 k 1)
39
(1) k 1
(3) log 3 2
4
6
k 1 2k k 3
2 k
k
3
3 log 3
1
2 log 2 hg
2
2
6
k 1 ( k 1)
= ( 1)
6k
k 1
6
J148
6k
k 1
1
k
2
1
log(1 x 6 ) dx
=
0
.24528120346676643...
2
16
/4
log 2 G
4
0
x 2 dx
cos2 x
GR 3.857.3
1
=
arctan
2
x dx
0
.2454369260617025968...
5
64
1
x
3
arcsin x dx
0
H H
1 2
7 (5)
12 2 12 (3)
k 3 k 1
72
2
k
k 1
sin 1 1
sin k
sin 1 log 2 2 cos1 2
.24572594114998849102...
4
2
k 2 k 1
5
1 .245730939615517326...
3
1
3
1 cosh 2
4k
e2
2 .245762562305203038...
sinh 2
2 4e 2
4
2
2
k 0 ( 2k )!( k 1)
2 .245667095372459229031...
1
.2458370070002374305...
1 sin 1 cos1
sin x dx
2
2e
ex
0
e
=
sin log x
dx
x2
1
.24585657984734640615...
e
x
1
.2458855407471566264...
dx
(1 log x )
(2) 2 16 12 log 2
=
(1)
k 1 ( k 2 )
4k
k 1
2 .2459952948352307...
root of (1) ( x )
.2460937497671693563...
1 .24612203201303871066...
8 .2462112512353210996...
.2462727887607290644...
k 1
2
(2 k )
22
4k
k 1
3
1
k2
1
2
k
1
3
2 (log 3 2 log 2) log 2 Li2 Li2
6
4
4
68 2 17
1
, 4, 0
4
(1) k 1
k 4
k 1 4 k
.24644094118152729128...
k
k 1
=
=
3
2 log(1 2 ) 2 arcsinh 1 2 arctanh
1 .24645048028046102679...
1
k k2 k 1
4
1
1 2
log
2
2 1
1
k
k 0 2 ( 2 k 1)
= 1
(1)
k
k 1
1
2
H Ok
k
k 1 2
(2 k )!!
(2 k 3)!!
J141
( 1) k 1 ( 2 k )!!
k 1 ( 2 k 1)!! k
=
=
dx
( x 1)
1
=
dx
( x 1)
0
/2
=
0
.24656042443351259912...
k (2k )
2 sin
k
32
2 k 1 8
k 1
.2466029308397481445...
dx
cos x sin x
1 x
.2465775113946629846...
1 x2
0
(2 k )
2
k 1
1
3
3
log 2
2
2
k 1
(2 k 1)
4k 1
8k 2
2
2
k 1 (8k 1)
Hk
3 ( k 1)
k 1
k
5
13 (3)
1 ( 2) 2 ( 2) 1
.24664774656563557283...
144
1728
648 3
3
6
1
1 .2468083128715153704... e e log(e 1) k
k 0 e ( k 1)
1 .2468502198629158993... arcsec
3
.2469158097729950883...
e
k 1
3 .24696970113341457455...
1
4
30
k2
dx
e
1
1 1 1
x2
log xyz
dx dy dz
0 0 0 1 xyz
log 2 x
1 x3 x 3 dx
.2470062502950185373...
3 .2472180759044068717...
log 3
2
6 3
( 6 )
1
2
k 1 9 k 3k
4
(k )
3
k
k 2
x
1
3
dx
x2 x
6
1
4096 30 3870720 k 1 a(k )6
where a( k ) is the nearest integer to 3 k .
AMM 101, 6, p. 579
3( 4)
1
.24734587314487935615...
.24739755275181306469...
=
.2474039592545229296...
.2474724535468611637...
.24777401584773147...
1 .24789678253165704516...
2 .24789678253165704516...
1
( log 4 ) log ( x ) sin 4x dx
GR 6.443.1
4
0
1
1 i 3 2 (2)1 / 3 1 i 3 2 (1) 2 / 3 21 / 3 2 2 21 / 3
2/3
62
1
3
k 2 k 2
1
(1) k
(1) k
sin Im (1)1 / 12
2 k 1
k
4
k 0 ( 2k 1)!4
k 0 2 ( 4k 2)!! 4
7 4
3 log 2
4 3
2
(k )
2
k
k 2 2 1
( 1) k (12 k )
3
3G
2
2
2
k 1 ( 4 k 1)
1
(1) k k 3
3G
2
3
2
k 1 ( 4k 1 / 4)
.24792943928640702505...
(2k ) ( k ) 1
k 2
.24803846578347406657...
(k ) 1
k 2
3
.24805021344239856140...
.24813666619074161415...
125
k 1
2
1
1
2 4k
k 2
1 1
2 k log 1
j
2k
coth
1
2
6k
1
1
2 6
6
k 1
i
i
1
1 i
i
H H
.24832930767207351026... 1 1
2 2
2 2
2
2
1
=
3
k 1 4k k
( k 1)
k 1 ( 2 k 1)
= ( 1)
Re
k
4k
k 1
k 1 (2i )
3
(1) k 1
.24843082992504495613... 8
3
4
k 1 ( k 1 / 2)
2
.24873117470336123904...
.248754477033784262547...
.2488053033594882285...
1
log 2 (22)
12
2
(2) 3( 4) 3(3) (5)
.24913159214626539868...
GR 4.521.3
log A1 , the log of Glaisher’s constant
=
2 .248887103715128928098...
1 .249367050523975265...
2 2 1 x
2 arcsin x dx
log
2
1 2 2 0 x 1
sinh
k3
5
k 1 ( k 1)
2 1 csc h
sinh 2 csc
7 4 2
360
6
k 4 2k 2 1
4
2
k 1 k 2k 1
2 1
x4
0 cosh4 x dx
3
log x
1 e x 1 dx
.24944135064668743718...
.2494607332457750217...
1 1 / 3
1
1
1 i 3 1 1 i 3 2 (2) 2 / 3 2 1 2 1 / 3
2/3
12 2
2
2
=
4k
(1)
k 1
.2499045736175649326...
e
3
3
( x ) 1
1 dx
(3k )
22 k
1
k 1
1
1
( 1) k 1
.2498263975004615315... sin sinh
2
2 k 1 ( 4 k 2 )! 2 2 k 1
k 1
1
GR 1.413.1
.250000000000000000000 =
=
=
=
=
=
=
=
=
1
1
1
2
2
4
k 1 3k 6 k
k 1 4 k 4 k
1
J268, K153
k 2 ( k 1)k ( k 1)
1
((2 k ) 1)
3
k 2 k k
k 1
k
4
k 1 4 k 1
2k 1
(1) k 1 (k 1)( (k ) 1)
2
2
k
(
k
1
)
k 2
k 3
k
( 1)
( 1)k
( 1)k 1
( 1)k 1
2
2
2
k 2 k 1
k 0 ( k 1)( k 3)
k 1 k 2 k
k 3 k 2 k
( 4 k 1)
k
( 1) k
4
k
4
k 1
k 1 4 k 1
( 1) k 1
( k )
( k )2 k
k
k
3k
k 1
k 1 4 1
k 1 4 1
dx
x 3 dx
log x dx
log 2 x dx
1 x5 0 ( x 1)5 1 x 3
1 x 3
1
=
x arcsin x arccos x dx
0
1
=
x log x dx
0
/2
=
log(sin x ) sin x cos x dx
/2
0
=
(sin x x cos x) 2
dx
x5
1 dx
log1 x x
3
1
=
0
1 .250000000000000000000 =
2 .250000000000000000000 =
68 .25000000000000000000
=
2
sin x cos x dx
0
0
=
log sin x
x 3 dx
ex
4
x 7 dx
ex
4
5
H2( 2 )
4
FF
9
k
k 1 k kk 1
4
3
k 1 3
k 1
273
k5
1
, 5, 0 k
4
3
k 1 3
Prud. 2.5.29.24
.250204424109600389291...
(1)
.25088497033571728323...
( k ) 1
k 2
1 .25164759779046301759...
1 .25173804073865146774...
2k 1
lim lg ( n ) pn , p1 2 ; pn smallest prime 2 p n 1
n
Bertrand’s number b such that all floor(2^2^…^b) are prime.
1
I ( 2) J 0 ( 2)
2 0
1
(2 k )!(2 k )!
k 0
.2517516771329061417...
1
3 3
1
HypPFQ 1111
, , , ,{ , ,2,2},
4
2 2
16
2 .2517525890667211077...
(10)
.2518661728632815153...
(( k 1)!) 3
2
k 1 (( 2 k )!)
4 5
coth
5
2
1
10
4k
k 1
1
5
2
(k ) 1
3
3
1
.251997590741547646964...
1
k k
(2) (3) (4)
k 1
6 .25218484381226192605...
7 (3) 4 log 2
=
.252235065786835203...
.2523132522020160048...
4 .2523508795026238253...
1 .252504033125214762308...
.25257519204461276085...
.2526802514207865349...
1 .2527629684953679957...
.25311355311355311355
=
.25314917581260433564...
2
2(2 k 1)
k (2 k 1)
k 1
3
k 2 ( k 2 )
2k
k 1
1
1
dx
1
1 log 2 log 1 x x
e
e 0 e (e 1)
1
5
2k
I0 (2 2 ) 0 F1 (;1; 2)
2
k 0 ( k !)
1 i 1 i
sech
2
2 2
2 (k )
(3)
2
6
k 1 k
arccsc 4
5
Li1
7
691
B6
2730
2 8 ( 3)
2
3
2 .25317537822610367757...
.2531758671875729746...
=
.253207692986502289614...
1 .25322219586794307564...
.2532310965879049271...
.25326501580752209885...
k !!
2
)!!
k 1
erf (1)
1
2
(k
7
( 1) k 1
k 1 k !( 2 k 1)
1
2 (3)
f (k )
k3
k 1
9 log 3 9 3 2
8
12
3
48
1 .25331413731550025121...
2
x
8
.25358069953485240581...
3k
k 1
3
1
2k 2
2
cos 2 x dx
0
i i log i
log12
2 3
/2
1
.25347801172011391904...
I (2) J1 (2)
4 1
1
1 .25349875569995347164...
k 2 k ! 1
2 .25356105078342759598...
Titchmarsh 1.2.15
k
(2 k )!(2 k )!
k 0
log( x 2 3)
0 x 2 3
1
(k 3)! k !
k 0
.25363533035541760758...
k 1
1 2
1
2
5 1 (1) k
erfi
1
F
2
,
,
k
3 1 1 2 2
1
e
2
k 0 ( k 2 )!2
1
2 .25374537232763811712...
24 8e
e
x1/ 4
dx
0
.25375156554939945296...
.2537816629587442171...
2 .2539064884185793236...
.25391006493009715683...
.2539169614342191961...
dx
dx
4
3
3x
4
1
e 2 x
5
10
1 x x
0 e
5 2 4
1
6
3(3) (5) 5
2
6
45
k 1 k ( k 1)
2 2k
2k
k 1 2
1
k2
k 1 4
k
1
1 1 1
log
Lik
k
k 1
2 2
k 2 2
k 1 k
.25392774317526456667...
1
(2 k )
k 1
.254023674895814278282...
2k
1
k (2k 1) log k
k 1
.2541161907463435341...
1
1
,4,0 Li4
4
4
4
k 1
1
k4
k
sin x
dx
ex
1
2
.2543330950302498178...
4 2 6
2
log 2 log 3
dx
.25435288196373948719...
3
3
6
x 1
6 3
1
1 9 11
5
.25455829718791131122...
21 erfi (1) 22e 1F1 , ,1
9 2 2
32
.254162992999762569536...
csch 2
2 coth
16
2
2
k2
1
=
2
2
1 2
k 1 ( 2k 1)
k 1 ( 2k k )
.25457360529167341532...
.2545892393290283910...
1 .2545892393290283910...
CFG D1
1
k!(2k 7)
k 0
1
e
cosh 1
2
2
1
cosh
2
2
/2
e
4
/ 2
(1)
k 1
4k
k 0
(4k )!16 k
1
1
(2k 1) 2
k 1
k 1
k (2k )
2k 1
4k
(4k )!16
k 1
k
/2
=
sin x sinh x dx
0
3 3
4
26
4
7 .2551974569368714024...
log1 3 dx
x 1
3
0
23 .2547075102248651316...
3k
4 1
3 k 0 2k
k
e 1
1
2 .25525193041276157045...
2 cosh
2
e
1
5
1
.25541281188299534160...
log arctanh
4
4
2
11 .2551974569368714024...
4
k 0
2 k 1
1
(2k 1)
AS 4.5.64, J941
7
42
2
( 2 )
23
1
.25555555555555555555 =
90 k 0 (2 k 1)(2 k 7)
1
1
.25567284722879676889...
(15 8 5arcsinh )
25
2
1
1 .25589486222017979491...
k 0 ( k 2 )! k !
5
.25611766843180047273... ( 4) 1
6
4 .25548971297818640064...
.2561953953354862697...
4 log 2 log 2
2
2
12
1 2
csch
2
4
2
( 1)k 1
=
2
k 1 2 k 1
7e1/ 3
k2
.2564289918675422335...
3
k
3
k 1 ( k 1)! 3
.25651051462943384518...
.2562113149146646868...
K133
( 1)k 1 k !(k 1)!
(2 k 1)!
k 1
1
6 arcsin x log 2 xdx
0
2
16
3 log 2 2
4
log(1 x 2 )
0 x(1 x) dx
1
60 .25661076956300322279...
3k k
k 0 k !
3e3
2
5
H ( 3) k
.2566552446666378985...
k
k 1 5
1 .2566370614359172954...
2 .2567583341910251478...
1 .25676579620140483035...
.25696181539935394992...
4
csc
2
1
I ( 2) J 0 ( 2)
8 0
k2
k 0 ( 2 k )!( 2 k )!
1 .2570142442930860605...
1 1 1
HypPFQ {1},{ , },
2 2 16
2 .25702155562579161794... 16 log 2
53 Hk 3
6 k 1 2 k
1
2k
k 0
(2 k )!
k
.25712309488167048602...
4
sin 2 x
3
log sin x dx
2
4
5
1
sin
x
0
8
4
1 .25727411566918505938...
.2574778574166709171...
5
(k 1)
2 (k 1)
2 log 2 log 2 2
k
k 1
.25766368334716467709...
2
log 2 2 1 1
Li2
48
8
4 2
( 1)k 1
.25769993632568293344... 3
k 1 k 2
1
log x
( x 2)( x 2) dx
0
1 .25774688694436963001...
k 2
( k )
1
k 1
log
k
k 1 k
=
log k
2
k 2 k k
log k
m
m 1 k 2 k
( k )
( 1) k
k 1
k 2
H
k
( ( k 1) 1)
k 1
H ( 3) k
k
k 1 2 ( 2 k 1)
1
I 0 (1) I1 (1) 1F1 3 , 2, 2
e
2
.257766634383410892217...
.2578491922439319876...
1 (2) 2
5
125
.25791302898862685560...
.25794569478485536661...
( 4) 2(3)
2 .25824371511171325474...
2 sinh1
2
(1) k k 2k
k
k 0 k!2
k
x 2 dx
0 e2 x e 3x
22
5
3
1/( 2 k 1)!
k
k 1
4
1
( k 1)2
k 0
404 .25826782999151312012...
k
sinh kkcosh
!
k 0
( k 1) 1
( k )
k 2
.25839365571170619449...
1 e2
2
e ee
4
1
1
Li3 , 3, 0
4
4
1
log(1 x / 4) log x
=
dx
x
0
.25846139579657330529... =
.2586397057283358176...
2
6
2 log 2
k 2
4
k 1
1
k3
k
( k ) ( k 1)
2
k 1
k
k 2
2
k 1
(2 k 1)
.258742781782167056...
3 .2587558259772099036...
3
7
log 2
4
12
2
=
.25916049726579360505...
.259259259259259259259 =
6
0
xe 2 x dx
ex 1
GR 3.42.0
2 log 2 log 2 2
0
2 3
2
.25881904510252076235...
2
log 2
x
dx
2
ex
1
6 2
CFG C1
2
( 3 1)
12
4
1
( 1) k
2 2 2arctan
2 k 0 2 k (2 k 3)
7
k2
1
, 2, 0 k
27
7
k 1 7
sin
AS 4.3.46, CFG D1
k
.25938244878246085531... 1
2k
k 1
k
(1) k
2 1
3k 2
k 0
1 .2599210498948731647...
3
.2599301927099794910...
log8
8
.2602019392137596558...
2
=
2
J137
7 (3)
4
2
2
k 1 k ( k 1)
(1)
2k
k 1
1 .26020571070524171077...
1
1
1
1 1
2
2k 2k
k 1 2k
3
(2 k 1)
k 1
.26022951451104364006...
.26039505099275673875...
.260442806300988445...
2i
i e 2i
e ee
4
1 cos 2
e sin(sin 2)
2
Bk
log 2 e 1 (1) k
k!2 k k
k 1
sin k cos k
k!
k 1
3
2
1
4
1 dx
log
log log 2
x x 1
2
1
0
4
Berndt 5.8.5
GR 4.325.4
=
log x dx
x
e x
e
0
.2605008067101075324...
1
k
1 5
k 1
.26051672044433666221...
(1) ((k ) 1)
k
3
k 2
1 .260591836521356119...
1
1
1
sinh
2
2 k 1 ( 2 k 1)! 4 k
1
1
cosh
2 k 0 (2 k )! 2 k
.26054765274687368081...
.2606009559118338926...
.2606482340867767481...
=
.26069875393561620639...
.2607962396687288864...
.2609764038171073234...
2
2 3 ( 3)
24
2 arcsin2
1
cot
2k 1
(2 k )
1
.26116848088744543358... 2 log(cos )
2
.26117239648121182407...
1
1
2
12
3 4 3
3 2 k 1 (3k 1)2
81 log 3
3 2 9 3
1
( 4 )
81 5
4
2
2
2
k 1 3k k
( 1) k 1 ( k 4)
3k
k 1
( k )
k
k 0 5
S 2 ( 2k , k )
k 0 k! S1 ( 2k , k )
csc
k 1
3
(1)
k 1
J840
k 1
(2 2k 1) B2k
(2 k )! k
AS 4.3.72
( k 1)!( k 1)!
(2 k )!2 k
k 1
2 2
1
1 .26136274645318147699... 3
2
k 1 k k k
i
i
3
.26145030431082465654... ( 3) 3 1
1
2
3
3
1 1
log 1
p p
p prime
1
= lim log log n
p
n
p prime n
5
k
742 1/ 3
e
k
343
k 1 k ! 3
.261497212847642783755...
4 .2614996683698700833...
Mertens constant
.26162407188227391826...
=
1 .261758473394486609961...
3 3
1
3
arctanh log
4
2
4
1
1
1
Li
Li
k
k
k 2
2
k 2
k 1 4 k ( 2k 1)
log
eG
1 .2617986109848068386...
1 2
k 1
k
1
(2 k 1)
=
.26179938779914943654...
arccosh x
1 x 4 dx
12
=
e
3x
0
( 1)
k 0 6k 3
dx
e 3x
k
4
k 0
2 k 1
2k
1
(2 k 1) k
5
x dx
1 x
12
0
=
sin x 3 x 3 cos x 3
dx
0
x7
log 2 2 log 3 2 7 ( 3)
12
2
6
8
1
1
1
= 1 log 2 Li2 Li3 k 3
2
2
k 1 2 k ( k 1)
1 .26185950714291487420... log3 4
.26182548658308238562... 1
.26199914181620333205...
k 1
.2623178579609159738...
.262326598980425730577...
1 .2624343094110320122...
.2624491973164381282...
.2625896447527351375...
.262600198699885171294...
1 .2626272556789116834...
2 (1 log 2)
log 2
( 4 k 3)
4k 1
16 (3)
256103
13500
2
1
x 2 log 2 x
0 1 x dx
k2
(k 1) 1
log k
4
16
k 1 2 ( k 1)
1
e/2
iik
e / 2 1 1 i i k 0
| ( k )|( 1) k 1
3k
k 1
( k ) 0 ( k )
2k
k 1
H ( 3) k
2
4 (3) 1
12 180
2
2
k 1 k ( k 1)( k 2)
arctan
k
k 1
.2627243708971271954...
k2
k 2
( k )
.262745097806385042621... 2 k
1
k 1 2
log
.26277559179844674016...
.2629441382869882525...
=
.26294994756616124993...
.2631123379580001512...
=
=
.263157894736842105
=
.263189450695716229836...
2
5
4k 1
log 2
2
8
18
k 2 2 k ( 2 k 1)
( k ) 1
( 1)k k
2k
k 2
1
1
k!!
k 2
1
7 (3)
x log 2 x
t 2 dt
dx 2t
4
2t
32
0 1 x
0 e e
1 1 1
Ei i 2 ,1 Ei i 2 ,1 1 i 2 1 i 2
2 2e 4
1
2 i 2 (i 2 ,0,1) (i 2 ,0,1)
4
( 1) k 1
2
k 1 k !( k 2 )
2 2
75
(1)
.263300183272010131698...
5
19
p prime
k
1 p 2
1 p
( k ) 1
k 2
.2632337919139127016...
k !!
2 2
e e dx
x2
0
.26360014128128492209...
3 .26365763667448738854...
2 2 3
1
5 1
2 F1 2,2, ,
3
27
6
2 4
2
6
.26375471929963096576...
k
k 1
(2k 1)
k
2k
H H
5
k k 2
12
k 1 k ( k 3)
1
1
5
1
k
Li2
2
5
4 k 0 5 ( k 1)
4
(3)
H ( 2) k
k
k 1 5
.26378417660568080153...
5 .263789013914324596712...
.263820220500669832561...
.2639435073548419286...
2
16
4
log 2
27
18 9
2k
k 1
3
1
3k 2
8 2
, the volume of the unit sphere in R5
15
2
(1) k Bk
[Ramanujan] Berndt Ch. 9
Li2 (e)
1 i
6
k 1 ( k 1)!k
( 1)k 1
2
2
k 1 2 k k
( k 12 )!
=
1
k 1 ( k 2 )!( 4 k 1)
log 2 2
1
=
log(1 x
2
) dx
0
1 dx
2 2
x
log1 x
0
1
=
arcsin x log x dx
GR 4.591
0
2 .2639435073548419286...
=
1
1
log 2
2
2
4
1
1
2
0 log1 x 2 dx 0 log1 x( x 2) dx
.26415921800062670474...
(1)
k 2
1 .2641811503891615965...
k
k
(k !)
k 1
3
=
xe
e
1
( 1) k
( 1) k 1 k
( 1) k k 4
k 0 k !( k 2 )
k 1 ( k 1)!
k 0 ( k 1)!
( 1)k
1
=
k 1 ( 2 k )!( k 1)
k 0 ( k 1)! k !
2
n
1
k log k
k k Hk
= ( 1)
( 1)
k!
k!
k 1
n 1 n ! k 2
2
.26424111765711535681... 1
e
( k ) k
2k
x
log x
dx
x2
1
dx
0
.264247851441806613...
.264261279935529928...
( 3 1)
1 .2644997803484442092...
3 1
3 1
log
16
4
2
2
7
x2
csc
5
25
5
( x 1) 2
0
1
k
k 0 2 1
k 1
( k ) ( 1) k
2k 1
(1)k
k 0
(2 3 )2k 1
4k 1
.2645364561314071182...
.26516504294495532165...
121
1
5 k 0 k !( k 1)( k 6)
3
( 1) k 1 k 2 2 k
k
8 2
k 1 4 ( 2 k 1) k
9e
( k )
F
4 .26531129233226693864...
k 2
k 1
4 sin 1
.26549889859872509761...
17 8 cos1
1 .26551212348464539649...
4744 .2655508035287003564...
1 .2656250596046447754...
sin k
k
k 1 4
1
log 2 log
2
8
2
1
2
k!
1
k
4 1 k 1 ( 4 )3
k 0
k
3
1
(e2 1) 4e 4e cosh1 (2 2e2 )( si (1) ci (1))
2e
(1 e2 ) log 2 (e2 1)ci(2) (e2 1)si(2)
( 3k )
k 1
1 .2656974916168336867...
.2656288146972656805...
1
1
log 2 2 Ei (1) Ei (2)
2 sinh 1 eEi(1) eEi(2)
e log 2
e
2
e
Hk
=
k 1 ( 2 k 1)!
1
2
2 2
.26580222883407969212... sech2
cosh 2 e e
=
.265827997639478656858...
1
H 1 i
2 5
e
5 1
H 1 i
2
5 1
1 5
1 5
H 1
H 1
2
2
2
=
F (2k 1) 1
k 1
k
2G
log(2 3 )
3 12
1
.2658700952308663684... k ( k 1)
k 1 2
1 1
ke
4 .2660590852787117341...
, e,1 k
e e
k 1 e
1 .2660658777520083356... I o (1)
.2658649582793069827...
Berndt 9.18
J (1)
1
= k
e
k 0 k!
(k 12 )!2k
(k!) 2
k 0
1
=
e
cos x
dx
0
.26607684664517036909...
9 1 (1) 5
1
(1)
6
3
4 4
( 1) k
2
k 1 ( k 2 / 3)
31 6 465 (6)
dx
(log5 x )
252
4
1 x
0
1
118 .2661309556922124918...
x 5 dx
0 1 e x
.2662553420414154886...
cos( 2 )
1 .2663099938221493948...
( 1)k k 2
Fk
k 1
5 .26636677634645847824...
k 2
2 .26653450769984883507...
2
(k )
dx
( x)
1
32 5
log 4 x
dx
2
x
x
1
243 3
0
1
.26665285034506621240...
3 coth csch 2 i (3, 2 i ) (3, 2 i )
2
x 2 sin x
= x x
dx
0 e e 1
| ( 2 k )|
.26666285196940009798...
4k
k 1
1
23 .266574141643676834793...
.266666666666666666666 =
1 .266741049904...
1 .26677747056299951115...
4
15
k 1
e
dx
x1 / 4
0
1
1
1 k (k 1)(k 2)
1 log(e 1)
log x
dx
2
e 1
x
e
(
1
)
0
1
.26693825063518343798...
2 .266991747212676201917...
2 k 1
1
k
k
k 0 (k + 1)8
8 2 log 2 log(2 2 )
11 e
8
k3
k !2
k 1
k
GR 4.264.1
.2673999983697851853...
1
log 2 2
2
1
= log cos sin log
2
8
8
1 k
= cos
4
k 1 k
=
2 2 2 2
1 i
( 1)1/ 4 2 log(1 ( 1)1/ 4 ) log(1 ( 1) 3/ 4 )
4 4
1
3
Li2
2log 3 2 log 2 log 2 Li2
6
4
4
1
( 1) k 1 Hk
log(1 x / 4)
dx
k
3 k
x
k 1
0
2
.26765263908273260692...
=
5 .267778605597073091897...
2 log 2 7 (3)
2
0
( 1) 2
.267793401721690887137...
k
x 2 sin x dx
1 cos x
k
( k 1)! (2 k )
Titchmarsh 14.32.1
k 1
2k
1
(k 1) k
k 1
2k
1
1 .26794919243112270647... 3 3 k
k 0 6 ( k 1) k
.26794919243112270647...
2 3
6
k
4 .2681148649088081629...
.268253843893107859...
160 8 3 64
log 2
27
27
27
6
4
2
x
.26903975345638420957...
4e
Li2 ( x ) 2 dx
0
f3 ( k )
2
k 1 k
1 ((2) 1)3
216 12 2
1
( 1) k 1
.268941421369995120749...
e 1
ek
k 1
erfi 1
5/ 2
Titchmarsh 1.2.14
e x sin x cos xdx
2
0
k k
.269205039384214394948... ( 1)
Fk
k 1
( 1) k 1 k
2
k 1 k 1
.2696105027080089818...
=
1
cos x
cos(log x )
0 1 e x dx 0 1 x dx
i
i
1
1 i
1 i
1 1
2 2
2 2
4
2
2
4 .2698671113367835...
.270034797849637221...
=
1 i
i
1 i
1 i
4 2
2
2
2
2
=
GR 3.973.4
cos xdx
2
x
2
0
2
2
dx
x
3 (3)
sin(sin x x)
cos x
0
2e
.27007167349302089432...
e
2
e
2 log 2 log 2 12 log(Glaisher )
22
3
k 4 (k 1) 1
k
k 1
16
105
cos1 ( 1) k
( 1) k k
.27015115293406985870...
2
k 0 2 ( 2 k )!
k 1 ( 2 k 1)!( 2 k 1)
.27008820585226910892...
.27020975013529207772...
.270222741100238847013...
.27027668478811225897...
.270310072072109588...
2
1
1
x dx
arctan 4
8
2
4
x 1
1
6 (3)
11
k
(2k ) 1
2
log
2
4
k 1 k 2
2
log 2
log x
dx
16
2
( x 1) 2 ( x 1)
1
2
3
log
3
2
(1)
k 1
k 1
Hk
2k
J 137
.2703628454614781700...
1 .2703628454614781700...
( 1)k
(( k ) 1)
k
k 2
1
1
= log
11/ k
k 2 k
log 2 1
log 2
2
H ( x) dx
1
=
1
1 x
0
.2704365764717983238...
dx
cos x
x
1
4 2
2 k 1 4 k 4 k 1
5
1 2 k 2
(3 5 5) k
k
2
k 0 5
1
4 .27050983124842272307...
2
tan
2
K 124h
.27051653806731302836...
.270580808427784548...
.270670566473225383788...
3
2 3
1 x
log
log
dx
2
1 x6
2 3
0
1
5 log 2
4
360
2
e2
(4)
Hk
MHS (3,1)
3
k 1 ( k 1)
4
(1) k 1 2k
k 1 ( k 1)!
(1) k k 2 2k
k!
k 1
(1) k k 3 2k
k!
k 1
3 .27072717208067888495...
1 .27074704126839914207...
1 .2709398238358032492...
.27101495139941834789...
2 log 2
3 log 2
12
3
e
2 e 1)
(1) Bk
2 k k!
k 0
2
4G
2
k
2
k 1
3 (3)
2
/2
0
x4
dx
sin 4 x
k
k
5
4
k 1,
1 1
i i
2 2
cosh
=
3
(1)
k 1
22 k (2k 1)
k 1
.27103467023440152719...
.2711198115330838692...
=
.27122707202423443856...
1 .27128710490414662707...
.271360410318151750467...
.27154031740762188924...
.2716916193741975876...
1 .2717234563121371107...
( 3 1)
6 2
3 2
3 1
0
x4
dx
x12 1
0
x6
dx
x12 1
log 2 1 1
i
i
i
i
1
1
1
2
8 2
2
2
2
2
2
( 1) k 1
3
k 1 k 2 k
e
k
1
1
1
sinh
k
16 16 e 4
2
k 1 ( 2 k 1)! 4
(1) 3 / 4 5
1
1
1 5
4 , 1 1 F1 , ,1
4 4
4
4 4
k 0 k!( 4k 1)
1
1
k
sinh
k
2 2
2
k 1 ( 2 k )! 2
cosh 11
1
sinh 2
2
2
2
1 dx
2 3
x
sinh x
1
/2
2
12
log sin x
2 log 2 log 2
2
1
0 F1 ;2; 2 I1 ( 2 )
2
0
2
k 0
k
1
k !( k 1)!
2
sin x dx
63 5 3 45 log 3
1
150
k 1 k (3k 5)
e
.2718281828549045235...
10
.2717962498229888776...
1 .27201964595140689642...
.27202905498213316295...
=
=
1 .2721655269759086776...
.27219826128795026631...
1
2
1
1 2
2
sinh
k 1
k 1
k 1
k 2
3 i 3 i
(i ) ( i )
(1 i ) (1 i )
10
1
(2 i )(2 i ) 10(2 i )(2 i )
2
6
9
log 2
i 1 i
1 i
G Li2
Li2
8
2 2
2
log(1 x)
dx
1 x2
0
1
=
GR 4.291.8
=
log( x 1)
dx
1 x2
1
1
=
log x dx
1 x4
0
log 2
=
log(sin x)
0
sin x dx
1 sin 2 x
1 x dx
x 1 x2
1
log
0
/4
=
GR 4.243
x dx
e 2e x 2
/2
=
GR 3.418.3
x
0
=
GR 4.291.11
0
GR 4.386.1
GR 4.297.3
x dx
(cos x sin x ) cos x
1
=
x arccos x log x dx
0
1
=
arctan x
dx
x 1
0
/4
=
log(1 tan x) dx
0
GR 4.227.9
/4
=
log((cot x) 1) dx
0
.272204279827698971...
k
k 2
4
GR 4.227.14
1
12
15 .272386255090690069056...
5
1
4 log 2 k
2 k 1 2 ( k 2 )
1
1
6 .2726176910987667721... 8 2 cot
2 2
1
4
k 1 k 16
1
.27270887912132973503... 3 2 e log 2 Ei ( )
2
3
.27272727272727272727 =
11
1
(1)
.27292258601186271514... (1 )
2
k 1 ( k )
.2725887222397812377...
2k
k 1 Fk Fk
1 .27312531205531787229...
.273167869100517867...
5
k
( k 1)! 2
k 1
k2
4
2
2
2 5
k 2 k 3k 1
2
1
1
arcsin
7
2 2 k 1 k 2 k
2 k
k
1
tan
k
k
F (2k ) 1
k 1
2k
1
( 2)
5
(2 k 3)!!
1 .2732395447351626862...
J274
2
1 / 2
( 3 / 2)
4 k 2 (2 k )!!
2k
1
= k
k 0 k 16 ( k 1)
1
= k tan k 2
K ex. 105
2
k 0 2
( 2 k 1) 2
=
k 1 2 k ( 2 k 2 )
1
.2733618190819584304... k 2
1
k 1 2
26 (3)
4 3
1
2
( 2)
.27351246536656649216...
27
27
81 3
3
2
4
=
x2
log 2 x
1 x3 1 dx 1 e2 x e x dx
9 .2736184954957037525...
86
1
3
dx
2
1 .27380620491960053093... log log(1 3x )
2 0
1 x2
1
H
.2738423195924228646...
8 log 2 2 14 log 2 13 k k
2
k 1 2 ( k 3)
1
54 3 3 2 27 log 3 2 (3)
.27389166654145381...
2
1
( k 3)
= 4
( 1)k 1
3
3k
k 1 3k k
k 1
.2738982192085186132...
GR 4.295.38
1
2 arctanh sin cos 2 arctanh cos sin
8
8
8
8
8
=
x
1
.273957549172835462688...
k 2
4
dx
x4
(k ) 1
2k 1
1
1
1
arctanh
2
k
k k
k 2
2 sin 3
3
1
( k 2) 2
3
k 1
k
cos
1
2
3
.2741556778080377394...
2
2
k
36
k
k 1
k 1
2 k 2
k
.27413352840916617145...
2 .2741699796952078083...
1 .2743205342359344929...
28 .2743338230813914616...
1 dx
log(1 x 6 )
= log1 3
dx
x x
x
1
0
1 2 k 3
32(5 2 7) k
k
k 0 8
1
coth
1 2
2
2
k 1 ( k 1 / 2)
k 1 ( 2k )
= ( 1)
2k 1
k 1
.27443271527712032311...
1
9
3 1
2 4 5 log
6
1
2 F1 2,2, ,
2 4
25
6
125
2
J274
=
(1)
k 1
k 1
k
2k
k
83711
1
304920 k 1 k ( k 11)
1 1
k
1
.27454031009933117475... k Li1/ 2 ( , ,0)
5
5 2
k 1 5
.2745343040797586252...
.2746530721670274228...
log 3
1
1
arctanh
4
2
2
dx
= 2 x
e 2
0
.2747164641260063488...
( 1)
k 1
9
7452 .274833361552916627...
k 1
4
k 1
k
1
( 2 k 1)
H2 k 1
5
k 2 arctan 2 2 log
4
5
4
4
4
1
.27489603948279800810...
log 2
9 6
k 1 k ( 4 k 3)
1
1 .27498151558114209935... k
k
k 1 3 2
.275000000000000000000 =
11
40
.27509195393450010741...
sin k
( k 1)
k 1
3 .27523219111171830436...
.27538770702495781532...
2
i i
e Li 2 (ei ) e 2i Li 2 (e i )
2
3
G
2
12
log 2
log 2 2
1
1 log 2 Li2 1
2
2
1
k ( k 1)
k 1
( 1) k 1
.27539847458111520468...
k 1 k ! ( 2 k )
( 1)k
.27543695159824347151... 3
3
k 0 k k k 1
=
2
k
2
log 2 1
i
i
1
1 i
1 i
2 csch
(1 ) (1 ) ( ) ( )
4
2
8
2
2
2 2
2 2
i
.27557534443399966272...
log (1 i ) log (1 i )
2 2
1
( 1) k 1 (2 k 1)
1
= arctan
(2 k 1)
k k 1
k 1 k
=
1
.27568727380043716389...
log x tan x dx
0
1
1 2 2k (2 2k 1 1)B2k
J132, AS 4.5.65
e 2 e 2 2 k 1
(2 k )!
log(cos 1) log( cos 2 )
cos 4 k
.27574430680044962269... log 2
( 1) k 1
2
8
k
k 1
2
1
G (3)
log(1 i ) Li3 (i )
.275806840982172055143...
4
2
16
2
/4
1
2
=
16 G 2 log 2 35 (3) x 2 cot x dx
64
0
.27572056477178320776...
csch 2
3 .275822918721811...
Levy constant
4 .2758373284623804537...
8
5
2
4
4
csc
5
5
5 5
.27591672059822730077...
1
0
(k )
(1) 1 (k ) k (k 1)
k
k 2
k 2
x dx
1 x
5/ 2
4
.27613216654423932362...
.27614994701951815422...
.27625744117189995523...
1
csch 2
4 2 2
(1) k 1
2
k 1 k 2 k 3
1
1
2
8 12 3
k 1 9k 4
5 3
log 2 x
dx
3
x x3
324 3
0
13
1 .27627201552085350313...
32
x 3 sin 3 x
0 x5 dx
GR 3.787.3
2
(1) k
1
Erf
k 0 k!(42 k 1 )(2k 1)
4
( 3)
1 (1 )
1
.2763586311608143417...
3
3
3
6
k 1 k ( k )
2k
1
5
.27648051389327864275... log 2
k
12 k 1 k 4 k ( k 2)
.276326390168236933...
1 .27650248066272008091...
.27657738541362436498...
2 .27660348762875491939...
1 .276631920058325092360...
2
( 1) k 1
4
8 2 2
3
k 1 k ( k 1 / 4)
( 1)k 1
k 1 k ! 1
ek
2
I2 (2 e ) 0 F1 (; 3; e) 2
e
k 0 k !( k 2 )!
1 (1) k ( k 1) / 2
1 3 1
1
,
8 2 4 k 0 (4k 1)3 / 2
2 2 0 k k 2
[Ramanujan] Berndt IV p. 405
k 1
(1)
k 1 3k
k
.276837783997013443598...
.276877988824579262196...
4 log 2 2
.27700075399818548102...
2
6
Hk
k (k 1)(2k 1)
k 1
43
9 13
csc 13
234
234
( 1)k
2
k 4 k 13
2
2
=
.2770211831173581170...
( 1) k 1 ( k 12 )! ( 1) k
( k 1)! k
k 1
.27704798770564582706...
14
1
8 arctan 2 3 log 5 56
25 100
.27708998545725868233...
xe
x
log x sin 2 x dx
0
1
4 ((k ) 1)
k
k 2
.2771173658778438152...
((k ) 1)
3
k 2
4 .27714550058094978113...
.27723885095508739363...
1 1
, 2,
2 2
4
3
3
1
Li3
4
4
k 1
( 1) H (2) k
H
= k k 2
3k k
k 1 4 k
k 1
.27732500588274005705...
Li3
log 2 2
1
3
x log(1 x )
1 .27739019782838851219...
dx
ex 1
0
.27734304784012952697...
1 .277409057559636731195...
3
12
3log 3
4
=
3k
k 1
2
1
2k
log(1 x )
dx
3
x
0
1
3
(1) k Bk
Li2 (1 e) 1
k 1 ( k 1)!
.27750463411224827642...
(1) k Bk
Li2 (1 e)
k 0 ( k 1)!
1 .27750463411224827642...
.2776801836348978904...
192 .27783871506088740604...
dx
2
( x 2) 2
8 2
0
6
x 2 dx
0 ( x 4 1) 2
5
i
i
1 .27792255262726960230... 2 sin log 2 i ( 2 2 )
.2779871641507590436...
3
4
(3) log 2 log 2 3 4 log 3 log 2 2 4 log 2 log Li2
log 7
7
1 .2779927307151103419...
(k
k 2
2
1k
k ) log 2 k
5 (3)
2
2 log 2 log 2 2
4G
8
6
( 1) k 1 Hk
= 2
k 1 k ( 2 k 1)
arcsinh2 ( 1) k 1 2 k
.27818226241059482875... 1
2
k 1 2 k 1 k
(2 k )
1 2
I1
2 .27820645668385604647...
k
k 1 k !( k 1)!
k 1 k
.278114315443049617352...
1
log 2 x
4, 3, 2
2 0 x 1/ 4
1
7 .278557014709636999...
=
.27865247955551829632...
3
i
i
log2 2 2i Li3 Li3
2
2
4
1
1
2 log 2
11
17 .27875959474386281154...
2
.2788055852806619765...
.27883951715812842167...
.27892943914276219471...
1
k
k 1 2
dx
2
x
1
1
(1 erf 1) , 1
2
e
5
2
2 2e
e
x
1
1 dx
sinh x x
dx
x
4
1
5
5 H
1 1
log kk k 1
4
4 k 1 5
4 k 1 5 k
2 .27899152293407918396...
k log (k )
k 2
.27918783603518461481...
.27930095364867322411...
( k ) ( k 1)
k 2
k
3
3
6k
2
k 0
S2 (2 k , k )
.27937855536096096724...
2k
k 1 ( 2 k )
.27937884849256930308...
=
k 1
1
2 1 k log 1
k
k 1 k
1
2
1/ 6
1 1
1 3
,1 ,
2 2
2 2
1
1
2 ( 2 2 )
2
2
( 1) k
3 (2 k 3)
k 0
k 1
k
( 1) k 1
2k 2
1
( 1)k 1
k
k
k 1 4 1
k 1 4 1
.2794002624059601442...
.27956707220948995874...
1
( 1) k 1 k 2 2 k
J0 ( 2 )
k
2
k
k 0 ( 2 k )! 2
2 .2795853023360672674...
1
2
k 0 ( k!)
I 0 (2)
=
0 F1 (;1;1)
1
2
2
e
k2
2
k 0 ( k!)
2 cos
LY 6.112
d
Marsden p. 203
0
1 2k
k 0 ( 2 k )! k
=
k 2 2k
( 1) k
2
e
k!
k 0 ( 2 k )! k
k 0
2k
k
1
1
.2797954925972408684...
2 (1 i 5 ) (1 i 5 ) 3
10
k 1 k 5k
i i
sin k
i
cos 1
1 .2798830013730224939... e
sin(sin 1) ee ee
2
k 1 k !
1 .27997614913081785...
.2800000000000000000
2 erfi( 2 )
e2
=
.28010112968305596106...
7
25
4e
p prime
( 1) k 18k
2k
k 1
k !
k
1 p
( e 1)
2 3
0
GR 1.449.1
1 p 6
sin 2 x
ex
2
dx
7 .2801098892805182711...
53
.28015988490015307012...
.2802481474936587141...
(k )
k 1
k
2k
1
3
3
1 i 1 i
3
6
2
2
2k
k 1
3
1
3k
1
2
1
3 9 log 3 2 (1) ( )
2
6
3
k 1 k ( 3k 1)
5
1
3
.28037230554677604783...
2 log 2 hg 2
2
3
k 2 2k k
( 1) k ( ( k ) 1)
=
2 k 1
k 2
.2802730522345168582...
8
3
1
2 log 2
3
2 k 2 k ( k 32 )
1 (1) 1
1
.28043325348408594672...
3 k 1 ( 6k 4) 2
36
1
1 1 1
1 .28049886910873569104...
, , },{ , },
2 HypPFQ {111
2 2 16
k 0 2k
k
i
.280536386394339161571... (1 ) sin 1
log 2 e i log 2 ei
2
sin k
(k ) 1
=
k 2 k
1 .28037230554677604783...
6 .28063130354983230561...
k (
2
( k ) 1)
k 2
1
2 log 2 log 2 2 l
2
352 2 log 2
1
.28086951303729453745...
735
7
k 1 k ( 2k 7 )
.2806438353212647928...
Berndt 8.17.8
e 1 (1 2k ) (1 k )
.28092980362016137146... log
2
k!2 k
k 1
(1) k (2k 1) Bk
=
[Ramanujan] Berndt Ch. 5
k !2 k k
k 1
64
1 ( 2) 3
64
1
3
.2809462377984494453...
28 (3)
3 3
4
27 2
27
k 1 ( k 4 )
1
2 25
.2810251833787232758...
3
24 192 k 1 k 4 k 2
3 1
( 1) k 1 2 k
2
.28103798890283904259... 2 3 log
2
2
k 1 2 k
(2 k 1) k
k
2 .281037988902839042593...
3 log
31
31
( 1) k 1 cos k
1
1
.28128147005811129632...
log ( 2 cos )
2
2
k
k 1
k
1
.28171817154095476464... 3 e
k 0 ( k 2)!
k 2 k!k ( k 1)
k
1
=
k 0 k !( 2 k 6 )
k 0 k !( k 2 )( k 3)
GR 1.441.4
k2
1 .28171817154095476464... 4 e
k 0 k!( k 2)
.28173321065145428066...
.28184380823877678730...
=
.281864748315611781912...
e 1 cos(sin 2) ecos 2
(1) k 1 sin 2 k
2e
2ecos 2
k!
k 1
7
3
3
cot
cot
log 2 2 log sin log sin
4
8
8
8
8
k 1
( 1)
2
k 1 4 k k
1
2 log 2 2 1 , 1 1 , 3
8
2 4
2 4
( 1) k 1 log(2 k 1)
2k 1
k 1
3k 1
2
log 2
2
2
24
k 1 2 k ( 2 k 1)
( 1)k 1 k( k )
=
2k
k 3
.2819136638478887003...
=
1
=
arctanh x log x dx
0
1
4
.28209479177387814347...
.28230880383984003308...
( 1) k 1 H (3) k
3k k
k 1
.282352941176470588
24
sin 4 x
x
85 0 e
=
1
exp (1) , Glaisher’s constant
12
( 1) k
1 .28251500934298169528... 3 6 log 2
2
k 0 ( k 1)( k 3 )
2 log 2 8 log 3 2
1
.28253095179252723739...
2 log 2 2 log 3 4 log 2 Li2 3 (3)
4
3
3
1
4 Li3
4
1 .282427129100622636875...
log 2 (1 x )
=
dx
x ( x 12 )
0
1
1 .2825498301618640955...
6
( 2)
.2825795519962425136...
.28267861238222538196...
.282698133451692176803...
.2827674723312838187...
=
.282823346997933107054...
k
1
I1 (1)
2 k
2
k 0 ( k !) 4
1
3
k 1 k 6
1 2
2
2 H , 2 3 log 3 1 9 log 3
12
3
Hk
k 1 (3k 1)(3k 1)
1
3
k 2 k 3
1
k 1 2k
k (k 1)
k
.2829799868805425028...
0 F1 ( ; 2; 2)
.2831421008321609417...
( k ) 1
k 2 k ( k )
.28318530717958648...
J1 ( 2 2 )
(1) k 2k
2
k 0 k!( k 1)!
1
2 6 arcsin 2 x arccos x dx
0
6 .28318530717958648...
1 5
2
6 6
1
=
1
3
k 0 ( k 4 )( k 4 )
=
log1 x dx
6
0
2
=
0
6 .2832291305689209135...
2 .28333333333333333333
.2833796840775488247...
.2834686894262107496...
d
2 cos
e x / 6dx
ex 1
2 coth 2
137
H5
=
60
(2 k )
1
k sinh 1
k
k 1 ( 2 k 1)!
k 1
k 1
( 1)
1/ 3
1 e
k
k 1 k ! 3
5 .28350800118212351862...
2
3/ 4
log1 2 x dx
4
0
3
.28360467567550685407... 3 log 2 3 log 3
2
k
k
k 1 3 ( k 1)
(1) k
k
k 0 2 ( k 1)( k 3)
(k )
1 1
log 1
k
2k 2k
2
k
k 2
k 1
6
6
k Hk
.28375717363054911029...
1 log k
25
5 k 1 6
2
49
1
.28382295573711532536...
2 (1) (4) (2,4) 1, 2, 4
6
36
k 4 k
.2837571104739336568...
log
.2838338208091531730...
1
1
1 2
4 e
1 .28402541668774148073...
k 1
=
.28422698551241120133...
( 1) k 2 k
k 0 ( k 2 )!
(2 k ) (2 k 2)
( 2 k )!
1
k
k 2
2
1
sinh x
0 e x dx
1
1
1 coth x dx
0
e
4
.28403142497970661726...
2
1
1
1 1 2 cosh
k
k
ci(1)sin 1 ci( 2 )sin 1 si(1) cos 1 si( 2 ) cos(1)
1
6 .2842701641260997176...
sin x dx
1 x
0
k Hk 2
k
k 1 2
=
2
log 2 3 log2 2 log 3
1
log 2
Li2 log 2
.28427535596883239397...
2
12
6
4
1 1 21
(3)
Li3
2 2 48
2
log 2 (1 x )
0 x 2 ( x 2) dx
2 .28438013687073247692... (3) ( 4)
1
=
.28439044848526304562...
(k )
(2k 1)!
k 2
8
11
Fk
3 .28492699492757736265...
k 1 k!!
2 log 2
.28504535266071318937...
24
2 .28479465715621326434...
1
1 1
sinh
k
k k
k 1
1 .28515906306284057434...
1
k ! (2k )
k 1
.28539816339744830962...
=
2 2
.285185277995789630197...
2
9/4
e
x2
sin x 2 dx
0
( 1) k 1
1
2
4 2
k 1 4 k 1
sin k cos k
sin k cos2 k
k
k
k 1
k 1
J366, J606
1
=
x arctan x dx
0
.2855993321445266580...
11
15e
1
1 .2856908396267850266...
32
32e
2
.285714285714285714
=
7
1 . 2857644965889154964...
.285816417082407503426...
k4
k 0 ( 2k )!
5 7
2 2
8 8
(3)
3
2
4
k 0
11
162
(4k )!
( k! ) 4
4k
k
54
k 1
2
k 1 k
1 .2858945918269595525... ( 1)
k !!
k 1
2 2 3 log 2 G
.28602878170071023341...
16
4
2
k ( k )
=
4k
k 2
3
1
(k 3)
.2860913089823752704...
.28623351671205660912...
.2866116523516815594...
.2868382595494097246...
(3) G
2 1
8k 1
4 k (4 k 1)
k 1
2
(1) k 1
3
2
k 1 k 2k
24 8
6 2
16
1
1
1
( k !) 2
HypPFQ {1111
, , , },{ ,2,2},
2
4 k 0 (2 k )!(2 k 2) 2
4
.286924988361124608425...
4 2
coth
2
2
8
csch
2
2
2 9
2k 2
2
k 2 ( 2 k 1)
CFG D1
=
( 1)
k 1
k
(2 k ) 1
2k
k 1
1 .28701743034606835519...
1 1
e1/ 32 1
erf
2
4 2 k 1 k !! 4 k
1 .287044548647559922...
1
2
1 ( k !)
k 2
1 .287159051356654205862...
e
( k ) 1
k 2
3
1 .2872818803541853045...
.28735299049400502...
1
2e 17 3k k 2
18
k 1 ( k 3)!
c4
3 .2876820724517809274...
i
dx
= 2
1 x x
k 1
dx
1 3x 2 x
log 2
0
1
k
k
4
k 1
dx
dx
x
x
e 1 0 3e 1
(1)
1
1
1
Li
2
2arctanh
1
k
2 k 1
(2k 1)
7
4
k 1 3 k
k 0 7
e
k
10 .287788753390262846...
k 0 k !
1
1 .28802252469807745737... log
4
2 .288037795340032418...
( )
6
1
.2881757683093445651... hg
5
5
2
5 log 5
5
2
1
= 5
log
2
4
4
5
3 5
(k 1)
1
= 2
(1) k 1
5k
k 1
k 1 5k k
t (k )
3 .28836238184562492552... 3
k 1 k!
i
2 ecos 1 cos(sin 1) ee ee
1
2 log 2 log 3 ,1,1
4
2
Patterson Ex. 4.4.2
1
( 5 10 3(2) 20 2(3) 15 2 (2) 30 ( 4) 24(5))
120
k
k /2
sin
2
4
2 .2873552871788423912... e sin 1
k
!
k 1
1 i
log 2
1 i
i Li2
1 .287534665778537497484... 2G
Li2
4
2
2
2 .28767128758328065181...
=
J117
(k )
(k )
1
(k 1)
k 2
k 2
(k 1)
1
i 2 i
2 i
3 3 k 0 (3k 2) 2 1
6 3 3
.288385435416730381149...
.28852888971289910742...
.2886078324507664303...
k
=
2
(e
x2
e x )
0
(e x
2
=
0
=
.2887880950866024213...
(1)
k
dx
x
GR 3.463
dx
1
)
x 1 x
GR 3.467
2
e x cos x
dx
x
2
0
.2886294361119890619...
2
log 2
3
5
20
1
1 k
2
k 1
1
(2k 1)(2k 6)
k 0
1
1
1 (1) k ( 3k 2 k ) / 2 ( 3k 2 k ) / 2
2
2
k 1
log (k )
.28881854182630927207...
k 2 k ( k 1)
=
1 .288863135...
.28893183744773042948...
1
1 2
2
p ( p 1)
p prime
/2
4e
sin(tan x ) sin 2 x tan x dx
1
4 (2k 1)
k
k 1
.2890254822222362424...
.289025491920818...
sin x
dx
1 0 ex
1
one ninth constant
GR 3.716.8
0
.2889466641286552456...
Hall Thm. 4.1.3
2
4
( 1) k
( k !) 2 3k
2
3 k 0 3k ( 2 k 1) 2
k 0 ( 2 k )!( 2 k 1)
10 2
1
=
log 3
5
2
3 3
27
k 0 (3k 1)
10 2 5 (1) 1
=
log 3
3
27
9
3 3
GR 3.463
1 .28903527533251028409...
Berndt 32.7
1 1 1
1
3
, 2, = HypPFQ 1,1,1,1, ,2,2,
3 3 2
2
4
1
5 .28903989659218829555...
5
=
( 1) k
2
k 2 k log k
( 1)k 1
.289144648570671583112...
Fk
k 1
2 3 3
.28922492052927723132...
48
.2891098726196906...
2 log
1001
.289725036179450072359...
3455
2 .2894597716988003483...
2 .2898200986307827102...
.2898681336964528729...
=
2
3
3
1 p
2 2
p prime
1
2
2
k 1 k ( k 1)
k
(k 1)(k 2)
k 1
2
K Ex. 111
k ((k 3) 1)
k 1
2
1 .2898681336964528729...
1 p 2 p 4
li( )
( 1)k
k 0 ( k 3)(3k 1)
3
2 2 (2) 2
(k (k ) (k 1) (k 1) 1)
k 2
2 .2898681336964528729...
1
= 1 2
2
k 1 k ( k 1)
2
3
=
0
1
k (k 1) (k 2) 2
k 1
x
1 e
dx
ex 1
GR 3.411.25
1 x
log x dx
1 x
0
1
=
3 .2898681336964528729...
2
3
2(2)
( k 1)( k )
2 k 2
k 3
log 2 x dx
x 2 dx
=
sinh 2 x 0 (1 x ) 2
log 2 (1 x )
log(1 x )
=
dx
dx
2
x
x
0
0
1
GR 4.231.4
x 2 dx
= x
e e x 2
0
1
log 2 x dx
1 ( x 1)2
GR 4.231.4
=
e
dx
1
6 1
.28989794855663561964...
5
1
.2899379892228521445... 1 (1 log( e 1))
e
x1 / 3
0
57 .289961630759424687...
cot 1 cot
CFG C1
( 1) k 1 Hk
k
k 1 ( e 1)
180
29
1
.290000000000000000000 =
2
100 k 1 k 7k 6
1 .29045464908758548549...
(1) k 1 H O k
2k
k 1
2
1
arctan
3
2
.29013991712236773249...
21/ e
2
( 1) k / k !
k 0
.29051419476144759919...
sin x dx
ex 2
0
1
1
1
, i , 2 csch ( ) cos(log(2 ))
2 F1 i ,1,1 i , 2 F1 i ,11
4
2
2
=
2k
(k 1) 1
k 1 k 2
1
2 .29069825230323823095... e erf (1)
1
k 0 ( k 2 )!
.29053073339766362911...
1
3 log 2
4
3
1
1
2
2
6
4 3
k 1 4k 3
1
( 1) k
.29081912799355107029... 4 8 arctan k
2 k 0 4 ( 2 k 3)
1
1
log(1 ( e 1) x )
.29098835343466321219...
dx
2e 2
1 ( e 1) x
0
.2907302564411782374...
.291120263232506253...
2
24
coth
log 2 2
4
2
k 1
1
k 1
k2
log(1 x 2 ) dx
0 x(1 x 2 )
GR 4.295.17
1
=
GR 4.295.17
log(1 x 2 / 2)
dx
x
0
1
=
.29112157403119441224...
5k
k 1
1
3
1
( 3k )
k 1
5k
2 k 1 k
(2 k 1)!( k 1)
k 1
1
1
dx
2 coth 2 2
2
4
x 1
k 1 k 1
1
.2912006131960343334...
2 2 cos 2 2 sin 2 ( 1)k 1
.2912758840711328645...
1/ ( k
1 .291281950124925073115...
3
24
2
1)
1
1 .29128599706266354041... k
k 1 k
1
dx
x
x
GR 3.486
0
5 .2915026221291811810...
.29156090403081878014...
.29162205063154922281...
.29166666666666666666
=
28 2 7
G
1 2 2 log 2 7 (3)
4 16
4
8
7
24
.29171761150604061565...
k 1
.29183340144492820645...
=
.2918559274883350395...
.2919265817264288065...
=
1 .29192819501249250731...
( 1)
k
2 2)
k(
k 1
(2 k )
3k
1
0
x 3 arccos2 x
dx
1 x2
dx
( x 1)
4
0
635
31 / 4
cot 31 / 4 coth 31 / 4
1107
4
3
3k ( ( 4 k ) 1) 4
k 1
k 2 k 3
(k )
1 1
Li3
3
k k
k 2 k
k 1
2 2 k 1
cos2 1 1 ( 1) k 1
( 2 k )!
k 1
( 1) k 1 4 k k 2
k 1 ( 2 k )!( k 1)
3
arctan 2 x dx
24
1 x2
1
.291935813178557193...
k 1
1
( 1)
k 2
k
(k ) 1
k!
1
e
k 2
1/ k
1
1
k
.292017202911390492473...
3 G
x arccot x log x dx
4 2
0
.29215558535053869628...
( 1)k
k 2 k !(( k ) 1)
GR 1.412.2
.29215635618824943767...
1
2
2
6
coth 3/ 2
2
k
k 1
1
2
(k 2 )
.29226465556771149906...
(2k 1) (2 k 1) 1
k 1
.292453634344560827916...
.2924930746750417626...
=
.29251457658160771495...
.29265193313390600105...
.2928932188134524756...
=
1
3 log 2 (k ) 1
2
k 1
k 2
1
1
k log 1 1
k
2k
k 2
1
1
coth
2
2 5
5 2
k 1 5 k 1
sin 2 k cos2 k
1
cos 4
e e cos(sin 4)
k!
8
k 1
H ( 3) k
k
k 1 4 k
1
1
2
2k
(2 k )!
k 1 1
(
1
)
( 1) k 1
k
4 k
( k !) 2 4 k
k 1
k 1
.2928968253968253
=
H
7381
10
25200
10
1
2
k 1 k 10 k
k
k 6
2 .292998145057285615802...
3 .293143919512913722...
3020 .2932277767920675142...
2 PFQ 1,1,1, 2, 2, 2, 1 2
2
1
25
1
2
k 1 k!k
1 1 3
, ,1
2 2 2
1
e
x
log 2 x dx
0
3/ 2
k
k
k 1 2
7
log(1 x )
dx
1 x3
0
1
.29336724568719276586...
.29380029841095036422...
sinh 1
4
1 .2939358818836499924...
.293947018268435532717...
1 dx
4 5
x
cosh x
1
(k ) log (k )
k 2
=
1
48 (G 1) 3 96 log 2 63 (3) 6 2 2 7 log 2
192
arctan 3 x
1 x 4 dx
.2941176470588235
.2941592653589935936...
=
5
17
coth 5
1
50
k
2
1
25
10
k 1
i (1)
2
.29423354275931886558...
(2 i ) (1) (2 i ) 3
2 2
)
2
k 2 k (1 k
J124
=
6 (1) k 1 k (2k 1) 1
k 1
=
xsin x
x
1
e e
x
0
.29423686092294615057...
( 1) k ( k ) 1
k2 k
k 2
.29430074446347607915...
(1) k
k
k 0 2 1
1 1
k 1
log 1
k
k k
k 2
.2943594734442134266...
I2 ( 2 )
k !(k 1)!2
k 0
3
=
0
.2945800187144293609...
(sin x x cos x)3
dx
x5
4
.29474387140453689637...
1
4
k 2
2
12
2 log 2
=
1
( k )
2 .294971003328297232258...
2e
k 2
k3
4 .29507862687843037097... k
k 1 k
(k )
k ( k 1)
k 2
2 .2948565916733137942...
(1) k 1
3
2
k 1 2k k
( (k ) 1) 2
1
1
1
(k )
(k )
k 2
k 2
J1061
Prud. 2.5.29.24
( k 2) 1
(k ) 1
.29478885989463223571...
k
k6 k
k 2 ( ( 3k ) 1)
3
3
k 2 ( k 1)
k 1
3
k (k 3)
.29452431127404311611...
3 2
32
k 1 ( k 2 )
.2943720976723057236...
k
.29522056775540668012...
1 .295370965952553590595...
.2954089751509193379...
.29543145370663020628...
I 0 (1) L0 (1)
2
1
2e
e
x
arcsin x dx
0
G 2
6
2 log 2
1
3
2k
k 1
2
1
5k 2
=
log(1 x)
dx
x4
1
1
=
x
2
0
3 .295497493360578095...
.2955013479145809011...
.2955231941257974048...
57 .2955779130823208768...
e
1
2
(1 ) k ( k 1
k 1
180
k 1
k (k )
2
)
H 2
2
, the number of degrees in one radian
( k )( 1) k
4k
k 1
7 .29571465265948923842...
2
(1 )
.29559205186903602932...
1
log1 dx
x
3 csc 3
k 2 2k
2
k 1 k 2 k 2
(1) k 1
2
k 1 4 k 4 k 5
.295775076062376274178...
x 1 e 3 x dx
0 3e x x
1 n 1
x x n 2 / 3 x n 1 / 3 3 x 3n 1
3 .29583686600432907419... 3 log 3
dx
1 x
0
.29583686600432907419...
.29588784522204717291...
.29593742160765668...
5 .2959766377607603139...
.29629600000000000000
3 log 3 3
log 2 2
2
2
12
2 log 2
12
(3)
k2
k
k 1 2 ( k 1)( k 2 )
cosh 1
e e 2
sinh 2
2
2
4
37037
=
, mil/mile
125000
10 14 log 2
( k 1)
k 1
2k k 2
4k
(4k )!
k 0
GR 3.437
GR 3.272.2
1
9 3
x 3 log1 3 dx
12
x
0
1
.2965501589414455374...
.29667513474359103467...
.29697406928362356143...
.29699707514508096216...
.297015540604756039...
=
.2970968449824711858...
1 .2974425414002562937...
3 .2974425414002562937...
.29756636056624138494...
.2975868359824348472...
.29765983718974973707...
3 5 1 5 2
1
2
2
2
1
1 2
k k
k 1
4
k
7 ( 3)
12 k 1 ( k 12 ) 4
1
3
2k k
k 1
( 1)
( k 1)!
2 2e 2 k 0
1 3
3
1
tan
2
2 12
2
k 1 4 k 4 k 2
3 (1) k 1 (2k )!!k
22 F1 2,2, ,1
2 k 1 (2k 1)!!
1
2 e 2
k
k 0 ( k 1)! 2
2k 1
pf ( k )
2 e
k
2k
k 0 k !2
k 0
(1) k 1
1
6 24
k 0 12 k 6
1
cos
5
1 5
3 log 2
6
2
2
1 4
3 3
( 1) k ( k !) 2
2
k 0 ( 2 k )!( 2 k 1)
Berndt 32.3
x 3 dx
0
ex
3
(1) k 1
1 .29777654593982225680... 1
2k
k 1
k
.2978447548942876738...
Hk 3
k
k 1 6
arctan x dx
1
.29790266899808726126...
2 2 log(3 2 2 )
4
H (2) k
.2979053513880541819... k
k 1 4 k
e
.29817368116159703717... Ei ( 1)
2
xe x dx
0 x 2 1
2
1
2
0
3 (k )
1
k 2 (2k )
k 2
1
.29827840441917252967... 2 log
k
k 2 k
1
1 log k
.2984308781230878565...
(2) 2
k 1 k
4 .298268799186952004814...
3 .298462247044795629253...
2
log(3 2 )
( 1) k
k
k 2 k 1
.29849353784930260079...
3 .2985089027387068694...
log( x 2 9)
0 x 2 2 dx
1
( 1) k
jk
k 2 j 1 k
32 4
, volume of the unit sphere in R9
945
log 6
6
e2
5
2k
.29863201236633127840...
8
8 k 0 (k 3)!
.2986265782046758335...
.2986798531646551388...
log 3
3 3
3 3
1
=
0
x dx
3
(e 3 x 1) 2
x log x dx
(1 x 3 ) 2
k 1 (2 k ) 1
.29868312621868806528... ( 1)
k 1
k 1
15
3 log 3
1
.2987954712201816344...
24 3
16
8
k 1 k (3k 4 )
8
8
1
1
1 .29895306805743878110...
arcsin
7 7 7
2 2
k 0 2k k
2
k
0
3
.29933228862677768482...
2
4
1 .2993615699382227606...
(1) k k (k 1)
4k
k 1
2
1
.29942803519306324920... ( 2 )
cot
2 2 2
2
( k )
k
k 2
2G 4
=
k 1
2
( 2 k ) ( 2 k 2 )
2k
k2 1
4
2
k 1 2 k k
GR 3.456.2
GR 4.244.3
( 1)k
3
k 2 k 5
6
.2994647090064681986...
3
e e 3
1 e
cosh k
1/ e
cosh 1
8 .29946505124451516171...
e e e
cosh(sinh 1)
2
k!
k 0
.29944356942685078...
2 .2998054391128603133...
3 1
log1 x
0
.299875433839200776952...
2
dx
1
G 1 log 2
48 3 3
4
2
2
5 .29991625085634987194...
2
arctan 2 x
1 x 4 dx
3
1 1
3 1
1
2
( , ) 1
3 3
2 3
3
3
J132
GR 1.471.2
.300000000000000000000 =
=
1 .30031286185924454169...
1
cos
2
.30051422578989857135...
(1) e
k ( 2 k 1) log 3
J943
k 0
cos x
dx
e3 x
0
1 4i
2
(k ) 0 (k )
k 1
.300462606288665774427...
sin 3 x
0 e x dx
.300428331753546243129...
3
1
10
2 cosh log 3
2k 1
cos
1 4i
2
1 k
k 1
2
1
2
(k 1)
13
12
2
(3)
1
1
2 (3) log 3 2 2 Li2 log 2 2 Li3
2
2
3
4
[Ramanujan] Berndt Ch. 9
=
log 2 x
1 x 3 x dx
log 2 x
1 ( x 1) x( x 1) dx
2
=
log 2 x
1 x 1 dx
[Ramanujan] Berndt Ch. 9
1
=
x log 2 x
0 1 x 2 dx
=
x 2 dx
0 e2 x 1
=
log 2 (1 x)
0 x dx
=
log 2 (1 x )
0 x dx
1
1
log(1 x 2 ) log x
dx
0
x
1
/2
=
log sin x
2
tan x dx
0
2 .300674528725270487137...
2 ( 3)
.300827687346536407216...
2
k 1
1 .3010141145324885742...
.301029995663981195214...
k
Hk
(2 k 1)
(3)( 4)
log10 2
0 (k )
42 .30104750373350806686...
k!
k 1
4(3)
90
k 1
1 ( k )
k
4
k 1
1 ( k )
k3
HW Thm. 290
.3010931726...
p k prime
.30116867893975678925...
1
pk pk 1
sin 1 cos1
=
(1) k 1
k 1 ( 2k 1)!( 2k 1)
=
1 dx
0 x sin x dx 1 sin x x3
(1) k 1 (2k 1)
(2k )!
k 1
1
e
=
1 .301225428913118242223...
=
1 .30129028456857300855...
log x sin log x
dx
x
1
90
2
10800 (4) 6 (2) 60 4 (4) 360 2 (2) (4)
10
(k ) log 2 k
k 1
k2
1 x 4
dx
2 1 log
1 x2
0
=
(x
2
0
2 .3012989023072948735...
log1 x
0
2
1
dx
1
dx
1 / 2)( x 2 1)
Re{sin(log i )} i cos (1 i )
2
2
1
= 1
2
(2 k 1)
k 0
.301376553376076650855...
sinh
6
2
9
1
x
2
arcsin x dx
0
sin 2
2k k 2
(1) k 1
( 2 k )!( k 1)
2
k 1
1
(k )
0k
.301733853597972457948... k
5
k 1 5 1
k 1
.301544001363391640157...
1
.301737240203145494461...
log 2 3
4
1 .301760336046015099876...
1 .3018463986037126778...
log(1 2 x )
dx
1
2
x
0
1
2 arctan e 2
2
arcsin tanh 2 gd 2
e e
(2 k )
1
( 1) k 1
log 1 2
k
k
2
k 1
k 1
sinh
= log
log 1 i log 1 i
log
GR 4.523.1
4k
11 .30192195213633049636... I 0 ( 4 )
2
k 0 ( k !)
2 k 1 k
40
.301996410804989806545... 8
k 16k
3 3
k 1
.302291222970795777178...
.30229989403903630843...
cos( 2 k 1)
2k 1
k 1
k
(1)
6 3 k 0 (3k 1)(3k 3)
1
1
log cot
2
2
=
dx
0 x 3 8
=
3
x dx
1 x
12
0
x dx
1 x 4 x 2 1
GR 1.442.2
(x
2
dx
3) 2
7
x dx
12
0 1 x
H k (k ) 1
2k
k 2
.30240035386897389123...
2 .302585092994045684018...
5 .30263321633763963143...
=
log10
1
3
56 (3) 2 3 ( 2 ) 2
3 3
4
k 0 (k 4 )
(k 1)(k 2) (k )
4 k 3
k 3
.30276089444130022385...
(2 x) 1 dx
1
1 .30292004734231464290...
.303150275147523568676...
.303265329856316711802...
3 .30326599919412410519...
.303301072125612324873...
=
2
12
1
log( x / 2 )
dx
1 x
0
log 2
2
2
log
3
(1) k 1
k
2 e
k 1 k ! 2
2 3
csc sec
5 5
2
5
5
1
cos1
cos1
sin 1
1 cos
cosh
sinh
2
2
2
sin 1
cos
2
cos k
1
(1) k 1
(cos 1) / 2
e
k !2k
k 1
1 .303324170670084184712...
H (k ) 1
k 2
.303394881754352755635...
( 2)
k
1 x 2 x 2 dx
(log 4 1) log 2
4
x (1 x 2 ) 2
0
.30342106428050762292...
1
(k 1)k (k 1) log k
k 2
1 .303497944016070234172...
GR 4.298.19
1
log 1 k !
k 1
8 2 log 2
(1) k 1
.30378945806558801568...
9 3
3
k 1 k (k 3 / 2)
5
(2 k ) 1
.303826933784633913104...
coth
( 1) k 1
2k
2 2
2 6
k 1
1
=
2
k 2 2k 1
1
1
.30389379330748584659... 2 Li3 Li3
2
3
.3039485149055946998...
.30396355092701331433...
.30410500345454707706...
.304186489039561045624...
.304349609021883684177...
=
2 .304632878711566539649...
2 .304988258242580902703...
2
12
3
14
27
2
1
log 2 x
0 ( x 2)( x 3) dx
1
x
2
arcsin 2 x dx
0
( k 12 )!
3 2 2
k
k 1 ( k 1)! 2
1
log 2
2
24
4
k 1 16k 12 k
1
1
sinh
log (2 i ) (2 i )
log
2
2
2
k
(
2
)
1
( 1) k 1
2k
k 1
1
csc 2 1 2
k 2k 1
2
k 1
3
(1) k 1 k 2
2
3
8
2
k 1 ( k 1 / 4 )
3
.305232894324563360615...
.3053218647257396717...
log 2 2 log 2 2
G
3
log (x ) dx
2
GR 6.441.1
.305490036930133642027...
.305514069416909279097...
2 log 2 2
k
k !( k 7)
5040 1854e
k 1
3
2 log 2 2
2 log 2 1 2 log 2 (3)
3
6
H ( 2) k
= k
k 1 2 ( k 2)
1
.305548232301482856123...
k 3 k ! 2
3 2
1
.30562962705065479621...
arcsin
1
2
3
1
.305808077190268473430... 3
2
k 2 k log k
.305986696230598506245...
.306018059984358556256...
138
451
6
.306119389040098524366...
1 .30619332493997485204...
13 .30625662804500320717...
.306354175616294411282...
1 .306562964876376527857...
=
.306563211820816809902...
8 .3066238629180748526...
.306634521423027913862...
3
( 2 k )!!
(2 k 1)!!3 (2 k 1)
k 1
k
3
Fk
k
k 1 6
1
2 ( 3) log(1 x ) log 2 x dx
0
(k 2) 1
k 1
.30613305077076348915...
2
e1/ k
3
k 2 k
( k 1)!
4 3 1
27
2
(x
2
0
dx
x 1) 3
3 sin 2 3 cos 2
3
( 1) k 4 k k 3
J 3/ 2 ( 2 )
4
2
2
( 2 k )!
k 1
k
k
128
( 1) (3 1)( k 1)
G
( k 2)
9
4k
k 1
1 3
4 4
x e
2 x4
dx
0
2 2
cos sin
2
8
8
k
( 1)
1
4k 2
k 0
2
1 J0
3
(1) k 1
2 k
k 1 ( k !) 3
69
1
1
79 4 15 ( 3)
1215
3
2 sin
5
8
=
log 3 x
dx
x3 x2 x
1
.30683697542290869392...
.306852819440054690583...
4
coth
2
1 log 2
4
csch 2
( 1)
k
k 2
k
1
2
(k
k 1
( 1)
k
k 2
2
1
1) 2
(k )
2k
k 1
k
k
k 2
1
k
k 1 2 k ( k 1)
1
(1) k 1
2
3
k 1 k ( 4 k 2 )
k 1 (2k ) 2k
Hk
k 1 ( 2k 1)( 2k 3)
=
=
=
=
2
=
=
dx
1 x 3 x 2
1
2
k 1 k k
x
1
J145
J149
dx
x
2
dx
x
1
e e
x
0
=
x
e2 x dx
2x
0 e e x x
=
(x 1)e
x
e x / 2
0
1
=
dx
x
x 1 dx
x log x log x
GR 3.438.3
GR 3.435
GR 4.283.1
0
=
xe x
e2 x 1
0
=
x
dx
log x
2
1
x2 1
GR 3.452.4
dx
GR 4.241.8
/2
=
log(sin x ) sin x dx
GR 4.384.5
0
1
1 .306852819440054690583...
2 log 2 arccos x log x dx
0
.30747679967138350672...
3 arcsinh 1 2
4
2k
( 1) k
k
k 0 4 ( 2 k 1)( 2 k 3) k
GR 4.591.2
1
=
x arcsinh x dx
0
3 ( 3) 2
1
(1) k 1
3
8
48 16
k 1 k ( k 2 )
4
.307692307692307692307692=
13
(1) k 1
1/ e
.307799372444653646135... 1 e
k
k 1 k ! e
.307654580328819552466...
log(cos 1)
sin 2 k
( 1) k 1
2
k
k 1
(1) k
.308169071115984935787... arccot 2 k 1
( 2 k 1)
k 1
.30781323519300713107...
J523
16k
e 4 e 4
2
k 0 ( 2 k )!
k 1 ( k )
.308337097266942899991... ( 1)
3k 1
k 1
2
1
( k 1) ( k )
.308425137534042456839...
2
32
2k 2
k 0 (4k 2)
k 2
27 .308232836016486629202...
cosh 4
AS 4.5.63
1
=
.30850832255367103953...
1 .3085180169126677982...
.30860900855623185640...
x log x
0 x 4 1 dx
x log x
1 x 4 1
1
arctan x
1 x2
0
I 0 (2) (1)1 (2k )!
(1) k
e2
k!
(k!)3
k 0
k 0
3
2
1 1 1
6 log 2
4
0 0 0
(1)
k 0
22
4
5
1 .308996938995747182693...
12
2k
k
x yz
dx dy dz
1 xyz
k
k
2 .308862659606131442426...
48k
k 1
(1) k / 3
=
k 0 2k 1
1
.309033126487808472317... Li2
3
2
1
48k 9
Prud. 5.1.4.5
=
1 2
1
log 3 2 log 3 log 4 4 log 2 2 2 Li2
4
2
=
1 2
3
3 log 2 3 3 log2 4 6 Li2
4
6
=
(1) k 1
k 2
k 1 3 k
Hk
k
k
4
k 1
1
=
log x
dx
0 x3
3
2
9 log 3
9
2
6
2
k 1 (k 2)
= ( 1)
3k
k 1
4
4 .309401076758503058037... 2
3
1
2 .30967037950216633419...
.30938841220604682364...
3k
k 1
3
1
k2
CFG A10
2 .30967883660676806428...
16 .309690970754271412162...
.309859339101112430184...
3 log 2
log( x 2 2)
x2 2
2 2
0
6e
1
1
2
cot
2
2 6
6
k 1 6k 1
( 2k )
k 1
6k
.30989965660362137025...
(i ) (i )
.309970597375750274693...
log 2 1 1 i
1 i
(i ) (i )
2
2
8 2
=
sin 2 x
0 ex 1 dx
.310016091825079303073...
( 1)
k 1
(2 k ) 1
k ( k 1)
k 1
( k
k 2
2
1
1) log 1 2 1
k
1
1
1
(2 log2 2 cos1) sin cos
2
2
2
k
1 .310485335489191657337... k
k 1 2 Hk
.31034129822300065748...
1 .310509699125215882302...
2
3
8
coth
=
3
3 2
csch 2
coth csch 2 2 ( 3)
8
4
(1) k (k ) (2k )
k
k 2
2
(1) k 1
2k 1
sin
2
k 1 k 1
6
7
9
k 1 k
k 1 k
3 .310914970542980894360...
(1)
(1)
e
k!
k!
k 1
k 1
159
1
.311001742407005668121...
cot 14 2
1820 2 14
k 1 k 8k 2
1 .3110287771460599052...
1
1
2 , the lemniscate constant
4 2 4
=
1 3 2 3
2 2
4
5
4
1
2 .311350336852182164229...
k 0 k ! k !!
3
4
1
1
=
/2
2 1
K
2 2
0
1 sin 2 x dx
0
dx
1 x4
2 .31145469958184343582...
2
1
log x log 1 2 2 dx
e x
e
0
(1)k 1
( 2k )
k 1
4k
1
.311612620070115256697...
log 1 2
2
arcsinh1
4
2 2
sinh
1
.311696880108669610301...
csch 2 sinh 2
2
8cosh 1
16
=
.31174142278816155776...
4k 2
2
2
k 1 ( 4k 1)
1
sin 1
cos1
cos1
sin 1
sin
cosh
sinh
(cos 1) / 2 sin
2
2
2
2
e
( 1) k 1 sin k
=
k !2 k
k 1
1
(1 e) Ei (1) e Ei (1)
e
.311770492301365488...
1 i 3
2i
Li2
3 3i
2
.311821131864326983238...
(1)
k 1
k 1
Hk
(k 1)!
1 i 3
3 i
Li2
3 3i
2
5 2 1 (1) 1
x log x
dx
3
36
6
1 x x2
0
1
=
=
e (e
x
0
.31182733772005388216...
8 .31187288206608164149...
7
x
x
dx
e x 1)
tanh
7
7
2
7
8
GR 4.233.4
GR 3.418.2
k
k 1
2
1
5k 8
.311993314369948002...
1 .312371838687628161
log 2 2
3 log 2
1
log 2
2
2
2
( 1) k k ( k 1)
=
k 1
k 1
1920
1
1
1
=
1 1 1
1463
7 11 19
1
1
1
1
2 1 2 1 2 1 2 1 2
3
7 11 19
=
[Ramanujan] Berndt Ch. 22
3 ( 3)
2 4 log 2 8
4
6
(1) k 1
.312382639940836992172...
3
k 1 k ( 2 k 1)
2k
2 .3124329444966854611... 2 HypPFQ{1,1,1,1},{2,2,2,2,},2
3
k 1 k!k
5
k
1
1
.312500000000000000000 =
k 3
1
2 2
3
)
16
k 1 5
k 2 k 2k k
k 2 k (1 k
2
=
k (2k 1) 1
k 1
2 .3126789504275163185...
(2 k )
2
k
k 1
k 1
( 1)
.312769582219941460697...
k 1 k ! ( k 1)
k 1
.312821376456508281708...
2
e3
1
2
Li k
2
cos 3x
dx
(1 x 2 ) 2
i
i
( 2k ) 1
log 2
2
(1) k 1
2k k
2
2
k 1
1 log 2
arctan x
.312941524372491884969...
dx
x4
12 6
6
1
.31284118498645851249...
2
2
Bk 2 k
.313035285499331303636... (coth 1) 1 2
2k
e 1
k 1 e
k 0 k !
2
k
4 B2 k
e 1
1 .313035285499331303636... coth 1 2
i cot i
e 1
k 0 ( 2 k )!
2
k
2e
B 2
( 1) k 1 k
2 .313035285499331303636...
2
e 1
k!
k 0
.313165880450868375872...
arccsch
AS 4.5.67
.31321412527066138178...
log 3
4
arctan (3k
k 1
k
3
1
1
1
e
e
e
log(1 e)
.313298542511547496908...
( 3) 1
(2) 1
.3133285343288750628...
=
.3134363430819095293...
32
=
k 1
ek
( 1) k 1
ek k
k 1
1
(1) k 1 (k 12 )!
4 2 k 1
(k 1)!
2 log 2
2
x
3
3
log 3
2
2
6k
k 1
1
k
2
log(1 x )
dx
x2
0
6
1
i
i
1
1 1 3
2
3
3
k 1 3k k
(2k 1)
1 i
i
=
(1) k 1
2 3
3k
3
k 1
(2)
.313666127079253925969... log
( 3)
.313535532949589876285...
xe 2 tan
1
(k )
2 cos 2 x
dx
0
cos 4 xcot x
23
1
1
2e
4
k 1 k !( k 4 )
k 1 ( k 1)! 3k !
=
.313513747770728380036...
1 1
2
1
I (2) 2 I1 (2)
1 F1 , 3, 4
2 0
2 2
3e
2e
1 2k
(1) k
(k 2)! k
k 0
/2
1
2 2
k 1 k e ke
dx
1
1 .313261687518222834049...
.31330685966024952260...
x
1
10k
2 )( 9 k 2 1)
1
5
1
.313261687518222834049... log 1
e
=
2
[Ramanujan] Berndt Ch. 2
k 1
.313248314656602053118...
.313232103973115614670...
GR 3.964.2
(1) k 1
.313707199711785966821...
k
k 1 k ! 2 ( 2 k 1)
30 .3137990863619991972...
Titchmarsh 14.32.3
1
1
1
16, 3,
2
4
0
log 2 x
dx
x 4 1 / 16
3
2
1
hg hg
3
3
3 2
4
H ( k 1) 1
1
2 .31381006997532558873...
2 log 2 k
2 3
k
72
2k 1 k
k 1
2
( 2 ) 2 ( 2 )
( k ) log k
.3139018813067524238...
3
2
(2) (2)
k2
k 1
.313799364234217850594...
1 .31413511119186663685...
.314159265358979323846...
3 2 4
4
16
x3
0 sinh3 x dx
10
7129
H9
1
.314329805996472663139...
2
22680
9
k 1 k 9k
2
1036
1 .3145763107479915715...
H ( 2 ) 5/ 2
225
3
( 3)
H k
.31461326649400975195... k
k 1 2 k ( k 1)
( k 1)
2 .31462919078223930970... e e Ei ( 1) 1
k 1 ( k 1)!
(1) k 1 H ( 3) k
.31506522977259791641...
2k
k 1
( 1) k 1
1
1
.315121018556805747334...
sin
k
3
3
k 1 3 ( 2 k 1)!
3
2 2
1
1 .31521355573534521931...
k
k 1 (1 5 )
2 .31515737339411700043...
.315236751687193398061...
2 .315239207248862830396...
e
0
x dx
1
x
e2
3
log 2 x
dx
log 2 2
x 4
16 4
0
.315275214363904697922...
i (1 / 2) 1
(1)
k 1
2
k 1
k
( 3k )
2k
2k 3
3
2
k 1 ( 2 k 1)
.31546487678572871855...
log9 2
3
1
.315496761830453469039...
.31559503344046037327...
.31571845205389007685...
dx
3 x
3 3i 6 37 / 6 i 32 / 3
3 3i 6 37 / 6 i 32 / 3
6 35/ 6
6
6
6 35/ 6
3
1
5/ 6 1 1 / 3
3 3
3
(3k )
1
(1) k 1 k
3
3
k 1 3k 1
k 1
=
x
=
9 e 15
erfi 1
8
16
(k )
k 2
k
p (k )
k 2
k
k
k !(2k 5)
k 1
log (k )
1 1
log 1
p p
p prime
6
19
1
tan x dx
.3158473598363041129...
ex
0
.315789473684210526
=
1
csc 2 sin 3
6
.315888571364487820746...
1 k
k 3
2
1
2k 1
1
.3160073586544089317...
log(1 log(1 x)) dx
0
.316060279414278839202...
1
1
2 2e
1
xe
x2
dx
0
1 dx 1
1 dx
1 cosh x 2 x5 2 1 cosh x x3
1/ 4
1 .316074012952492460819... 3
=
10
1
sin arctan
10
3
log 2
log 3
.3162417889176087212... log 2 (log 3
) log 3(
)
2
2
k (k )
= ( 1)
2k k
k 1
1
log( k 1)
3 x dx
.316281418603112960885... log
2 log x
3k k
k 1
0
.3162277660168379332...
GR 4.221.3
Hk
(k 1) 2
k 1
( 2k )
(4k 2)
1
.31642150902189314370... k k
4k 2
2
1
k 1 2
k 1 4 1
k 1 4
k2
1
.3165164694380020839...
I 0 (1)
2 k
4
k 1 ( k !) 4
.316302575782329983254...
3 (3) 2 (2)
k
2
1
6 .31656383902767884872...
Ei ( e) Ei (1)
e
ex
dx
0
3 .316624790355399849115...
11
2k 1
2 (2 log 2 log(2 2 ) k
k 1 k 8 k
( 2 k 1)!!
=
k
k 1 ( 2 k )! 2 k
.316694367640749877787...
.316737643877378685674...
.316792763484165509320...
1 .316957896924816708625...
.3171338092998413134...
=
5 .317361552716548081895...
1
1
3
3 3e
e
dx
x
4
1
cosh 1 3 sinh 1
e
1
k4
16
8 16e
k 1 ( 2 k 1)!
1
arccosh 2 2 arcsinh
log 2 3
2
3 1
log
3 1
( 1) k ( k )
1 2( 1) log 2 log 2 2
k 1 k ( k 1)
3
.317418282448647644165...
13 (3)
2 3
3 3
28
8
1
(k 2 / 3)
k 1
3
(1) k 1
.317430549669142228460... 1
2 2
2 sinh / 2
k 1 4k 1
log 2 x
13 2 11
1 .31745176555867314275...
log 2
dx
( x 1)5
48 24 12
0
3
3
3 / 2
111 .317778489856226026841... e
cosh
sinh
i 3i
2
2
7 4
log 3 x
x3
.317803023016524494541... 6
dx
3
0 ex (ex 1) dx
120
x x2
1
1
.31783724519578224472...
3 2
1 .3179021514544038949...
1
k 1 k ! k
eEi(1)
k Hk
(k 1)!
k 1
e
1
1
=
log log x dx e x log x dx
(
k
)!
k
!
1
k 1
1
0
1
1
1
2 F1 i ,1,1 i , 2 F1 i ,1,1 i ,
2
2
2
3 log 3
2
1 .318234415786588472402...
3
2
2 3
1 .318057480653625305231...
.318309886183790671538...
1
2
k 0
k
1
( k 2 1)
GR 8.366.7
2 2 (4k )!(26390k 1103)
Ramanujan, Borwein-Devlin p. 74
9801 k 0
(k!) 4 396 4 k
(1) k (6k )!(545140134k 13591409)
Borwein-Devlin p. 74
(3k )!(k!) 3 640530 (3k 3) / 2
k 0
k (k )
J1061
k 1 ( k 1)( k 1)
12
1
=
x sin x dx
0
.318335218955105656695...
=
1
coth 3 2 csch 2 2 3 coth csch 2
8
1
i (1) (1 i ) i (1) (i i ) ( 2 ) (1 i ) ( 2 ) (1 i )
8
2
k k k 2 1
k
k 2
=
( 1)
1
2
k 2 (2 k ) (2 k 1)
k 1
k 1
2 .318390655104304125550...
cosh
5
3324
5 .318400000000000000000 =
625
(1) 7
1 .31851309234965891718...
6
37 .31851309234965891718...
.318876248690727246329...
3
4
1 (2k 1)
k 1
2
Fk 2 k 2
k
k 1 4
1
6
(1)
3
4 e2
/2
cos(2 tan x ) cos
2
0
x dx
GR 3.716.5
3 5
3 5
2
Li2
arccsch 4 2 log 5 Li2
2
2
5 5
k 1 Hk
= ( 1)
2k
k 1
k
.318904117184602840105...
(2k ) 1
.319060885420898132443...
(1)k 1
( 2 k )!
14
.319135254455177440486... 4 2 arcsinh1
3
k 1
1 .319507910772894259374...
.319737807484861943514...
1
1 cos k
k 2
1
2 (2k 5)
k
k 0
1/ 5
4
(k 1)
log 2 log 2 2
2 (k 1)
k
k 1
2 (1) k
k 2
k 1 sin k
.31987291043476806811... arccot cot 1 2 csc 1 ( 1)
2k k
k 1
log k
.32019863262852587630... 3
2
k 2 k k
.32030200927880094978...
2 log 2 2
3
.320341142512793836273...
(1)
k 2
.32042269407388092804...
1
k
log(1 3x )
dx
1 3x
0
1
(k )
k
2
1
1
2
k 1
(n 1)! (1)
n 1
Li k k
k 1
k 2
log n k
k!
k
9 .320451712281870406689...
k 1 Fk
(1) k 1
k 3
k 1 3 k
(2k ) 1
1
1
k 1
.320756476162566431408... ( 1)
sin
2 k 1
( 2 k 1)! 2
2k
k 1
k 2 k
1
i
sin k / 2
1 .320796326794896619231...
log ei / 2
k
2 4
2
k 1
1 ei / 2
sin k
i
=
log
i / 2
2
1 e
k
k 1
1
.320650948005153951322... Li3
3
1 .320807282642230228386...
2
coth 2
.32093945142341793226...
1
4
sin 2 x
dx
x
1
0
e
(2k ) (2k 2)
k 1
2
log k
k
.320987654320987654
=
.321006354171935371018...
.321027287319422150883...
.32104630796716535150...
.32111172497345558138...
1 .32130639967764964207...
26
81
2
dx
(1 x )
4
0
e1/ 4
4
k
k !4
k 1
200
623
k
Fk 4
k 1
8k
cot1
2
7 2
3 log 2 2
log 2
48
4
4
4
5
log(1 x 2 )
1 x (1 x )2 dx
2
2
3
csc
5
5
5 5
dx
1 x
5/ 2
0
4
2
4
2 log 3 ( k ) 1
3 3 3
k 2 3
1
( 1) k 1
erf
2 k 1
2
3
(2 k 1)
k 0 k !3
k
2 .321358334513407482394...
.32138852111168611157...
.321492381818579142365...
16
37
tan
2
63
37
k
k 1
2
9k
k 2
2
16
12 k
1
7k 3
(k )
log ( k )
k
1
(1) k 1
.3217505543966421934... arctan arctan 2 2 k 1
3
4 k 1 3 (2k 1)
.32166162685421011197...
k 1
2
arctan
2
k 1
(k 1)
1
arctan
2
2 ( k 1)
k 1
=
=
(1)
2
=
x
1
1 .32177644108013950981...
1 .321779532040728089443...
1 .321790572608050379284...
k 1
[Ramanujan] Berndt Ch. 2, Eq. 7.5
[Ramanujan] Berndt Ch. 2, Eq. 7.6
dx
1
2
1 1
HypPFQ{1,1,1}, ,2,
2 4
sin 1
2k
k 0
1 dx
cos x cos
2
x 1 x2
0
2 ( 3) ( 4 )
1
1
( k 1)
k
2 .32185317771930238873...
1
2
i 1 j 1 k 1
log5
.321887582486820074920...
5
2 .321928094887362347870... log 2 5
3 .321928094887362347870...
.32195680437221399043...
1 .321997842709168891477...
ijk
Fk 2
k
k 1 4 k
log 2 10
tanh
3
31
21
k
2
1
5k 7
2
3
k 1
1
csch 2 sin 1 i sin 1 i
2
kk
k 1
2k 2 2
4
2k 2 1
4
1 .32237166979136267848...
2
5 5 5 5 2 5
5/ 2
5 47 21 5 2 5 2 5 75 33 5 2 11 5 5 arc csc h2
=
Fk 2
k 1 2 k
k
2
1
1
.322467033424113218236...
2
12 2
k 2 2k
2
1
=
Li2 ( e2i ) Li2 ( e 2 i )
24 2
Hk
=
k 1 k ( k 1)( k 2 )
=
k
(1)
k 1
k 2
=
.322634...
( k ) ( k 1)
1
2
(1)
cos2 k
k2
0 (k ) (k )
k 1
k2
2 .32272613946042708519...
1 .322875655532295295251...
2
7
2
e
2
1
e
2
1
Borwein-Devlin p. 90
2
14 .32305687810051332422...
2 I 0 ( 2 )
e
2 cos x
dx
0
.32314082274133397351...
1 5 (3)
2 Li3
8
2
.323143494240176057189...
( 2 ) 2 ( 3) ( 4 )
.323283066580692942094...
( k 2 ) ( k )
k!
k 2
H ( 2) k
k
k 1 2 k ( k 1)
k2
4
k 1 ( k 1)
15
7
2
8
H log k
2 .323379732200195668706... k
k 1 k ( k 1)
3 .323350970447842551184...
1 .32338804773499197945...
9 sinh
25
.3234778813138516209...
.323712439072071081029...
6 .323732825290032637102...
=
.32378629924752936815...
3
k 1
2
k
log 2 5
8
1
k 1
1
sin 1 i sin 1 i csc 1 3 csch 1 3
4
2
k 2k 2
4
2
k 1 k 2k 2
3 .3239444327545729800...
(1)
k
1
k 0
1
k
3 log 2 log 2 ( 1) k
( k ) 1
2
k 1
k 2
1
1
sinh
AS 4.5.62
2 k 1
k 0 ( 2 k 1)!
.323409591142274671172...
1 ( k 3)
log(1 4 x )
dx
1 4x
0
1
Hk
2k
arccsc
1
.324027136831942699788...
2 cosh 1
.323946106931980719981...
(1) e
k
k 0
( 2 k 1)
J943
H H
11 (3) 17 4 49 2
4
k 2 k 3
3
360
216
9
k
k 1
2
1
cos k
1
i
i
.324137740053329817241...
Li2 ( e ) Li2 ( e ) 2
6
2 4
2
k 1 k
(2k ) 1
1
1
.32418662354114975609...
sinh
2 k 1
2k
k 1 ( 2 k 1)! 2
k 2 k
6 .324033241647430377432...
.32420742957670372545...
15
30
491
770
cot 15
k
k 1
2
GR 1.443.4
1
8k 1
log(1 x ) log x
dx
x 3/ 2
0
1
4 .324426956609796143497...
6 .324555320336758664...
1 .3246052049335865...
2 8 log 2
40 2 10
(1) k
k 2 ( k 1)( 2k 3) log k
1 .324609089252005846663...
3 .324659569140513181898...
1 .324666791899989156496...
.324686338305007385255...
=
cosh
4
1
1 4(2k 1)
k 0
2
(k ) log k
k 1
k
1/ 3
1/ 3
1 9
69
2 / 3
1 .324717957244746025961...
3 2
2
3
= the plastic constant, unique real root of x x 1 0
2 .32478477284047906124...
J1079
k2 3
3
sinh 3 csc h 2 2
2
k 0 k 2
2
( 1)
k
3
k
( 1)
k 1
6
2
12 2 (2) 144 (2) 12 2 (2) 4 StieltjesGamma(1)
6
1 27 3 69
3 2
2
t3 ( k )
k
k 1 2
0 (k )
2
k 1
k
1
1
1
jk
1 i 1 j 1 k 1 2ijk
j 1 2
k 1
.32525134178898070857...
( 1) k 1 ( k 12 )!
k ! 2k
k 1
3 6
3
.325322571142143252138...
.325440084011503774969...
4
2 1
2 (k )
2
k 1
k
1
1
e
2x
0
dx
e 2 x
1
3
.325735007935279947724...
.325921357147665220333...
4
0
arctan e2
2
8
8 .32552896478319506789...
x(1x x1) dx
(2k ) 1
k 1
( 2 k )!
1
cosh k 1
k 2
3i 7
3 i 7
7
4
Li2
2 2 log arccsc 2 2 i Li2
4
4
2
7 7
Hk
=
k 1 2k k
2
k
.326149892512184321542...
.326190726563202248839...
1 .326324405266653433549...
(k )
k 1
k!
(1)k 1 22 k 1
k 1
(2k )
( 2 k )!
1
sin k
2
k 1
.3264209744985675...
1 .32646029847617125005...
H ( 2 )1/ 6
224
128
3
1 2 k 2
k
k
16
k 0
cos 2 x
.32654323173422703585... cos 1
si (2) 2 dx
2
x
1
3
k
(k 1) 1
.32655812671825666123... 4 log 2 6 (1)
2
k 1 k 3
( 4 k 2)
k2
1 .32693107195602131840...
4
2k
k 1
k 1 2 k 1
( 3)
3 .326953110002499790192... e
2
43 .327073280914999519496...
imaginary part of zero of (z )
9 .3273790530888150456...
.32752671473888716055...
87
17
2 (2) 6 (3)
4
1
( log 2 log 3)
3
4
3 .327629490322829874733...
( 3)
.3275602576698990809...
1
log 2 x
dx
x 3 ( x 1) 2
(1)
k 1
k
(k )
2k
( 1) k 1
( 1) k 1
3 .32772475341775212043... 8G 4
2
( k 1 / 2) 2
k 1 ( k 1 / 2)
3
4
k 1
1
3
(2) 1
129 .32773993753692033334... 2 56 ( 3) 2
1 3
4
k 0 ( k 4)
1
k
.327982214284782231433... 2
log
k 1
k 2 k 1
1
.32813401447599016212... 1 (1 i ) (1 i )
2
7 .32772475341775212043...
8G
k
2
k
k 1,
Adamchik (28)
=
( 1) ( k ) (2k 1)
k
k 2
1
1
e I 0 I1 1
2
2
1
F , 2,1 1
2
( 2 k 1)!!
=
k 1 ( 2 k )!!( k 1)!
4
256
2 .328209453230011768962...
35
1 / 2
.32819182748668491245...
1 .32848684293666443478...
1 1
3 log 2
3
2
16
/2
=
0
.328621179406939023989...
.328962105860050023611...
(k )
2
k
k
3 2
2
2 log 2 2 2
3
e e
x
0
2
k 0
=
arcsin 3 x
0 x 3 dx
x 3 cos x
dx
sin 3 x
k 1
13 .32864881447509874105...
1
x dx
x
1/ 2
k
1
(k 2)2
1
(k 1)!4
k 1
k
2k
k
.328986813369645287295...
2
30
/2
1
.32923616284981706824...
2 2 log 2 7 (3) x log sin x dx
16
0
log(1 xy )
dx dy
2 2
0 0 1 x y
1 1
=
1 .329340388179137020474...
3
5
4
2
e
x2
(1 x 2 ) dx
0
1 .329396468534378841726...
log k
(k 2)(2k 3)
k 1
| ( k )|
4k
k 1
1
(1 2 2 log 2 2 log 3)
9
.32940794999406386902...
.3294846162243771650...
3 .329626035009534959936...
3 .329736267392905745890...
3log 2
2
2 2 39
3
12
(1)
k 1
k
( k )k
2k
x
1
log log dx
x
log x
0
GR 4.325.11
(1 x ) 2 log x
0 x 1 dx
1
1
( 2 k 1)
k 0
k
k
.329809295380395661449... k k
2 k
k 1 2 ( 2 1)
k 1 2 1
.329765314956699107618...
arctanh
1
1
2
k 1
2 k 1
k (k 3k 2)
2
p prime
1
p( p 1)
3 csch 2
2 2 coth
csch 2
2 coth
16
2
2
2
2
2 k 2 (2 k 2 1)
k 2 (2 k )
=
(
1
)
k
2
3
2k
k 1
k 1 ( 2 k 1)
2 1036
7
.330357756100234864973...
( 1)
2
2
225
.33031019944919003837...
(k )
.3302299...
h( k )
where h ( k )
3 .330764430653872718842... 2e Ei ( 1) 1
k 1 k !
1
1 .33080124357305868479... 1
( k 1)( k 6)
k 1
k
H
i 1
i
23 .330874490725823342456...
.330893268204054533566...
20 .33104603466475394519...
=
1 .331265897019480833836...
1 .331335363800389712798...
31 .331335637532090171911...
.331746833315620593286...
.33194832233889384697...
45 (5)
x 4 dx
log 4 x
x
2
dx
2
e 1
x x
0
1
log( e 2 )
1
cosh(1 e) sinh(1 e) cosh(1 cosh1 sinh 1)
2
1
sinh(1 cosh 1 sinh 1)
2
e 2 e e1/ e
sinh k
2e
k 1 ( k 1)!
27 log 3 27
1
Prud. 5.1.25.20
2
2
2
k 1 k (k 1 / 9)
1/ 4
2
3
3,
( k 1)( k 2)( k 3) ( k )
3k 4
k 4
1
cosh 1sin 1 cos1sinh 1
2
4
4 3
(x
2
0
(1) k 1 2 2 k 1 k
(4k )!
k 1
2 log 2
.33235580126764226213...
0
Berndt 8.6.1
( 4 k 3)
k 1
1 .33271169523087469727...
sin x sinh x dx
dx
1)( x 2 3)
3 log 3 3
1
6
2
2
( 3k 1)
k
1 .33224156980746598006...
3
k
2
k 1
k 1 2 k 1
3
( 1) k 1 ( k 12 )! 3k
.33233509704478425512...
16
( k 1)!
k 1
6 .33212750537491479243...
1
4 4k 3 1
4 2
.33302465198892947972...
log 3 2
.333177923807718674318...
2
.333333333333333333333
=
1
3
=
1
k 1 k ( 3k 3)
1
k 0 ( 3k 1)( 3k 4)
1
(2 k 1)(2k 5)
k 0
=
=
1
1
2
2
k 1 k 5k 6
k 1 4 k 4 k 3
k 1
k
( 1)
k 1 2 k
( 1)
2k
2k
k 1
k 1
k
(k )
=
3
1
k
k 1
(2k )3k
9k 1
k 1
=
2k
k 0 k !( k 2 )( k 5)
k 1
k 1
k
2k
k ( k 3)
=
( k 1)( k 2)
J1061
k 1
2
1
k ( k 1)
k 2
=
=
=
k 1
x 5 dx
ex
e
3
0
0
ex
3
1
x
2
x2
0 (1 x )4 dx
x 2 dx
4
1 (2k 1)
dx
0 (1 x )4
0
=
1
sinh x
dx
2x
0 e
2k
1
4
1
2, k
3
2 k 0 4 (k 2) k
1
= 1 2 k
2
k 1
3 log 2
( 2k ) 1
.333550707609087859998... log csc
2
2k k
2
k 1
1
.33357849190965680633...
k
( k ) 1 4 1
1 .333333333333333333333
=
.33373020883590495023...
.333850657748648636047...
.33391221206618026333...
sinh 1 sin 1
6
(1 )
2
2
12 3
1 log 2
8
12
(1) k 1
k 0 12k 8
J1061, Marsden p. 358
2 .333938385220254754686...
( k 1)
2k 1
k 1
1 .334074248618567496498...
8
4 4
arctan 2 x
1 x 2 dx
1
.334159265358993593595...
coth 5
10
50
.33432423314852208404...
3 log 2 2
G
4
16
k
2
k 0
1
25
2 4arcsinh1 6 log 2
1
=
arctan x arcsin x dx
0
2k k 2
44 .33433659358390136338... 6e
k 1 k !
log( k 2 )
2 .33443894740312597477...
k2
k 1
/2
1 .334568251529384309456... e
2
3 .334577261949681056069...
2 2
.33491542633111789724...
1
1 2k !
k 1
41
1
2
7k 2
41
k 1
e
k
.33516839399781105400...
e log( e 1) e k
e 1
k 0 e ( k 1)
.335158712773266366954...
1 .335262768854589495875...
tan
6
720
.335348484711510163377...
1
40
k
2
volume of unit sphere in R12
(2 k )
2k
1 3
1 1
1 .335382914379218353317... , ,
2 4
2 4
k 1
10 .335425560099940058492...
.335651189631042415916...
3
3
log 2 log 2
(1)
k 2
=
k 1
1 .335705707054747522239...
1
1
k 2 log1 2k
2
e2
k 1
(k )
2k 1 k
k2
k
k 1 6
.336000000000000000000 =
42
125
.336074461109355209566...
46 2 log 2
75
5
1
k (2k 5)
k 1
( 1) k 1
2
k 1 ( k 1 / 2)
(1) k 1 k
2 .33613762329112393978... 6 4G 2
3
k 1 ( k 1 / 4)
.33613762329112393978...
4 4G
log 2 k
2 .33631317605893329200...
k 2 k ( k 1)
.336409322543576932...
( k 1)
k
2 k
2
Li1
7
k 1
.336472236621212930505...
3 .33656672793314242409...
1 .3366190702415150752...
2
e
e 1
k 2
1
1
k Li 2k
2 Li3 (2)
2
(k )
2
k 1
2 log 2
3
.336945609670253572675...
.336971553884269995675...
.3370475079987656871...
3
2 .337072437550439251351...
(2k ) 1
log 2 x
0 ( x 12) dx
2 1/ k 2
e
0
(1 cos x ) 2
dx
2 sin x
k2 1
(2k )
k 1
( k 12 )!
1 )!( 3k 1)
2
(k
k 1
(2k 2)!!
k
2 4 log 2 3 log 3
k 1
.3371172055926770144...
/2
k 1 ( k 1)!
k 2
1
1
Li5 k 5
3
k 1 3 k
1
4
.33689914015761215217... 1
2 log 2
3 3
log 3 2
1
2 Li3
3
2
1/ 2 k 2
e
k2
( 2k ) 1
2k
k
4
.337162848489433839615...
8 6 2
k 1
.337187715838920906649... k
k 2 k
k 1
CFG D1
6
( 1) k 1 k ( k 12 )!( k 12 )!
( 2 k 1)!
25 5
k 1
( 1) k 1 ( k 12 )!( k 12 )!
=
2 ( 2 k 1)!
k 1
.33719110708995486687...
2
3
3
sin
1 2
2
2k
3
k 2
k
(1)
.337403922900968134662... ci (1)
ReEi (1)
k 1 ( 2k )!( 2k )
.337264799344406915731...
1 .337588512033449268883...
.337610257315336386152...
.3376952469966115444...
2
2
1
log 2
arccot x log x dx
48 4
2
0
4
21
(sin x x cos x) 2
dx
0
x9 / 2
1
2 log 1
2e
e
3
log 2
2
.33787706640934548356...
(2 k )
dx
1/ 2
x
1
(2 k ) 1
k 1
k ( k 1)
k 2 1
2
1 .33787706640934548356...
1 1 ( k 1) log 2
k
k 1 k ( k 1)
k 2
1
= log 2
2
2
1
dx
.33808124740817174589...
log 2 2 3
2 3
6
x x2
k 1 k k
1
AS 5.2.16
1 .338108062743588005178...
k 2
ppf ( k )
2k
8
.33868264216941619188... 6 e
e
.338696887338465894560...
1 dx
cosh x x
5
1
1
Bk k
2
( e 1)
k 0 k !
18 2
1
.33876648328794339088...
x log 1 log x dx
24
x
0
1
=
log( x 1) log x
dx
x3
1
2
4 k 2 3k 1
8 .338916006863867880217... 1
2 ( 3) k ( k ) 1
3
2
k 2
k 2 k ( k 1)
2
.3390469475765505037...
2 2 3
e
2
8
x 2 dx
1
x2
0
(k ) (k 2)
1
2
(k 1)
k 2
(2 k 1)
1
1
.339395839527289266398...
log 1 2
k
4 k
4j
k 1
j 1 j
.339369340124745379664...
2
16
15
1 / 2
761
1
.339732142857142857143...
2
2240
k 5 k 16
e
k 2 23k
.339785228557380654420...
8
2 k!
k 1
.339530545262710049640...
1 .339836732801696602532...
22 / 3
1 i 3
1 i 3
2/3
(1)1/ 3 2
1
2
(
)
3
21/ 3
21/ 3
22 / 3
2 22 / 3
3
=
4 (3k ) 1)
k
k
k 1
.339836909454121937096...
(k ) 1
.340211994871313585963...
.340331186244460642029...
.340430601039857489999...
2 (k )
k 1
k!
36
(2) 12( (2)) (k )klog
2
6
.340505841530123945275...
2
2
k 1
2
k
2
29
1 (1 ) 2
4 2
1
4 (2 ) g2
4
1 ( 1)
3
3
9
27
9
9
2
(k 1) (k )
3k
k 2
=
1 1 1
I1 2
k
k k
k 2
k !(k 1)!
k 2
6 .340096668892171638830...
4
4
arccsc3
.339889822998532907346...
k 2
3
log x
dx
3
1
x
1
2 2 2
4
0
x 4 (1 x) 2
dx
x8 1
1
(3k 1)
k 1
2
.340530528544255268456...
(k ) 1
k !(k 1)
k 2
.340791130856250752478...
.34084505690810466423...
1
Li4
3
1
2
1 .340916071192457653485...
1 .340999646796787694775...
.34110890264882949616...
.341173496088356300777...
1
3 k
k
k 1
4
( 1) k 1 ( k 12 )! ( 1) k
( k 1)!
k 1
1
Fk
k 1
2
k
1 5 3
3
27
1
2k
k 1
k 1
( 1) k 1 ( k 12 )! 2 k
( k 1)!
27
k 1
k 4
9
(1) k
k
16 e
k 0 k !2
.34121287131515428207...
(k 1) 1 log k
k 1
5
1 .341487257250917179757...
2
k
k 1
1
5/ 2
1
( 1) k 1 ( 3k 3)
6
3
2k
k 1 2 k k
k 1
.34153172745006491290...
4 .341607527349605956178...
6
1 .341640786499873817846...
3
5
1 1 / 3
2 (2) 2 / 3 4 / 3
1
1/ 3 2 / 3
2
.34176364520545358529...
(1) 2 (3i 3 )
3 1
2
2
6 3
3 3i
1
2 3 (3) 22 / 3 1 / 3
6 3
2
1
( 1) k 1 ( 4 k 2)
=
6
2
2k
k 1 2 k k
k 1
H
(1) k 1 H k
2
.34201401950591179357...
log 2 2 k k
12
k 1 2 k ( k 1)
k 1 k ( k 1)
80 .34214769275067096371...
4e 3
3k ( k 1)
k!
k 0
GR 1.212
log ( k )
k
k 2
.342192383062178516199...
1 .342464048323863395382...
J
k 0
2 .34253190155708315506...
k
(1)
e e
k ( 3k 1)
2k 4
3
2
2k
k 1
k 1 ( 2 k 1)
( 4 k 1)
1
5
k
4
k 1
k 1 4 k k
1
1
i
1
i
1
1
1
1
4
2
2
2
2
2 .342593808906333507124...
.3426927443728117484...
=
945
11
2
32
52 .34277778455352018115...
.34294744981683147519...
3 G 3 3 2 log 2 105 (3)
4
64
32
64
1
arctan 3 x
0 x 2 dx
/4
0
.343120541319968189938...
x3
dx
(sin x) 2
8 log 2 ( 3) 4
4k
k 1
2 .343145750507619804793...
8 4 2
1 .34327803741968934237...
3152
96 (3)
27
.34337796155642703283...
sin x
(x 1)
2
5
1
k3
1
log 2 x
0 1 x1/ 4 dx
dx
0
(1) k 1
1 log 2
12
12 3 4
k 0 12k 4
.3433876819728560451...
(1) k
log3 x cos log x
2
dx
x
k 0 ( 2k )!( k 2)
1
.343476316712196629069...
1 e e
( 1)k e k
e
k 0 ( k 1)!
1
k 1
3
k 1 2
2
74
9 ( 3)
12 log 2
2
120
2
.343603799420667640923...
1 .3436734331817690185...
24 .3440214084656728122...
12 6 cos1 10 sin 1
e
1
=
1
log 1 log 3 x dx
x
0
k 3 ( k )
k!
k 2
2
11
.34460765191237177512...
18 54
H ( 3) k
.34461519439543107372...
k
k 1 4
16 .344223744208892043616...
2 .34468400875238710966...
.344684541646987370476...
k
k 1
3
1
3k 2
1
1
e erfi
4
e
265e 720
erfi e
e
cosh k
k !(2k 1)
k 0
k
k !(k 6)
k 1
2
.344740160430584717432...
5 .3447966605779755671...
2
2
2 1
2
cos x
cos x dx
0
1 4
csc
5 5
5
=
log1 x dx
5
0
.34509711176078574369...
1/ 4
4e
xe
x2
sin x dx
0
9 sinh 4
256
.3451605044614433513...
1 4
1190000 k 5
k
sin 1 cos1
k2
( 1) k
4
( 2 k )!
k 1
1 e / 2 1/ 2 e
sinh k
1 .345452103219624168597...
e e
k
2
k 0 k !2
.34544332266900905601...
.345471517734513754249...
( (k ) 1)
2
log k
k 2
1
(2 k ) 1
1
.345506031655163187271...
cot
2
k
2 2 2
2
2
k 1
k 2 2k 1
1
(2 k )
1
1 .345506031655163187271...
cot
k 2
2 2 2
2
2
k 1
k 1 2 k 1
1 .3455732635381379259...
x( x 1) (2 x) 1 dx
1
/2
.345654901949164100392...
log 2 2 G
0
1
=
1
3
k2
k 1
.3457458387231644802...
GR 6.142
( 1) k 2 k 1
k
k 0 ( k 1)!
1
1
log 2 Ei
2
e
.346101661375621190852...
2
arcsin x
dx
1 x
0
x
1 I 0 ( 2 )
2
2e 2
.345814317225052656510...
1
dx
K (x ) 2
0
.345729840840857670674...
x cos x
dx
1 sin x
erfi
1
3
(1)
k 1
k 1
Hk
k !2k
1
(2 k 1)
k !3
2 k 1
k 0
2 x
0 x dx
1
1 .34610229327379490401...
1 .346217984368230168984...
( 1) 3/ 4 sin ( 1)1/ 4 ( 1)1/ 4 sin ( 1) 3/ 4
5
1
1
tan
2
2
5
5
k 1 k 5k 5
(2)
(k ) log k
.346494734701802213346...
2
( 2)
k2
k 2
.346250624110635744578...
3
4
(1) k k
5
erfi1
.34654697521433430672...
1F1 2, , 1
3
2e
2
k 0 (k 12 )!
log 2
.34657359027997265471...
Relog(1 i) Re Li1 (i)
2
1
1
1
2 k 1
= arctanh arcsinh
AS 4.5.64, J941
3
(2k 1)
2 2
k 0 3
1 1
H Ek
= k 1 Lik
2 2
k 1 2
k 1
1
=
( 1) k
cos k / 2
k
k 0 2k 2
k 1
=
k 1
=
(2 k ) 1
2k
dx
(x 1)(x 3)
1
1
=
k 1
x
1
1
1
log 1 2
2 k 2
k
dx
x
3
x 1
dx
2
1) log x
( x 1)( x
0
1 ( k )
GR 4.267.4
=
dx
0 e2 x 1
e
0
/4
=
tan x dx
/4
0
=
(1 e
x
)
0
x dx
x2
0
1
cos x sin x
dx
cos x sin x
cos x
dx
x
1
=
( x ) sin x sin 3 x dx
GR 6.496.2
0
=
x 2 sinh x
0 cosh2 x dx
GR 3.527.14
=
3 4 sin 2 x 2
0 x sin x dx
Prud. 2.5.29.25
4
3
.346645900013298547510...
cos cos
7
14
14
k
k 1
.34700906595089537284... ( 1)
3
k 1
k 1
x 3 (1 x) 2
0 1 x 7 dx
.34720038895629346817...
2
2 log 2 2 log 2 2
2
k 1
1 .3472537527357506922...
.347296355333860697703...
240 .34729839382610925755...
1
Li1/ 2
2
2 sin
18
2
k 1
k
k
2 2 2 2...
log5 x
dx
4
( x 1)( x 1)
0
.347376444584916568018...
32 log 2
erf
k 2
2 .347560059129698730937...
[Ramanujan] Berndt Ch. 22
6
.347312547755034762174...
.347413148261512801365...
Hk
(k 2)
2 4
24 (5) 12 ( 3)
5
.347403595868883758064...
k
131
6
2
k 0
1
(k ) 1
k
log k
2k
(k 1) 1
k 1 k
k
GR 4.264.3
x4
0 (ex 1)3
1
( k 5)
.34760282551739384823...
.347654672476249243683...
=
0
i 3
21/ 3
1
( 1) 2 / /3 2 2 / 3 2 / 3
3
2
2
( 1)
k 1
k 1
.3477110463168825593...
cos2 x
dx
(2 sin x ) 2
i 3
21/ 3
1
2 21/ 3 ( 1)1/ /3 2 2 / 3 2 / 3
3
2
2
/2
4
1
3 3 2 2
2 (3k ) 1
k
k
k 2
3
2
2
(k ) (k 1) 1
k 1
3
1 .348098986099992181542...
23
2 2 4
.348300583743980317282...
2 ( 3) 16 log 2 16
3
90
1
=
5
4
k 1 2 k k
1 .348383106634907167508...
7 .3484692283495342946...
7 .348585884767866802762...
.348827861154840084214...
.34906585039886591538...
.3497621315252674525...
2
2
(1) k 1 ( k 4 )
2k
k 1
i logi
2
54 3 6
1
cot 3
3
1
Li3
3
1
2
k 1
k
3
2k
k
3
7/2
x dx
9
1 x9
0
1
( 1) k 1 ( k 1)
2
2
4k
k 1 4 k k
k 1
1
5
= hg
4
4
4
3 log 2
=
log(1 x 4 ) dx
1
0
.349785835986326773311...
p prime
1 .3498073850089500695...
Berndt ch. 31
1
3 k
k 1
tan
1
2 1
p
coth 2
1
1 1 2i 1 2i
2
4( k 1)
= 3
k 1 k 4 k
.349896163880747238828...
k
k 2
( 1)
k 1
k 1
4 k (2 k ) (2 k 1)
1 5 1 2
1 2
,1 , 0,1
2 3 3 3
3 3
.34994687584786875475...
2
k
( k ) 1
1
1
e
0
x3
dx
.350000000000000000000 =
7
20
.350183865439569608867...
1
2k
1 2
k 0
/4
cos2 x
1
1
dx
arctan
2
cos
x
4
1
2
2
0
| ( 2 k )|
.35024515950787342130... k
k 1 4 1
2
log 2 log 3
x dx
.35024690611433312967...
3
x 1
3
6
6 3
1
.35018828771389671088...
.350402387287602913765...
2 .350402387287602913765...
1
k 1 ( 2 k 1)!
2 sinh 1 2 2
e
1
1
2 sinh 1 2
e
k 1 ( 2 k 1)!
=
e
cos x
sin x dx
GR 3.915.1
0
1 .350643881047675502520...
1
E
2
141 .350655079870352238735...
52e
k 5
(2 k 1)2
4
k!
k 1 k !
k 1
Berndt 2.9.7
.350836042055995861835...
=
4 22 / 3 i 22 / 3 3
21/ 3
2/3
1/ 3
1 2 (1)
6
6
4
2
( 1)
1/ 3
(1)k 1
k 1
1 .3510284515797971427...
.351176889972281431035...
15 .351214888072621297967...
21/ 3 4 2 2 / 3 i 2 2 / 3 3
6
4
( 3k 2 )
2
k
2k
k 1
3
k 2 (2 k 1) 1
2
4
k 2
2
log 2 2
24
8
( 2 ) 6 ( 4 ) 6 ( 3)
=
k 4k 1
( k 1) 4
k 2
2
4 k 4 3k 2 1
2
3
k 2 k ( k 1)
(k 1) (k ) 1
3
k 2
1
k2
(3)
5
Berndt 9.8
.351240736552036319658...
.351278729299871853151...
4 5
dx
2
5
4x
0
k
(k 1)!2
2 e
k 0
2
4 .351286269561060410962... K
2
2
.35130998899467984127...
2k
k 1
.35144720166935875333...
16
1
K (k )
0
k
dk
k
GR 6.143
1
( 1) k 1 ( 4 k 1)
5
2k
k k 1
2 32
2
1
arcsin 2 x
dx
1 x
0
.351760582118184854439...
kHk
k 1 ( k 2 )!
4 2 e 3 e e Ei (1) 3Ei (1)
(k 1) 1
.351867223826221510414...
k 1
.351945726336114600425...
2k k
1
1
log 1
2k
k 2 k
Ek
k 1 k!
9 3 81
1 .351958911849046348014... 3
4
2
e2
(k
2
2 .352009605856259578188...
k 1
2
1
1 / 9)2
1
2 ( k )
k
2
4k
k 1 ( 4 1)k
k 1
3log3
1
1 .352081566997835463...
2
k
2
k 0 4 ( 2k 1)( 2k 3)
1
1
1
.352162954741546234686...
sinh
k
3
3
k 1 3 ( 2 k 1)!
i
i
( siin1) / 2
cos cos1 i ei ( i ) e
.35225012976588843278... 2 e
2
.3520561937363814016...
24 .352272758500609309110...
4
4
1 .352314016054543571075...
.352416958458576171524...
.35248587146747709353...
9 (3)
8
x3
0 cosh 2 x dx
1
SinhIntegral (3)
3
2
28
1 dx
2 3
x
sinh x
1
( 1) k
.352513421777618997471... arccot e
arctan e 2 k 1
(2 k 1)
2
k0 e
=
e
1
1 .352592294195119116937...
.35263828675117426574...
x
dx
e x
1 2
e Ei (2) log 2 1
2
1
1
e Ei (1) Ei (2)
2e
2k k
2
k 0 k !( k 1)
1
dx
e (1 x)
x
2
0
2 .352645259278140528155...
2 .352694261688669518514...
.352809282429438776716...
.35283402861563771915...
2 .35289835619154339918...
1 .352904042138922739395...
.3529411764705882
=
.35323671854995984544...
k3
54 19 e
k 1 k !( k 3)
2
(1) k 1
6 32 2
3
2
k 1 (k 1 / 4 )
(1) k ( k )
k
k 2 2 ( k 1)
( 1) k
k3
k
J 2 ( 2)
( 1)
( k !) 2
k 0 k !( k 2)!
k 0
( k 1)
1
1
Li2
2
k
k
k 1
k 1 k
2
H
5 ( 4 )
1
5 ( 4 ) 2 ( 2 ) 3k
72
4
2
k 1 k
6
17
2
k
1 p
1 1
p prime
k 1
LY 6.117
Berndt 9.9.5
probability that two large integer matrices have relatively prime
determinants
Vardi 174
.35326483790071991429...
2
1
( J 0 (1) cos1) sin x arcsin x dx
0
( 1)k 1 k 2
2k 1
k 1
.3533316443238137931...
1
.35349680070142205547...
x
1/ x
dx
0
1 .353540950076501665721...
.353546048172969039851...
( 3) ( 2 )
cos1 sin 1
2e
e
1
x sin x
dx
ex
.35355339059327376220...
.353658182777093571954...
.35382477486069457290...
3
2
8
sin sin
8
8
4
8
2
1
coth
4 2
6
2
log
csc
1
4
2
k 1 k k
x
1
4
dx
x2
( 2k )
5k k
1
1
.353939237813914641441... log( e 1) 1 2 Li2 2 Li3 2 ( 3)
e
e
1
=
5
k 1
Bk
k !(k 2)
k 0
2
x dx
x
1
e
0
5
2
3
(4 k )
1
.35417288226859797042...
4
k
4
k 1
k 1 4 k 1
1
coth
=
cot
2 4 2
2
2
k (k )
.354208311324197481258... ( 1)
k !k
k 2
1 .354117939426400416945...
3 7
1
.35429350648514965503...
1 i 3 1 (1)1 / 3 22 / 3 1 i 3 1 (2) 2 / 3 2 1 22 / 3
1/ 3
12 2
1
= 3
k 1 k 4
.354248688935409409498...
2
1
1
2 3
log k
arctanh
3
3
3
k 1 3 k ( 2k 1)
2 k ( 1) k 1
1 1
.35496472955084993189... 1
I0
e 2 k 1 k k !4 k
.354880888192781965553...
.35497979441174721069...
2
2 1 log
2
1 2
1
arctan x arccos x dx
0
2 (2) Li2 e Li2 e 2i
1
4k 1
=
2
2
2
k 1 k ( k 1)
k 1 2k ( 2k 1)
1
(
k
2
)
1
(1) k (k ) (k 1)
= 3
2
k 2 k k
k 1
k 2
( 1) k k ( k 1)
k 1
= ( 1) k ( k 2)
2k
k 1
k 2
.355065933151773563528...
2i
1
=
log x log(1 x ) dx
GR 4.221.1
0
.355137311061467219091...
4 .355172180607204261001...
7 4
1920
log 3 x
1 x 3 x dx
2 log 2
=
x dx
GR 3.452.1
ex 1
0
=
log( x 2 9)
0 x 2 1 dx
=
x sin x dx
1 cos x
GR 3.791.10
0
2
=
x
log sin dx
2
0
=
log 2 (1 cos x ) dx
GR 4.224.12
0
/2
=
log (cos
2
0
1 .3551733511720076359...
.355270114150599825857...
.35527011687405802983...
5
.355379722375070811280...
.3557217094508993824...
.35577115871451113665...
1 .35590967386347938035...
3 1
6 2
3
log
2
x ) dx
GR 4.226.1
dx
1 x
12 / 5
0
(2 k ) 1
k 1
k 1
( 3) ( 2)
3
tanh
1
k 2 log 1 2 1
k
k 2
3
2
k
k 1
5
1
k4 k3
(k!) (2k )
(2k )!
k 1
.3553358665526914273...
2
2
1 2 2 / 3 2 2 1/ 3
3
e
e
cos 1/ 3
3
3
2
(6)
(3)
(3)
1
4
k 2 k 13
1
1 k
4
k 1
(1) k 4 k
k 0 ( 3k )!
.3560959957811571219...
coth k 1
k 1
2 .356194490192344928847...
=
1
3
arccot(1) arctan 2 arctan 2
4
7
2
arctan 2
k
k 1
K Ex. 102
[Ramanujan] Berndt Ch. 2
=
.356207187108022176514...
.356344287479823877805...
.356395048612456272216...
.356413814402934681864...
dx
2x 2
0
log 7 2
1
(2k )
coth (1) k 1
4
2 2
4k
k 1
k
1
3 1
F
2
,
2
,
,
2 1
4
2 8 k 1 2k k
2
k
(k )
k
k 1 4
x
2
4k
k 1
1
2
1
.3565870639063299275...
.356870185443643475892...
(1) k 2
( 12 )
1
3
( 2 3 )( 16 ) k 1
4 1
Li
3 2 4
2
.356892371084866755384...
1
1
H (2)k
k
k
3 k 0 4 ( k 1) 2
k 1 4
dx
( x)
1
.3571428571428571428
=
5
14
.35738497664673044651...
1 .3574072890240502108...
3
k 1
. 35776388450028050232...
6 .3578307026347737355...
2 1 1
3
2
e
0
x dx
x3
1
2
k
1
k
6G 1
4
2
2k
1
k
k 0 k 16 ( 2k 1)( 2k 3)
3 3
27 log 3
24 log 2
2
2
1
=
1
1
k 0 ( k 1)( k 2 )( k 3 )
J1028
.357907384065669296994...
1
2
1 cot 1
k 1
=
k 0
.358145824525628472970...
.358187786013244017743...
1 .358212161001078455012...
k
sin
k4
k 0 ( k 3)!
2
1 e
2
2
sinh 1
e
sin(2 tan x) cos x
61
128
7
4 .358830714150528961342...
3
(k )
k 2
.358832038292189299797...
=
sin( 2 tan x)
0
dx
x
/2
sin(2 tan x) cot x dx
0
6
GR 3.523.9
3
8k
19
1 2 / 3
1
1 / 3 2 / 3
1 i 3 1 (1) 2
1 i 3 1 2 1 2
1/ 3
2
12 2
4k
k 1
k
3
1
5 .35905348274329944827...
17 4 2
2 (3)
360
6
1 .3590982771354826464...
e
dx
x
x
0
e
0
1 .359140914229522617680...
1 x
xe dx
2
=
0
=
k 1
H k H k 1
k2
e
k
1
2
k 1 k !( 2 k 4)
e
k
k ( k 1)
2
2k !
k 1 ( 2 k 1)!
k 1
x dx
x
x
.359140914229522617680...
dx
x
0
k 1
x
cosh x dx
2 (2k )
4 .358898943540673552237...
.358987373392412508032...
1
2
k 1
0
1439 .358491362377469674739...
1 2k
=
Berndt ch. 31
195
36e
2
2
1
2k
2k
1
csc 2
tan
k
1
dx
e (1 x ) 3
0
x
e
=
log x
(1 log x)
2
dx
GR 4.212.7
1
.359201008345368281651...
2 .359730492414696887578...
3 ( 3) 3 ( 4 )
3/ 4
3 .35988566624317755317...
1
k 1 Fk
k 1
(k ) 1
k
1
( ) k
1
1
k!
k
k 2
k 2
sin 2 k
.359946660398295076602... arccot (2 cos 2) csc 2 k
k 1 2 k
3
34
Fk
1 .360000000000000000000 =
(1) k 1 k k
25
2
k 1
( 4 k 2) k 2
tanh (1) k
.360164879994378648165...
4
8
2
4k
k 1
k 1 4k 1
.359906901116773247398...
1 .360349523175663387946...
1 .36037328719804788553...
3
4
e
1/ k
1
(2k 1)
k 1
2
51840
77
cos
4199
2
k 1
1 ( 2 ) ( 3) ( 4 )
.360816041724199458377...
6
4
e
1 .361028100573727922821...
1
1 k (k 9)
.360553929977493959557...
.361028100573727922821...
GR 1.421
1/ 9
(1) k
k
k 0 k!2 ( k 2)
3
1
coth 2 2
4
2 2
k 1 k 4k 6
1
1
coth 2 2
4 2 2
k 1 k 2k 3
13
1
2
36
k 1 k 5k 4
49
H ( 2)3
1 .361111111111111111111 =
36
dx
2
.361328616888222584697... e Ei ( 2 ) x
e (x 2)
0
1
.361367123906707805589... arcsin
2 2
1
1
.361449081708275819112...
coth 4 2
32 8
k 1 k 16
.361111111111111111111 =
J124
3
3
kH
2 3
log
log
k k
2
2
2
k 1 3 ( k 1)
3
2
2
2
(6 ) log 2 3 log 2 2 log 3 2
5 .3616211867937175442...
(3)
2
4
4
4
2
log 3 xdx
=
e2 x
0
.361594731322498428488...
k7
441 .361656210365328128367... 162 e 1
k 1 ( k 1)!
log k
1 .3618358603536914...
n
k 2 n2 k 1
3
e 1
3k
6 .3618456410625559136...
3
k 0 ( k 1)!
1
.3618811716413163894...
2/3
12 ( 2) 2 2 / 3 ( 1)1/ 3 2 2 / 3
k3 4
k3
k 2
2k
38
1
k
105
k 0 k 4 ( k 1)(k 4)
sin k
.3620074223642897908...
k 1 ( 2 k 1)
.3619047619047619047
=
5 3 39 (3)
(1) k 1
.36204337091135813481... 27
3
4
6 3
k 1 ( k 1 / 3)
1
1
k 1 (2 k )
.362131615407560310248... ( 1)
Li2 2
2
(2k )
4 k 1 k
k 1
1
2
.362161639609789904943... I 0
1
2 k
3
k 1 ( k !) 3
.36219564772174798450...
1 2(2
1
k
1)
( p(k ))
(1) k 1
.3623062223664980488...
, p(k) = product of the first k primes
p(k )
k 1 p ( k )
k 1
1
.362360655593222140672... k
k 2 2 (k )
k 1
5 (3) 2 log 2
(1) k 1 H ( 2) k
4
6
k (k 1)
k 1
1
.362532425370295364014...
k
k 1 ( 3k )
29
( k )
( 2 k 1) 1
.3625370065384367141...
( 1) k k 1
15 2
4
16 k
k 2
k 1
.362389718306640099275...
1
2
.362648111766062933408... erf
3
.3627598728468435701...
.3632479734471902766...
2 .363271801207354703064...
.363297732806006305...
( 1) k
2 k 1
(2 k 1)
k 0 k !3
5 3
log( x 2)
dx
x2
0
1
1
(log 2 3 log 2 2)
2
GR 4.791.6
4
3
2
3
sin ( 3 ) sinh ( 3 )
9
1 4
2
24
k
2
log(k 1)
.363340818117227199895...
ek k
k 1
1
e 1 dx
log e x log x
GR 4.221.3
0
2
1
(2 k 1)!!
.363380227632418656924... 1
k 1 ( 2 k )!! 2 k 1
2
=
(1)
=
4
11
.363715310613311323433...
1
k !k ! 1
k 2
1 .363771665261829837317...
1
F
k 1
k2
7 ( 3)
2
.36380151974304965526...
.363843197059608668147...
( 2 k 1)!!
( 4 k 1)
( 2 k )!!
3
k 1
k 1
.36363636363636363636
4
3
( 1) k k ( k 1)
k 2
17e1 / 3
9
4k
(2 k 1)
k 1
1
dx
4
4
3
x x3
k 2 k k
2
(1) k 1
2
k 1 k 1
sin x
dx
x
1
e
0
2
sin x
dx
2
x
cosh
0
1
cot 7
.364021410879050636089...
14 2 7
2
k
k3
k
k 1 ( k 1!3
1
2 2 sinh
( k )
3
.363975655751422539510... (3) ( 2) log 2
2
.363985472508933418525...
J385
k
k 1
2
1
6k 2
3
1 .3641737363436514341...
35 (3) 2 log 2 2
G
16
8
4
.364216944689173976226...
2k
k 0
2k
(k 1)
k
2
Hk
2k
k 0
(k 1)
k
1
7 .364308272367257256373... 1
(k 1)!
k 1
2 .364453892805209284597...
1
erfi 2
2 2
2 .364608154370872703765...
2 CoshIntegral (2) log 2
.36481857726926091499... 1
.36491612259500035018...
2 .36506210827596578895...
2k
k 0 k!( 2 k 1)
( 1)
k 1
4k
k 1 ( 2k )!k
( k 2)
3 67
3
e
2
2
2
log
e1 x log x dx
4
0
1 .365272118625441551877...
2 csch
1
1
2 .365272118625441551877...
1
3 (3)
.365381484700719249363...
.365540903744050319216...
26 .36557382045216025321...
.365673715554748436672...
k
k 1
2
1 i 3
1 1 i 3
Li2
Li2
27
3
2
2
3
64 8
64
log 2 x 1/ 2 Li2 ( x ) 2 dx
9
27
27
0
2
k 1
(1) k
2
2
k 0 k 1/ 4
1
1 (1) 1
3
3
2
3
3
k 1 ( 3k 1)
k 1
( 1) k ( k 1)
=
3k
k 1
3 .36513890066171554308...
.3651990418090313606...
log 2
2
2
CFG A22
1 4
4
7
Root[3534848 152832#1 #13 &,2] ( 3) ( 3)
6561
9
9
=
.365746230813041821667...
1 .365746230813041821667...
log 3 x
1 x 3 1 x 3 dx
(k ) 1
(k )
1 1 1
1 log1
k k
k 2 k ( k 1)
k 2 k
k (k 1)
k 2
=
.36586384076252029575...
k 2 j 2
2 .366025403784438646764...
=
(k )
k
j
log k
k 2 k ( k 1)
1 1 1
1 1 log1
k k
k 2 k
1
k2
log
2
k
k 2 k 1
(1) k 1 (2k )
2
k 1 ( k 1)!( 2k 1)
1 .365958772478076070095...
3
3 1
cos
sin
1
1
k erf k
k 1
6
6
2
k
= 1 ( 1)
6k 3
k 1
(3k 1)
.36602661434399298363... 3k 1
1
k 1 2
1
1 ( 1) 3/ 4
3G i
.366059513169529355217...
log
2iLi2 ( 1) 3/ 4
3/ 4
4
1 ( 1)
2
96
.366204096222703230465...
log 3
3
21 / 3
313 / 6
.366210241779537772398...
.3662132299770634876...
=
.36633734902506315584...
O
H k
k
k 1 4
x
0
dx
6
3
1
2
Li2 (2) log 2 log 3 log 2 3 Li2
3
3
k 1
(1) H k
1
k 2
2k k
k 1 3 k
k 1
8k 1
2 7
3 log 2 G
2
2
4
9
k 2 k ( 4 k 1)
J1029
/4
x sec x dx
0
( k 1) ( k 1) 1
4k
k 1
=
.36651292058166432701...
log log 2
.366519142918809211154...
7
60
sin x cos x) dx
4
x6
0
371 4
.366563474449934445032... 2( 1)
Li4 ( 1) Li4 ( 1) 2 Li4 ( 1)
9720
1 ( 3) 1
log 3 x dx
( 3) 5
=
3
3
6 1 x 1
1296
2/3
8 .3666002653407554798...
138 .36669480800628662109...
3 .36670337058187066843...
.36685027506808491368...
2 .366904589024876561879...
4 .366976254815624405817...
.367011324983578937117...
2/3
1/ 3
2/3
70
1160703963
8388608
k9
k
k 1 9
( 3) 2 ( 4)
1
2 1
16
4
x arcsin
2
x dx
0
1 3
1 1
(1) k
, , 2
2k 1
2 4
0
2 4
8
2
4 log 4 (3)
k 1
.367525688683979145707... 3
k 2 k log k
.367879441171442321596...
( k )
k 1
2k
(1)k 1
(k 3)
k
(1) k k 3
k!
k 0
3
( s) 1 ds
2
1
i 2i / (1,1)
e
=
dx
x cosh x
0
4
G
3
2
k 1
2
cos k
( 3) 1
.367042715537311626967...
Li3 ( e2i ) Li3 ( e 2i )
3
k
2
4
k 1
( 2k )
(k )
.367156981956213712584... 2 k
(1) k 1 k
2 1
2 1
k 1
1 .367630801985022350791...
(1) k
k!
k 0
(1) k k 4
k!
k 0
(1) k
k 0 ( k 2)!
2k
k 1
4
1
k3
=
1
(2k 1)!(2k 3)
k 0
=
(k )
e
k 1
=
k
1
1
StirlingS1(k ,1)
k 1
k ( k e)
=
(k e 1)(k 1)
J1061
k 1
=
=
1 .368056078023647174276...
dx
1 e x
2
dx
0
1
0
1
1 dx
x sinh x dx sinh x x
2
3
3
log(1 x 2 )
0 x 2 dx
1
4 log 2 2
.368120414067783285973...
log x
( x e)
(1)
k
log ( k )
k 1
sinh 2 e 2 e 2
2k
2
2 2
k 0 ( 2 k 1)!
2
= 1 2 2
k
k 1
log 2
3
(1) k
.368325534380705489...
sech
2
3
3
2
k 2 k k
7
.368421052631578947
=
19
(2)
(k )
1 .368432777620205875737...
3
( 3)
k 1 k
1 .3682988720085906790...
2k k
k 1 ( 2 k )!
Titchmarsh 1.2.12
1
1
p ( p 1)
p prime
1 ( 2)
( 2)
.36855293158793517174... Re (i )
(1 i) ( 2 ) (1 i)
2
1
1
=
3
(k i )3
k 1 ( k i )
=
.368608550929364974778...
2
16
log 2 2 log 2 7 ( 3)
2
16
16
Hk
( 4k 2 )
k 1
GR1.411.2
2
.36873782029464990409...
.3688266114776901201...
1
3k
k 1
k!
k
1
(1 J0 (1)) sin x arccos x dx
2
0
3 3
1
coth
2
2
2
3
k 0 k 1/ 3
log 2
( k 1)
.369669299246093688523... 1
( 1) k 1
k 2
2
2
k 1
1
1
=
k log 1 1
k
k 1 2 k
4 .369280326208524790686...
.369878743412848974927...
12 .369885416851899866561...
3 3
2
6
4
k
2
( k ) 1
k 2 3
4
log 3
3
4 (3)
15
k!
2 .36998127831969604622...
k 0 S 2 ( 2k , k )
9k
k 2
2
4
6k
4
k 1 (k 1) 1
k
k 1
.37024024484653052058...
.370408163265306122449...
.3704211756339267985...
.3705093754425278059...
2 .370579559337007635161...
x 8 dx
0 1 x12
x 2 dx
1 x12
6 2
0
363
H
7
980
7
(3k )
k
k 1 3 1
1
7k
k 1
1
3k
3
k 1 ( 3 )
k
3 log 3
4
4 3
1
3 4
4
e
2
1
3
k 0
3k
1
log(1 x 6 )
dx
2
x3
k 1 6k 2 k
0
1
/2
sin
2
(2 tan x) cot 2 x dx
0
2k
3 .370580154832343626096... k
k 1 k
1
1 .37066764204583085723... 1
( k 1)( k 5)
k 1
3 .370690303601868129363...
.3708147119305699581...
sec
5
2
5
1
2
1 k
k 2
2
1
k 1
log1 4( x
0
1
2
dx
1)
GR 3.716.11
3
sinh 3
2
2 .370879845350002036348...
.37122687271077216295...
.3713340155290132347...
=
2 .3713340155290132347...
4G
2
3k k
k 1 ( 2k )!
1
x sec x dx
2
0
1
sin 2 2
k (2k ) 1
1
csc 2
2
2k
2 8
2
k 1
2k 2
2
2
k 2 ( 2k 1)
sin 2 2
1
csc2
2 8
2
k ( 2 k )
2k
k 1
=
4 .37151490659152822551...
.37156907160131848243...
=
2k 2
2
2
k 1 ( 2 k 1)
2
4
2 (3)
1
2
log 2
H k H k 2
k (k 1)
k 1
( 1) k 1 Hk 1/ 2
G
4
2k 1
k 0
k
(4 1) (2k )
2k
k 1 4 ( 2k 1)
Adamchik (25)
1
=
log(2 x)
dx
2
x
1
0
GR 4.295.13
log(1 x 2 )
dx
1 x2
0
GR 4.295.13
log cosh( x / 2)
dx
x
cosh
0
GR 4.375.1
1
=
.3716423345722667425...
=
1 ( 2 ) log 2
log 2 (1 x )
= 2
x ( x 1) 2
0
1
4 (cos 2 1) log(4 sin2 1) ( 2) sin 2
.371905215523735972523...
4
cos2 k
=
k 1 k ( k 1)
1
15 log 2 2 2 log 3 2 ( 3)
6
3
2
.37216357638560161556...
1 4 log
1
4
arccsch 2
5
5 5 5
5 5
e
erfi (1)
.3721849587240681867... 1
2
4
k 1 ( k )
.372348858075476199725... ( 1)
2k 1
k 1
.37236279102931656488...
1
k! ( 4 k
k 1
2
1)
(1) k 1
k 1 2k
k
( 2) sin 2 1 1 log csc 1 log 2 sin 2
sin( 2 k 2 )
k 1 k ( k 1)
=
.37252473265828081261...
GR 1.444.1
1/ 3
(1) 2 / 3
1 1
1
H
H 1 / 3 H 1 / 3
3 2
2
2
1
( 1) k 1 ( 3k 1)
4
2k
k 1 2 k k
k 1
2k 2
1
k
1 .372583002030479219173... 24 16 2
k 8 (k 1)
k 0
1
.372720300666013047425...
coth 2 csch 2 i (1) (1 i ) i (1) (1 i )
4
k ( k 1)
k 1
= ( 1) k ( 2 k ) ( 2 k 1) 2
2
k 1
k 2 ( k 1)
=
16 .372976195781925169357...
.3731854421538599476...
4 log 2 2
x 2 dx
ex 1
1
(k )
k
1 k
4
k 1 ( 4 1)k
k 1
1 .37328090766210649751...
3
.373663116966915687102...
GR 3.452.2
0
1 i
(1 i ) 1
(1 i )
cot 3 / 4 coth 3 / 4
2 4 2
2
2
1
( 1) k 1 ( 4 k )
=
4
2k
k 1 2 k 1
k 1
log 2
1
1
.37355072789142418039...
3
6k 1
3 3
k 1 6k 4
( 1) k
=
k 0 3k 2
1
dx
x dx
dx
= 3
3
2x
x 1
x 1
e e x
1
0
0
.37350544572552464986...
3
3/ 4
J80
K ex. 113
1
1
1
2
5
448 4 3 ( 3) 6 ( 3) 3 ( 3) 6 ( 3)
186624
6
3
3
6
=
.37382974072903473044...
log 3 x
1 x 3 x 3 dx
2k
20 8 log 2
9
3
k 4
k 0
k
1
(k 2)2
1
1
, Artin’s constant
p ( p 1)
p prime
log 3 k
( 3)
.37404368238615126287... ( 3)
k3
k 1
.37395581361920228805...
3 .37404736674013853601...
.37411695125501623006...
4G
2
4
=
0
4 2 log 2
6
/2
log 2
1
x
2
0
x2
dx
1 cos x
GR 3.791.5
1
log 1 2 dx
x
log(1 x )
dx
x4
1
2
.374125298257498094399...
( 1) k 1 k
k
k
k 1 2 ( 2 1)
.374166299392567482778...
96 58 e
1
k ! 2 ( k 4)
k
k 0
.37424376965420048658...
(1) ( )
1
(k )
k 0
1 .37427001649629550601...
1
2
2
k 2 k k
k
k 2
i 1
(1 i ) (i ) i (i )
4
1
1
coth (i ) ( i )
=
2 4
2 4
( k 1) 1
.374308622850989741676...
k2 1
k 1
=
.374487024111121494658...
.37450901996253823880...
1
3
2
k 0 k k k 1
2
e 1
2
cos1 log 2
3
1
1
1
k
2
L
16
.374693449441410693607... log
kk
11
k 1 4 k
1
1 (k )
(k )
.374751328450838658176... k
2 k 1 k (2k 1)
k 2 2 (k )
k 1 2k 1
1
1/
.37480222743935863178... e
1
k
k 0 k!
e1 /
2
2 .374820823447451897569...
7
1 .37480222743935863178...
1
x2 2
2
2
0 x 4 3x 2 4 dx
k 1 k k 44
dx
dx
x 2 x 2 2 x 2 x 1
1
i
i
.37490340686486970379... 1 2 e 2 e
2
=
=
(1)
k 1
cos(k ) (k 1) 1
k 1
1 .374925956243310054338...
1 J 0 (2 3)
(1)
k 1
k 1
3k
( k !) 2
.375000000000000000000 =
3
8
e
k 0
=
( 2 k 1) log 3
1
k ( 2 k 4)
k 1
=
1 .3750764222837193865...
log 3 x dx
1 x3
2 log 2
log 2 xdx
log 2
4 24
2
e4 x
0
1
.3751136755745319894...
2 2
dx
2
2x
0
.37517287391604427859...
=
1
Ei e i Ei ei
2
1
0,e i 0,ei
2
.375984929565308899765...
4 2
105
.376059253341609274676...
k
k 2
cos k
k 1 k!k
1 p 2
2
p 4
p prime 1 p
1
k
1
1
k
j 1 k 2
jk
.376148261725412056905...
5 5
25 11 5
5 log
log
2
2
5 1 5
1
k 1
k
1
Li1/ 2 k
4
k 1 4
log 2
2 .3763277109303385627... 2G
4
.37626599344847702381...
3
5 20
cot tan
10
5
5
( 1) k 1 (2 k 1)!!
.3764528129191954316... 2 log 1 2 2 log 2
(2 k )! k
k 1
(1) k 1 2k
=
4k k k
k 1
1 .376381920471173538207...
coth
6
5
1
2
4k 5
k 1
65
1
.376700132275158021952... 9e
48
e
k 0 ( 2k 1)!( k 3)
.376674047468581174134...
k
2
Fk Fk 1
4k k
1
1
2
arctanh
1
arcsinh1
2
2
2
( 1) k 1 ( 2 k )!!
=
( 2 k 1)!!
k 1
.376774759859769486606...
1
k
2 (2k 1)
k 1
k
1
1
2
1 .37692133029328224931... G log 2 ( x ) sin x dx
2
0
.377964473009227227217...
.37802461354736377417...
1 .37802461354736377417...
.378139567567342472088...
.378483910334091972067...
.378530017124161309882...
.378550375764186642361...
2
3
1
3
2
24 16
k 1 k ( k 2)
1
1 1
1
.377540668798145435361...
tanh (1) k 1 e k / 2
2 2
4
e 1
k 1
1
1
1
B2 k
=
2 k 1 ( 2 k 1)! 2
2 2
1 .37767936423331146049...
( 3) 4 (1) k k 2 ( k ) ( k 2 )
3
k 2
3
2
4k k 2k 1
=
k 3 ( k 1) 2
k 2
log k
.37788595863278193929... 1
k2
k 2
.377294934867740533582...
(3)
GR 6.468
7
7
e(cos1 sin 1) 3
2
e(cos1 sin 1) 1
2
2 4 log
1
13
e
log
e
coslog x dx
1
2
k 1
4 k
3
k 1 3 k
(1) k
k
k 0 2 ( k 2)
tanh
cos1
2
x coslog x dx
1
13
2
k
k 1
2 cos1 sin 1 si (1)
1
3
4
2
1
5k 3
sin x
dx
3
x
1
ci(1) sin 1 si (1) cos1
cos x
(1 x)
0
2
dx
J134
1 .378602612417434327112...
.378605489832130816595...
( 1)
k 1
k 2
.378696261703666022771...
=
Fk!Fk!
6
(k ) log3 k
1
k
k 1
7776 (2)
3
8
36 ( 3) (2)
4
k2
k 1
2
k
( k ) ( k ) 1
1295 (2) (2)
1
I 0 1 5 I 0 1 5 2 J 0 (2)
5
1
1
...
2k
22
1 e
(1) k cosh k
e e 1 / e
.379094331700329445471...
2
k!
k 0
H
3
2 1
2 .37919532168081267241... 2 log 2
2 log
2 kk 2
2
2 1
k 1 2
k
3
(1)
dx
.379347816325727458823...
log 2
3 6
2
x x3
3
k 0 k 5 / 3
1
1 .378952026600018143708...
k 1
.379349218647907817919...
k
k 1
2
2
k
k 1
3 ( 3)
2
2
3
2
log 2 6 log 2
log 2
3 24
2
4
2
1
=
arcsin x log 3 x dx
0
.379600169272667639186...
2
26
.379646336926468163793...
1
k (2k 1) log k .
k 1
.379651995080949652998...
(1) k (k ) 1
1
2
1
J
0 k
(k!) 2
k
k 2
k 1
.379879650333370492326...
3
2
1
32 40 20
.37988549304172247537...
log
=
e
0
.37989752371128314827...
3
2e
e 1
/4
0
k
cos 6 x
dx
1 sin x
( 1) (1 2 k ) (1 k )
k!
j 1
dx
1
x
3
32 16
1
x arcsin
0
3
x dx
.380770870193601660684...
(1) (k ) 1
k
2
k 2
k(k (k1))
1 .380770870193601660684...
k 2
e 1
2( e2 1)
2
.38079707797788244406...
9 .3808315196468591091...
1 .3810359531144620680...
=
2
2 k 1
k 1
0
k 2
(22 k 1) B2 k
(2 k )!
88 2 22
.38102928179240953333...
(1)k 2 (k ) 1
5 5 3 5 5 5 3 5
2
10
2
10
2
5
k 1
(1) k Fk (k ) 1
2
k 2
k 2 k ( k k 1)
1
tan
5
1
2 2 log 2 7 (3)
16
.381294821444817558571...
.38171255654242344132...
(k ) (k )
k 2
2k
x sin x
1 e
0
1 .381713265354352115152...
x
x log cos x dx
0
dx
1
( k !!)
k 1
2
(1) k / 2
k!
k 1
k 0
i
i
k 1 (2 k )
.38189099837355872866... log 1 1 ( 1)
2 2
4k k
k 1
1
= log 1
4k 2
k 1
1 .381773290676036224053...
/2
.381966011250105151795...
2 .381966011250105151795...
cos1 sin 1 (1) k
2
3 5
2
( 2k ) 2
(2k )!
( 1) k ( 2 k )!
2
k 1 ( k !) ( k 1)
7 5
1
1
4 3
2
k 0 F2k
kH
5
5
1 log k k
16
4
k 1 5
k
(1)
1
k
.382249890174222104596... k
k 2 2 2
k 2 2 2
.382232359785690548677...
GKP p. 302
2 .382380444637740041929...
( 3k 1)
k!
k 1
.382425345822619425691...
.38259785823210634567...
.382626596031170342250...
ke
k 1
1
cot
2 2 5
5
( 2k )
k 1
2 log(1 2 )
6
( 3)
1
1/ k 3
5
k
5k
k 1
1
2
1
arcsinh x
dx
x4
1
3
2 2
sin cos
4
8
8
1
1
k 1 ( k )
2
.382843018043786287416... ( 1)
2k
k
4 1
4
k 1
k 1 2
log 2 1
1 2i
1 2i
.38317658318419503472...
(i ) ( i )
2
2
2
8
.38268343236508977172...
=
.383180102968505756325...
cos2 x
0 e x 1 dx
log
.383261210898144452739...
1
(1)
k 1
k 1
1
k
k 1
2
k
( 2 k 1) 1
1 log n k
.383473719274746544956...
n
k!
n 1 n !2 k 2
log(1 x ) log x
x
0
1
.38349878283711983503...
8G 2 4 log 2 16
.38350690717842253363...
(2k ) (2k 1) 1
k 1
.383576096602374569919...
.38383838383838383838
=
.383917497444851630134...
H
4
4
log kk
3
3
k 1 4
7
18
61
cot 2 2
112 4 2
k
k 1
2
1
6k 1
(k ) 1
2
1
.383946831127345788643...
1
k
k
(2) (3)
k 1
H
.38396378122983515859... 3 k
k 2 k 1
2
1 .384161678...
2
( x) 1dx
2
2 .38423102903137172415...
1
1 k
2
k 1
.384255520734072782182...
1 k
k 1
.384373946213432915603...
.3843772320348969041...
.384488876758268690206...
1 .384569170237742574585...
.384586577443430977920...
.384615384615384615
=
=
.384654440535487702221...
Q( k )
k
k 1 2
1
2
1
log 2
(sin 2 x) log ( x) dx
2
0
GR 6.443.1
1 i
i
1
1
2
2
2
8 2
( 4 k 1)
k
=
k
4
4
k 1
k 1 4 k 1
1 .384458393024340358836...
.384418702702027416264...
2
2 2 k 1
1
2 k 1
1
k 1 2
=
7 .38483656489729528833...
.38494647276779467738...
21
2
12 log
4
3
2
k 0
1
log(1 2 )
1
3 (k 1)(k 3)
arctan x
x
0
k
1 x2
dx
1 2G 2
log 2
3
3
6 12 6
2
2
GR 4.531.12
/4
0
x2
dx
cos4 x
log 3
log x
GR 4.232.3
dx
8
8
0 ( x 3)( x 1)
1
1
1
sin cos 2 log( 2 2 cos1) (1 ) sin 2
2
2
2
sin( k 1)
GR 1.444.1
k 1 k ( k 1)
5
13
log 2 2
log3 3
2
2
(3) log 2 log 2 3
log 3
Li2 log
2
2
3
3
2
1
Li3 Li3
3
3
k 1
Hk
(1) H ( 2 ) k
k 2
2k k
k 1 3 k
k 1
2
( 2)
3
log 2 log x
2
x 2
4 2
0
/2
arcsin (sin x) / 2 sin x
Borwein-Devlin, p. 59
dx
x
4
2
sin
0
7
1
1
.3849484951257119020... e
3 k 1 k !( k 3)! k 1 ( k 1)! 2 k !
1
2/3 1
1/ 3
1/ 3
.384963873744095819376... ( 1) 4 2 i 2
3 (1)1/ 3 4 21/ 3 i 21/ 3 3
4
4
1
1
2/ 3 1 2/ 3
3 2
2
2
(3k )
.38499331087225178096...
.385061651534227425527...
2 .385098206176909244267...
3 .385137501286537721688...
.385151911060831655048...
5 .38516480713450403125...
.38533394536693817834...
.38542564304175153356...
.38594825471984105804...
1
3
2
5
arctan
3
2
x
2
2
1
x 1
3
13
6
1
1
1 i 3 1 i 3 3
3 6
k 1 k 3k
29
cos2 k
log 2 cos1 ( 1) k 1
k
k 1
i
i
i
2 e 2 e
(1) k 1 sin(k ) (k 1) 1
2
k 1
1/
1
1
.385968416452652362535... arccoth e log tanh
2
2
=
e
1
x
1 .38622692545275801365...
(1) k 1 (4k 2)
2
k 1 ( k 1)!( 2 k 1)
e
k 0
2 k 1
1
( 2 k 1)
1
2
1
2
erf k
k 1
e
x2
(1 x ) dx
0
.386294361119890618835...
dx
e x
1 .386075195716611750758...
1 (1) k
3
3
4k
k 1
k 1 4k 1
k 2 k 2
1
1
J1 2 (1) k 1 k
2 k!(k 1)
2
k 0
=
1
2 log 2 1 k
k 1 2 ( k 1)
2
k 0
k
1
(2 k 4 )
J945
=
(4k
k 1
2
1
1) k
J374, K Ex. 110d
( 1) k 1
k 1 k ( k 1)
=
=
Lk
k
k
2
k 1
=
( k 1) 1
2
k 1
=
k
(2 k 1)
k 1
4
k
( 1)
k 2
k
( k )
k
1 dx
log1 x x
1
1
=
J235, J616
2
dk
E (k ) 1 k
GR 6.150.2
0
1 .386294361119890618835...
=
=
=
=
=
=
=
3k
3
2 log 2 log 4 Li1 k
4
k 1 4 k
1
1
Hk
k
k
2
k 1 2k k
k 0 2 ( k 1)
k 1 2
(k 1)
Lik (1) Lik (1)
2k
k 1
k 2
12 k 2 1
J398
2
2
k 1 k ( 4 k 1)
1
[Ramanujan] Berndt Ch. 2, 0.1
1 2 3
k 1 8k 2 k
1
Prud. 5.1.26.10
2
k 0 ( 2 k 1)( 2k 1) 1 / 4
(2k 1)!! 2k 1
k
k 1 ( 2k )! k
k 1 k 4 k
1 n 1
x x n 1/ 2 2 x 2 n 1
GR 3.272.1
dx
0
1 x
=
=
log(1 x )
dx
x2
1
1
1
log1 x dx
0
=
1
log1 x( x 2) dx
0
3 .386294361119890618835...
kH k
k
k 1 2
2 2 log 2
k4
k
k 1 2 ( k 1)
k6
953 .386294361119890618835... 925 2 log 2 k
k 1 2 ( k 1)
k
.3863044024175697139... k
k 1 4 1
1
28 .386294361119890618835...
.38631860241332607652...
27 2 log 2
e
k 1
.38651064687313937401...
4
k2
coth
=
( 1)
k 1
k 1
2
4
csch 2
1
5
tan
4 4 5
2
.386852807234541586870... log 6 2
1
1
.386995424210199750135... Li3 k 3
e
k 1 3 k
.38716135743706271230...
coth csch 2
2
1
2
k 2 ( 2 k ) ( 2 k 2 )
.386562656027658936145...
.38699560053943557616...
3
4k
k 1
2
1
4k 4
/4
G
7
(3) 2 x log tan x dx
2
8
0
I 0 (1) I1 (1)
4
8
1
arctan 2 x
0 x dx
k3
2 k
k 1 ( k!) 4
3 .3877355319520023164...
1
(k 1) log
k 2
.38779290180460559878...
=
11 .38796388003128288749...
.38805555247257460868...
.38840969994784799075...
2
k
5
5 5 5 log 5
2
log
1
4
4
2
5 5
5
(k 1)
1
2
5k
k 1 5k k
k 1
2 2
4 (3)
3
k!k !
k 1
x
2
Li2 ( x ) 2 dx
0
1 (2k )!
1
arcsinh 2 1
log 2 1 2
2
2
5k
k 1
1
k
2
=
(1)
k
k 0
(2k )!!
1
(2k 1)!! 2k 2
J143
1
=
arcsin x
dx
1 x2
0
1
=
arcsinh x
0
.388730126323020031392...
dx
1 x2
34
15
CFG D1
2k
1 2 k ( k 1)
k!
3 k 0
k 0 k!
7 .389056098930650227230...
961 .389193575304437030219...
.3896467926915307996...
e2 1
6
12 log 2 2
.39027434400620220856...
2
6
1 .39088575503593145117...
.3910062461378671068...
k 1
4
k
4k
k 1
3
1
k2
k!3
k 0
2 k 1
1
(2k 1)
S 2 ( 2k , k )
S ( 2k , k )
k 0
2 .39074611467649675415...
( k 2)
1
1
2
.39053390439339657395... erfi
3
1
2 .39064...
2
k 2 (k )
1 k (3k 1)
k 1
.3906934607512251312...
LY 6.40
1
8 log 2 2 2
(k 3)
k 0
2k
2
log
3
6
2
1
arcsin x arccos2 x dx
4
0
sin 2 k
e(e 1)(e 1) 2
4(e 1)(e 2i e)(e 2i 1 1)
ek
k 1
1
.391235129453969820659...
tanh 2
8
k 1 4k 4k 5
2i
.391031136773827639675...
2 .39137103861534867486...
.391490159033032044663...
2 log 2
3
log 3 2
3
1
Lie
e
1
e k
k 1
k
e
log 2 x
0 ( x 1)( x 2)
GR 1.422.2, J949
.39173373121460048563...
.39177...
sinh 1
3
1
1
1 k
s2 k 2
s
(k )
.391801000227670935574...
1 dx
3 4
x
cosh x
k (k 1)
k 2
.391892330690243774136...
2
2
6
(k )
(1) (2k ) 1
k
k 2
4 log 2 log 2 2
k2
k
2
k 1 2 ( k 1)
2
cos x
x cos x
.39190124777049688700...
dx
dx
sech
4
2 0 sinh x
0 cosh x
( 2) 1
6
.39207289814597337134... 1 2
( 2)
2
1 .392081999207926961321...
1 .392096030269083389575...
5 .392103950584448229216...
2
3/ 2
4
1 5
1 1 5
H
H
2
2 2
3
3
F (2k 1) 1
k 2
2 k 1
.39225871325093557127...
e
2
e1 x x log x dx
4
0
.3925986596400406773...
2 erfi(1) Ei(1)
=
1
k ! k (2 k 1)
k 1
218 .39260013257695631244...
.392699081698724154808...
4k k
4e 4
k 1 k!
8
=
4(k1) 2
arctan 2 1
k
k 0
1
(4k 1)(4k 3)
k 0
=
( 1) k 1
2k 1
sin
2
2
k 1 ( 2 k 1)
( 4 k 1) ( 2 k )
1
k
2
16
k 1
k 1 4 k 1
2k
1
k
k 0 4 ( 2 k 1)( 2 k 3) k
=
=
J523
1
16k
k 1
2
1
k 7 k 6 k 1 k 4
Plouffe
k 8 8 8 8
k 1
1
arctan
[Ramanujan] Berndt Ch. 2
2
(1 k 2 )
k 1
=
=
2
=
1
( k 1) / 2
1
( 4 s 2)
r 1 s 1
=
x
2
0
e
2x
0
J1122
1
dx
0 x 4 4
=
dx
16
=
2r
xdx
dx
0 x 4 4 1 x3 x 1
(x
0
x dx
1) 2
4
dx
e 2 x
=
sin 2 x sin 2 x
dx
0
x
=
sin x 2 x 2 cos x 2
dx
0
x5
1
=
x arcsin x dx
GR 4.523.2
0
=
x e x log x cos x dx
0
4 .39283843336600648478...
2 .39292255287307281102...
8
2160
8G
4 (4) L(4)
2
2
arcsin 2 x
x2
1
(1) 2 2k k 2
(k!) 2
k 1
2 J 0 (2 2 )
.393327464565010863238...
7 (3) 2 log 2
4
4
.393469340287366576396...
2 .39365368240859606764...
r (k )
4
k 1 k
1
.393096190540936400082...
1 .39340203780290253025...
Hk
(2k 1)
k 1
32 15
11(4 15 ) ( 15 3)
e 1
e
6
2
k 1
(1)
k
k 1 k ! 2
2
k 1
1
1 k (k 8)
.39365609958233181993...
1
k!k
2 (2 k ) 1
k
k 3
1 .39365735212511301102...
k
2
k 2
2
2
Li j
k 2
2
k
(1)
1 .393825208413407109555... 1
2k
k 1
k
k
.393829290521217143801... 4 3 (3)
18 .393972058572116079776...
.39416851186714529353...
4 .39444915467243876558...
50
e
(1) k 8k
k!
k 0
coth
8
4 log 3
(1) k 1 H ( 3) k
2k k
k 1
3
k
(2k ) 1
log
4
k 1 k 1
.39463025213978264327...
.39472988584940017414...
.394784176043574344753...
2 .394833099273404716523...
.394934066848226436472...
=
2
25
1
I1 2 2
2
k!(k2 1)!
2
k
k 0
5
(1) 3 (2,3)
6
4
1
1
Li2 (e) Li2 i 1
2
e
=
( 1)
k
1
k
k 3
2
( k 1)( ( k ) 1)
k 2
=
(1) k 1 k
j k 1
j 2 k 1
=
log x
dx
4
x3
x
1
1
=
0
1 .39510551694656703221...
x 2 log x
dx
1 x
(k )
k 3
Berndt 5.8.4
.395338567367445566052...
1
1 k !
k 2
.39535201510645914871...
(1 e)
e(1 2 )
e
x /
cos x dx
0
5
( 1) 7
1 .39544221511549034512...
8
8
( 1)
.395599547802009644147...
( 3k 1)( k 1)
(k 2)
8k
k 1
k
k!(k 5)
120 44e
k 1
1 .395612425086089528628...
e1 / 3
1
k!3
k
k 0
1 .395872562271002...
1
1 k
n2 k 2
2
.395896037098993835211...
3e
19
8
8
n
2k k 2
k 1 ( k 3)!
1 .3959158283010590...
1 1/(2k )
2
1
k 2
51664 2
H ( 2) 7 / 2
1 .396208963809216061296...
11025
3
2
k 1 ( k 1) 1
.39660156742592607639... ( 1)
k!
k 1
1
k2
1 .39689069308728222107... 2 log
k
k 1 k
.39691199727321671968...
2 sin 2 1
(1)
k 1
k 1
2k k
( 2 k )!( k 1)
1
2
1
csc
sin
1 2
.39710172090497736873...
3 k 1
3k 1
2
3
k
.397116771379659432792... 2
2
k 1 ( k 1)
1
.397117694981577169693... erf
e
(1) k 1 4k
1 .397149809863847372287... 1 J 0 ( 4)
(k!) 2
k 1
.39728466206792444388...
3 3
4 2
.397532220692825881258...
2 cos1
e
sin 3 x 2
dx
x2
0
x 2 sin x
1 e x dx
J1064
Prud. 5.1.25.29
.397715726853315103139...
1 log 2
6
3
1
(2k 1)(2k 4)
k 0
5e
k2
4
k 1 ( 2k 2)!
| ( k )|( 1) k 1
.3980506524443333859...
2k
k 1
3 8
7116 .39826205293050534643...
4
3 .397852285573806544200...
1
.3983926103133159445...
arctan(arctan x) dx
0
2 1
.39890683205968325214...
coth
3 4
2 6
1
.39894228040143267794...
2
( 3)
.398971548420202857300... 1
2
.3990209885941838469...
.39920527550843900193...
.39931600618316563920...
.39957205218788780748...
=
k 1
1
2
2
sin 2 x
cos 2 cos 2 si (2) sin(2) ci (2)
2
( x 1) 2
0
1
17
1
tan
2
4
2
17
k 1 k 5k 2
2
k
e 1
2
16
k 0 k !( k 2 )( k 4 )
2 arccsch 2 2
(1)
k 1
3k
k 1
3 5
3 5
1
Li2
2 log 5 (arccsch 2) Li2
2
2
5
Hk
2k
k
k
.4000000000000000000
=
=
=
2
5
(1)
k 1
k 1
1
2 cosh log 2
1 p 2
2
p prime 1 p
=
sin 2 x
0 e x dx
Fk
2k
(1)
k 1
(1)
k 1
kFk
2k
e( log 2 )( 2 k 1)
k
J943
k 0
sin 2 x
0 e x dx
0
cos x
dx
e2 x
2 .400000000000000000000 =
12
5
F2 k k
k
k 1 4
1 .40000426223653766564...
(k 1) 1H
k 1
2 k 1
.40009541070153168409...
log 2
.400130076223970451846...
e G
.40037967700464134050...
e 1 Ei (1)
k
2
k 1 k !( k 1)
1
k !( k 2)
k 0
2
1
=
ex x log x dx
0
(k )
.400450020151755157328...
( 1) k
2k 1
k 2
.400587476159228733968...
1
k
k 1
1
1
arctan
k
k
(k ) log (2k )
k 1
.400685634386531428467...
.400939666449397060221...
( 3)
3
cos( k / 3)
k3
k 1
1
4 2
cos 2 sin 2
cosh 2 sinh 2
4 2
=
.40130634325064638166...
sin 2 x dx
0 1 x 4
1
2 ( 1)
6
(k )
( k 1) ( k )
k!
k 2
e
e1/ k 1
k
k 1
( k 1)( k 2)
k 2
Adamchick-Srivastava 2.22
1 .40147179615651142485...
.40148051389327864275...
log 2
1/ k
7
1
2
24 k 1 8k 44k 48
(1) k 1 k
2
k 3 k 4
(1) k
k
k 0 k !3 (k 2)
.40162427311452899489...
12
9 1/ 3
e
.40175565098878960367...
5 2
3
12
16
1 .40176256381563326007...
0
4
3
dx
5
6
1
1
0
1 .402203300817018964126...
cos5 x
dx
1 sin x
1
log
3
1 .402182105325454261175...
=
/4
1 x
3
0
3 2
6
4
1 1
6 3 6
1
x dx
Seaborn p. 168
1 x6
/2
arccos
0
0
3 2
7 .402203300817018964126...
4
3 2
.40231643935578326982...
csc 2
4
4
.40268396295210902116...
=
.402892520174484499083...
1
x 3 sin x dx
3
x dx
(1) k
2
k 2 k 2
4 (3) 4
2
(2) log log 3
5
5
3
2
5 1 4 (3)
5 1
2
log
2 5
2
15
Li3 2
2 2
log
3
5 1
2
1 i 2
1 i 2
1 i
i
2 2
4 2 2
4
4
2
2
(1) k 1 k
2
k 1 k 1 / 2
=
1 1 5
2
Ei
Ei
arc
h
2
csc
2
2
5
1 5
k!
3 .40301920828833358675... k 1
k 1 k
(k ) 1
.403025476056584458847...
k !!
k 2
1 .4029920383519025537...
.40306652538538174458...
2
9 3
1
2k
k 1
15
k
1
2
27k
k 1 27 k
3
2
2
x
0
k 1
x dx
27
3
Fk
k! k
1 .40308551457518902803...
1/ 18
e
6 .40312423743284868649...
1 .403128506816742370427...
1 .403176122350058218797...
1
1
erf
2
3 2
1
k !!3
k
k 0
41
2
1
0 F1 ;1; I 0
e
e
2 (2k )
k 1
( 2 k )!
1
(k !)
k 0
2
ek
1
2 .40324618157446171142...
1 3 1
log x
dx
3
8 3
x (1 x 2 ) 2
0
GR 4.244.1
6
98
k 1 k
.403292181069958847737...
(1)
243
2k
k 1
(1) k 1
.4034184004471487...
3
3
k 1 k k
.403520526654739372535...
K0 (2) log 2
2
0
cos2 x
1 x2
dx
dx
.403652637676805925659... 1 e Ei ( 1) x
2
0 e ( x 1)
x dx
e ( x 1)
x
0
1 .403652637676805925659...
x 3dx
2 eEi (1) x
e ( x 1)
0
.403936827882178320576...
2
k 1
1
2
k
1
1
(1) k 1
k
k
k 1 3 1
k 1 3 1
(2)
2 ( 3) 2 ( 2 )
.404063267280861808044...
.4041138063191885708...
2 .4041138063191885708...
1
=
log 2 x
1 x 3 x 2 dx
x log 2 x
0 1 x dx
2 (3) ( 2 ) (1)
k 1
(1) k 1
k 1 2 k 3
2 k
k
=
=
(1) (k )
k 1
k
Hk
k
2
x2
0 ex (ex 1)
GR 4.26.12
log 2 (1 x )
dx
=
x
0
1
1
=
x 2 dx
0 e x 1
1
log 2 x
dx
x2 x
2
log x
1 x
0
1 1
3 .4041138063191885708...
log( xy )
dx dy
0 0 1 xy
=
2 (3) 1
=
((2 k 1) (2k ) (2 k 1)
9k 4 2k 2 1
k ( k 2 1) 3
k 2
2
k 1
15 .40411960755222466832...
1 .404129680587576209662...
8G
(3k 1)( k 1)
( k 1)
4k
k 1
2
1
coth 3
2
6
.404305930665552284361...
2
sin 3x
dx
x
1
0
e
2
190 190 47 77 5 arc csc 2 1 5 190 47 77 5 arc csc h 2 11 5
1805
k
1
(1) F k
=
2k
k 1
k
2 2 k 1 (2 k ) 1
1 .404362229731386861519...
(2 k 1)!
k 1
k (k ) 1
.4045416129644767448... ( 1)
(k 1)
k 2
csc
.40455692812372438043...
2
1
2
k sinh k
k 2
1 ( 1) k 1
2 k 1 k 2 1
2 .404668471503119219718...
.404681828751309385178...
.404729481218780527329...
k2
k
k 1 k
1
1 Ei
e
9 18 2
1
k !e k
k 1
k
i
Li e 6i Li3 ( e6i )
2 3
=
.40480806194457133626...
sin 6k
k3
k 1
2
coth
GR 1.443.5
1
1 1 i 1 i
2
k 1
= 3
(1) k 1 (2k ) (2k 1)
k 1 k k
k 1
.404942342299990092492...
cosh 2 sinh 2
2
2 2
.40496447288461983657...
(2)
.405182276330542237261...
2k k
k 1 ( 2 k 1)!
cos(sin 2 ) cosh(cos 2 ) sinh(cos 2 )
cos 2 k
k!
k 0
k2
(1)
k5 1
k 1
3 cos1
(1) k 1 k 2
.405226729401104788051...
4
k 1 ( 2 k 1)!
/2
e
2 .4052386904826758277...
2
.4051919148243804...
k 1
.40528473456935108578...
4
2
3
1
1
.405465108108164381978... log Li1 k
3
2
k 1 3 k
k 1
( 1)
( 1) k
=
k
k
k 1 2 k
k 0 2 ( 2 k 2)
1
1
= 2arctanh 2 2 k 1
(2 k 1)
5
k 0 5
=
.405577867597361189695...
dx
1 ( x 1)( x 2)
2 15
.40573159035977926877...
H
0
dx
x
e 1
K148
0
dx
2
5
2 (k 1)
k
k
k 1
(k 2)
e1/ 2 k
2
k !2k
k 0
k 1 k
1
1
k 1 (2k )
1 .405869298287780911255... ( 1)
arctan
k
2k 1
k 1
k 1 k
2 .40579095178568412446...
.40587121264167682182...
1 .406166544295979230078...
4
240
1
log 3 x
dx
x3 x
( 2 ) ( 3)
dx
x
1
2e
3x
0
( 3)
log 3
J102, J117
1 .4063601829858151518...
(3k )
k 1
k3
7 (3)
.40638974856794906619... 2 2 G
2
2 .40654186013...
.406612178247656085127...
.40671510196175469192...
1 .40671510196175469192...
120 (5)
5
e
k
b
0
x 2 arccos2 x
dx
1 x2
1
ka
dx
x1 / 5
0
1
1
sinh 2 1
4
2
sinh
sinh 2 1
4
2
1
2
x dx
0
cosh
2
x dx
0
1
1
3arccsch 2
arccsch2
5 5
5 5
log
5 2 2 5 10 (1 5 ) 2 5 (1 5 ) 20(1 5
5 5
1
5 log 2 log( 5 1)
5(1 5 )
1 7
1
=
10 10
5
.40690163428942536808...
sum of row sums in
1
(1) k
k 0 5k 2
(2k )
2 .40744655479032851471...
k!
k 1
=
1 .40812520284268745491...
e
1/ k 2
1
k 1
1 2
log 2
6 18
1
log 2 x
0 ( x 1) 4 dx
6
6
1
.40825396283062856150... 1 k
2 k
k 1
49
H6
1
.408333333333333333333 =
2
120
6
k 1 k 6k
.40824829046386301637...
k
k 4
2
1
9
2 sin(2 ) sinh(23/ 4 )
1
4
.40837751064739508288...
16
cosh(2 3/ 4 ) cos(23 / 4 )
7/4
k 1
(1) k
4
k 1 k 1
.408590857704773823199... 14 5e
.408494655426498515867...
3/ 4
k
k 1
4
1
2
.40864369354821208259...
sinh 1
erfi1 erf 1
2
8
1 dx
2 4
x
cosh x
1
Bk
1
1
Li2
6
e
k 1 ( k 1)!k
1
= k 2
k 1 e k
2
.408754287348896269033...
2 .40901454734936102856...
97 .409091034002437236440...
[Ramanujan] Berndt Ch. 9
e
2
e
1 x 2
dx
0
1
2
4 ( 3) 90 ( 4 )
(k 1)(k 2)(k 3) (k )
2k 4
k 4
1
4
( 3)
193 .409091034002437236440... 96
2
dx
9 (3)
5 .4092560642181742843...
x1 / 3
2
1
0 e
=
.40933067363147861703...
18 .40933386237629256843...
1 .409376212740900917067...
e(sin 1 cos1)
2
2 e
3
22
log
x sin log x dx
1
Borwein-Devlin p. 35
(1) (2k ) 1
k 1
k 1
2
3
.409447924890760405753...
e
2
a (k )
3
7
k 1 k
(k ) 1
.410040836946731018563...
k 2 (k ) 1
1 .409943485869908374119...
Titchmarsh 1.2.13
.41019663926527455488...
H ( 4) k
k
k 1 3 k
1 .410278797207865891794...
2
Fk
k 1
2 .410491857766297...
(1)
k 1
k 1
e1/ k
k2
1
tan 1
arctan
.41059246053628130507... 1
2
2
1
cos2 x
0 1 cos2 x dx
(1) k 1
k
k 1 k!!2
.4106780663853243866...
k!2k
1
1
2k
e
erf
1 .41068613464244799769...
2
2 k 0 (2k 1)!! k 0 (2k 1)! k 1 2k
k!
k
e
k!2k
(2k )!!
1
erf
2 .410686134642447997691... 1
2
2 k 0 (2k )! k 0 (2k )!
.410781290502908695476... sin e
.410861347933971653047...
.41096126403879067973...
1 .41100762619286173623...
.411233516712056609118...
3
(1) k
3 9 log k
4
k 0 3 (k 2)
( k ) ( k 1) 1
(1) k
k
k 2
1
k 1 k !! k
2
( 2)
Li2 (i ) Li2 (i )
24
4
=
e
x2
k 1
2
1
1
log x
x log x
1 x 3 x dx 0 1 x 2 dx
=
1
4k
x 3dx
0
=
log1 e dx
2 x
0
1 dx
2
x
log1 x
0
/2
=
log(sin x ) tan x dx
GR 4.384.12
0
.41131386544700707263...
1
cos1 cosh 1 sin 1 sinh 1 1
2
1 .41135828844117328698...
cos x sinh x dx
0
3 3
(1)
csch
2
2
2
3
k 0 k 1/ 3
1
SinhIntegral (2)
1
k 0 k!( k 2 )! ( 2k 1)
2 .411354096688153078889...
1
1
k
8 8 8 8... [Ramanujan] Berndt Ch. 22
2 .411474127809772838513...
2 3 cos
1 .41164138370300128346...
2 1
sinh (log ) i sin (i log )
2
6 .41175915924053310538...
7G
18
.4117647058823529
=
.411829422582171159052...
7
17
sech
=
k
k 1
.41197960825054113427...
3
2
3i 2 3i 2
2 2
k 1
k k
k 1
2
2
log( x 2)
dx
x4
1
3 log 3
8
1 .41228292743739191461...
1 .412553231710159198241...
csc 1
2
2
1
.4126290491156953842...
log x dx
x 1
0
csch 2 sinh 2
2
k 2
k 4 2k 2 1
k 4 2k 2
k 1
( k 1) 1
(k ) 1
5 .4127967952491337838...
k2
k
k 1 2 1
.412913931714479734856...
k
k 2
1
log 3 k
(2k )
.413114513188945394253...
3
((2k )!)
k 1
148 .413159102576603421116...
( 4 k 1)
4k 1
k 1
.41321800123301788416...
=
=
k
k 1
.413292116101594336627...
3
1
3
cos(log ) Re i
1
1 n 2
k
n 2 k 1
2 .4134342304287...
1
6 3 log 2 3
9
2 2 3
1
arcsinh
3
9
2
( 1) k 2 k
1 1
, , ,
2 F1 11
2 2
k 1 2 k
k
.413261833853064087253...
1 2
2
1
J0
0
k
k
2 I
e5
.41318393563314491738...
2
1 k
1
1
3
.413540437991733040494...
2
3 3 52 / 3
x
0
dx
5
3
2k
(4k )!
1 .41365142430970187175...
1
cos cosh
2
6 .41376731088081891269...
16
243
2 .414043326710635964496...
2 2e 2 erfi1
4
k 0
3
log x dx
x3 1
0
1
k!(k 1/ 2)(k 1)
k 0
2 .414069263277926900573...
.414151108298000051705...
.4142135623730950488...
1 .414213562373095048802...
e 1
e x sin 2 x cos x dx
10
0
log12
6
H2 k 1
k
k 1 4
(2k 1)!!
5
2 1
tan cot
k
8
8
k 1 ( 2k )! 2
2
=
1 2k
k
k
8
k 0
(1) k
= 1
2 k 1
k 1
3
2 .4142135623730950488... 1 2 sin
csc
8
8
3 i 3
1 log 2
3 i 1 i 3
.414301138050208113547...
3
6( 3 i ) 4
4
3 i 3
1 i 3
2i
6( 3 i ) 4
4
(1) k 1
= 3
k 1 k 1
1
.41432204432182039187...
k 1 3k
k
.414398322117159997798...
2 .4143983221171599978...
1
3
7 (3) 8 3,
3
2
k 1 ( k 1 / 2)
k
7 (3) 6 2
1 3
k 1 ( k 4 )
GR 0.261
8 .4143983221171599978...
7 ( 3)
1
(k
k 1
.414502279318448205311...
=
.414610456448109194212...
.4146234176385755681...
=
1
2
)3
1 1
E (i ,1) (1 i ) (1 i ) (1 i ,1)
e 2
( 1) k 1
2
k 1 k !( k 1)
1
7
3
cot
6 2 6
2
2k
k 2
1
2
3
4
10
2
3
9
9 3
k
k 1 2 k
( k 1)
k
.414682509851111660248...
1
1 (k )
k
p
2
2
p prime 2
.41509273131087834417...
log 2 2
k 2 (k 1) 1
k
k 1
(k )
=
2 (1) k
k 2
.415107497420594703340...
.41517259238542094625...
2
k (k 1)
e
H ( 3) k
k
k 1 3 k
1 .415307969994215261467...
o (k 1) (k ) 1
k 2
.415494825058985327959...
=
27 .41556778080377394121...
25 2
9
( jk ) 1) 1
j 1 k 1
10
4 (4 k ) 1
k
k 1
log x dx
x6/5 1
0
k 3 (3k ) 1
k 1
31 .415926535897932384626...
11
coth 2 cot 2
6 2 2
4
4
k 2 k 4
.41562626476635340361...
k 4 (k 6 4k 3 1)
(k 3 1) 4
k 2
.415939950581392605845...
1 .41596559417721901505...
(2) 1
G
2
1
2
4
3
36
f 2 (k )
k2
k 2
1
( jk )
j 1 k 1
2
(1) k 1 k 3
2
2
k 1 ( k 1 / 4)
1
2
1
=
E ( x )dx
2
Adamchik (17)
0
.416146836547142386998...
1 .416146836547142386998...
(1) k 1 4k
(2k )!
k 0
cos 2
2 sin 2 1 1 cos 2
( 1) k 1
k 1
7 .4161984870956629487...
7 .416298709205487673735...
.41634859079941814194...
4k
( 2 k )!
GR 1.412.1
55
1 1
4 4
arctan 3
3
,
1
2
4
dx
0 x 2 2 x 10
1
3
dx
.41652027545234683566...
2
16 2 0 (2 x 1) 3
.416658739762145975784...
( 3)
4
.416666666666666666666 =
5
12
1
2k
k 2
(2 k 1)
.41705205719676099877...
4k 1
k 1
| ( k )|
.41715698381931361266... k
k 1 4 1
.41716921467172054098...
7 (3) 2 3
32
4G
2
2
8
27
.417418352315624897763...
3
e
erfi 1
8
4
.417479344942600488698...
( k 4)
Im
k
k 1 (2i )
k
2
k
k !(2k 3)
k0
4k
k 1
.41752278908800767414...
k ( k 1)( ( k ) 1)
4 k 1
k 2
5
2
k3
1
k 1 k ( 2k 1)
(2) 4 log 2 1
2
(1)
k 1
(k 2)
2k
.417771379105166750403...
1
3 2
sin x 2 x 2 cos x 2
dx
0
x4
log 2
(1) k
6
6 3
k 0 6k 2
1 .417845935787357293148... root of ( x ) 3
.41782442413236052667...
1
e 2
.418023293130673575615... 1
e1
1 e
B
= k
k!
2
2
k 1
log 2
3
(2)
4
.418155449141321676689...
Im (i ) Im (i )
1
3
dx
x 3
1
k
1 e
1/ 2 k
log( 2 k 1)
2
k 0 ( 2 k 1)
GR 1.513.5
Prud. 5.5.1.5
(i )
.418168472177128190490...
2 .418399152312290467459...
x
k
.41835932862021769327...
1
e 1
k 1 e k ( k 1)
.418115838076169625908...
24
GR 3.852.5
1
93 (5) 7 2
32
4
3 3
1
arcsin 2 x arccos2 x
dx
0
x
k ! 3k
k
k 1 2 ( 2 k 1)!!
=
area of unit equilateral triangle
=
(k 12 )!(k 12 )!
(2k 1)!
k 1
J278
CFG G13
=
0
dx
2
x x 1
=
e
.41868043356886331255...
.41893853320467274178...
1 .419290313672675237953...
x
dx
1 x
3/ 2
0
dx
e x 1
35 3
2592
sin(5k / 6)
k3
k 1
GR 1.443.5
2k k
(k 1) 1
k 1 k 2
2
2
1 i 3
i 1 i 3
3
tanh
2
3
2 3 2
2
1
log 2 1
2
1 i 2
i ( 1) 1 i 3
(1 )
2 3
2
2
=
97 .41935701625712157163...
k
k 1
4
Hk
k 1
4
.41942244179510759771...
2
1 2
k 1
2 .419550664714475510996...
k
1
1
4 log 2 4
2
6
2 (3) 8
k3
(k 1) 1
k 1 k 2
e sin 1
sin k
.41956978951241555130...
k
2
1 e 2 e cos1
k 1 e
2
2 .4195961186788831399... sec(log ) i
i
( 1) k 1 k
1
1
2
1
.4197424917352996473...
cos
sin
k
4
4
2
2
k 1 ( 2 k 1)! 2
148 .41989704957568888821...
e5 e5
.42026373260709425411...
7
2 2
4 (2k ) 1
3
k 2
2 .42026373260709425411...
9
2 2
3
1 .420308303489193353248...
2 (3)
(6)
=
3 .42054423192855827242...
( 1) k 1
( 1) k 1
2
( k 1 / 3) 2
k 1 ( k 1 / 3)
2 ( k )
3
k 1 k
HW Thm. 301
1 p 3
3
p prime 1 p
2
log 2
x log sin x dx
2
0
GR 4.322.1
5
1
3 log 2 k
2
k 0 2 ( k 1)( k 3)
k 1 k !
.420571993492055286748... ( 1)
k k 1
k 1
1
.420659594076960499497... 3
k 2 k 5
.420558458320164071748...
17 .420688722428817044006...
8 log 2
0
ex x 2
ex 1 3
dx
GR 3.455.1
.42073549240394825333...
sin 1 ( 1) k 1 k
2
k 1 ( 2 k )!
.421024438240708333336...
K 0 (1)
.421052631578947368
=
0
0
cos x
sin(tan x) sin x dx
dx
1 x2
8
19
.421097686033423777296...
/2
1
k
k 1 4 1
0 (k )
k 1
4k
4k 1
4 4
k 1
k2
k
1
e
e
e k 1
k
6 .42147960099874507241...
(1) k
1 k 2
2 k
k 1
StirlingS 2(k , 2)
k 2 StirlingS1( k , 2)
(k )
(1) k 1 k0
2 1
k 1
(1) k
2 J2 ( 2 )
k
k 0 k !( k 2 )! 2
1 .4215341675430081940...
.4215955617044106892...
.421643058395846980882...
.421704954651047288875...
.421751358464106262716...
3 log 2 9 log 3
2
16
.42176154823190614057...
e
=
1 .421780512116606756513...
.421886595819780655446...
.42191...
.4219127175822412287...
1 .4220286795392755555...
sin 6 x
0 x 3
GR 3.827.13
sin(2 sin 2) sin(2 sin 2)cosh(2 cos 2) sinh(2 cos 2)
2i
2 k sin 2 k
i 2e 2i
e e2e
2
k!
k 1
2
k Hk
k
k 1 2 ( 2 k 1)
sin5 1
1 n
2 (k )
n 1 n k 1
2
Hk
3
k 1 ( k 1)
log 3 2 2 2 2 log 2
1
4 Li3 3 (3)
2
3
6
3
2 cos 2
x log 2 x
=
dx
( x 2)( x 1) 2
1
( 3)
.422220132000029567772...
( 2 ) ( 3)
.422371622722581534146...
5 .422630642492632281056...
.422645425094160918302...
.422649730810374235491...
.42278433509846713939...
=
2
12
(1 k )
k 1
2k k
3 1
( 1) k
3 log
3 1 k 0 ( k 1 / 6)
2 1 2
log 2 1 2 2 1
16 4
1
(1) k 1 2 k
1
2k 2
3
k 1
(k ) 1
1 (2)
k
k 2
1 1
k
1
Li1 log
k 1 k
k k k 2
k 2
=
log 2
0
Berndt Ch. 9
K Ex. 124g
x log x
dx
ex
=
1 dx
sin x
x
1 x x
0
=
0
1 .42278433509846713939...
1 dx
cos x
1 e x x
2
2
k
(k ) 1
k
k 2
1 .42281633036073335575...
GR 3.781.1
k
2k
1 2
k 1
.422877820191443979792...
2
Li3
5
.422980828774864995699...
CosIntegral (2) log 2
(1) k 4k
k 1 ( 2k )!( 2k )
.423035525761313159742...
(2k ) 1
2
k 1
(1) k
k
k 0 2 (3k 2)
4
(k )
.4232652661789581641... (3)
3
360
k 1 k
.423310825130748003102... e
.423057840790268613217...
1 .423495485003910360936...
1 2 5 1
2 F1 1, , ,
2 3 3 2
(2) (3)
2
AS 5.2.16
.423536677851936327615...
log 2
1 1 i
i
i
1 i
1 1
4 2
2
2
2
(1) k 1
3
k 1 k k
=
.423565396298333635...
=
1
1
1
2 log(e 1) 2 Li2 2 Li3 Li2 (1 e) 2 (3)
2
e
e
k
1
(1) Bk
Bk
6 k 0 k!
k 0 ( k 2)!
H k (k 1) 1
2k
k 1
.423580847909971087752...
2 .423641733185364535425...
.423688222292458284009...
23 k
e 2 2 cos 3
3
3e
k 0 (3k )!
32
1
16 log 2
k
3
k 0 2 ( k 4)
J803
1
.423691008343306587163...
1
log 2 CosIntegral 2 log x sin 2 x dx
2
0
.423793303250788679449...
1 .4240406467692369659...
csc 7
5
21
(1) k 1
2
k 3 k 7
2 7
1
1
( k 1)( k 4 )
k 1
.424114777686246519671...
24 2 6 (4) 6 (3)
k
k 2
5
4
k4
1
=
log(1 x) log
3
x dx
0
.424235324155305999319...
(k ) 1
k
k 2
1 .424248316072850947362...
(1)k 1
(k 1)
k2
1
4
3
1/ 2
k 1
.424413181578387562050...
.4244363835020222959...
=
1
1/ 4 erfi
2
2e
1
Dawson
2
1 1
Li2
k
k 1 k
( 1) k 1
2k
k 1
k !
k
e
0
x2
sin x dx
GR 4.381.1
.424563592286456286428...
21
tan
(k )
.424632181169048350655...
21
2
( k ) 1
7
15
k
k 1
2
1
5k 1
1
k 2
14 .424682837915131424797...
.42468496455270619583...
x 2 dx
12 (3) x / 2
e 1
0
log 2 1
2
log x sin 2 x
dx
x2
0
(1) k 1 (4k 2)
2k 1
k 1
1 .424741778429980889761...
1
arctan k
k 1
2
=
i
1 i
1 i
1 i
1 i
log 1
log 1
log 1
log 1
2
2
2
2
2
.424755371747951580157...
32
=
( 1)
k 1
9 .424777960769379715388...
csc h 3 8 2 cosh cosh 3 12 sinh cosh
3
k 1
k 2 ( k 2 1)
k (2 k ) 1 2
3
k 2 ( k 1)
2
.425140595885442408977...
=
.425168331587636328439...
1 i 3
1 i 3
2
2 2
2
3
2
k 1
(1) k 1 (3k 1) (3k ) 3
k 1
k 1 k 1
e
2
(1)
k 1
k 1
3 .425377149919295511218...
.425388333283487769500...
2
dx
.4252949531584225265...
cos 2 x
1 x
coth
H 2k
1
3
1
log 2 arctan
k
2
3
2
2
2
2 log 2 2 log 2
2
Hk
3
k
4k
k 1
.4254590641196607726...
.4255110379935434188...
2 .42562246107371717509...
csch1
e
2
2
e 1
Bk 2 k
k 0 k ! k
e
k 0
1
2 k 1
22 7
3k 2 3k 1
2 ( 3) 2
3
3
4
k 2 k ( k 1)
=
( 1)
k
k ( k 1)( ( k ) 1)
k 2
.425661389276834960423...
H ( 2) k
k
k 1 3 k
log 3
1
4
12 3
k 0 (3k 1)(3k 3)
1
k ( 2 k 1)
.42606171969698205985... ( 1)
3
k
2
k 1
k 1 2 k k
1
i
i
= 1
1
2
2
2
.425803019186545577065...
.42612263885053369442...
4
2
e
(1) k
k
k 0 ( k 2)!2
8 .4261497731763586306...
71
root of (1) ( x) 1
1
2 .42632075116724118774... 2
k 1 Fk
1 .426255120215078990369...
GR1.232.3, J942
.42639620163822527630...
log k
k (2k 1)
k 1
5 1
3 5
Li2
log 2
2
15
2
1
(1)
.426473583054083222216...
k 0 7k 2
8 2 log 2
1
.426790768515592015944...
9
3
k 1 k ( 2k 3)
.426408806162096182092...
1 .426819442923313294753...
.426847730696115136772...
2 .427159054034822045078...
.427199846700991416649...
2
2
8
log 2
J265
1 dx
2
x
log(1 x) log1 x
0
4k 1
2
k 2 2 k ( 2 k 1)
3
2
k ( ( k ) 1)
2k
k 2
2 2 log 2 1
2 cos 2 2 sin 2
4
2 1
12
8
.42721687856314874221...
.4275050031143272318...
3 (3)
G
8
Berndt Ch. 9
/4
0
(1)k 1
k 1
2k k 2
(2k )!
4
cos x
dx
1 sin x
5
2
2 log 2
3
6
3
k 1
(1)
=
2
k 1 3k k
1 x2
dx
= log
2
1 x x
0
=
1
log1 ( x 1)
0
1 .427532966575886781763...
3
dx
9 2
1
Li2 e3i Li2 e 3i
4 12
2
(1)
k 1
k
cos 3k
k2
GR 1.443.4
2 2 1
2
2
.42772793269397822132...
k 0
(1)
2k 2
k
1
.42808830136517602165...
x tan x dx
0
.428144741733412454868...
(2) log 2
log3 2 (3)
3
2
H ( 2) k
k
k 1 2 ( k 1)
2 .428189792098870328736...
1
cosh
3
2
(1)
1
1/ 3
(1)
2/3
1
3
1 k
k 1
Berndt 2.12
=
1 k
k 1
403 .428793492735122608387...
.42881411674498516061...
1 .42893044794135898678...
cos
e6
2 1 log 2 log 2 2
12 2
2
2
3
1
2 2
2e 17
54
3
.42909396011806176818...
.429113234829972113862...
1 .42918303074795505331...
.42920367320510338077...
=
( 1) k
k 2 k !( k 1)
log(1 x )
x ( x 1) 2
0
1
x 1/ 2
0 e x e x 1 dx
3k
k 0 ( k 3)!
2
23
(1 2i ) (1 2i )
2
1
k
e
Re i e
2
1
k
.42828486873452133902... log
k 1
k 2 k!
(e 1)(log(e 1) 1)
Hk
.428504222062849638527...
k
e
k 1 (e 1)
3
.428571428571428571
=
7
( 1) k 1
1
.4287201581256108127...
Ei ( 1)
e
k 1 ( k 1)! k
( 1)k
=
k 2 ( k 1)! 2 k !
.42821977341382775376...
2
2
1
2
1
k 1 4 k 4
( 1) k
3
k 0 k 2
( 1) k 1 ( k 12 )!
( k 12 )!
k 1
k
k 1 2
= log 2 ( 1)
( k 1)
2k
k 1
=
GR 8.373
=
2k
2k
k 1
(2 k )!!
k
k (2 k 1)
(2k 1)!!2
k 1
(2 k 1) k
k
sin 4 k
=
k
k 1
1
=
arccos x arcsin x dx
0
/2
=
0
x sin x
dx
1 cos x
=
Prud. 2.5.16.15
dx
(1 x ) cosh x
GR 3.522
2
0
.42926856072611099995...
6 .429321984298354638879...
=
4 .429468097185688596497...
.429514620607979544321...
.429622300326056192750...
2 1
log 2 1
3
3 3
e
x
0
log x
e x 1
GR 4.332.2
2 cot
2 2 cot
csc2
3 csc2
16
2
2
2
2
2 k 2 (2 k 2 1)
2 (2 k )
k
2
3
2k
k 1
k 1 ( 2 k 1)
3
7
35
256
(x
0
dx
1)5
2
1
9
1
3
Li3 Li3 (3) 3 log 2 log 2 3 3 log 2 2 log
6
2
2
2
729 3
1
9
2
3i log 3 log 2 log log
Li2
6
2
64
2
(1) k 1 H k
2k k 2
k 1
2k (k ) 1
.429623584800571687149...
k3
k 2
=
2
2
Li k k
3
H
1 .429706218737208313187... I 0 ( 2) K 0 ( 2) k
k 1 k!k!
k 2
3 .42981513013245864263...
4 .42995056995828085132...
G
2
3
2
cot 3
3 (2k ) 1 k
k
k 1
k 2
2
3
3
1 .429956044565484290982...
( 2k )
4
k 1
9
.43020360185202489933...
2 3
k
k
2
log 2 x
0 (1 x)4 dx
1
2
Li 4k
2
k 1
( 1) k 1 ( 3k )
.43026258785476468625...
3
2k
k 1 2 k 1
k 1
2
1
2
1 5
.43040894096400403889...
arcsinh
log
2
2
5
5
1
( 1) k 1
k 1 2 k
k
k
=
=
(2k )!!
(2k 1)!!22 k 1
k 0
Fk
Fk Lk
k
k
k 1 2 k
k 1 4 k
(1)
k
.43055555555555555555
=
=
.430676558073393050670...
dx
1 x3 x 2 x
e
0
x
J142
dx
e x 3
31
k2
72
k 1 k ( k 3)( k 4)
log 5 2
11 .430937592879539094163...
48 64 log 2
x
1/ 2
0
1 .430969081105255501045...
1
Li2 ( x ) Li2 dx
x
1/ 5
6
(1) k 1
k
k
k 1 2 ( 2 1)
.431166447015110875858...
3 3 log 2
x yz
dx dy dz
2 2 2
4
2
1
x
y
z
0 0 0
24
4
2
( 2)
2
1
coth ( 1) k ( k ) (2 k )
2
6
2
k 2
3
k 1
2
2
k 2 k ( k 1)( k 1)
1 1 1
1 .43142306317923008044...
2 .43170840741610651465...
.431739980620354737662...
=
3G
5 .43175383721778681406...
Hk
F
k 1
5 .43181977215196310741...
k
x dx
( x)
0
.43182380450040305811...
( 1) k 1 k
2 k 1
( 2 k 1)
k 1 2
1 1
1
arctan
5 2
2
.4323323583816936541...
e2 1
2e 2
(1) k 2k
k 0 ( k 1)!
e
dx
1 x3
1
dx
e
2x
0
1/ 4
1 1 / 4
i 1
1 i
1 i
H H 3 / 4 H 3 / 4
H
2
4 2 2
2
2
1
( 1) k 1 ( 4 k 1)
=
3
1
2k
k 1 2 k k
k 1
.43233438520367637377...
.432512793490147897378...
( 1)
k 1
log (2 k )
k 1
205
H ( 2) 4
144
e
.432627989716132543609...
2
1
sin x
.432824264906606203658...
x
2
1 log
0
1 .432611111111111111111 =
.432884741619829312145...
.432911748676149645455...
33 .4331607081195456292...
arctan e
3
4
4
e
x4
arctan
4
e x
0
1
e
1
e
x
0
dx
e x
dxx
GR 3.469.2
1 7 (2) 6 (4) 12 (3)
=
k (k 4k 1)
(k 1) 4
k 2
k (k ) 1
3
k 2
1 .43330457796356855869...
.43333333333333333333
=
2
81 (3) 189
2
4
13
30
1
log 2 x
0 1 x1/ 3 dx
arctan x1/ 3
1 x 3 dx
k2
(k ) 1
4 .43346463275973539753...
k 2 k 1
.433629385640827046149... 13 4
.433763428189524336184...
3
1 3k 2
k (k 1)
k 2
log 1 9 x 1 1 dx
2 1
2
0
2
log
k
k 1
e2 1
.433780830483027187027... log
log cosh 1
2e
i
i
1 1
log
=
2i 2i
1 1
2 2 k 1 (2 2 k 1) B2 k
=
(2 k )! k
k 1
1
=
tanh x dx
0
.433908588754952738714...
2 sin 2
=
k 1
1
1 .43403667553380108311...
2
2
1 k (k 2)
89
k 1
9 .4339811320566038113...
1 (k 2)
k 1
1
1 k (k 7)
.434171821180757177936...
(k 1) 1 (2k ) 1
k 1
3 .43418965754820052243...
3 log
45 79e1 / 4
1
erf
64
128
2
1
.434294481903251827651... log10 e
log10
k !k 3
k 1 ( 2 k )!
1 .434241037204324991831...
1
(1) k 1
.43435113700621794951...
csc
2
2 3
3 2
k 1 3k 1
1
1 .43436420505761030482...
k
k 1 2 k
( 2 k 1)
.434591199224467793424...
2k 1
k 1
2k 1
2e 2
5e 2
1 .434901660887806674581...
I 0 (2)
I1 (2)
3
6
k 0 k ( k 2)!
1 .4350443315577618438...
2 sinh1/ 2
2
k 0
1/ 2 2 k 1 ( 2 k 1)!
.4353670915862575299...
1
(k 2)!! k !!
k 1
sin 2 cos 2
( 1) k 4 k k
.4353977749799916173...
4
2
k 1 ( 2 k 1)!
k 5
23
(1) k
.435943911668455273215...
k!2 k
32 e
k 1
2 arc coth 2 arctan h 2 3
.435953490803707281686...
/6
0
dx
sin x cos x
1 2 3
, Lebesgue constant
3
2
(1) k 1
.43617267230422259940... 1
2 log 2 3
2
12
k 1 k k
1 .435991124176917432356...
.436174786372556363834...
1
log(1 e) log 2
2e
1
cosh x
1 e
x
dx
0
1 (1) 2
(1) k 1
(1) 1
.43634057925226462320... 9
2
4
3
6 k 1 (k 1 / 3)
.43646265045727820454...
2
25
csc2
2
5
1
(5k 2)
k 1
2
1
2
(5k 3)
k2
.436563656918090470721... 2e 5
k 1 ( k 2)!
k2
5 .436563656918090470721... 2e
k 1 k!
( 2)
k
k 1 H
.43657478260848849014... ( 1)
k 2
2 k
k 1
k 1
k 0 k!
( 2k )
i
i
2 log 1
(1) k 1 k 1
1
2 k
2
2
k 1
1
= 2 log 1
2k 2
k 1
log 2 3
2
1
log 2 log 3
Li2
1 .43674636688368094636... Li2 ( 2)
6
2
3
1 .436612586189245788936...
1
=
log 2 x
0 (2 x 1) 2 dx
1
=
0
.436827337720053882161...
7
log1 2e dx
x
0
log x
dx
x 1/ 2
tanh
7
2
3
4
k
k 2
2
1
k2
.43722380591824767683...
42 2 18 (3)
24
2 .437389166862911755043...
(4) (2) 3
=
2k k k 1
k 4 (k 1)
k 2
1
1
x log1 x log
2
x dx
0
k (k ) (k 3)
k 2
.437528726844938330438...
.43754239163900634264...
3
2
csc 14
2 14
257
1820
(k 1) 12
k 1
k!
(1) k
2
k 4 k 14
(1) k 1 e k H k
.437795379594438621520... e Ei (e) 1
k!
k 1
3
5
5
3
16 2 128G 16 2, 4, 4,
.43787374538331792632...
128
4
4
4
e
x3
=
dx
3
0 cosh x
1
.438747307343219426776...
.43882457311747565491...
log x
dx
ex 1
0
log 2
(1) k
4
2
k 0 ( 2 k 1)( 2 k 2)
=
/4
=
0
.43892130408682951019...
.439028195096889694210...
.439113833857861850508...
=
k 1
2
1
6k 1
x dx
cos 2 x
coth
2
k
Prud. 5.1.2.4
arctan x dx
0
1
2
(k 1) 1
k 1
k
J72
1
k
k 1
1
2
1
2
4 2 (2) 2 coth
2
4k
k 1
4
2
k2
(k 3)
i i
Im4 1
Im
k
k 1 (2i )
2 3
2
8k
(1)
(1)
1
2k 1
k 1 2k
(1) k / 2
k
k 1
k
=
7
.439255388906447904336... 4 log 2
3
2
k 2 ( k 1)( 2k 1)
2k 1 1
(k ) 1
(1)
2k 2
k 2
k
2 ( k )
2 .439341990042075362979...
, (k ) number of prime factors of k
k 1 k!
5 .43937804598647351638...
7 4 2 log 2 2 log 4 2
log 3 x dx
1
3 Li4 2
2 1 x 2x
120
4
8
.43943789599870974877...
(1) k 1
k2
2
e
5
2 2e
k 1
.43944231130091681369...
.43947885374310212397...
1 .43961949584759068834...
k
3
(1) k 1 k
2 k 1
2
1 dx
cosh x x
4
1
4 ( 7 ) ( 6) ( 2 ) (5) ( 3) ( 4 )
1/
.44001215719551248665...
( k 1)
k 1
k6
1
k (k 1) log k
k 2
.440018745070821693886...
.44005058574493351596...
5 3
J1 (1)
1 2 log 2
5
5
(1) k
k 0 ( k 2)(3k 1)
1
(1) k
2 k 0 k!(k 1)!4k
1
1
1
( log2 2 cos1 2) sin ( 1) cos
2
2
2
(2k 2)
1 .44065951997751459266...
tanh
Im
2
2
ik
k 1
1
=
2
k 1 2k 2k 1
.44014142091505317044...
=
sin x
sinh x dx
1
k 1 sin
k 1
2k 1
2
GR 3.981.1
0
=
e
2 .44068364104948817218...
sin x
dx
e x
x
1
Ei(e) 1
e
.440865855581020082512...
1 J0 ( 2 )
.440993278190278937096...
3
4 2 2
3
ek
2
k 0 k!( k 1)
(1) k 1
2 k
k 1 ( k!) 2
Berndt 2.5.15
3 .441070518095074928477...
6 (4) 6 (3) 12 (2) 9
k (k 3) 1
3
k 1
k 4k 1
2
(k 1) 4
k 2
3 .4412853869452228944...
2
=
k
3
3 1
3
25 / 4 3 / 4 1 sin
8
4
4 4
.44133249687392728479...
k
k 2
5 .44139809270265355178...
2
1
(k 1) log k
3
(k
k 0
1
1 )( k 2 )
3
3
=
log( x 2 3)
0 x 2 dx
3 .441523869125335258...
1 .441524242056506473167...
e I 0 (1)
1 2k
k
k
k !2
k 0
3 (3) 2 (4)
5 5
5
5
arccsch 2 log 2
log(161 72 5 )
10
4
16
(1) k
=
k 0 k 1/ 5
1
1
k
.44195697563153630635... ( 1) Hk ( ( k 1) 1)
log 1
k
k 1
k 2 k 1
1/ 3
1 .44224957030740838232... 3
4 .44156786325894319020...
5 .44266700406635202647...
( 1) k 1
.442668574102213158178...
k 1 k ! k ( k 1)
1
1
log 2
.44269504088896340736...
1 .44269504088896340736...
2
k 1
1 2 3 1 2
1/ 2 k
k 1
k
1/ 3k
k
22 / 3
k
[Ramanujan] Berndt Ch. 31
1
log 2
.44287716368863215107...
k
2 21/ 3
1
k
3
k 1 ( k 1)
(2) (3)
(1) (k ) (k 2)
k
k 2
=
Hk
k (k 1)
k 1
.44288293815836624702...
4 .44288293815836624702...
2
1
arcsin x
dx
1 x
0
24
1 3
4 4
2
=
ex / 4
e x 1 dx
=
log1 x dx
4
log1 2 x dx
2
0
0
=
log( x 2 2)
0 x 2 dx
=
dx
1 sin
2
x
/2
=
tan x dx
0
.44302272411692258363...
.44311346272637900682...
log tan 1
4
/2
=
(1) k 1 22 k (22 k 1 1) B2 k
(2k )!k
k 1
x e
2 x2
0
xe tan
0
2
x
dx xe x dx
4
1 cos 2 x
dx
cos 4 x cot x
1
4
(1) k k
2
k 2 k 1
.443189592299379917447...
3
cot 2
4 2 2
(1)
k 2
1 .443207778482785721465...
k
k
k 1
.443409441985036954329...
2
1
4k 2
Lk 2 (k ) 1
2 (3) 2 log 2 2
(k 1) H k
2
(2k 1)
k
k 1
.443259803921568627450 =
GR 3.964.2
log 2
=
LY 6.30
0
.443147180559945309417...
AS 4.3.73
3617
(15)
8160
1
1
1 / 2
1/ 2
2 cosh 1 / 2
e e
(1)
k 0
k
e ( 2 k 1) / 2
J943
1 .443416518250835438647...
(k ) (k ) 1
k 2
3
2 HypPFQ 1,1,1, , 2,2,2,2,4
2
1 .443635475178810342493... arcsinh 2
1
( 1)k 1
.4438420791177483629... log 2 Ei( )
k
2
k 1 k ! 2 k
3 .443556031041619830543...
.444288293815836624702...
.444444444444444444444 =
5 2
4
9
=
5 .4448744564853177341...
k 1
e1 / e 1
2
log 3 xdx
2 (3)
ex
2
0
3
( 1) k k ( k 1)
( k )
8k 2
3
k 1 ( 2 k 1)
3
9
3 log 3
1
.44518188488072653761... 3
2
2
2 3
k 1 3k k
4
1
k 1 ( k 1)
= hg ( 1)
3
3
3k
k 1
1
=
log(1 x 3 ) dx
0
k 2H
48
42
6
log k k
125 125
5
k 1 6
3
3
(k 1) H k
.445901168918876713517...
1 log
4
2
3k
k 1
.445260043082768754407...
2
1 log x
dx
xx
2k
(k )
2
1 .44494079843363423391... ( 3) 0 3
k
k 1
( 2 k )
1 .44501602875629472763...
k 1 ( 2 k 1)
e1 / e , maximum value of x1 / x
1
k
k 0 k!e
k 2
3 .44514185336664668616...
k
1 .44490825889549869114...
k 1
k
4
0
1 .44466786100976613366...
2k 1
k k!k
1/ e
.44466786100976613366...
Titchmarsh 1.2.1
1 2
1
2 (2) (4) Li4 (e 2i ) Li4 (e 2i )
3
3
2
cos 2k
=
GR 1.443.6
k4
k 1
(1) k
.44648855096786546141... 2(cos1 2 sin 1 2)
k 0 ( 2k 1)!( k 2)
.446483130925452522454...
(k )
.446577031296941135508...
(k !)
k 2
.446817484393661569797...
1
2
2
1
1
0
k
k
k 1
I
(k 1)
(k )
k 1
k 2 dk
k 2
2 .4468859331875220877...
.44714430796140880686...
=
2 cos 2 2 sin 2
Li3 (ei ) Li3 (e i )
(1) k 1 2k
k 1 ( 2k )!( k 1)
5
5
128 32G 4 2 24 144 log 2
.447309717383151082397...
27
3
3
27
27
1
log(1 x ) log x
=
dx
x 1/ 4
0
.447213595499957939282...
.44745157639460216262...
3 3
2 21/ 3
(x
0
2
3
dx
1)( x 3 2)
3
1
.447467033424113218236...
(1) k k ( k ) 1
12 8
2 k 2
2
2 / 3 1 1 2
2 .4475807362336582311... ( 2 )
3 3
3
3
.44764479114467781038... tan
2
( 1) k
1
.44784366244327440446... k
log 1 k
3
k 1 ( 3 1) k
k 1
.447978320832715134501...
12
2
( 1) k 1
2
4
k 1 k k
=
coth
k
k 1
3
1
2k 2
i
i 3
csc (1)5 / 6 csch
tanh
6
6
2
12
2
3 (3)
3 .448019421587617864572... (2)
2
H k H k 1
k (k 2)
k 1
1
e e
e coshcosh 2 sinh 2 sinh cosh 2 sinh 2
2
2
k
e cosh k
=
k!
k 0
cos( 2 k 1)
.448302386738721517739...
GR 1.444.6
1
2
42
k 0 ( 2 k 1)
log 2 2
log 2 3
1
1
.44841420692364620244...
log 2 log 3
Li2 Li2
3
2
2
2
e2
810 .44813687055627345203...
=
=
=
=
1 2
2
3 log 2 2 3 log 2 3 6 Li2
6
3
2
log 2 2
1 1
Li2
12
2
2 4
k
(1)
k
k 0 2 ( k 1)( 2 k 2 )
1
log 2 x dx
0 ( x 2)2
(1) k 1
k 2
k 1 2 k
Hk
3 k
k 1
k
1
log 2 x dx
log x dx
1 (2 x 1)2 0 x 2
=
e x
log
1
0 2 dx
k (2k )
2 2
2 5 sin
csc
40
5k
5
5
k 1
1
k 1 ( 2k )
Li2 2
1 .448526461630241240991... ( 1)
2
k
k
k 1
k 1
k
1
(1)
1 .448545678146691018628...
k 1 k! H k
k 2 S1[ k , 2]
1
cos k
Li3 ei Li3 e i 3
.44857300728001739775...
2
k 1 k
.44851669227070827912...
1
.448623089086114197229... 1
2k
k 1
k
k
9
(1) k
.448781795164103253830...
6
k
e1 / 3
k 0 ( k 2)!3
5k 2
2
2
k 1 (5k 1)
5/ 2
x dx
.44879895051282760549...
7
1 x7
0
32
( k 12 )!( k 12 )!
6 .44906440616610791322...
( 2 k 2 )!
9 3
k 1
2
.449282974471281664465... Li2
5
.449339408178831114278...
1
1
2 2 2
dx
x
3
1
2
log 2
.449463586938675772614...
9
18 2 9 3
2 .449489742783178098197...
110 .449554966820854649772...
.44959020335410418354...
3 .4499650135236733653...
(x
0
3
dx
1)( x 2 2)
6
41e 1
1
2 2
k6
k 1 ( k 1)!
cot
2 2
9 2 6 2
4k
k 1
2
1
1/ 2
3
2 4 (3)
2
2
x 2 log 3 xdx
0 e2 x
.45000000000000000000
=
3 .45001913833585334783...
.45014414312062407805...
9
20
2 log 2 2
log 2 (1 x) x log x x 2
dx
x
( x 2) 2
0
3
log 2
3
3
k
1 2
2 .45038314198839886734... ( 1)
k!!
k 1
.450571851280126820771...
1
2
2
cosh
2
sin
( 1) k
k 0 ( 2 k 1)( 3k 2 )
sinh
cos
2
2
2
cos 2 cosh 2
(1) k 1
4
k 1 k 1
3 cos 2 sin 2
.45066109396293091334...
2
GR 4.313.7
2
=
( 1) k
1
k 0 ( k 2 )!( k 2 )
2
2k
1
k
k 0 k 16 ( 2k 3)
. 45071584712271411591...
2G 1
2
.45077133868484785702...
3 (3) (1) k 1
3
8
k 1 2k
=
x 3 dx
0 e2 x e 2 x 2
1
=
2 Li3 (i ) Li3 ( i ) Li2 ( x 2 )
0
4 .450875896181964986251...
6
216
.45091498545516623899...
.45100662426809780655...
.45137264647546680565...
3 (2)
(2 k )
k 1
3
8
dx
x
2k k
1
3 6
arcsin
3
x dx
0
1 2
3 3
x dx
e
x3
0
3 .451392295223202661434...
.45158270528945486473...
log 3
log
2
log( x 2 4)
0 x 2 1 dx
(2 k )
k 1
4k k
1
log 1 2
4k
k 1
Wilton
=
=
Relog log i
2k 1
1
log
2k
k 2k
Messenger Math. 52 (1922-1923) 90-93
Prud. 5.5.1.16
k 0
1 x dx
1 x log x
1
=
0
/2
=
1
GR 4.267.1
x cot x dx
0
GR 3.788
1 i
1 i
1 i
i e1 i
sin k sinh k
e ee ee ee
4
k!
k 0
k
1
(1)
3 log 2 3
.451885886874386023421...
12
k 0 12k 2
2
2k k 2
(k 1) 1
2 .451991067287107389384...
1 log 2
3
k 1 k 2
1 .451859777032415201064...
.4520569031595942854...
.45224742004106549851...
k 2
k
k log k 2
(3)
2 (k (k 3) 1)
( k 2) 2
3
4
p 2
p prime
(k )
k 1
k
log ( 2 k )
Titchmarsh 1.6.1
(2k 1) (k )
2
2
k 2 k ( k 1)
=
Shamos
3 3
2
(1) k 1
csch
2
4 2 2
3
k 1 k 2 / 3
1
.452404030972285668128...
coth 2 (i ) (i ) (4 k 2) (4 k 1)
4
k 1
1
= 2
1
k 2 k k 1 k
.45231049760682491399...
16 .452627765507230224736...
.452628365343598915383...
2 2 k 1
2
k 0 k !( 2 k 1)
1 1 1
1 5
, ,
2 6
6 2 3
.452726765998749507286...
(2k )
k 0
(1) k
3k 2
(3k ) 1
k 1
.45281681270310393337...
erfi 2
1
2 2
5
5
5 log 2
5
log
16 8 2
2
2 2
8 2
(1) k 5k (k )
8k
k 2
=
.452832425263941397660...
.4529232530212652211...
log
2e
3
e
25
k 1
x
x
0
e
dx
2
1
1
2i
2 e / 2
1 .452943571383509653781...
1
8k (8k 5)
3
( k ) 1
k 2
1
.453018350450290206718...
.45304697140984087256...
9 .4530872048294188123...
.453114239502760197533...
.453344123097900874903...
.453449841058554462649...
.453586433219203359539...
2
sin x / 2
2
ex
4
0
e
6
16
sin 2 ( 4 x 2 )
3
x4
0
1
1 log 2 3
4
sin x
x
0 3
si ( x) cos 2 x
dx
0
x
dx
1 4 x 2 3
(1) k 1
4
k 1 k k
8k
pounds/kilogram
.453602813292325043435...
cot
.45383998041715262...
x dx
4
3
x
0
k 1
2
k
2
2 2
7
8 log 2 2 2 log
8
2 2
1
(k )
3k 4
2
k 1 4 k k / 2
k 2 2
/4
.45383715497509933263...
4 log 2 1
(3 i 3)
(3 i 3
cot
cot
3
3 6
4
4
.453592370000000000000 =
=
dx
2
3x 4
4 3
0
=
GR 3.852.3
sin x dx
0
n 2
k 1
(1)n log (nk )
.4538686550208064702...
.45395280311216306689...
i i
cot(log ) i
i i i
3 5
1
4 2
x 3/ 2
0 ex ex 1 dx
5 2 log 2 2
1 1 i
1 i
Li2
Li2
96
8
2 2
2
1
1
.454219904863173579921... Ei log 2
k
2
k 1 k ! 2 k
.453985269150295583314...
4 .45427204221056257189...
2 cosh sinh csch 2
k2 4
2
k 1 k 2
=
.454313133585223101836...
(1) 2
k
k 2
.454407859842733526516...
.45454545454545454545
1 .4546320952042070463...
.4546487134128408477...
=
=
1 k
k 1
( k ) 1
2
2
2
1
(k ) 1
k 2
2 .45443350620295586062...
( 3) 1
(4) 1
5
11
F3k 2
k
k 1 6
2 ( 3) ( 2 )
( k 1)
k 1
2k
k2
2
4
1 2 2
(2 k 1)! k 1 k
k 0
0
sin 1 cos1
2 /
sin 2
2
( 1) k
.454822555520437524662...
k
6 8 log 2 k
k 1 2 (k 2)
3 .454933798924981417101...
(2k )
1
B (k )
k 1
2
1/ k 2
e
2
k 1 k
(k 1)!
k 1
.455119613313418696807...
1
log 9
1 .45520607897219862104...
.45535620037573410418...
AS 5.1.10
2 7 (3)
log2 x
1 ( x 1) 2 x dx
i
3
3
( 2 i )
i (2 i )
2i
4 sinh 2
GR 1.431
=
e x sin x
ex 1
0
dx
e
3
.455454848083584498405...
( x ) 1
1 dx
2
.455698463397600878...
( k 1)
k
4 k
k 1
1
4k
k log 4 k 1
k 1
i i / 2 e / 4
2
.4559418900357336741... 1
sinh
9
1
.455945326390519971498...
2 2 q squarefree with an odd number of factors
2
q
.45593812776599623677...
Berndt 5.30
.456037132019405391328...
1
1 i
1 i
1 i
i tan
4 csc
i tanh
2
4
4
8
1
1 i
1 i
1 i
4 csc h
i cot
coth
2
4
4
8
=
979 .456127973477901989070...
.45636209905108902378...
.45642677540284159689...
1 .456426775402841596895...
.456666666666666666666 =
.45694256247763966111...
.457106781186547524401...
e x sin x
1 e 2x dx
sinh 2
2
2
1 2
k
k 1
1
3
cos
2
2
3
1 (2k 1)
k 1
2
( 2k )
1
1
2
(1) k 1 k
3
2 3
3 2 k 1 3k 1 k 1
1
1
coth
2
2 2 3
3
k 0 3k 1
coth
137
H5
1
2
300
5
k 1 k 5k
1
( 2k )
k
2k
k 1 3 1
k 1 ( 3 )
1
1
2 4
/4
0
cos3 x
dx
1 sin x
2 .45714277885555220148...
.45765755436028576375...
.45774694347424732856...
2 log 2
cot 2
( k 12 )!
k !k
k 1
3 3
3
log 2 1 1 3 3
3
3
12 2
2
2
2
(1) k
= 3
k 2 k 3k
2
.457970097201163304227... 1
cosh
G
.457982797088609507527...
2
=
/4
/4
0
0
log(2 sin x ) dx
=
e
.45860108943638148692...
ex
2
=
1
12 2 sinh 2
4
48
3
4
2
( 1)k 1
k 1
.458665513681063562977...
.458675145387081891021...
2
Adamchik (5), (6)
x dx
x 2
0
.458481560915179799711...
log(2 cos x) dx
sin 4 k
k4
7 ( 3)
(2)
4
1 log( e 1)
(1) k 1
4
2
k 1 k k
4 1
3
2
k 3
k ( k 1) ( k )
2k
(1)
k 1
1
k
k 1 e k
e
0
dx
1
J157
x
=
2 .458795032289282779606...
Bk
k 1 k!k
6 ( 4 ) 12 ( 3) 7 ( 2 )
2 .45879503228928277961...
9
8
(1) k (k ) 1
9
8
( 1)
k
3
k 2
2
7 ( 2 ) 12 ( 3) 6 ( 4 )
k 2
8k 3 5k 2 4 k 1
k ( k 1) 4
k 2
=
.45896737372945223436...
3
8k 5k 4 k 1
k ( k 1) 4
k 2
=
[Ramanujan] Berndt Ch. 5
cos(1 sin 1) (coshcos1 sinh cos1)
k
k 3 ( ( k ) 1)
=
22 .459157718361045473427...
2 .459168619823053134509...
.459349015616034745...
.45936268493278421889...
.4595386986862860465...
.4596976941318602826...
=
=
e i 2i e i
i
e
ee
2
(kcos 1k)!
k 1
e
Not known to be transcendental
1 2 2
2
4K
8
2
2
2
K
2
1
1 dx
sin x x
2
1
1 .459974052202470135268...
1
(k )
k (k 1) 1
k 2
.460047975918868477...
2
( 1) k
3
6 log 2 3
2
12
k 1 3k k
.46007559225530505748...
2 2 4
=
(x
0
/2
=
0
=
.460265777326432934536...
2
2
2 2
/2
0
cos 2 x
dx
1 cos 2 x
1
log 1 2
dx
8x 1
0
9e
dx
1)( x 2 2)
sin 2 x
dx
1 sin 2 x
GR 6.151
0
7 ( 6)
2 ( 3)
( k 1)
(5)
k5
4
2
k 1
1
1
( 1) k 1
sin
k
2
2
k 1 ( 2 k 1)! 2
1
1 k 2
2 k
k 1
1
( 1) k 1
2 sin 2 1 cos1
2
k 1 ( 2 k )!
e
1
sin log x
0 sin x dx 1 x dx
3 .45990253977358391000...
dx
E (x ) x
GR 1.412.1
.460336876902524181992...
(k )
k 2
kk
1
erf i
2
2 2
1
1 .46035450880958681289...
2
.460344282619484866603...
e 1 / 8
G
1 .4603621167531195477...
log 2
4
=
e
/2
0
=
0
1
=
GR 4.295.14
x
dx
2 e x 2
x
0
=
log( x 1)
dx
2
1
x
0
2
=
log x 1
dx
1 x2
1
(1) k
2 k 1
k 0 ( 2k 1)!!2
cos x sin x
dx
cos x sin x
GR 3.796.1
arccot x
dx
1 x
arcsinh x
0
1- x2
GR 4.531.2
dx
/2
=
log1 tan x dx
GR 4.227.10
0
1
1
dx
1 .46057828082424381571...
2 arctan
2
7
7
0 x x2
tan k
.460794988828048829116...
k 1 k !
1
(1) k 1 (k 1)!
3 1
.46096867284703433665...
HypPFQ 1,1, , 2,
2
(2k )!
2 4
k 1
.461020092468987023150...
i 31/ 6 32 / 3
i 31/ 6 32 / 3
1
1/ 3
2/3
(1) 1
(1) 1
35/ 3
2
2
1
( 3k 1)
(1) k 1
2
1
3k
k
k 1
k 1
tanh k
1 .46103684685569942365...
k!
k 1
1
1 (1) k (2k )!
.46119836233472404263...
sin
sin( 2k 1)
2 k 0 (k!) 2 4k
2 cos1
=
3k
Berndt 9.4.19
1
.461390683238481623342... 1 4
lim
j
k 1
k 1
( j!) 4
k
j
4
1
k 1
.461392167549233569697...
3
1 dx
cos x 1
2
x
4 2
2 ( x 1) x
0
GR 3.783.1
5 x
x e log x dx
2
=
0
.461455316241865234416...
1 .4615009763662596165...
e 1
Ei
2 2
2 ( k )
k 2 ( k ) 1
k log (k )
k 1
k 2
1 .46168127916026790076...
.46178881838605297087...
.461939766255643378064...
.462098120373296872945...
9 2 3 12 log 2
30
x
0
4
1
log 1 3 dx
x
2 2
3
cos sin
4
3
8
2 log 2
(1) k
3
k 0 ( 3k 1)( 3k 2 )
1
log1 3 dx
x
1
=
1
x
2
0
log(1 x 6 )
dx
x4
0
1
=
.462117157260009758502...
36 .462159607207911770991...
e1
1
( 2 2 k 1) B2 k
tanh 2
e1
2
( 2 k )!
k 1
4 2
8 ( 2 )
27
9
1
1
=
2
2
(3k 2)
k 1 (3k 1)
1 .462163614976201276864...
G2
AS 4.5.64
J309
1
=
log x dx
x3 1
0
1
=
2
1 x
1 x
0
3
log x dx
1 .46243121900695980136...
1
p
1 2
p prime
1 .462432881399160603387...
.46260848376583338324...
(k )
k 2
k !!
(k ) 1
1/ k
k 2
1 .4626517459071816088...
=
2
1
2
1
k !(2 k 1)
erfi 1
k 0
1
1
p(k )
3 .462746619455063611506... 1 k
k
k
2 1
k 1 2
k 1
k 1 (1 2 )
5
( 1) k
.46287102628419511533... 20 log 4 k
4
k 0 4 ( k 1)( k 2)
1
.4630000966227637863...
1 2 csch 2
2
=
(1)
k 1
=
k 1
k (2k ) (2k 2)
k (k 1)
Re (1) (1 i )
2
1) 2
(k
k 2
=
320 .46306452510147901007...
.463087110750218534897...
xcos x
0 e x 1 dx
xcos x
dx
x
1
e e
x
0
6
3
1
3/4
4 3
3/ 4
1 1 / 4
cot i cot 1
31 / 4
3
=
=
1
k 2
k 1
k 1 ( 4 k 2)
1
3k
3k
2
1
1 5
.46312964115438878499... 2 arcsinh
2 log 2
2
2
2
3 .463293989409197163639...
.4634219926631045735...
6
1
e Ei ( 2) Ei ( 1)
e
0
55 .46345832232543673233...
( 1) k 1
k 1 2 k 2
k
k
319735800
5764801
k
8
k 1
8
k
x
dx
(1 x )
6
13
5269
1 .463611111111111111111 =
H ( 3) 5
3600
1
1
.46364710900080611621... arctan
arcsin
2
5
i
= Im log( 2 i ) Re i log 1
2
k
( 1)
= 2 k 1
( 2 k 1)
k 0 2
.463518463518463518
=
=
( 2 k )!!
(2 k 1)!! 5
k
k
2
= arctan
2
(2 k 3)
k 0
k 1
=
( 1)
k 1
k 1
.4638805552552772268...
3 .464101615137754587055...
2
arctan
2 [Ramanujan] Berndt Ch. 2, Eq. 7.5
(k 1 / )
e
e
( 1) k 1
e k 1
k
12 2 3
1
.46416351576125970131... k
k 1 e 1
(1) k
.464184360794359436536... 3
k 2 k 6
1 .46451508680225823041...
[Ramanujan] Berndt Ch. 2
(1) k 1
k
k 1 e 1
Berndt 6.14.1
9 (2) (4) 4 (3)
(1) k (k ) (k 3)
k
2
k 2
k
.46453645613140711824... 9e 24
k 1 k!( k 4)
24 .46453645613140711824... 9e
1 .46459188756152326302...
.4646018366025516904...
.46481394722935684757...
=
1/ 3
5
4
AMM 101,8 p. 732
3
1
2
k 1
3
k 2
5 i 3
i 3 5 i 3
2
3 2
tanh
4
3
k
2
=
(3k 1) (3k )
k 1
.464954643258938815496...
=
1
3
log
2
2
2 arctan
1
log1 2( x 1)
2
0
1 .465052383336634877609...
2
sinh
1/ 3
.46520414169536317620...
e
0
2
i / 2
3
.465461510476142649489...
3 .465735902799726547086...
k 1
k
2
2
(k ) (k )
2
(k )
(k ) 1
k (k 1)
k 2
.465370005065473114648...
0
k 2
3 ( 3) 2
2 log 2
1
4
12
3
1 log (2 3 )
3
(1) k 1
4
3
k 1 k k
Discr. Comp. Geom 22:105(1999)
5 log 2
(1) k 2k
I 0 (1)
I 0 (1)
.4657596075936404365...
k
e
e
k 0 k!2 k
1
(1)
(1)
.466099528283328703461... 1 ( 2 i ) ( 2 i ) i ( 2 i ) i ( 2 i )
2
3k 2 1
k 1
= ( 1) ( 2k 1)( ( 2k 1) 1)
2
2
k 1
k 2 k ( k 1)
1
2
(k ) 1
k 2
2 .4653001813290246588...
k
k 1
k 2
1 .4653001813290246588...
1 4k
k!3
.4653001813290246588...
dx
(1) k
k
k 0 2 ( 2 k 1)( 2 k 2 )
.46618725267275587265...
( 1)
k
( k ) ( k ) 1
k
k 2
1
1
k
1
k 1
1
= 1
k
2
k 0
1
1 .466942206924259859983...
k
1 k 0
2
1
.467058656500326469824... Li2 Li2
3
3
.466942206924259859983...
Prud. 6.2.3.1
1 1
k
k 1
6 log 2
24 (2)
1
2
, Porter’s constant
3
log
2
4
2
2
2
=
1 .467078079433975472898...
1
log1 k log 1 k
1
.46716002464644797643...
arcsinh x dx
1 2 arcsinh 1
0
.467164421397788702939...
(2 k ) ( 2 k 1)
k 1 1/ k 2
e 1
k!
k 1
k 2 k
2
( k 1)
.467401100272339654709...
2 (1) k 1 k
4
2k
k 1
( k 1)( ( k ) 1)
=
2 k 1
k 2
( k 12 )!
=
1
k 1 ( k 2 )!( 2 k 1)
/2
x
0
2
1 .46740110027233965471...
2 .46740110027233965471...
cos xdx arcsin 2 x dx
( 2 k )!!
2
( k 1)
(2 k 1)!! k
k 1
2
log 2 i arcsin 2 1
k (k 1)
=
2k
k 1
k 2 k
(1)
( 2 k )!
k 1
1
2
1
4
4
0
2
2
k 1 ( 2k 1)
k2
2
2
k 1 ( k 1 / 4)
=
k
=
x dx
sinh x
0
=
x sin xdx
2
x
1 cos
0
=
3 .46740110027233965471...
Borwein-Devlin, p. 50
log x
0 (x 1)(x 1) dx
2
1
4
1
1 .46746220933942715546... E
4
1
K (k ) dk
0
( 2 k )!!
(2 k 1)!! k ( k 1)
k 1
.467613876007544485395...
1 .467813645677547003322...
2
1/ k 2
k 1
.4678273201195659261...
3 .467891949359644150296...
1 .467961779578029614731...
.46804322686252540322...
3 .468649618760533141431...
.468750000000000000000 =
.46894666977688414590...
sin 6 x
0 x5 dx
1
1
k2
1 2
k 1
1 .467891949359644150296...
27 log 3
2 log 2
16
2 log 2 1
2
2
2
8 log 2 2
coth 3
7
2
1
18
6
1
I 2 3
3 1
15
k2
k
32
k 1 5
3
3
cos
4
8
(1) k
k 0 k 1 / 4
(k 3)
2k
k 1
k
k 1
2
1
9
3k
k 0 k !( k 1)!
sin x 4
0 x 2 dx
(2k ) (2k 1)
1
=
32 .46969701133414574548...
.469981161956636124706...
4
3
2
21
k
k ( k 1) log k 1
k 2
log k
3
k
k 1
k 2 k k
(n)
= 1 H k ( k 1) 1
n 1
k 1
1
1
3
= 3
log k
2
k k2
k 2 k k
1
2 .469506314521047562476...
k!
k 1
J124
Hk 1 (( k ) 1)
k 2
GR 3.552.9
.46921632103286066895...
2
0
2 log 2 1
x dx
(1 x ) sin( x / 4)
2
2 sinh
1
1
5
(k 2)2
k 1
8
.4705882352941176
=
17
3 9
(1) k 1
.470699046351326775891...
2
4
k 1 k ( k 2 / 3)
1 .47043116414999108828...
1 .470801229745552347742...
3
coth 3
2
=
(1)
k 1
.4709786279302689616...
3
3
3 ( 2 k ) 1
k 1 k
1
2
4
21
31
(3) (5)
2
8
2
8
( 1)
4
e
(2 k )
k 1
e
1 x
k (2 k 1)
k 1
1 .471517764685769286382...
k 2
2
k
.471392596691172030430...
k
3 (k )
k 1
.471246045438685502741...
5
4
k3
5
k 1 ( k 1 / 2)
1
1
2 2 2 k arctan
k
log1 k
k 1
dx
0
2
e
1 e2
sinh 2 k
e ee
4
2 k 0 k !
( 3) 1
5 .47168118871888519799...
(5) 1
(k ) (k 1)
1 .471854360049...
1
2
k 1 ( k k )
403 .4715872121057150966...
8 .472010016955485001797...
1
sinh csc 2
2
k 2 2k 2
2
k 1 k 2k 1
20 2 5
4 .47213595499957939282...
1
.472597844658896874619... Li3
2
(1) k 1
k 3
k 1 2 k
3 3
5 3
3 .47273606009117550064...
4 2
2 2
=
e
0
.47279971743743015582...
dx
x
2/3
1
4 3 1
27
3
(x
0
2
dx
x 1) 2
x3 / 2
0 e x e x 2
1 .47279971743743015582...
2
4
3 9 3
1 .47282823195618529629...
(1)
1
2k 1
k 1
(2k )
k 1
( 2 k 1)!
k 1
k
k sin k
1
1
k 1
.47290683729585510379...
( 1) k 1
6 4 cos1 4 sin1
k 1 ( 2 k 1)! k ( k 1)
.47304153518359150747...
si (1)
2
1 .47308190605019222027...
.473095399515560361013...
.473406103908474284834...
1 dx
2
x
sin x
1
k 1
( 1)
5
k 1 k 1
.473050738552108261...
3 e
2
2
k 1
k
k 1 k ! 2
log 6
1
2
k2
k
k 0 ( k 1)! 2
GR 1.212
(1) k 1 2 k
(k 1) 1
k 1
k 1
3 1
tan
2 5
4 6
4k
k 1
2
1
4k 5
1
7
7 ( 4 )
1440
16
2k 4
k 1
9
.473684210526315789
=
19
(4) 1
771 .474249826667225190536... 744 (5)
2
4
k 1
.47351641474862295879...
1 .47443420371745989911...
.47474085555749076227...
.47479960260022965741...
7 ( 3)
2
2
2 log 2
log 2
4
4
4
Hk
(2k 1)
k 1
2
12
2 (2) (4) (3)
( 1) ( k ) ( k 3)
k
k 2
=
k 1
5
k4
k
k 2
3
6
1 2k
k
.47480157230323829219... 2 log
3 3 k 1 6 k k
.4749259869231265718...
2
8
3
1
hg hg
4
4
3
sin 2 x
0 (1 sin x) 2 dx
1
25 / 4 e / 8 2 , Weierstrass constant
4
1
1 .474990335830026928404...
k 1 k ! k
.474949379987920650333...
1
k2
k 1
( k )
.475218419203912909153...
k
k 1 4
1 .475148949609715735331...
2
k
35/ 6
35/ 6
e 3
34 / 3 / 2
1
3
e
sin
cos
35/ 3
2
2
1/ 3
.475222538807235387649...
( 1) k 1
k 1
3k k
(3k )!
1 .4752572671352997213...
x 2 dx
0 e x x 2
4 (k )
7 .475453086232465307416...
(2k 1)
k 2
.475728091610539588799...
1 .475773161594552069277...
1
Ai
2
1/ 5
7
.47591234810986255573...
x (2 x) 1 dx
1
.47597817593456487296...
(k ) log (2k )
k 1
k2
(3)
k ( k 2 1)
1
k 2 (2 k 1) 1 2
3
2
8
k 1
k 2 ( k 1)
27 3 (1) 1
k
2
2
1 .476208712948717496147...
2
3
4
2
k 1 (k 1 / 9 )
k 1
I 0 (2) I1 (2)
1
(1) 2k
.476222388197391301...
1
1 1F1 , 2, 4
e2
2
k 1 (k 1)! k
.4760284515797971427...
1 .47625229601045971015...
3 (k )
k 2
3
1 .476489365728562865499...
.47665018998609361711...
1 .47665018998609361711...
.4769362762044693977...
.477121254719662437295...
2k
21
1
1
cot 3 2
3 2 3
k 1 k 4 k 1
2
1
cot 3 2
3 2 3
k 2 k 3
1
erf 1
2
log10 3
5 .47722557505166113457...
30
3
2
sinh
.47764546494388936239... log
= log 1
2 2
28 .477658649975010867721...
log 2
.47746482927568600731...
i
i
1
(1) k 1 (2k )
kk
k 1
[Ramanujan] Berndt Ch. 22
k 2 Hk
.477945819212918170827... 8 6 log 2 7 log 2 k
k 1 2 ( k 1)( k 2 )
3 (3)
1 2 i
2 i
1 i
1 i
.478005999517759386434...
log 2
2
2
2
4
4 2
2
( 1) k 1
5
3
k 1 k k
G
1 G
4 2
7 (3) 23
(1) k k 2
3 2
(k ) 1
log 2
4
54
2k
8
k 2
1
k (k ) 1
(1)
2 1/ k
( k 2 )!
k 2
k 2 k e
1
1
log 2 (1) k
k 1 2 k 1
4
k 0
=
.478069959586391157131...
39 .47841760435743447534...
.478428963393348247270...
.47854249283227585569...
1 .47854534395739361903...
.47893467779382437553...
.47923495811102680807...
.479425538604203000273...
=
.479528082151010702842...
4 ( 3) ( 4 )
2
csc
1
sin
2
2 2
2 Im (1)
1/ 6
(1) k
2 k 1
k 0 ( 2 k 1)! 2
( 1) k
4 k 0 k !( k 12 )16 k
( 1)
J2 2 2
k 0
k
2 k 1
k !( k 2)!
(1) k 1
.47962348400112945189... 2 2ci (1)
k 1 ( 2k )!k
(k )
e1/ k 1
2 .47966052573232990761...
k
k 2 ( k 1)!
k 1
(1) k 1
2
k 1 2k 1 / 4
AS 4.3.65
.47987116980744146966...
3 32
1/ 3
x
0
dx
4
3
2
12
F
kk
25 k 1 4
(k ) 1
.48022960406139837837...
k 2 0 (k )
.480000000000000000000 =
3 .480230906913262026939...
1
1
log log
x
0
2 log 2
dx
1
log
x
Hk
H
2
.480453013918201424667... log 2 k
2 ( 1) k k
k 1
k 1 2 ( k 1)
k 1
GR 4.229.3
=
( x 1)( x 4 ) dx
(x 2)2 x
log
0
2 .480453013918201424667...
2 log 2
2
1 .48049223762892856680...
( 2 k 1)
2
2
k 1
GR 4.299.1
k Hk
( k 1)
k
2 k 1
1
( 1) k 1
.48053380079607358092...
k 1 k ! ( 2 k 1)
k 1
2 .480548302158708391604...
.48061832131527820986...
2 e2
1
3 (3) (2) 1
2
2 ( 2 k ) 1
k!
k 1
1 .480645673830658464567...
k
1 .480716542675186062751...
Titchmarsh 14.32.3
HkHk
k (k 1)(k 2)
k 1
e
2/k 2
k 2
2k (3k 1) 1
k 1
k
k 2
1
2k
2
3
6 .48074069840786023097...
42
.48082276126383771416...
2 (3)
5
.480898346962987802453...
1
log 8
.481008115373192720896...
2arctan 2 2 log 2 log 5 2 arctan
(1) k 1 k!k!
3
k 1 ( 2k )!k
1
5
2 log
2
4
(1) k
(1) k 1
= k
2 k 1
k (2k 1)
k 0 4 ( 2k 1)( 2k 2)
k 1 2
=
0
2 .481061019790762697937...
0 (k )
k 1
.481211825059603447498...
=
1
log1 ( x 2)
k!
2
dx
1
( jk )!
k 1 j 1
1 5
log = arccsch 2 log 2 cos
2
5
cos( k / 5)
k
k 1
log
.48164052105807573135...
2 2 (2) 4 ( 3)
1
4 .481689070338064822602...
e 3/ 2
k
3
k !2
k 0
.48180838242836517607...
.48200328164309555398...
.482301750646382872131...
15
6
e
k
1
e
x1/ 3
dx
0
(1 log 2)
2
/2
log sin x tan
2 ( 3) 4 log 2 2
2 log
4
2
x dx
0
k
k 1
.483128950540980889382...
log 2 x
dx
x 2 ( x 1) 2
2
Hk
( 2 k 1)
log(1 x 2 )
cosh x / 2 dx
0
k 2 Hk
15 3
3
2 .483197662162246572967...
log k
8 2
2
k 1 3
1
.483204576426538793772... (a k ) 1
k 2 a 1 k
7 .4833147735478827712...
56 2 14
log 3 k
( 3) ( m)
6 .4834162225162414100...
k 2 k ( k 1)
m 2
k
(1) ( 4 k 2 )
1
sin 2
1 .483522817309552286419...
( 2 k 1)!
k
k 0
k 1
1
2 log 2 2 log 3 3 1 1
1 .48355384697159722986... Li3 ( 4)
Li3
2
6
3
2 4
GR 4.373.2
log 2 x
x 2 dx
x
= 8 3
x 4x
e 4
1
0
1
.484150671381574899151...
(1 i 2 ) (1 i 2
2 4
(k 1)!
4
.48430448328550912049...
k
1
k 1 ( k 2 )!2
1 .4844444656045474898...
.484473073129684690242...
3
2
18
Dingle p. 70
2 log 3 log 2 3
3
3
log 2 xdx
0 e3 x
3
64
.48451065928275476522...
2
k 1
( 3k ) 1
Ei (1)
H
( 1) k k
e
k!
k 1
1
log(1 x )
dx
=
x
e
0
.48482910699568764631...
8 .4852813742385702928...
72 6 2
.485371256765386426359...
5 2 log 2 2
1 i
1 i
Li2
Li2
2
2
48
2
4
=
1 .48539188203274355242...
log(1 x 2 )
0 x (1 x )2
1
log 3
(1) k
3k 1
6
( 3k 1)
6 3
k 0 2
45 2
sin 2 2
7
1 k (k 6)
k 1
.485401942150387923665...
=
x
2
2
dx
x 1
(1) k 1
6
k 1 k 1
.4857896527073049465...
.48600607487864246273...
2 3
3
=
log1 3( x
0
=
cos x
2 cos x dx
0
1 x 3
0 log 1 x 2 dx
1
dx
1)
2
Berndt 8.14.1
1 .486276286405273929718...
x cos x
dx
1 sin x
0
4 G log 2
GR 3.791.2
=
log(1 sin x ) dx
GR 4.224.10
0
4 .48643704003032676232...
9 .486832980505137996...
k 3
( k 2) 1
k
k 1
( 4) 2 (3) 1
90
1 .48685779828884403099...
(k ) (k ) 1)
k 1
5 .48691648995407706207...
.487212707001281468487...
10 e 16
4
k
log 24 4
k 1
k !2
k 0
.48726356479168678841...
3/ 4
2 23
.48749549439936104836...
2 2
1 .487577370170670626342...
1
3 .48786197086364633594...
2
0
(k 1)
2
1
( k 3)
2
/4
tan x dx
0
(1) k
2
k 0 k 1 / 2
15
4
4
3/ 4 csc 14 csch 14
364 4 14
( 1) k
= 4
k 2 k 14
( k )k
.4882207515238431339...
2k
k 1
1
3
3 log 3
.48837592811772608174...
2 log 2
x log( x 2 ) dx
4
2
0
.48808338775163574003...
.48854802693053907803...
5 1
2 2 arctan 2
8
4
1 .48858801763883853368...
2
1 / 3
/4
0
cos4 x
dx
1 sin 2 x
Hk 1 ( k ) 1
1
k
log 2
k
2 k 2
k 1
k 2
.48859459163446827723...
Prud. 5.5.1.15
dx
3
2 2
csch
k 4
k
4
log 3 2 2
2 (k )
k 2
x
k
log
.48883153138652018302...
2 4 log 2 2 log 2 2
2
1
4
1
.488870533723461898816...
.489461515482517598273...
2 .48979428564930390972...
2 .48985263014562670196...
22 .49008835718767688354...
k 0
2 2
2
2
8k
)
k 0 ( 2 k )!
2k
k 1 k ! k ( k 1)
x log 3 x
dx
3
2 ( 3)
ex
2
2
0
2
3
(k 1)
k 1
k!
eG
2
3
1
k (k 1) (k 2) 2
3
k 1
(1)
k 1
2k
k 1
.49023714757471304409...
e
2
3
e2
log 2
Ei ( 2 )
2
2
.490150432910047591725...
2k
1 2k 1
1 2
8 .4889672125599264671... cosh 2 2
(e
2
3
1 .48919224881281710239...
5
1 .489343461075086879741...
4
(1 x ) log (1 x )
dx
x
0
1
=
( 3)
k4
k
13 2
log
16 12
k2
(2 k ) 1
k 1 k 1
Adamchick-Srivastava 2.24
.49035775610023486497...
1 .490664735610360715703...
2
2
( 3)
.49073850974274782075...
40
5
(1)
2
9
2
1
k ! ( k )
k 2
.49087385212340519351...
5
32
=
(x
0
dx
1) 4
5
sin x
dx
x3
0
2
GR 3.827.9
2
dx
(5 sin x)
=
2
0
1
=
x
3
arcsin x dx
GR 4.523.3
0
(k )
.491284396157739513711...
k !k
k 2
1 .491388888888888888888 =
535 .491655524764736503049...
k 1
1 1
k k
(1) k
k 0 ( 3k 2 )!
sin( x / )
dx
ex 1
0
x cot x
2
dx
2
e 1
0 x 1
1
.49191653769852668982...
6 ( 3)1/ 3 31/ 3 ( 1) 2 / 3 31/ 3
( 3) 1
2
3
1
.492504944583995834017...
1
4
2
43 .49250925534472376576... 16e
1 e 3
2
.492860388528006732501...
4 2
k3 3
k3
k 2
k 2
( k 1) 1
k
k 1
.492900960560922053576...
log
3
1 1
2 e cos
3 e
3
2
.491714676619541377352...
1 .492590982680769548804...
1
5369
H ( 2) 6
3600
e 2 i 4 i
.491691443213327803078...
5 .491925036856047158345...
Ei k
/4
0
cos2 x
dx
1 sin x
sin( 2 tan x )
dx
x
0
coth 2 2
GR 3.881.2
1
16
k
k 1
2
1
8
2 2 arcsinh 1 2 2 2 log(1 2 ) 2
2
k 0
2 2
5 .493061443340548456976...
5 log 3
.493107418043066689162...
.4932828155063024...
3
2 6
root of
3
0
1
SinIntegral
2
3
.493414625918785664426...
2
2 .4929299919026930579...
2
2
k
1
( 2 k 3)
2
x log xdx
ex
(1) k
2 k 1
( 2 k 1)
k 0 ( 2 k 1)! 2
Ei ( x ) 1 Ei ( x )
92
1/ 3
cos1/ 3
2
4
cos1/ 3
cos1/ 3
9
9
9
[Ramanujan] Berndt Ch. 22
.493480220054467930942...
2
2 (2) (4)
T (2)
20
2 (2)
1
n
2
,
where n has an odd number of prime factors
[Ramanujan] Berndt Ch. 5
.493550125985245944499...
k
k 2
.4939394022668291491...
4
2
6
15
x
e e
x
0
6 .4939394022668291491...
=
( 3)
2
1
=
1
k2
log
2
k
4
log 3 x
dx
x3 x2
1
log x
x 1 dx
0
3
x
1
dx
6 (4) ( 3) 1
AS 6.4.2
15
1
log 3 x
0 x 1 dx
GR 4.262.2
=
x3
0 e x 1 dx
Andrews p. 89
.49452203055156817569...
log 3 2 (3)
(2) 2 log 2
3
4
.494795105503626129386...
2 (3k ) 1
2
k
k 1
1 .495348781221220541912...
.495466871359389861239...
k 2
log
1 log 2
0
cos x
x
G8
.49559995357145358065...
1 1 1
, 3,
16 4 2
=
3
2
2
51/ 4
.495488166396944002835...
k
dx
1
log 2 x
0 x 2 4
i i
i
Li3 Li3
2
2 2
( 4 k 2)
k2
4
4k
k 1
k 1 4 k 1
=
cot
coth
8 2
2
2
1
.495691210504695050508... k
k 1 ( 2 1) k
.49566657469328260843...
log 2 (1 x )
0 x 2 ( x 1)
1
2 .495722117742122406049...
3
( 3)
5 .495793565063314090328...
6G
2 3
sin 4 k / 5
GR 1.443.1
125
k3
k 1
7 4 1 1
1/ 4
.496460978217119096806...
1 csc (1)1/ 4 i csc (1) 3/ 4
720 2 4
(1) k 1
= 8
4
k 1 k k
.496100426884797122808...
.49646632594971788014...
3 .49651490659152822551...
.496658586741566801990...
.496729413289805061722...
e 1
4e
2
4
sin 2 ( x 2 )dx
0 1 x 2
2 (3)
1
2 10
2
6
11
8
Hk 2
2
k 1 k
cos 2 k
(k 2)
Im
k
k2
k 1
k 1 ( 2i )
dx
2
5
2x
0
31 ( 6) 7 ( 4 ) ( 2 ) 1
.496999822715368986233...
coth tanh
32
8
2
2 4
2
2
(1) k 1
= 8
6
k 1 k k
1
1
5 1
.49712077818831410991...
1/ 4
4 2
2
2
sin k
.497203709819647653589...
2k
k 0
k !
k
.497700302470745347474...
2 log log 6 log ( 2 )
k
k 1
=
6 .497848411497744790930...
.498015668118356042714...
1
log
2
p prime
1 p
7 ( 3) 3 2
k 2 ( k )
log 2
4
8
2k
k 2
log (2)
Im (i )
5 .498075457733667127579...
(1)
k
k 2
(k )
2
log k
4
( k ) 1
Titchmarsh 1.1.9
HW Sec. 17.7
16k 2 6k 1
3
k 1 2 k ( 2 k 1)
2 .498215280831227494136...
( k 2)
k 0
.498557794286274894758...
.498611386672832761564...
.49865491180167551221...
2k
k
k
1
k 1 2 Hk
2
2
1
(
)
log
(
)
Ei
e2
k!
k 1
k
1
1
(1)
sin
sinh
GR 1.413.1
2
2
k 1 ( 4 k 2 )!
1/ 3
1/ 3
1
2 3 1 3 ( 3 3i ) H (1) 2 / 3 3
2
24 / 3311 / 6
2
3 1 / 3
3 3i
4 / 3 11 / 6 H
2
2 3
k
=
3
k 0 2k 3
3 .498861059639376104351...
e
k 2
1 .499005313803354632702...
2
k 2
2 .499187287886491926402...
e
(k )
e
1
k 2
(k )
G
k2 1
.49932101244307520621... 4
( s ) 1) ds
k 2 k log k
2
4
.50000000000000000000
=
1
2
1
=
(k 1)! k !
k 1
=
(2k ) (2k 1)
k 1
=
=
=
=
=
=
=
=
=
k ( 2 k 1)
4k
k
2
2
4
k 1
k 1 ( 4 k 1)
1
k2
k
k
k 0 3
k 1 3
1
1
k 1
2
3
k 2 k k
k 2 k k
k 1 k ( k / 2 1)
1
2
k 1 4 k 1
2k 4 k 3 1
k7 k
k 2
k2 k 1
k 1 ( k 2 )!
1
1
k 0 k !( k 1)( k 3)
k 1 k !( k 2)
2k 1
2
2
k 1 ( k 1)(( k 1) 1)
1
1
3
1
3
1
k 1 k k k
k 2 k 3k k
4k 1
( 2 k 1)!!
k 1 ( 2 k )!! ( 2 k 1)( 2 k 2 )
=
2k
k 0 k !( k 2)( k 3)
=
(1)k (k ) 1
k 2
=
=
=
=
(2k )
k
(2k ) (2k 1)
k 1
k ( 2 k 1)
4k
k 1
4
(k )
k
k 1 2 1
( 2 k )2 k
k
k 1 4 1
2
3
k 1 sin k
k 1 sin k
k 1 sin k
(
1
)
(
1
)
(
1
)
k
k2
k3
k 1
k 1
k 1
k 1
GR 0.142
K 134
2
=
J397, K Ex. 109d
J390
8 .525161361065414300166...
.525200397399770342589...
log 7!
( 4 ) ( 3) ( 2 ) 1
k
k 1
5
1
k4
=
1
(1) k 1 ( k 4 ) 1
2 k 1
35/ 6
35/ 6
e3 / 2
4/3
3
sin
cos
e3 / 2
5/ 3
2
2
3
1/ 3
.525223891622454569896...
1 .52569812813416969091...
3/ 2
2
coth 3 / 2
3 1
2( 1)
( 1)
k 1
k 1
2
1
3
arctan 2
csc
sin
5
5 5 2
2
1
.525738554967177620202...
3
(k )
3 .525956365299825031078...
k 1 ( k 1)!
.52573111211913360602...
2 .52605639716194462560...
4 log 2
64
3 2 (3)
93 (5)
16
/2
=
x
3
log cos x dx
0
.526207036980384918178...
( 3)
( 3) ( 4 )
.526315789473684210
10
19
=
(1) k
.52641224653331...
k 2 k log k
Hk
.52693136530773532050... k 4
k 1 2 k
(1) k
.526949261447891738811... 5
k 0 k 1
.526999672990696468620...
3 .527000471852952829762...
.52706165278494586199...
5
27
log
16
5
1 (k )
k 1
k!
arctan
1
1 e
sin5 x
0 x 2 dx
3k k
k 1 ( 3k )!
k (2 k ) 1
7
3
1 .527525231651946668863...
.527600797260494257440...
.527694767240394589488...
2k 1
k 7
k 0
k
1
( 1)(1 cos1) log(2 2 cos1) sin1
2
2
7
12
coth 2
4
k
k 2
2
1
2
( 1)
k 1
k 1
k 1
sin k
k (k 1)
2 k 1 (2 k ) 1
=
.527887014709683857297...
1
2
k 1 k 2k 3
k 1
( k 12 )!
( k 12 )!( 2 k 12 )
=
k 1
1 .52806857261482370575...
log
2 (2k ) 1
2
k
2 csc
k
k 1
2
log1 2
k
k 2
.528320833573718727151...
log8 3
.528407192107340935857...
6 37 / 6 i 32 / 3
1 6 37 / 6 i 32 / 3
1
1 1/ 3
3
6
6
3
( 1) k 1
k ( k 1 / 2)
4 2 log 2
=
( 3k 1)
k
3
k 1
.528482235314230713618...
2
4
e
1
k (3k
k 1
2
k 0
.529154857165146540082...
.5294117647058823
4
40
9
=
17
.529416855888971505585...
e
x
dx
0
2 log 2 2
1
3k
k!
k ! 1
k 2
1 dx
2
x
sinh x
1
1
1/ 2
F
k 1
2 .52947747207915264818...
k
1)
1
1
.52862543768786425729...
SinhIntegral (1)
2
.52870968946993108979... G
1 .528999560696888418383...
3
3
2 log 4 2
4 ( 3) log 2
3
2k
k 4
k 1
1
k4
k
. 52962384375569377748...
5 .529955849000091385901...
2
2k
1
k
k 0 k 16 ( 2k 1)( 2k 2)
4G 2
k
k
1 2
k 1
(1) k 1
(k 1) 1
k
k 1
1 1
.53019091763558444752... ( 3)
(2 i) (2 i)
2 2
1
1
= 5
( 1) k 1 (2 k 3) 1
3
2 k 1
k 1 k k
.53001937835233379231...
k 1
k
k 2
1
.530277182813685398637...
k 1 ( 2 k )! k
.53026303220872523716...
1
k
2
2
4 k 2 3k 1
1 .530688394225490738618...
2 ( 3) 1 (1) k ( k ) 1
3
2
k 2
k 2 k ( k 1)
1
1 .53091503904237871421...
Titchmarsh 14.32.3
k 1 k ! ( 2 k 1)
9488 .531016070574007128576...
.531249534072353755050...
k
2
8
1
1
6
3
log1 6 x
1
2
0
dx
1
7
k
(1) k
k 1
k 1 ( k )
.531275083024229991483... ( 1)
log (2 k )
k
k 1
k
1/ e 1
.531463605386615672817... e
k
k 1 k ! e
.531250000000000000000 =
2 .531895752688993200213...
.531972647421808261859...
.53202116874184233687...
.532108050640355849704...
17
32
e
33/ 4
2 2
x
2
6
3
8
0
Prud. 5.3.1.1
k
4
dx
1/ 3
2k
k 12
k 0
k
1
( k 1)( k 2 )
1 1 3
Li3 (3)
12 2 3 8
2
1
4
2 log 1 2
2
1
log 2 x
0 ( x 1) 2 ( x 3) dx
(1) k 1
k 1 k 1 / 4
1
2 .532131755504016671197...
.532598899727660345291...
e
2 I 0 (1)
3
2
4
sin x
1
dx
3
k (k 2)
k 1
2
/4
2 log 1 2
.53283997535355202357...
cos x log(sin 2x ) dx
0
7e 1
3
3
46 .53291948743789139550...
.533290128624160141531...
=
1
3
k
3 k
2
(k 1)!
k 1
3 i 3
3 i 3
1
(1 i 3 )
(1 i 3 )
6 6
2
2
2
1
( 1) k 1 (3k 2) 1
2 k 1
1 .533463799145879760767...
k 2
( k ) 1
k
k 1
5
1
k2
1
k4
6 .533473364460804592338... 62 e 162
k 1 k !( k 3)
3 (3)
1 .53348137319375099599... 2 Li3 2
2
log 2 x
=
dx
x
1
x
2
(
)(
)
1
1 .533582691060658478950...
1
I 0 (1) L0 (1) 1 e x arccos x dx
2
0
1 .53362629276374222515...
e
2 ( k ) 1
( k )
k 2
1
3
1
.53387676440805699500...
sin 2 sin
4 cos1 5 2
2
(
)
k
| (k ) |
2
1 .53388564147438066683... k
k
k 1 2 1
k 1 2
1
7 .533941598797611904699...
8
.5338450130794810532...
k
(1)
.534195237508799281491... 1
2k
k 1
k
k
1
2
k 1
k
sin
2k 1
2
3 .534291735288517393270...
.534304386409498279676...
.53464318757261872264...
1 .534680913814755890897...
.534799996739570370524...
Hk 1
k
k 1 4
1 1 1
1
, 2, k
2
8 2 2
k 1 2 ( 4k 4k 1)
1 e / 4 1/ 4 e
cosh k
e e
k
2
k 0 k !4
1
log 1
2
/4
log x
dx
2
1
2x
1
cos x
1 sin x dx
0
1 1 i
1 i
1 i
1 i
2
2
2
4 2
1
1
k 1
=
( 1) (4 k 1) 1 5
2 k 1
k 1 k k
sin 1
cos1
cos1
sin 1
.535112163829819510520... sin
cosh
sinh
e(cos 1) / 2 sin
2
2
2
2
sin k
=
GR 1.449.1
k
k 1 k ! 2
.535034887349803758539...
9
8
16
4
log 1
3
3
.5351307235543852976...
3
sin
.535216927240908236283...
1
1 2
3k
3
k 1
1
k !(k ! 1)
k 2
1 .53537050883625298503...
1
F
k 1
( 3)
Ai(1)
.5355608832923521188...
k 1
2k
1 .535390236492927618733...
2k
5
4k 1
1
1
5 2 k
4k
1 1
k 1
1
3
2( 2 3 ) 3 1 2
1
.535962843190222987031...
( 1) k 1 (5k ) 1
2 k 1
.535898384862245412945...
.5360774649700956698...
.536119444744722773227...
1 .53642191914104435977...
( 2 1) 1
2
2
e
0
k
k 1
1
1
5
dx
x2
1
e
2
CFG D1
3
csc 2
1 k
k 1
2
1
4k 2
1
.536441086350966020557...
( 1) k 1 (6k 1) 1
2 k 1
1
2 ( k )
.5365207790738756208... k
2
3k
k 1 (3 1)k
k 1
k
k 1
6
k
1
.536526945921177100962...
log ( x) dx
2
.536683562016736660896...
.536784534109508703918...
1
2
(1)
k 1
=
k2
(7k 2) 1 k 7 1
k 1
k 1
(1) (3k 1) (3k 1) k (k k 1)
k 1
k 1
.53685577365418220547...
1 i 3
1 i 3
1
(1 (1) 2 / 3 )
(1 (1)1/ 3 )
3
2
2
k 1
2
k 2
( jk 2) 1
j 1 k 1
.536921592069942010965...
4
k 1
k
k
1
1
2
Re (1) i
2 2 sinh2
7 (3) log 3 2 2 log 2
1
.537213193608040200941...
Li3
2
8
6
12
H ( 2) k 1
k3
k 1
.536999903377236213702...
2
k 1
1
k3
k
log(1 x / 2) log x
dx
x
0
1
=
1 .53739220806790406178...
.538011176205005048612...
=
1/ 3 3
1 1 / 3 2 ( 1 / 3 ) / 2
e
cos
e
3
3
2
k
(3k )!
k 0
5
1 5
1
log
k
2
2
k 1 5 (8k 4)
1 (1) k 1 (2k 2)!!
2 k 1 (2k 1)!!2 2 k 1
H ( 3)1 / 4 64 27 (3) 3
1
1 .538395665719128167672... sin
k!
k 1
7
.538461538461538461
=
13
.5381869343911341187...
J141
1 .538477802727944253157...
.539114847327011158805...
2 coslog 2 2i 2 i
1
1 i
1 i
1 i
tan
4 csc
i tanh
4
4
2
8
1
1 i
1 i
1 i
4i csch
cot
i coth
2
4
4
8
=
e x cos x
1 e 2x dx
(1 / 2 )
( 1) k
J1028
1
( 5 / 4 ) (3 / 4 ) k 1
2k
4 i 21/ 335/ 6 61/ 3
4 i 21/ 335/ 6 61/ 3
1
1/ 3
2/3
3 .539356459551305228672...
1
1
(
)
(
)
32 / 3
2
2
.53935260118837935667...
21/ 3
1/ 3
2 / 3 2 6
3
=
6 (3k ) 1
k
k 1
91
8 .539734222673567065464...
e
9 .5393920141694564915...
k
k 2
Not known to be transcendental
.540235927524947682724...
3 log
.540302305868139717401...
cos1 cosh i Re e
.540345545918092079459...
.540553369576224517937...
.540722946704618254025...
3 1
i
4
2
8
cosh
6k
6
3
4
( 1) k
k 0 ( 2 k )!
1
2
log 2
1 4k 1
2 k 1 ( 2 k 1) 2 k
(1) k 1 sin 2 k
k !2k
k 1
2k k 3
37
6 .540737725975564600708...
k
4 2
k 0 k 8
5 .540829024068169345604... ( ( 3))
=
.540946264299396859964...
G7
1
8 .54097291002346216562...
log 3 x
3 ( 2 ) 3 ( 3)
( x 1) 3
0
AS 4.3.66, LY 6.110
( 1) k k ( k )
2k
k 2
cos 2
cos 2
sin(cos1 sin 1) cosh
sinh
2
2
k6
45 .54097747674216511051... 13I 0 ( 2 ) 10I1 ( 2 )
2
k 1 ( k !)
.541161616855569095758...
.5411961001461969844...
4
log(1 x ) 2 log x
180
x
0
2 2
(1) k
cos sin 1
2
8
8 k 1 4k 2
1
.54123573432867053015...
1
J1029
dx
( x)
0
(1) k Bk
.54132485461291810898... log(e 1)
k !k
k 1
Bk
.541608842204663463822...
2
k 0 ( k !)
1
1 .541691468254016048742... k
k 0 2 !
1 .541810518781157499421...
=
2 .541879647671606498398...
.542029902798836695773...
178 .542129333754749704054...
.542720820636303500935...
1 .54305583321647144517...
log 3
4 3
1
2 26 ( 3)
( 1)
3
2
27
6 3 81 3 3
36k 2 9 k 1
k 2 ( k )
3
3k
k 2
k 1 3k (( 3k 1)
1
( k 1) ( k )
(1) 3
2
8G
2
4
4k 2
k 0 ( k 3 / 4)
k 2
2
cosh
H ( k 1( k 2 )( k 3)
112 96 log 2 k
2k
k 1
1
1
1
sinh
k
2
2
k 1 ( 2 k 1)! 2
p prime
.543080530983284218602...
=
[Ramanjuan] Berndt Ch. 5
p
p!
i i i
coth
2
4
2 8 2 2
2
i
i
i
( 1 ) 1 ( 1) 1
8
2
2
Hk
2
k 1 4 k 1
2
.543080634815243778478...
1 .54308063481524377848...
1
k 0
.543195529534402361791...
=
.54323539510879497886...
e e 1 1
2
k 0 ( 2k )!
cosh 1 cos i
=
e e 1 2 1
1 dx
sinh 2
2
xx
k 1 ( 2k )!
1
cosh 11
2
GR 0.245.5
4
2
( 2 k 1)
J1079
1
log(1 ei ) e2i log(1 e i )(sin 1 i cos1)
2
sin k
k 1 k 1
( k ) log ( 2k )
k
k 1
.543258965342976706953...
1 5 1
3 6 6
.543383238748395175193...
4
8 .5440037453175311679...
2
6
, Landau constant
4 log 2 2 log 2 2
Hk
(k 1)(2k 3)
k 1
73
2
2 i 2 i coth tanh
sinh
2
2
log (2k )
.54425500107911929426...
k
k 1
.544058109964266325950...
.54439652257590053263...
log 2
4
=
0
/4
=
0
log sin(4x ) dx
0
/4
sin x
1 sin 2 x
log sin x dx
dx
x tan x cot x
2
cos 2 x
.54445873964813266061...
( k ) (2 k ) 1
k 1
1 .545177444479562475338...
8 log 2 4
k (k
k 1
.545454545454545454545...
6
11
Lk
4
k 1
k
2
1
1 / 4)
Prud. 2.5.29.28
.5456413607650470421...
.54588182553060244232...
1
e1 / 4
1 erf
2
2
7 4
9 (3)
60
2 arctan
1 .5459306102231431605...
.546250624110635744578...
2 2
5
tan
2
=
ex
e
x2
dx
1
log 4 x
1 ( x 1) 3 dx
x
2
0
5
(1)
k 2
k
1
x log 4 x
0 ( x 1) 3 dx
dx
2x 3
Fk 1 (k ) 1
2 (1 5 )
1
2
2k 1 5 k 2 k 5
k 2
1 .546250624110635744578...
=
1
5
k
k 2
tan
5
2
1
2
k 1
F (k ) 1
k 2
k 1
2 (1 5 )
2k 1 5 2 k k 5
k 1
1
.54716757473605860234...
.54770133168797308275...
=
1 log 3 log(e 2 )
ex
0 e x e / 2 dx
1 1 i 1 1 i
log 2
2
4 2 2 4 2 2
1
2
k 0 ( 2k 1)( 2k 1) 1
Prud. 5.1.26.8
arccos 2 xdx
arctan 2 x
7 (3)
1 .54798240215774230466... 2 G
4
0 x dx
2
1 x2
0
1
/2
=
0
.54831135561607547882...
=
=
11 .548739357257748378...
.54886543055424064622...
.54891491425246963638...
2
x2
dx
sin x
( k 1)!( k 1)!
18
(2 k )!
k 1
1
2 arcsin 2
2
log(1 x 3 )
dx
x
0
i sin(2 log i )
3 1
(1) k 1 (k!) 2
2
,
2
,
F
,
2 1
2 4 k 1 (2k 1)!
1
k
k
k 1 2 ( 2 1) k
1
( 0)
1 (1)
1
( 0)
2 (1)
log 2 1
.549306144334054845697...
log 3
1
arctanh
2
2
=
=
2
dx
0 (x 1)(x 3)
.54926923395857905326...
log x
( x 2)
2
2
k 0
2 k 1
dx
2 x 2 1
1
(2 k 1)
e
0
Titchmarsh 2.12.8
AS 4.5.64, J941
dx
2
x
1
.549428148719873179229...
1
csc ( 1)1/ 4 csc ( 1) 3/ 4 (cos( 2 cosh( 2
4
3/ 4
1/ 4
1/ 4
3/ 4
( 1) sin ( 1) ( 1) sin ( 1) )
(1) k
= 4
k 0 k 1
57
7 .5498344352707496972...
1
8 8
log 7 x
( 1)
dx
5060 .549875237639470468574...
7! (8)
(7)
x
15
1
0
GR 4.266.2
2 .550166236549955...
(1)
k 1
k 1
3
1 .550313834014991008774...
6 .550464382223436608725...
.550510257216821901803...
e1/ k
k3
20
6
G
3 6
.550521946799569348190...
(k 1) (k ) 1
k 2
6
1
6 ( 2) 1
1
1
.55066059449645688395...
coth 2
2
2
2
2
(k )
.550828461280021051067...
k
k 1 2
1 .550546096730430440287...
2 2
.55154451810789954008...
k 0
=
2
1
2 )
4
1
2 5 2 H ( 3
10
2
(k
2 (1 ) (2) (2)
6
3
36
x log s x
= x
dx
e
1
0
4
2
1
.551441129543566415517...
2
2
e e
sinh 2
sinh 1 cosh 1
2 .551419182892557505235...
2
F
k 2
k 1
1 5 tan
5) / 2
Fk (k ) 1
13 k 2
.5516151617923785687... e
6 k 1 (k 1)!
.5516932...
p prime
.5523689696799021586...
8
1
p 1
2
erf 1 erfi1
1 dx
4
x3
cosh x
1
.55242828301478027042...
1
1 .55260145083523513225...
8
( x 1)
x 3 x 3
cos
dx
21
2
k 1
1
1 k (k 5)
5
2
J132, J713
.5527568077303040748...
sin
1
2
1 k
k 1
1
5
.55278640450004206072... 1
( 1) k 1 ( 2 k )!
( k !) 2
k 1
( 1) k 2 k
.55285569203859119314...
2 sin 2 cos 2 1
k 0 ( 2 k )!( k 1)
1
.553303299720515717371...
2 arcsinh 1 log 2 k
k 1 2 k ( 2k 1)
0 (k )
2 .553310333104003190087...
k 2 k ! 1
.5535743588970452515...
.554204472098099291561...
arctan 2
2
x
2
0
dx
2x 5
i (1 ) 2 i
2 i
4 i
4 i
( 1)
(1 )
( 1)
4
4
4
4
8
( 1) k 1 k
2
2
k 1 ( k 1 / 4)
2k 1
k
k 1 k k !! 2
4 .5544893692544693575...
=
1 .55484419730133345731...
1
cosh
3
2
2
1 (2k 1)
k 1
2
1 .555290108843124661542...
Hk
Fk
k 1
.55536036726979578088...
2
k
dx
2
4 2 0 x 8
/2
cos3 x sin x dx
0
1 sin 1 cos1
cos x dx
2
2e
ex
0
1
.5553968826533496289...
e
=
coslog x
dx
x2
1
1
.55582269181411744686...
I 0 (1) Struve0 (1) e sin x dx
0
.5560460564528891354...
2
log 2
2
2 2
log
3
6
2 2
6
1
i
i
.55663264611852264179... Li4 ( e ) Li4 ( e )
2
1
x
0
2
1
log 1 4 dx
x
=
(1)
k 1
k 1
.55683841210516333558...
=
F
k 1
k 2
.55730495911103659264...
GR 1.443.6
1
2 5 2 H ( 3
5
cos k
k4
2
tan 1
6 .55743852430200065234...
43
5
2
Fk 1 (k ) 1
1
log 2
1 .557407724654902230507...
tan
5) / 2
2
k 1
1
k
1 1 / 2
1/ 2 k
(1) k 4k (1 4k ) B2 k
( 2k )
k 0
4 log 2 log 3
H2 k
k
3
k 1 4
1
log 6 e
.558110626551247253717...
log 6
H
.5582373008332086382... k k 3
k 1 2 k
.5579921445238905154...
1 .558414187408610494023...
1 cosh 2 2 sinh 2
.558542510602814021154...
J153
2k
k 0 ( 2 k )!( k 1)
( k 1) log k
2k
log k
1 .558670436425389042810...
k 2 ( k 1)!
k 1
.559134144418979917488...
162 .559234176474304999069...
1
log n k
k!
n 1 ( n 1)! k 2
(1) k
J0 ( 2 )
( k !) 2 2 k
22 e2
2k k 3
k 1 k !
(k )
1
k 2 ( k 1)
.559334724804927427919...
k
k 2
(k )
2
(k 1)
e
1
1
erf
2
2
k 1 k!!( k 2)
7
(1) k 1 3k
3
3
.559615787935422686271... log
Li1 Li1
4
4k k
7
4
k 1
.55940740534257614454...
e
5
2
3 .55989038838791143471...
27
.560000000000000000000 =
14
25
39 (3)
2
(1)
k 1
.560045520492075839181...
k 1
( 1) k 1
( 1) k 1
3
( k 1 / 3) 3
k 1 ( k 1 / 3)
k 2 Fk
2k
x sin 2 x
0 ex dx
1
k !2 (2 k 1)
k 1
Titchmarsh 14.32.3
k
1
k
k 1
1
1
k
= 1 (1)
( 3k 2 k ) / 2
( 3k 2 k ) / 2
3
3
k 1
k
(1)
.560329854485890998637... 1
2k
k 1
k
.56012607792794894497...
1 3
.560511825774805757653...
9 e1/ 3 12
Hall Thm. 4.1.3
1
k !3 (k 1(k 2)
k 0
k
10
(k ) 1
2
.560744611093552095664...
4 log 2 ( 1) k
k 2
3
2
k 2
k 2 k ( 2 k 1)
0 (k )
1 .560910575045920426397...
2
k 1 ( k !)
2 3
1 ( 2) 1
1
.561061199700803776228...
13 (3) 27 27
3
2
3 3
3
k 1 ( k 1 / 3)
1 ( 2) 1
1
27 .56106119970080377623...
1 3
3
2
k 0 (k 3)
1 .561257911504962567051... 4 ( 3) 3 ( 4 )
(1) k k
Euler-Mascheroni constant
k!
k 0
1 1 / k
KGP ex. 6.69
= 1 e
k
k 1
(n) log log n
= lim
HW Thm. 328
n
1
= lim log n
Mertens
1
p
n
p prime n
log 4 xdx
3 2
4
2 2
8 (3)
20
ex
0
.56145948356688516982...
23 .5614740840256044961...
e
.56173205239479373631...
1
e ecos 2 cos(sin 2) 1
2
.561781717266978021561...
6
sec
5
2
log 2
.562500000000000000000 =
1 k
k 3
9 (3)
16
3
.56227926848469324079...
8
2
cos2 k
k!
k 1
1
k 1
1
arcsin 3 x
0 x dx
/2
0
9
16
2k 2 1
= k ( 2 k 1) 1
2
2
k 2
k 2 k ( k 1)
( 1) k 1 cos k
1
.56256294011622259263...
log2 2 cos1
2
k
k 1
.562610833137088244956... ( 2 ) ( 4 )
1
1
.56264005857240015056...
sin
1 2
2
2 k 1 4k 1
1 .562796019827922754022...
(1)
k 1
k 1
4 .5628229009806368496...
2 log 2
5 .5632758932916066715...
x3
dx
tan x
k 1
2
J1064
( 2 k ) 1
3
log( 3 2 2 )
2 2
kH2 k
k
k 1 2
pd ( k )
2k
k
1
k 0 k!( k 4)
k 0 k!( k 3)
1
=
k 0 ( k 1)! 3k !
1 (1) 1
( 1) k
(1) 2
8 .5636594207477353768...
1 2
6
3
4
k 0 (k 3)
1
1
cosh
.563812982603190392613...
2
2
( 3) 3
6k 2
1 .56386096544105634313... 6 ( 2 ) 6 ( 4 )
4
3
8
k 2 ( k 1)
.5634363430819095293...
6 2e
=
( 1)
k 2
.56418958354775628695...
10081 .56420457498488257411...
1
17 8
k
( k 1) k ( k 1)( ( k ) 1)
(k
k 0
k
1
2
)! 2 k
x7
dx
16
sinh x
0
GR 3.523.10
2 .564376988688260377856...
1
2
.564599706384424320593...
(1)k
k 2
.56469423393426890215...
(k ) 1
1 1
log1
k 1
k
k 2 k
sin k
k
2
erfi 2
1 .56493401856701153794...
1
1 3
k
k 1
1 .564940517815879282638...
1 .565084580073287316585...
.565098600639974693306...
=
Berndt 8.6.1
2k
k 1
18 .564802414575552598704...
1
4
3 2
2 2 k 1
k 0 k !( 2 k 1)
Q( k )
1 k
k 1 3
tanh
2
sin 2 x
sinh x dx
0
1/ 4
6
1
1
1
e
e
e
1
1
1
1
1
1
e cosh int 2 e sinhint 2 e log 2
2
e
2
e
2
e
e cosh 1 e cosh int 1 e sinh int 1
Hk
(2k )!
k 1
.565159103992485027208...
I1 (1)
11 2
1 1 i
cos k / 4
1 i
Li2
Li2
k2
192
2 2
2
k 1
1
i
Li3 ei Li3 e i
1 2 Li3 ei
2
12
k 1 cos k
= ( 1)
k3
k 1
.565446085479077837537...
.5655658753012601556...
.565623554314631616419...
2 arctan 2
/4
4
0
cos2 x
dx
1 sin 2 x
( 1) k 1 64 k
(4 k )!
k 0
6k
k 1 2
2 .565625835315743374058... 1 cos 2 cosh 2 ( 1)
( 4 k )!
k 1
1 .565625835315743374058...
cos 2 cosh 2
GR 1.413.2
2 .565761892331577699921...
k 2 Hk
e 1 ( e 1) eEi (1) Ei (1)
k 1 ( k 1)!
2 log 3 log 3 3 2 1
2
1 .56586036972271770520... Li3 ( 3)
Li3
3
9
9
3 3
log 2 x
= 8 3
x 3x
1
. 56588424210451674940...
1 .566082929756350537292...
(1)
2 J1 2 2
I0 ( 2 )
2k k
( k !) 2
k 1
k 1
log 2
8
4
.566213645893642941755...
2
2k
1
k
k 0 k 16 ( k 1)( k 2)
16
9
.565959973761085005603...
.565985876838710482162...
x 2 dx
0 e x 3
1
(4k 1)(4k 2)
k 0
1
(k !)
k 0
2
2k
(k )
3k
1
5 .566316001780235204250...
6
12 .566370614359172953851... 4
k 1
log(1 x )
dx
e x 1
0
1
.5665644010044528364...
e ( Ei ( 2) Ei ( 1)) log 2
2
2
sinh 2
9 .5667536626468872669...
1 2
k
2
k 1
k!
2 .566766565764270426298...
3
k 0 ( k !!)
15
3
.566797099699373515726... log
(1 )
8
2
arccot
.567209351351013708132...
3 6 log
.567384114877028322541...
1 .567468255774053074863...
.567514220947867313537...
k 2
(k ) 1 3
k
k
2
2
2
3
1
3 (k 1)(k 2)
k 0
k
1
(2k )
k 1
(1)
k
Srivastava
J. Math. Anal. & Applics. 134 (1988) 129-140
.566911504941009405083...
k
( e)
log
(k )
1
1
2 log 1
k 1
2k
k
k 2 2
k 1 k
.567667641618306345947...
5 .56776436283002192211...
.567783854352055695476...
1
1
2
2 2e
31
2 ( 3)
(1)
k 1
k 1
2 log 2
2k
( k 1)!
4 log 3 2
3
3
2k
k 4
k 1
1
k3
k
(1) k log k
k 2 ( k 1)( 2 k 3)
.568074442278171...
.568260019379645262338...
=
5 .568327996831707845285...
.568389930078412320021...
.568417037461477055706...
2
coth
1
2
k
4
1
k2
6
2
k 1
1
1
(1) k 1 2 k 2 ) 1 Im 2
2 k 1
k 1 k (k i )
3/ 2
1
2
(k )
k
k 2 2
1
2
k 2 j 1
3
3
erf 1
4
2e
kj
1
e
x2/3
dx
0
(1) k
4 J 2 k 1 (1)
k 0 (2k 1)!!2 k 0 2k 1
k 1 (k )
.568685634605209962010... ( 1)
2k
k 1
.568656627048287950986...
1 .56903485300374228508...
.569356862306854203563...
H 0 (1)
2
e
6 37 / 6 i 32 / 3
6 37 / 6 i 32 / 3
1
1/ 3
2/3
(
)
(
)
1
1
34 / 3
6
6
1
1
4 / 3 1 1/ 3
3
3
(3k )
1
=
3
k
3
k 1
k 1 3k 1
.569451751594934318891... 4 ( 2 ) 5 ( 3)
1 .56956274263568157387...
(sinh k ) (2k ) 1
k 1
.5699609930945328064...
(2)
1 log k
(2)
(2) k 2 k 2
log p
2
p prime p 1
Berndt Ch. 5
(k )
2
k 1 k
1
Ei log 2
2
=
.57015142052158602873...
2
k 1
k
1
k !k
H ok
3
1
arctanh
k
2
3
k 1 3
.570490216051450095228... cosh cos1 sinh cos1cos1sin sin 1 sin 1(cosh cos1 sinh cos1 cossin 1)
.57025949722570976065...
=
sin k
(k 1)!
k 1
2 .57056955072903255045...
.57079632679489661923...
2 (k )
k 1
2k
1
2
sin 2 k
k
k 1
2k
1
k
k 1 k 4 ( 2 k 1)
=
(2 k 1)!!
(2k )! (2 k 1)
J388
k 1
( 1) k 1
2
k 1 2 k 1 / 2
1
arccos x
=
dx
(1 x ) 2
0
=
=
0
tanh x
dx
ex
=
(1 x
0
=
x dx
) sinh x / 2
GR 3.522.7
x log(1 x ) dx
0
1 .57079632679489661923...
2
2
GR 4.292.2
1 x2
i log i
( 1) k
k 0 k 1 / 2
1
=
2
k 0 ( 2k 1) 1 / 4
=
=
(1) k 1 k 2
k
k 1
2
1/ 4
2
k!
(2 k 1)!!
K144
k 0
=
2k
k 1 2 k
k
k
( k !) 2 2 k
k 0 ( 2 k 1)!
2k
k 4
k 0
k
1
(2 k 1)
=
( 2 k )!!
(2 k 1)!! k 2
k 1
k
=
Lik (i ) Lik (i )
k 1
=
2
arctan (2k 1)
2
1
=
arctan
2
k 1
(2k 1 5 )
4k 2
=
k 1 ( 2 k 1)( 2 k 1)
dx
dx
= 2
2
( x 1) 2
x 1
0
k 0
=
x
2
0
[Ramanujan] Berndt Ch. 2
Wallis’s product
e
0
x
dx
2e x 2
dx
x 1/ 2
=
[Ramanujan] Berndt Ch. 2
sin x
0 x dx
sin 2 x
0 x 2 dx
=
x2 1
0 (1 x 2 ) 2 log x dx
GR 4.234.4
/2
=
cos
2
x dx
GR 3.631.20
0
=
1
dx
x
Prud. 2.5.29.10
log(e tan x) dx
GR 4.227.3
x cot x
0
=
arccosh x
x2
1
/2
=
0
=
e
0
=
x
1
2e x 2
1
4 dx
x log1 x
0
=
ci ( x) log x dx
0
2 .570796326794896619231...
2k
1
2
k 1 2k
k
GR 6.264
3 .570796326794896619231...
.571428571428571428
=
2k
2
2
k 0 2k
k
4
7
1 p 4
2
p4
p prime 1 p
1 .57163412158236360955...
1
2
3/ 2
k 2 k k
.57171288872391284966...
(1)
k 1
12k 2
k 0
k / 2 1
k 4
12
1
3 1
log
2
3 1
1 1
1
.571791629712009706036...
2 3
3
1
=
2
k 1 k ( 3k 1)
3 .571815532109087142149...
9 (3) 111
4
128
4
4
1 log
9
3
( 2 k 1)
k 1
3k
k (2k 1) 1
3
k 2
kHk
k
k 1 4
log
1
log
.572364942924700087071...
2
2
2 x
e
1 dx
=
x
2
e 1 x
0
.572303143311902634417...
.572467033424113218236...
1
2
1
4
k (2k ) (2k 1)
12
k 1
1
=
Li ( ei ) Li2 ( e i )
2 2
k
= 3
2
k 2 k k k 1
k ( k ) ( k 1)
= ( 1) k
1
2
k 2
k 1 cos k
= ( 1)
k2
k 1
H
2 3
.57246703342411321824...
2 k
12 4
k 1 k 1
.57289839112388295085...
4 2
8
sin 4 x 2
dx
x2
0
GR 3.427.5
3 ( 3)
( 3) ( 2 )
2
1
2 .57408909729511984405... 1
( k !) 2
k 1
.57393989404675551338...
.574137740053329817241...
.574859404114557591023...
=
5 .57494152476088062397...
2
1
cos2 k
k2
k 1
6
2
1 2 1
(1)1/ 3 (1) 2 / 3
3
3
1
(1) k 1 ( 3k 1) 1
2 k 1
e e 1
k
e
k 1
1/ k !
k 1
4
1
k
.575222039230620284612...
10 3
/2
.57525421205443264457...
0
.57527071983288752368...
x sin x
dx
2 cos2 x
2
3 (3)
3 log 2
8
4
2
log 3 (1 x )
0 x 3 dx
1
1
log 2 x
1 .575317162084868575203... 16 12 ( 3)
dx
x
0 1
1
.575563616497977704066... 1
1/ 4 erfi
2e
2
3
1 .57570459714985838481... log
4
.575951309944557165803...
2
2
(1) k k !
k 0 ( 2 k )!
1
i
(1 i ) (1 i ) (1) (1 i ) (1) (1 i )
2
4
=
( 1) k ( k ) (2k 1)
k
k 2
3
.576247064560645225676...
.576674047468581174134...
4
32
2
=
k 0
k
2
1
1
x
6 sin 5
5
=
k 1
(4k 2) (4 k )
J124
k 1
( 1) k
k 0 k !( k 1)!
.57694642787663931446...
=
(1) (2k ) 1
J1 (2)
=
Davis 3.37
sin x
x
1
.576724807756873387202...
=
cos( 2 k 1)
( 2 k 1) 3
e e
0
.57721566490153286061...
k
k 1
k 2
=
(1)
coth 1
k 1
( 1) k 1 k
2
k 0 ( k !)
1
1 k (k 4)
(Euler's constant, not known to be irrational)
lim H k log k
k
n
1 1
lim log(k (k 1))
n
2
k 1 k
n
1
log 4n
2 lim
n
k 1 2k 1
1
1
lim H n log n 2 n
2
3
n
Euler
Cesaró
=
=
=
=
=
=
2
1 2
1
1
lim H n log n n
n
4
2 45
1
lim n
n
n
1
1
1 log1
k
k 2 k
=
Euler
log k
log 2
1
(1) k
k
2
log 2 k 2
(2k 1) 1
3
1 log k
2 k 1 4 (2k 1)
1
1 j
k 2 j 2 jk
( 1) k ( k )
k
k 2
(k ) 1
1
k
k 2
=
Demys
1
1
k log1 k
k 1
k 1
1
1
=
( k ) 1 log 1
k
k
k 1
k 2
k 2
log 2 (2k 1) 1
= 1
2
2k 1
k 1
(2k 1) 1
3
= 1 log k
2 k 1 4 (2k 1)
(2k 1)
= 1
k 1 ( k 1)( 2k 1)
(2k 1) 1
= 2 2 log 2
k 1 ( k 1)( 2 k 1)
k (k ) 1
= 1 log 2 ( 1)
k
k 2
3
(k ) 1
log 2 (1) k (k 1)
=
2
k
k 2
5
1
(k ) 1
log 2 (1) k (k 2)
=
4
2 k 3
k
k (k ) 1
= log 8 3 2 ( 1)
k 1
k 2
4
k (k )
= log 2 ( 1)
2k k
k 2
Euler
Euler (1769)
Euler
Euler-Stieltjes
Glaisher
Glaisher
Flajolet-Vardi
=
=
=
=
=
16
(k ) 1
1 log
2 (1) k
9
2k k
k 2
3
1
1
log 2 (k ) 1 k
2
2
k 2 k
11
1
1
1
log 3 (k ) 1 k k
6
2
3
k 2 k
(k , s)
H s log s
k
k 2
1
(k ) 1
, (k ) log p if k is a power of a prime p
k
2 k 2
1 log n k
1
n 1 n! k 2 k ( k 1)
=
2 k 1 1 (1) j
k
k
j
k 1 j 2
log k
(1) k 2
k
k 1
Shamos
=
=
Vacca, Franklin
Vacca
log x
dx
x
0 e
=
=
1
1
x x
dx
x2
1
=
1
log log dx
x
0
=
log x sin x dx
Andrews, p. 87
2
GR 4.381.3
0
/2
=
1 sec
2
x cos(tan( x )
0
dx
tan x
GR 3.716.12
=
(1) e x log x dx
0
1
=
H ( x) dx
0
xe
x e x
=
=
1 e x e 1 / x
dx
0
x
dx
Prud. 2.3.18.6
1
Barnes
=
4
2 log 2
e
x2
log x dx
0
=
1
x dx
2
2
2
(1 x )(e2 x 1)
0
1
=
(1 e
x
dx
x
e 1/ x )
0
1
=
0
=
1
x
0
=
1
e x dx
x
1
1 x e
x
0
=
1
GR 3.435.3
dx
x
1 x cos x
GR 3.783.2
dx
cos x
x
1
1 x
2
0
1 cos x
0 x dx
x
=
GR 3.427.2
dx
x
0
=
Andrews, p. 88
1
1
dx
log(
1
)
x
x
1 e
Andrews, p. 87
x
GR 3.783.2
cos x
dx log x,
x
=
1 e x
0 x dx
=
ab
a b
=
1 2k
1
x dx
0 1 x k 1
=
1
x dx
2 2x
2
1)( x 2 1)
0 (e
x
e x
x x dx log x,
e x e x
0 x dx ,
a
x0
x0
b
a 0, b 0, a b
1
Catalan
=
H 2n
log n 2
0 (e
2x
x dx
1)( x 2 n 2 )
Hermite
Hermite
1 .57721566490153286061...
1
si ( x) log x dx
GR 6.264.1
0
=
Ei ( x) log x dx
0
.577350269189625764509...
3
tan
3
6
GR 6.234
=
4
3
=
1
(2k 1)
k 1
2k
1
k 6 (k 1)(k 2)
k
k 0
.577779867999970432229...
.577863674895460858955...
=
(2)
( 2 ) ( 3)
2
1
k
2e
k 1
cos x
0 1 x 2 dx
=
GR 1.421
1/ 9
2
cos x
(1 x )
2 2
( 1) k 1 k
AS 4.3.146
dx
0
=
xsin x
1 x
2
dx
0
/2
=
cos(tan x ) cos
2
x dx
GR 3.716.5
0
=
cos(tan x)
0
1
=
sin x
dx
x
GR 3.881.4
1 dx
cos x cos x 1 x
Prud. 2.5.29.11
2
0
=
x 3 sin x
(x 2 1)2 dx
27 log 3 2
3
6
6
2
2 3 log 2 x
1 .57815429172342929876...
2
3e
0 ( x e)
.5781221858069403989...
.578169737606879079622...
(2k )
(2k )
k 1
.578477579667136838318...
=
2 .578733971888556748934...
4 .57891954339760069657...
2
Marsden p. 259
3k
k 1
3
1
k2
1
1
Li2 2
4 k 1 k
(sin 2 sinh 2 )
1
2 2 (cosh 2 cos 2 ) 2
1
1
k 1
1
1
k 1
( 1) (4 k ) 1 Im 2 2
2 k 1
k 1 k ( k i)
3 (k )
k 2
k!
4 log
k
4
.578947368421052631
=
.57911600484428752980...
11
19
2
4
7 ( 3)
k2
1 4
k 1 ( k 2 )
2
24
2
4
1 .57913670417429737901...
25
1
1
1
1
=
2
2
2
2
(5k 2)
(5k 3)
(5k 4)
k 1 (5k 1)
6 .57925121201010099506... log 6!
3
3
1 2 log 2 ( k ) 1
2
k 2 2
1
k 2 k ( k ! 1)
1
1 ( k )
k
3k
k 1 (3 1)k
k 1
x
2 2
e e x 2 2
x dx
2
3
( e x 1) 2
0
2
3 .579441541679835928252...
.579480494370491801315...
.5795933814359071842...
4 .57973626739290574589...
2 2
3
6 .57973626739290574589...
log
2
x
0
4k
k 2
2
9
6k
GR 3.424.5
dx
(1 x ) 2
GR 4.261.5
2
Li2
3
4 .579827970886095075273... 5G
.57975438341923839722...
2 .58013558949369127019...
.580374238609371307856...
5 .580400372508844443633...
.58043769548440223673...
( ( ( (2))))
1
k
(1) k ! (5k 1) 1
5
k
1
2
k 1
k 1
k
e
k
k 1 k
1
arctan(tanh ) ( 1) k 1 arctan
2 k 1
4
k 0
.580551791621945988898...
( 1)
k 1
2e
(k )
3k 1
k 1
6 .580885991017920970852...
[Ramanujan] Berndt Ch. 2
2
1/ k !
k 0
.58089172936454176272...
3
1
(3) Li3
3
4
1
log 2 x
0 ( x 1)( x 3) dx
.58105827123019180794...
2
cos
3
1
1 2k (k 1)
k
1
3 log 2 2 (k ) 1
2
k 2 k 1
2
k 2
.58106146679532725822...
.581322523042366933938...
2
dx
3
13 / 6
3
0 x 3
2 2i 3
1/ 6
cot
i coth
.581343706060247836785...
cot 1
2
2
1
k
= 6
(1) k 1 ( 6k 2 ) 1
2 k 1
k 1 k 1
1/ 4
29 e
k3
.581824016936632859971...
k
64
k 1 k ! 4
i
6
1
k3
.581832832827806506555... 7
( 1) k 1 ( 7 k 3) 1
2 k 1
k 1 k 1
1
1
1
.5819767068693264244...
k k
1 / 2k
e 1 k 1 e
k 1 2 1 1 / e
[Ramanujan] Berndt Ch. 31
(1) Bk
k!
k 1
1
1 2 k
e
k 0
log x
1 ( x e 1)2 dx
=
=
=
2 .581931792882360146140...
k
Prud. 6.2.3.1
5 2 log1 x 3 2 dx
1
2 1
log1
dx
2
0
.581954706951074968255...
5
0
1 .581976706869326424385...
e
e 1
3 .582168726084073272274...
2 2 e cosh
1
k
k 0 e
5x2 1
(1) k Bk
k!
k 0
5
2
Lk
k!
k 1
.5822405264650125059...
2 log 2 2
1 1
Li2 k 2
12
2
2 k 1 2 k
J362
=
( 1)
k 1
Hk
k
1
k 1
H ( 2) k
=
k2
k 1
log(1 x )
0 x(1 x) dx
1
=
=
x
J116
MIS
2
log x
dx
2
x
x
1
GR 4.291.12
dx
log x 1 x
2
log(1 x )
dx
x
0
1/ 2
=
=
x dx
log 1
2 x
0
GR 4.291.4
=
1 x dx
log
2 1 x
0
GR 4.291.5
GR 4.291.3
1
1
4 .58257569495584000659...
1 .58283662444715458907...
.583121808061637560277...
21
3
sin 2 csc 3
2
2G
1 k
k 1
2
1
4k 1
.58326324064259403627...
sin 1 log 2
.583333333333333333333 =
7
12
.58349565395417428579...
( 1)
k 1
1 ( k )
2k 1
3e 1
2k k 2
2
k 0 ( k 1)!
k 1
2
10 .583584148395975340846...
.5838531634528576130...
2 cos2 1 2 ( 1) k 1
k 1
1 .584893192461113485202...
101/ 5
1 .58496250072115618145...
log 2 3
log(1 x ) log x
dx
x
0
1
.5852181544310789058...
16 8 log 2
2
1 .58556188208527645146...
1
2
k 2
(k )
22k
( 2 k )!
GR 1.412.2
(1) k
.585698861949791886453... 3
k 0 k 1
.585786437626904951198...
.58617565462430550835...
2 2
1 2
/4
0
7 4 4
,1
3 3 3
dx
sin x 1
1
e
x 3/ 4
dx
0
0 (k )
.586186075393236288392...
2
(2k )!
k 1
9
8
2
4 .586419093909772141909... 1
8 .586241294510575299961...
.586781998766982115844...
.586863910482303846601...
1
2
arccsch 2
3 3 3
HypPFQ{},{2,3},1
(1)k 1
k 1
2k
2k
k
1
k!(k 1)!(k 2)!
k 0
1 .58686891204429363056...
2 .586899392477790854402...
.58698262938250601998...
7 .587073064508709895971...
G
5
512
63
1 / 2
tanh
2
8
3
1 2 / 2
cos
e e
3
3
2
log 3 1 (1) 2
2
9
3 6 3
8
7 .58751808926722988286...
7
k 0
k (k )
3k
k 2
sinh 1 k
1 dx
cosh 2 3
2
x x
k 1 ( 2k )!
1
dx
3 2
2
0
3
.587785252292473129169... sin
cos
5
10
.587719754150346292672...
(3k )!
1
.587436851334876027264...
.58760059682190072844...
3k
log( k 1)
log( 2 x )
dx
k
2 k
log x
k 1
0
.587413281200730307975...
5/ 6
x
6
GR 422.3
6k 1
3k (3k 1)
k 1
2
.58778666490211900819...
.5882352941176470
=
log
9
5
Lk
k
k
3
k 1
10
17
2 k 1 k 2
9 3 3
k 6k
k 0
12 .588457268119895641747...
1 .588467085518637731166...
=
i (1) (1 i ) (1) (1 i ) i 2,2 i 2,2 i
1
1
i
2
(k i ) 2
k 1 ( k i )
.58863680070958604544...
( 1)
k 1
k 1
Fk (2 k ) 1
3 3
(1) k 1
csch
2
2
2
3
k 1 k 1 / 3
1
.588718946888426853122... 2 I 2 2
k
k 0 k!( k 2)!2
.588645903311846921111...
3
log 2 x
0 ex 2 1 dx
8 e
3
k ( k 2)
.589048622548086232212...
3
1
16
k 1 ( k 2 )( k 2 )
2 .58896621435810891117...
=
sin 5 x
0 x dx
=
sin 6 x
0 x 2 dx
3
cos x sin x
dx
0
x
=
cos 4 x sin 2 x
dx
0
x2
J1061
(x
0
dx
1)3
4
cos x sin x
dx
0
x
cos 4 x sin 2 x
dx
0
x2
(1) k
.5891600374288587219... 8 2 ( 2) 4 log 2 3
2
k 1 k k / 2
7
6 .58921553992655506549...
6
( 2 )k
1
5 .589246332394602395131... e1
erf
k 0 k!!
2
/4
5
.589255650988789603667...
cos3 x dx
6 2
0
log 2 k
.589296304394759574549...
2k
k 2
GR 3.827.12
2
cos3 x sin 2 x
dx
0
x2
1 .58957531255118599032...
2 .589805315924375704933...
.589892743258550871445...
1
log
4
e
e
log x log 1 2 dx
x
0
2
4 21 / 335 / 6 i 61 / 3
1
1/ 3
(
1
3
)
2
(
2
6
)
i
65 / 3
2
1/ 3 5 / 6
1/ 3
(1 i 3 ) 4 2 3 i 6
65 / 3
2
=
.59000116354468792989...
1
6
k 2
S 2 ( 2k , k )
2
k 1 ( 2k )!k
k
3
( 1) k ( k ) 1
2k 3
k 2
.590159304371654323...
(1) k Bk
1
6
k 0 ( k 2)!
.59023206296500030164...
3
.590320061795601048860... 24
18
5
9
3 .59048052361289410146...
2
. 59048927088638507516...
.590574872831670752346...
1 .590636854637329063382...
4 .59084371199880305321...
4 .59117429878527614807...
2
1
1
3 arctan
k
k
k 2
(1) k Bk
k 0 ( k 2)!
2 k 2 ( 1) k
k 6k
k 0
3 2
arctan 2
4
2
2
1
arctan x 2 1
0 ( x 2 1) x 2 1 dx
Borwein-Devlin, p. 53
G6
I1 (2)
1
k 0 k!( k 1)!
k
2
k 1 ( k!)
2k k
k (2k )!
k 1
LY 6.113
1
5
2
2
2 arcsinh 1
4 x 2 dx
0
.591330695745078587171...
log
1 2
2
1
log(1 x
0
2
)
dx
1 x2
GR 4.295.38
/2
=
(1 sin
2
x ) dx
GR 4.226.2
0
13 .59140914229522617680...
k3
k 1 k!
5e
J161
1
1
2 log 2 li sin( 2 log x ) dx
x
5 2
0
1
.591418137582957447613...
14 .591429305318978476834...
1 .591549430918953357689...
5 .591582441177750776537...
9 .5916630466254390832...
2 3 csc 3
6
5
92
6 log 3
e
dx
x
2
0
1 .59178884564103357816...
10 .5919532755215206278...
e x
2
1
2e erf
2
2 sinh
2
2
erndt Ch. 28, Eq. 21.4
(k
k 0
1
2
=
4
1
2
(2k 1)
k 1
)!2 k
2k
(2k )!
k 1
e e
cosh cos i
2
1
cosh 1
11 .5919532755215206278...
k 2 2k 1
2
k 1 k 2 k 2
.59172614725621914047...
1
2
k 2 1 3k
5
6 .59167373200865814837...
GR 6.213.2
2k
k 0
(2k )!
k2 4
2
k 1 k 1
AS 4.5.63
J1079
7
182 (3) 4 3 3 432 ( 2)
6
3
( 2) 1
433 .59214263031556513132... 182 (3) 4 3
6
2
1/ 4 1
k!
.59229653646932657566...
e erf
e x sinh x dx
2
2 k 1 (2k )! 0
1 .59214263031556513132...
.592394075923426897354...
k 2
.59283762069794257656...
1
(k 2)
(k )
2 sin 1
sin 1
5 4 cos1
2(1 cos1 1 / 4)
sin k
k
k 1 2
GR 1.447.1
1 .5930240705604336815...
=
.593100317882891074703...
log 2
2
2 2
log 2 log(3 2 2 )
log
2
2
2
2 2
2
H 2 k 1
2k
k 1
1
3
2
2 2 3
k 1 k 1 / 3
.59313427658358143675...
(2)
.593350269487182069140...
2
.593362978994233334116...
3 .593427941774942960255...
.593994150290161924318...
.594197552889060608131...
cos
H
2
k 1
7 (3)
8
k
( 3)
k
(3)
5
log 2 x
1 ( x 1)( x 1)2 dx
k 2
1
1 k (k 1)
2
k
2
2 log 2
log3 2
3
3
3
Hk
k
k 1 2
1 3e 2
i
1
i
2 sin 1
e ei
2
( 1) k 1
4
2
12
k 1 k k
(1) k
.594534891891835618022... 1 log 2 log 3 1 k
k 1 2 k
.59449608840624638119...
csch
.594696079786514810321...
1
1
2
3i 3 5i 3 3i 3 5i 3
6
2
6
2
=
(3k 1) (3k 1)
k 1
.594885082800512587395...
4 e 6
1
(k 2)!2
k 0
2 .594885082800512587395...
4 e4
k 1
pf (k 1)
2k
0 (k )
k 1 k !1
5
4
1 .594963111240958733397...
4 .59511182584294338069...
.59530715857726908925...
(k ) log (2k )
k 1
k
4
2
1 .59576912160573071176...
2 k 1
3
1
k 1 3
(
1
)
4 k 1
(2k 1)!
H
.595886193680811429201... 3 2 (3) 2 k
k 2 k ( k 1)
1
(1 H
.596111293068951500191...
.5958232365909555745...
3 .59627499972915819809...
.59634736232319407434...
=
=
sin 3 1
log
( k 1)
k!
k 0
2
dx
x dx
0 e x ( x 1) 0 e x ( x 1)
e Ei ( 1)
dx
2
x (1 log x )
1
GR 1.412.3
, the Gompertz constant
e
x
log(1 x ) dx
0
x 4 dx
4 .59634736232319407434... 4 e Ei ( 1) x
e ( x 1)
0
( 1)k 1 k
k
k 1 2 1
.5963475204797203166...
log 2 1
2
4
1
1 .59688720677545620285... 1 k 2
2
k 1
.596573590279972654709...
x log x
(1 x)
3
dx
1
(1) k 1
.596965555578483224579...
k 1
k 1 k
.59713559316352851048...
80
243 3
e 5
4
.597264024732662556808...
2k
k 1 ( k 2)!
e2 1
4
1 .597264024732662556808...
2
1 .597948797240904373890...
0
dx
1) 4
3
2k
k 0 k!( k 3)
(2k ) (2k 2)
k!
k 1
.597446822713573534080...
(x
k 2
k2 1 1/ k2
2 e
1
k 2 k
1 1
k (k ) 1 Li1 / 2
k k
k 2
1
cos 4k
4i
4i
.598064144464784678174... log ( 2 sin 2) log 2 e e
2
k
k 1
1
erf 2
2 2
.59814400666130410147...
54 .598150033144239078110...
1 .598313166927325339078...
8 .59866457725355536964...
.599002264993457570659...
4k
k 0 k!
4
2
.599314365613468571533...
2
2
127
128
k
2
k 1
k
k 2
3
4
k 1,
1
(3)
3
log (2 k )
2 e Ei(1)
1
.599971479517856975792...
k 1
arccsch
2
k2
(k 1)! k (k 1)!(k 1)
17 4
17 (4)
360
4
sin 2 ( k 1)
k 1 k ( k 1)
log (3) 1
k 1
1
=
k 2 ( k 1)! 2 k !
Hk
1
=
k 1 k !( k 2)
k 1 ( k 1)! k
k
2
1 .599771198411726589334...
k
k 1 ( k 1)
8k 6 5k 4 4k 2 1
k 2 (k 2 1) 4
k 2
k
4 .599873743272337314...
k 3 (2k ) 1
1
k 1
.5996203229953586595...
k! F
.59939538416978169923...
48
1 cos1 sin 1 sin 2 1 log( 2 sin 1) sin 2 1
2
k 1
1 .599205922440719577791...
4G
1 .59907902990129290008...
e4
120
(1) k 2k
k 0 k!( 2k 1)
2
Hk
k 1 k
Borwein & Borwein, Proc. AMS 123, 4 (1995) 1191-1198
.600000000000000000000 =
3
5
8
5
1 .600000000000000000000 =
.600053813264123766513...
F2 k 1
k
k 1 4
Lk Lk
k
k 1 4
3 5 2 log 2 2
1 i
1 i
2 Li2
2 Li2
2
2
2
24
2
=
log(1 x 2 )
0 x 2 (1 x )2 dx
(1) k 1
.600281176062325408286... 3 6 log 2 9
k 1 k ( k 1 / 3)
.6004824307923120424...
2 .600894716163993447115...
(2k ) (2k 2)
k 1
k
e
1/ k !
k 1
.601028451579797142699...
(3)
2
=
1
H k H k 1
k (k 1)(k 2)
k 1
log 2 xdx
log 2 (1 x)dx
x dx
0 e x sinh x 0 sinh(log x) 1 sinh(log(1 x))
1
2
.60178128264873772913...
(1)k 1
0
(k 1) 1
2
k
1
k
.601782458374805167143...
log
k 1
k 2 k 1
k 1
.601907230197234574738...
k2 1
k2 1
log
k
k
k 2
K1 (1) e
1 x 2
1 1
Li2
k
k 2 k
dx
0
.602056903159594285399...
( 3)
.602059991327962390428...
log10 4
74
sinh 2
1
2 .60243495809669391311...
csch sinh 2
2 sinh
2
1
k2 2
= 2
1 2
k 1
k 1 k 1
k 1
1
1
.602482584806786886836...
coth 5
2
10
2 5
k 1 k 5
8 .6023252670426267717...
3
5
2 4 5 2
175 .602516306812280539986... 24 5) 50 ( 3)
1
3
2
16k 4 k 3 11k 2 5k 1
=
k ( k 1)5
k 2
2 sinh
1 .60343114675605016067...
2 2 2 arctan
=
Berndt 7.2.5
2
log1 ( x 1)
6 2
k 2
2
2
0
2 .603451532529716432282...
4
4 .602597804614589746926...
k (k ) 1
1
log 3
2
dx
sin 2
2
1 k (k 4)
7 (3) 1
k3
2
2 .603599580529289999450...
3
4
2
k 1 ( k 1 / 4)
1
2 .603611904599514233302... 1 k
k
k 1
k 1
.603782862791487988416...
1 .603912052520052227157...
.60393978817538095427...
1 .604303978912866704254...
log k
k 2 k !
1
2
1
1
/2
2 2e
.604599788078072616865...
=
=
=
2
k4 k2 1
4
k k2
k 1
e
x
cos x dx
0
log1 x 2 1 dx
3
0
1 (k )
2
k 1
3
/2
2 1 / 3
3 1
3
3 .60444734197194674489...
1 i 1 i cosh 2
k
1
1
1
3 3 k 1 3k 2 3k 1
( 2 k )!!
k
3 3
k 1 ( 2 k 1)!! 4 k
1
k 0 3k 1)( 3k 2 )
1
k 1 2 k
k
k
dx
=
2
2x 2x 2
0
dx
0 4 x 2 2 x 1
CFG F17
x
0
4
x dx
x2 1
=
=
0
x
dx
3x 3
e
x dx
3
8
x
0
4
0
dx
e x 1
x
0
10 .604602902745250228417...
0
2
dx
x x3 x2 x 1
5
=
x
dx
x dx
x 3 dx
1 x3 x 2 x 0 1 x6 0 1 x6
=
dx
2
x 2x 4
log 8!
1 2 12 12 , 12 12 (1)k
k 1
.604898643421630370247...
k 1
10
5 .604991216397928699311...
.605008895087302501620...
7 2 3
9 log 2 3 1 (1) 2
log 3
3
48
8
16
4
.605065933151773563528...
9 2
4
2
.605133652503344581744...
1
erfi(1) Ei(1) x 2 dx
2e
0 e ( x 1)
1 x x2
0 x 1 log x dx
1
.605139614580041017937...
1 .605412976802694848577...
.605509265700126543353...
k2
k
2
k 2 2 ( k 1)
(1) k 2 2 k 1
si ( 2 )
k 0 ( 2 k 1)!( 2 k 1)
3 ( 2 ) 4 ( 4 )
1
.6055217888826004477... 2
k 2 k log k
3 .605551275463989293119...
.605591341412105862802...
.6056998670788134288...
2 .60584009468462928581...
9 3 log 2
8
4
AS 5.2.14
( x) 1dx
2
13
5 3
256
sin( 3k / 4 )
k3
k 1
GR 1.443.5
2
sin
1 cos
2
2
1 (2k 1)
1
2
6
1
2 log 2 2
k 1
log 1 x dx
2
0
2
2
.606125795769702052589...
3 .606170709478782856199...
1
1
4
e
3 (3)
e
x2
cos2 x dx
0
HkHk
k (k 1)
k 1
1 1
=
log( x 2 y 2 )
dx dy
1 xy
0
0
.606501028604649267054...
.606530659712633423604...
15 .606641563575290687132...
(1)
k 1
(2k ) 1
k!
1
ii /
e
1 e
1/ k 2
k 2
(1) k
k
k 0 k !2
(1) k
k 0 ( 2 k )!!
5
1
( 2 k )
.60669515241529176378... k 1
k k
2k
1
k 1 2
k 1 2 ( 2 1)
k 2
1
(k )
2k 1
0k
k2 k
1 .60669515241529176378... k
k 1 2 ( 2 1)
k 1 2 1
k 1 2
1
(2 k )
2k
k 2
=
1
1
jk
j 1 k 1 2
Shown irrational by Erdös in J. Indian Math, Soc. (N.S.) 12 (1948) 63-66
.606789763508705511269...
1 .606984244848816274257...
1
2
log 2
0
xe x
ex 1
dx
GR 3.452.3
1
k ! (k )
k 1
erf (1)
( 1) k
1
e
k 0 ( k 2 )!
(5) 1
3 .6071833342396650534... 3(3)
1024 k 1 a( k )5
where a ( k ) is the nearest integer to 3 k .
.60715770584139372912...
AMM 101, 6, p. 579
k4
k 0 k !( k 4 )
2 k 2
1
1 .607695154586736238835... 12 6 3
k
k 6 ( k 1)
k 0
5 .607330577557532492158...
.607927101854026628663...
1536 563e
6
2
1
(2)
k 1
(k )
k
2
1
2
1 p
p prime
.607964336255266831093...
.60798640550036075618...
4 12
6081075
=
x
2
2
=
.608197662162246572967...
3
3
log
2
2
=
.608531731029057175381...
k 1
2 k 1
k
(2k 1)
Hk
k
k 1
1
( k 1)!2 (2 k )
Titchmarsh 14.32.1
k
1
p2
2
2 log p
2
p 1
p prime
p prime ( p p 1)( p 1)
(2)
( p 2) log p
2
2
( 2)
p prime ( p p 1)( p 1)
log p
p p 1
2
2 8
31185
p prime
1
1 p
2
p
4
p 6 p8
sinh
e e
(2 k ) 1
log
( 1) k 1
4
2
k
k 1
1
1
= log
log 1 2
(2 i ) (2 i )
k
k 2
2k ( 2k ) 1
1 .6089918989086720365...
k!
k 1 k
(k ) 1
.609023896230194382244...
Hk
k 2
.608699218043767368353...
2
3
k 1
p
1
p p 8 p 10 p 12
6
(sin x x cos x)3
dx
0
x4
( 2 ) (5)
.608381717863324722684...
1 p
4
dx
x2 2
.608006311704856510141...
.608199697591539684584...
p prime
2
log 3 1
1 1 3 1
2 F1 ,2, ,
4
3
2 2 2 4
log
.609245969064096382192...
4 .609265757423133079297...
Hk 3
k
k 1 4
2 csc 2
k 2
1 .609437912434100374600...
.609475708248730032535...
4
log5 Li1
5
2 2 1
3
3
/4
0
1
1 2k
sin x
dx
cos4 x
2
K Ex. 124f
(1) k
.6100364084437080...
k (k 1) log k
k 2
7 .610125138662288363419...
.610229474375159889916...
1
cosh e ee e e
2
2
e2 k
k 0 ( 2 k )!
4
x3
dx
9 (3) x
(e 1) 3
2
15
0
.610350763456124924754...
1
log 1 k !
k 2
2G
3
2
.61094390106934977277... 8 e
11
H
.611111111111111111111 =
3
18
3
.6106437294514793434...
.611643938224066294941...
=
1
2
k 1 k 3k
k
k 4
2
1
3k
1 i 3
1 i 3
1
1
(1 i 3 )
(1 i 3 )
2 3 6
2
2
k
3
k 2 k 1
(1) (3k 1) 1
k 1
k 1
2
1953125
5 5
log
5 log
5 1048576
5 5
14 4
log 3 x dx
5 .6120463970207165486...
3
243
x 1
0
1 .612273774471087972438...
2 .61237534868548834335...
=
.61251880056266508858...
sinh
1
2
1 k
k 1
1
1
3
3/ 2
2
2
k 1 k
1 p 3 / 2
(6) 1 p 3 / 2 p 3 p 9 / 4
3
p prime 1 p
p prime
14
2 2 4
3 ( 3) (5)
3
45
1
k 2
42 .612923374243529926954...
k 1
4
1 .612910874202944353144...
0
2i
Fk Fk 3
k
(k 1)
4
.612018841644809204554...
3
1
(k 1)
k 2
1
(k )
sinh 2
1
cosh sinh
2
4
2
1 k
k 1
2
1 1
5
k k
.613095585441758535407...
.61314719276545841313...
3 .613387333659139458760...
2 .613514090166737576533...
.613705638880109381166...
=
=
=
1
1
log tan
4 2
2
log 6 3
(k 2)
k 0
k!
(1)
k 1
k 1
sin( 2 k 1)
2k 1
GR 1.442.3
e1/ k
2
k 1 k
( 3)
3
1
2 2 log 2 hg
2
2
1
2
k 1 2 k k
k
k
k 0 2 ( k 1)
2k 1
k 1 ( k 1)
(
1
)
( k 1) 1
k
2k
k 1
k 1 2
1
=
log x
1 x
2
GR 0.234.8
dx
0
1
=
log(1 x 2 ) dx
=
4 log(1 x )
0 (x 1)2 dx
0
1
1
log(1 x )
(x / 2 1 / 2)
2
dx
GR 4.291.14
0
/2
=
log(sin 2x ) sin x dx
GR 4.384.10
0
k3
4 .61370563888010938117... 6 2 log 2 k
k 1 2 ( k 1)
k5
128 .61370563888010938117... 130 2 log 2 k
k 1 2 ( k 1)
.613835953026141526250...
.613955913179956659743...
.61397358864975783997...
2 .61406381540519800021...
11
2
tanh
7 / 10
11
2
5 5 5
1
log 2 2
2
4 log 2
x
0
dx
2
5
4
k 1
1
3
( 1) k 1 / k
k
k 1
2
1
k3
.614787613714727541536...
1
1 k (3k 1)
k 1
1
2
1
.61495209469651098084.... erfi
2 k 1
2
k 0 k ! 2 ( 2 k 1)
8
.615384615384615384
=
13
/4
3
cos x dx
1
.61547970867038734107... arctan
arcsin
2
5
2
0 1 sin x
( 1) k 1 2 2 k 1 ( 2 2 k 1) B2 k
log(cos1)
AS 4.3.72
( 2 k )! k
k 1
58
1
1
1
1
sin sin 2 cos cos sinh 2 sin
1
2
2
2
2 1
cot
1
1
2
2
2
cos 2 cos cosh 2 sin
2
2
i
1
e i / 2 cot e i / 2 ei cot ei / 2 2i cot
2
4
.615626470386014262147...
7 .6157731058639082857...
.61594497904805006741...
=
(2k ) 1 sin k
Adamchik-Srivastava 2.28
k 1
arctan k
k!
k 1
8 ( 3)
1 .61611037054142350347...
9 .6164552252767542832...
54 .616465672032973258404...
1 .6168066722416746633...
2 cosh 4 e4 e4
2 ( 1)
2 log 2
k 1
/k
k 1
.616850275068084913677...
(1) H k
16 k 0 k 1
2
k
2
1/ 2 k k
k 1
k (2k )
4k
k 1
4k 2
2
k 1 ( 4k 1)
=
5 .61690130799559924468...
1 .61705071484731409581...
.617370845099252888895...
x arctan x
dx
1 x4
0
GR 4.531.8
( 1) k
1
1
k 0 ( k 2 )( k 3 )
3 1
1
coth
2
2 3
6
k 0 k 3 / 2
2 3 6 log 2 3
sin 2
cos 2 1
2
2
1 .617535655787233699013...
5 log
2 k 1
1
k
k 5 ( k 1)
k 0
1 1 5
1
Li2
Li2
5 4
1 5
.617617831513553390411...
4 .617725319212262884852...
10
5 5
8
Fk
k 2
k
2
k 1
.61779030404890075888...
k 1 (k 1) 1
k
k 2
1 .61779030404890075888...
k2
(k 1) 1
k 2 k 1
3k 2
k (k 1)
k 2
2
1
k
log
k
k 1
3 .6178575491454110364...
2
2
2 log 2
2
7 (3)
4
2k
4k
k 0
(k 1) 2
k
15
3 log 3
7
.617966219979193677004...
4
2
2 3
3
5
dx
dx
2 .61799387799149436539...
x
12 / 5
x
6
3
0 1 x
0 e e
.618033988749894848204...
1
1
5 1
2
5 1
2 cos , the Golden ratio
2
5
2
2 .618033988749894848204... 1
1
.618107596152659484271... k
k 1 2 kH k
(k 2)
1 .618157392436715516456... 4 log 2 2
2k
k 0
2 4
1
.61847041926350753801...
2
315
p 4
p prime 1 p
1 .618033988749894848204...
.61851608883629551823...
1 .618793194732580219157...
.61897071820759046667...
3 9 log 2
8
4
1
2
3
cosh
3
2
(1) k 3k (k )
4k
k 2
k 1
1
1 (k 1)(k 2)
1
10 5 5 H (1
10
5) / 2
5 5 H (1
5) / 2
=
F (k ) 1
k 2
k 2
.619288125423016503994...
16 10 2
3
3
k k
k 1
.619718678202224860368...
k
k 0
1
(k 2)
6
k
cot
6
3k
k 1
2
1
1/ 2
(1) k 1
2
2
6
2
k 1 k ( k 1 / 2)
(1 2 k ) (1 k )
e 1
.62011450695827752463... log
k!
2
k 1
(1) k (2k 1) Bk
=
[Ramanujan] Berndt Ch. 5
k !k
k 1
.620088807189567689156...
1
k 8
2k 1
4 .619704025521212812366...
2k
2
1
=
2 csch
2
dx
1 e
x
0
4 e1/ 3
k2
k
9
k 1 k ! 3
0 (k )
4 .620324229254256923750...
k 1 ( k 1)!
k 1 (2 k ) 1
.62047113489033260164... ( 1)
2k 1
k 1
.620272188927150901613...
.62073133866424427034...
8 .62074214840238569958...
24
29
cos
7
2
k 1
1
1
k arctan k
k 2
1
1 k (k 5)
4 i 21/ 335/ 6 61/ 3
1
1/ 3
2 2 / 3 2 61/ 3
1
(
)
2/3
3
2
(1) 2 / 3 4 i 21/ 335/ 6 61/ 3
1/ 3
3
2
=
6 (3k 1) 1
k
k 1
k
k 2
6k
6
3
1 1
, ,0
2 2
/2
9 .62095476193070331095... 2 e
1 .62087390360396657265...
.621138631605517464637...
2
24
2
log 2
log 2 2
1 i
1 i
Li2
Li2
2
2
2
2
3 log 2 2
=
log 2
2 16
4
1
log(1 x 2 )
= 2
x ( x 1)
0
1
.621334934559611810707...
log5 e
log 5
1
5 2 13 4 5 50 12 5 2 65 20 5
2 .621408383075861505699...
4
5 5 5 5 5 5 5 ... [Ramanujan] Berndt Ch. 22
=
.621449624235813357639...
2
cos1 ci(1) sin 1 ci(1) cos1 ci(1) sin 1
=
sin x dx
0 1 x
=
cos1
2si(1)
2
arctan x dx
ex
0
dx
2
1
e x
x
0
( 1) k
k
k 2 2 ( k ) 1
.62182053074983197934...
2 3
6
1
1
2 , lemniscate constant
2 .62205755429211981046...
2 2 4
1
1 3e2 3e4 e6
3
1 .623067836619624382082... sinh 1 sinh 3 3 sinh 1
4
8e3
( 3k 3)(1 (1) k )
=
8k !
k 1
2 k 1
1
3
3
=
4 k 1 ( 2 k 1)!
1
1
1
1
log 1 2
arcsinh1
arctanh
.623225240140230513394...
2
2
2
2
(1) k
(1) k
= 1
4 k 1
k 1 4k 1
.622008467928146215588...
=
2
k 1
k
1
( 2 k 1)
CFG G1
J883
GR 1.513.1
(1) k ( 2 k )!!
k 0 ( 2 k 1)!!
(1) ( k 1) / 2
2k 1
k 0
1
1
Lik
k
2
k 1 2
1
x dx
=
=
=
=
(1 x
2
0
=
2x
2
0
/4
=
=
sin x
dx
2 cos2 x
0
=
x
2
.623263879436410617495...
dx
2
2
2k
k 0
.623658674932063698052...
Adamchik-Srivastava 4.12
dx
4x 1
dx
sin x cos x
Prud. 5.1.4.4
) 1 x2
0
/2
J129
1
3
3
3 3
4 2
e
0
dx
x2/3
1
1 3
2
pr ( k )
.623887006992315787...
k
k 1 2 1
13078
k 6F
104 .624000000000000000000 =
(1) k 1 k k
125
2
k 1
.623810716364871399208...
2 log
.624063589774511570688...
1
3
coth
6 4 3
2
4k
k 0
4
1
2
3
2
5 2
4
3
2
1
= ( 4k 2) ( 4k 1)
(4k 1) (4k )
2 k 1
k 1
k2 k 1
= 4
3
2
k 2 k k k k
2 4 5 2
3 .624270016496295506006... 24 (5) 50 (3)
1 (1) k k 4 (k ) 1
3
2
k 2
.624270016496295506006...
24 (5) 50 (3)
16k 4 k 3 11k 2 5k 1
k (k 1)5
k 2
=
1 .624838898635177482811...
K 2 (1) K 0 (1) 2 K1 (1)
=
x
2
e
1 x 2
0
.624841238258061424793...
( 3)
dx
.625000000000000000000 =
.62519689192003630759...
.6252442188407330907...
5
8
2 8 3
3 2
27
log
csc
3
3
1
1 .62535489744912819254... 1 k 2
2 k
k 1
1
3 .625609908221908311931...
4
/2
0
( 2k )
k 1
3k k
2 k ( k ) 1
k!
k 2
.626020165626073811544...
2
sech
2
e
2k
k 2
/2
AS 6.1.10
1 .625789575714297741048...
sin2 x
dx
(2 sin x ) 2
e
e 1
2
1
k
cos x
cosh x dx
GR 3.981.3
0
cos x
dx
e x
1
k 1 (2 k ) 1
.626059428206128022755... ( 1)
Li2
2
k
k
k 1
k 2
=
e
x
.62640943473787862544...
.626503677833347983808...
k
3
k 1 ( 2k 3)
6 sin 1
k sin k
2
(5 4 cos1)
2k
k 1
2 16 21 (3) 16
log 2 x dx
1 x3 / 2 ( x 1)2
.626534929111853784164...
(2 k ) (2 k ) 1
k 1
S2 ( 2 k , k ) 2 k
(2k )2 k
k 1
1/ 4
1 .626576561697785743211... 7
.626575479378116911542...
.626657068657750125604...
3 .626860407847018767668...
1
2 2
e2 e2
sinh 2
2
2 2 k 1
k 0 ( 2 k 1)!
4k k
k 0 ( 2 k )!
AS 4.5.62
=
e
2 cos x
sin x dx
GR 3.915.1
0
.6269531324505805969...
k 1
(3k )
2 1
k
(
k 1
1
3
2 )3
k
.627027495541456760072...
3k
3 log 3 4 log 2 3
k 1
.627591004863777296758...
3 .627598728468435701188...
2
1 2
1 2
,
3 3
3 3
3
dx
x 2 x 1
2
=
1
k /2
( 2 ) 6)
=
2
3k
k 1 2k
k
k
log(1 x 3 )
0 x 3 dx
dx
1 cos x
0
=
ex / 3
ex 1 dx
=
log1 x dx
3
0
.627716860485152532642...
.6278364236143983844...
4
log1 x( x 2) dx
0
(1)
k 1
( 3k 1) 1
k
k 1
.627815041275931813278...
1
3
k log 1 k
k 2
1
1
2e erfi1
4
k 0 k!( 2k 1)
1
4 4 5
1
arcsinh
5
25
2
( 1) k
1 1
= 2 F1 11
, , ,
2 4
k 0 2k
k
.628094784476264027477...
sin 1
( 2) cos1 log( 4 sin 2 1) sin 1
2
=
sin 2 k
k 1 k ( k 1)
4 .62815959554093703767...
.628318530717958647693...
7 .628383212379538395441...
2 (3)
11 2
19
36
24
H k H k 3
k (k 1)
k 1
3/ 2
x dx
5
1 x5
0
i 3
sin ( 1)1/ 3 sin
2
2
1
1 dx
cosh 2 4
2
x x
sinh x
=
cosh
1 .628473712901584447056...
k
k 1
.628507443651989153506...
.628527924724310085412...
=
3
2
3
1 (2k 1)
k 0
2
1
k 1
Li3 ( )
(1)1/ 4
k
k
k 1
3
1
cot (1) i cot (1)
4
2
3/ 4
1/ 4
(1)1/ 4
2 (1) 3/ 4 2 (1) 3/ 4
4
( 1) 3/ 4
2 ( 1)1/ 4 2 ( 1)1/ 4
4
k2
(2k )
k 1
(1) ( 4 k 2 ) 1 4
Im k
k 1
k 2 k 1
k 1 i
=
5 2
14 .628784140560320753162... 2 ( 3)
4 ( k 1) 2 ( k ) 1
6
k 2
1/ k
k 1 e
2 .62880133541162176449... ( 1)
k4
k 1
1
0 (k )
.628952086030043489235... k 2 k 2 j 2
k 1 2
j 1 k 1 2
106 .629190515800789928381...
(x
24 2
0
4
dx
1 / 16) 2
k 2 ( k 1)
2 e 1 2 e Ei (1)
k!
k 1
5 .629258381564478619403...
1 .6293779129886049518...
=
1 .629629629629629629629 =
.63017177563315160855...
2
log 2 2
log 2
2 12
2
2
( log 2 ) 2
12
12
44
27
k
4
k 1
log 2 xdx
0 e2 x
e
2x
log 2 x dx
0
3
k
G
1
(k )
.630330700753906311477...
log 2
2
k 2 k ( k 1)
1
1
= ( 2 k 2 ) log 1 1
k
2k
k 1
9 k 2 11k
3
k 2 k ( k 1)
.63038440599136615460...
1
p
1 2
p prime
1
36
1 4
2
( 2 )
4
.630628331731022856828... ( 3)
7
.6304246388313639332...
1
3 .630824551655960931498...
2
e
log 3 2
log (k )
.631010924888487788268...
k 1
k 2
.6309297535714574371...
sin 3 3k
3 sin 1
4
3k
k 0
1
.631526898981705152108... k
k 1 2 1 ( k )
12
.631578947368421052
=
19
105
9
11 .631728396567448929144...
2
16
.631103238605921226958...
Berndt ch. 31
1
1 .6318696084180513481...
e
sin x
dx
0
.6319660112501051518...
.631966197838167906662...
9
1
4
k 1 F32 k
(3)
2
12
1
.632120558828557678405... 1
e
=
Hk
k 2
k
k 1
( 1) k 1
k!
e
1
1
x2
Berndt 9.12.1
1
( x 1)e
0
2
1 .632526919438152844773...
2
1 dx
0 x cosh x dx 1 cosh x x3
1
log 2
GKP p. 302
2
( k 1)
1
1
log 1
.6328153188403884421...
k
3k
3 k
k 1
k 1 k
log 2 k 2 1
.632843018043786287416...
2k
2k
k 2
k 1 2
7
1096 .633158428458599263720... e
6 .63324958071079969823...
44
x
log x dx GR 4.351.1
.633255651314820034552...
cos( e )
7 (3)
2 .6338893027985365459... log 2
2
2
.633974596215561353236...
.634028701498111859376...
.634340223870549172483...
4k
k 1 2k
k 3
k
3
1 3
1
1
(1)
k
k
k 0
1
5
1
log 3 5 log 3 5
2
2
=
F
k (k ) 1
k
k 2
1 e2
log sin 2 x
2 .634415941277498655611... log
dx
2
x 1
2
0
6 .63446599048208274358...
Ei ( e) 1
.634861099338284456921...
2 csch
.63486687113357064562...
arcsec
1 .634967033424113218236...
.635181422730739085012...
2
.635469911917901624599...
.6356874793986674953...
.63575432737726430215...
(1) k 1
2
k 1 k 1 / 4
1
x log log dx e 2 x log x dx
x
0
0
2
k ( k 1)
2G
4
4k
k 1
k 2
1
2 ( 2 ) 2 ( 3)
( 1)
k 2
k 1
k
1
k
2
3
4
k 2 ( k 1)
k ( k 1)( ( k ) 1)
GR 4.325.8
4
(4 k 1)
(2k )
(k )
=
ek
k 1 k ! k
15 33
Associated with a sailing curve. Mel1 p.153
6
2 13
2k 2 1
( k 1) ( 2 k ) 1 2
2
12 16
k 1
k 2 ( k 1)
log 2
(1) k (k )
2
2 k 1
1
=
2
.635861728156068555366...
1 .635886323999068092858...
I1
2
2
k
(k !)
k 1
2
2k
1
1
1
1
1
1
1
1
1
2 2
2 2 2
2 2 2
4 2 2
( 1) k 1 k
= 2
k 1 k 1 / 2
1
.636014527491066581475...
csch
2 2
(1) k
2
k 0 k 1
.63636363636363636363
cos 2 x
0 cosh 2 x dx
=
7
11
6 .636467172351030914783...
F3k 1
k
k 1 6
2 1
1 log 2 2
2
2
x
sin x dx
0
1
sin k / 2
.636534159241417807499...
12 16 96
k3
k 1
i
Li e i / 2 Li3 ei / 2
=
2 3
.636584789466303609633... ( 2 ) ( 7 )
GR 1.443.5
2
2k
1
.6366197723675813431...
k
k 0 k 16 ( 2k 2)
1
.6366197723675813431... 1
4k 2
k 1
2
=
cos 2
k 1
=
=
.636823470047540403172...
GR 1.431
GR 1.439.1
k 1
0
1 / 2
i logi e
1
1 1
5 5
(1) 4 / 5 3 5 2i
4
5
5
2
1
1
5 5
2 /5 1
1
3
5
2
5
5
( 1)1/ 5 3 5 2i
(
)
i
(
4
5
2
4
( 1)1/ 5 1
3 5 i 2(5 5
4
5
k3
= ( 1) (5k 3) 1 5
k 1
k 2 k 1
1
1
(2k )
.637160267117967246437...
coth
2
(1) k 1
2k
2 2
2 2
k 1 2k 1
k 1
6 sin 2 1
sin 2 k
.637464900519471816199...
k
4 cos 2 5
k 1 2
.637752497381454492659...
.637915805122426308543...
.638000580642192011016...
1 .6382270745053706475...
k 1
3
2 e2
.6387045287798183656...
=
cosh 2
1
d
k
2
2
6
cos 4 k
k2
k 1
4
3 9 log 3
24
6k
k 1
2
GR 1.443.3
1
4k
log(1 x )
dx
x5
0
1
cos 2 x
2 2 dx
)
(1 x
4k
2
2
k 0 ( 4 k 2 )!
( k ) ( k 1) 1
k
k 2
1
k 2
.638251240331360040453...
6
.638961276313634801150...
sin log 2 Im2i
.63900012153645849366...
1 5 5
3 3 3
x 4 dx
e
x3
0
1
1 i
1 i
2
2
i
(4k 2) 1
2
2
.639343615032532580146...
( 1) k 1
log
1 i
1 i
2
2k 1
k 1
2
2
2
2
1
= arctan 2
k
k 2
1
5
arc cot (cot 1 2 csc1)(cos1 2) sin 1log cos1
.639432937474838301769...
5 4 cos1
4
H sin k
= k k
2
k 1
.639446070022506040443...
(3) (4) (2)
.6397766840608015768...
3
k 1
.640000000000000000000 =
k
k
1
16
25
Fk Fk 1
4k
k 1
3i
i
Li3 ( e i ) Li3 ( ei Li4 ( e3i ) Li4 ( e 3i )
8
8
3
sin k
=
4
k 1 k
4
log 2
.640186152773388023916...
3
7
log 2
1 .640186152773388023916...
3
1
502
x log 2 x
.64031785796091597380... 16 (3)
dx
27
1
x
0
.640022929731504395634...
H ( 3) k
.640402269535703102846... k
k 1 2 ( 2 k 1)
.64057590922154613385...
k3 2
k3
k 2
1
2 (2 )1/ 3 21/ 3 (1) 2 / 3 21/ 3
e
.64085908577047738232... 2
2
2 3
H (3)1 / 3
.640995703458790509...
27 12 (3)
3 3
2 .641188148861605230604...
6G
/2
=
0
.641274915080932047772...
3 2 G 3 2
1 ( 3) 3
1
(3)
4
8
256
4
4
x3
dx
sin 3 x
dx
2
2x 3
2 6
0
3x
0
dx
2
2
log x
1
dx
2 Li3
3 0 x 3
24
5
1
.641398092702653551782...
hg hg
6
6
5
3
1
1 1 / 22k
1 .641632560655153866294... k ( k 1)/ 2
2 k 1
k 1 1 1 / 2
k 1 2
10
1
.6413018960103079026...
2
5 .641895835477562869481...
[Gauss] I Berndt 303
(1) k 1
.642024000514891118449... k
k 1 2 k
.642051832501655779767...
(1)k 1
(4k 2) 1
( 2 k 1)!
1
.642092615934330703006... cot 1 1 2 2 2
k 1 k 1
(1) k B2 k 4k
=
(2k )!
k 0
k 1
.642092615934330703006...
1 .642188435222121136874...
7 .642208445927342710179...
1
sin k
k 2
2
GKP eq. 6.88
cot1
25 2 5
1
5
7
G
, Lebesgue constant
3
Li2
4
9
.6428571428571428571
=
14
2
1
dx
.643107628915133244616... 1
(
)
x
1
.64276126883997887911...
1 .64322179613925445451...
4 i 21/ 335/ 6 61/ 3
1
1 ( 2 61/ 3 )
3
2
1 4 i 21/ 335/ 6 61/ 3
3
2
=
6 (3k 1) 1
e sin 1 1
2
6
6)
k 1
k 2
(k ) 1
1 1
Li1/ 2
.643318387340724531847...
k k
k
k 2
k 2
3
3
.643501108793284386803... 2 arctan 2
arcsin arctan gd log 2
2
5
4
9 .6436507609929549958...
93
.6436776435894211956...
1 .64371804071094635289...
k
e sin e
k (k
3
e
log x sin log x dx
1
(1)k 1
k 1
ek
( 2 k 1)!
.643767332889268748742...
log 2
G
8
i 1 i
1 i
Li2
Li2
2
2 2
/4
=
log(1 tan x ) dx
GR 4.227.11
0
log(1 x )
dx
1 x2
0
1
=
1
=
GR 4.291.10
arctan x
x (1 x ) dx
GR 4.531.3
0
.643796887509858981341...
.643907357064919657769...
.64399516584922827668...
(1 e)
e
1
7
tan
6 4 2
2
1
3
log 2 4 log 2
1 .64429465690499542033...
2
(k )
k 2
.644329968197302957804...
1 .644801170454997028679...
4k
k 1
2
1
4k 6
sin 2 x
0 2 x
2
log j
2
j 2 k 1
.644756611586665798596...
He
1
jk
G5
4 3
sin 3
k 1
1
1 k (k 4)
(1) k
k 1 k ( 2k 3) log k
.6448805377924315...
.644934066848226436472...
2
6
1 (1) (2) (2)
1
2
k 1 k k 1
=
k 1
2
2
1
(k 1)
(2k ) (2k 2)
k 1
(1) k (k ) (k 1) k (k 2) 1
k
k 2
=
k
(k ) (k 1)
k 2
=
1
k
k 2
=
k 1
1
k
k 1
2
dx
x
1
2
J272, J348
1
=
x log x
dx
1 x
0
=
log x
dx
3
x2
x
1
1
=
1
x log x
2 dx
1 x (1 x )
0
=
x
x dx
x
1
2
6
=
GR 3.411.9
(2) (1) (1)
1
k
k 1
GR 4.236.2
e e
0
1 .644934066848226436472...
GR 4.231.3
2
2 1/ k
( k 1)
k 1
2
Hk
k (k 1)
k 1
=
1
k 1 2k 2
k
k
3
=
k 1
CFG F17, K156
21k 8
3
2k 3
k
k
=
k (k 1) 1
k 1
1
=
k (k ) (k 1)
k 2
log x
dx
1 x
0
GR 4.231.2
=
log(1 x)
x
(
1
x
)
0
1
=
log 2 x
0 (1 x)2 dx
log 2 x
1 (1 x) 2
log 2 x
0 (1 x)3 dx
log x
x( x 1) dx
1
1
=
0
log(1 x 2 )
dx
x3
log(1 2 x x 2 )
dx
0
x
1
=
GR 4.296.1
=
log1 e x dx
GR 4.223.2
0
=
e
x
0
=
e
x
dx
1
dx
x
0
2 .644934066848226436472...
3 .644934066848226436472...
6
k ( k ) 1
1
k 2
2
k ( k ) ( k 1) 2
2
6
k 2
3
3 log 3
6
2
1 (1) k 1
1
2
=
2
2
3
k 1 3k k
1
= log 1
dx
( x 1)( x 2)
0
.64527561023483500704...
1
2
.64572471826697712891...
1 .645902515225396119354...
.645903590137755193632...
.64593247422930033624...
=
(k )
k 1
Fk
2 .645751311064590590502...
2 log 2
7
3
sinh
1
2
3
1
1 3k
k 1
2
(1 2i) (1 2i) sinx x
4
e 1
0
1
(1 i )
(1 i )
5 2 coth (1 i ) 2 coth
cot
16
2
2
1 1
coth
( 1) 3/ 4 2 ( 1)1/ 4 ( 1) 3/ 4 2 ( 1)1/ 4
8
16 8
1
( 1)1/ 4 2 ( 1) 3/ 4 ( 1)1/ 4 2 ( 1) 3/ 4
8
1
(8k 6) 1
6
2
k 2 k k
k 1
=
.646393061176817551567...
(k )
k 2
k
(k ) 1
1
1
cos x dx
cos sin 4
2
2
4 e
0 4x 1
1
.6464466094067262378... 1
2 2
2 log 3 log 4 2 log 2 2 1 1
1
.646458473588902984359... Li2 ( 3)
Li2
3
18
3
3
3 4
.646435324626649699803...
=
e
x
0
x
dx
3
11
24
1
k !( k 1)!
arcsinh (1) k 1
25 25 5
2
( 2 k )!
k 1
2
1
k
5 sin 1 3 cos1 (1) k
.646612001608765845265...
4
( 2 k 2 )!
k 1
( 6k 4) 1
.6469934025023697224...
k 4 log(1 k 6 )
k
k 1
k 2
.646596291662721938667...
1
( 1) k 1 ( 3k 1)
2
1
2k
k 1 2 k k
k 1
.64704901239611528732...
1 .64705860880273600822...
1
k 1
.6470588235294117
=
sin k
2k
11
17
1 .647182343401733581306...
3 .647562611124159771980...
1 .647620736401059521105...
.647719422669750427618...
.647793574696319037017...
.647859344852456910440...
log x
dx
( x)
1
36
6
2
(2)
4
(e 1)
e
x2
cosh 2 x dx
0
1
cos1
cos1
sin 1
sinh
cosh
sin 1
2
2
2
2
1
1 log 1 2
2
2 2
cos
3
2
arcsinh x
dx
x3
1
k sin k
k
k 1 k ! 2
1 .647918433002164537093...
.648054273663885399575...
.648231038121442835697...
.648275480106659634482...
32 .648388556215921310693...
log( x 2)
dx
x2
1
3 log 3
2
sech1
2
1
1
e e
cos i
E2 k
(2k )!
3
arctan 2 log 5
log x cos2 x
dx
5
5
20
ex
0
2
3
6 3
999
dx
3
1
log1 x
0
1
e
k
k 0 k !2
1 .648721270700128146849...
1
cos k
Li2 ei Li2 e i 2 2
2
k 1 k
1
(2k )!!
i i /
k 0
5 1
5 1
3
2
log 2
2
12 4
2
( 4k )
.64887655168558007488...
k 1 ( 4k 2)
.648793417991217423864...
.64907364028134509045...
2
2 3
=
k
tanh
k
3
2
4
1
4
( 6k 4) 1
1
k 1
3
1
.649185972973479437802... 9 log 3 k
2
k 0 3 ( k 2)
(5k 3) 1
.64919269265578293912...
k 3 log(1 k 5 )
k
k 1
k 2
k 2
6
log 2 1
3
3
6
1
.64963693908006244413... sin
2
.649481824343282643015...
/4
0
x dx
cos 4 x
2 .649970605053701527022...
AS 4.5.66
k 0
G
3
16
2 log 2
4
1
1
arccos x arctan 2 x
dx
x2
Berndt Ch. 9
.65000000000000000000
=
13
20
ee 1
1 .650015797211168549834... log
e
e k Bk
(1)
k !k
k 1
k
Berndt 5.8.5
k2
.65017457857712101250... 4320 1589e
k 1 k!( k 6)
3 .65023786847473254748...
k
3
3 log 2 ( k 1)
2
k 1 4
3
k (4 k 3)
k 1
2/3
(1)1 / 3 log1 (11)/ 3 (1) 2 / 3 log1 (11)/ 3
3
2
2
2/3
2
1
log1 1 / 3
3
2
1
1
1 1 2
2 2 5
,1, 1 / 3 2 F1 , , , 1 k
=
2
3 2 3
3 3 3
k 0 2 (3k 2)
i
sin k
Li2 (ei ) Li2 (e i ) Im Li2 (e i ) (1) k 1 2
.6503861069291288806...
2
k
k 1
2
1
1 .650425758797542876025... erfi 1
k 0 k!(2k 1)
1
.650604594983248538006... kH k
k 1 2
.650311156858960038983...
2
2/3
1/ 3
2
2 1 arcsin cos
2
(1) k
= 4
3
k 1 27( 2k 1) 2( 2k 1)
.65064514228428650428...
/2
=
0
1
=
0
sin 2 x
dx
1 cos 2 x
/2
0
cos 2 x
dx
1 sin 2 x
1 x
arctan( x 2 ) dx
2
x
2
dx
1
0
( 4 k 2) 1
1
sinh
1
.650923199301856338885...
arctanh 2
log
k
(2k 1)
2
k 1
k 2
1 (2) 3
1
3
2 .6513166081688198157... 28 ( 3)
3 3
4
2
k 0 ( k 4)
=
.651473539678535823016...
log 1 4 x
1
2
15
5 35
log
32
4 64
k 2 Hk
k
k 1 5
GR 4.538.2
1 .651496129472318798043...
.651585210821386425593...
log 2
1/ 4
1/ 4
sin 2 sinh 2
9/4
2 cos 21/ 4 cosh 21/ 4
=
2k
k 1
2
(1)
k 1
(4k 2)
2k
k 1
1
k 2
1
6 9 8 (3) 2 4 120 (3) 168 (5)
48
H H
= k3 k
k
k 1
H H
7 (5) 2
1 .651942792704498623963...
(3) k 3 k
2
6
k
k 1
2 .651707423218151760587...
1 .652163247071347030652...
7 (3)
16
1 .653164280286206248139...
k 2
/2
x
2
log tan x dx
0
2 (k )
k2
log x
31 6
log(1 x )
dx
x
1260
0
2 .653283344230149263312... ( 2) (7)
1
23 .65322619113844249836...
.653301013632933874628...
4
2 2 16
i
Li3 e 4i Li3 e 4i
3
3
2
sink 4k
k 1
3
GR 1.443.5
(k
.653344711643348759976...
2
2) 1
k 2
40 .65348145876833758993...
.65353731412265158046...
11 e 7 11
e
1
erf
2
2
k3
k 1 k!!
1
5 5 9 5 i 5 5
4 1 5 2i
20
2 4
2
2
5 5 9 5 i 5 5
1
1 5 2i
2 4
2
2
20
1
5 5 9 5 i 5 5
1 5 2i
20
2 4
2
2
1
5 5 9 5 i 5 5
1 5 2i
20
2 4
2
2
1
= 2
(5k 3) 1
3
k 2 k k
k 1
(1) k 116k
.653643620863611914639... cos 4
(2k )!
k 0
(1) k 116k
(2k )!
k 1
1
k ! (5k 3)
.653743338243228533787... ( 1)
2
k
3
2
k 1
k 1 2k k
(4 k 2) 1
.65395324036928789113...
k 2 log(1 k 4 )
k
k 1
k 2
1 .653643620863611914639...
1 .654028242523005382213...
.6541138063191885708...
5 .65451711207746119382...
cosh cos1 sinh cos1 sin(1 sin 1)
2 ( 3)
7
4
k sin k
k!
k 1
(1)k 1 k (k 1) (k ) 1
k 3
2 ( 3k 2 3k 1)
k 2 ( k 1) 3
k 2
e
k 1
(3k 1) 1
k
2
1
2
k Li k
2
k 2
3
( 1) 2 k
k
7
k
k 0 3
.654653670707977143798...
k
4 10
sin 10
3
8
6 .655258980645659749465...
(3)
.65496649322273310466...
1/
.65465261560532808892...
2 sin 2 2
k 1
1
1 k (k 6)
( 3k 1)( k 1)
16G
(k 2)
4k
k 1
k!
(1) k 1 k
k
k 1
(2)
c1
2
(2 k ) 1
1
Li3 2
3
k
k
k 1
k 2
3
Li3
5
k 2 (k ) 1
1
2 (k 1)e1 / k k
k!
k 2
k 2 k
14 .65544950683550424087...
.655831600867491587281...
.655878071520253881077...
.65593982609897974377...
.656002513632980683235...
1 .65648420247337889565...
Adamchik (27)
Patterson Ex. A.4.2
coth 1
1
1
.656517642749665651818...
2 2
2
2 k 1 k
4 log 2 2 log 3
.65660443319200020682...
1
3
3
9 .65662747460460224761... 6 log 5
.6568108991872036472...
1 .65685424949238019521...
4 3 log 2
H2 k 1
k
k 1 4
3
2 3
log
2
2 3
1
log
0
(1 x) 2
dx
1 x6
2k 1 1
k 8k
k 0
32 4 2
5 .65685424949238019521...
3 log 2
.656987523063179381245...
4 24
2 .656973685873328869567...
J951
3
8
1
arcsin 3 x
x 3 dx
1
( k ) log k
2k
i
i
.65777271445891870069... 1 1
2
2
k 2
.657926395608213776872...
=
.65797362673929057459...
=
3 i
55 4
i 3 i
Li3
Li3
2
2592
2 2
sin k / 6
k3
k 1
2
(4)
(4) (3)
15
(2)
(1) ( k )
k2
k 1
=
k 1
1 .6583741831710831673...
.65847232569963413649...
=
8 .658585869689105532128...
(1) k
2k
p prime k 0 p
(k )
2
log 2 (2 x)dx
2 log 2 log 2
ex
6
0
2
2 log 2
4
7 (3)
8
2
arcsin x
dx
x
0
8 (4)
HW Thm. 299
HW Thm. 300
k2
2
1
p prime
p2
p2 1
GR 1.443.5
4 4
45
1
0
x arccos2 x
dx
1 x2
3
5
3
2
2
6
2
2
/2
tan 2 x sin 4 x
= x e
dx
cos 2 x
0
2 .658680776358274040947...
1. 658730029128491878509...
GR 3.963.3
(k 1)
2k
(k 1) 1
1 1
.658759815490980624984...
Li4
4
k
k
k 1
k 2 k
1
1
.658951075727201947430...
Ei (1)
2
k 1 2 k ! k
k 1
.65905796753218002746...
4
( 3)
( k 1)
72
k3
k 1
3 .659370435304991975484...
(cosh 2 sinh 2) 1 cosh e cosh(1 e) sinh e sinh(1 e)
=
ee (e 1) 1
e2
ek
k 0 k!( k 2)
1
1 2 k
k 1
k
k
(1) k (k )
1
1 / k
1
e
k!
k
k 2
k 1
2k 2 (1) k
2
k
32
40
3
k 8
k 1
k 1 1 / k
1
1
log 1 1
k k
k 2
1
1
Lik Lik
n
n
k 2 n2
1 .659688960215841425343...
.659815254349999514864...
.659863237109041309297...
.65998309173598797224...
=
.660161815846869573928...
=
1
1
( p 1) 2
p prime 3
Twin primes constant C2
p prime 3
p ( p 2)
( p 1) 2
75 5 3
1
.660349361999116217163... 1
2
3k k 1
k 1
1 2 1
.660398163397448309616...
Li2 ei Li2 e i
4 8
12 4
8 .6602540378443864676...
1 2/ p
2
p prime 3 (1 1 / p )
sin 2 (k / 2)
k2
k 1
.66040364132111511419...
1
8
coth 2
4
k
k 1
2
1
4
J124
=
.660438500147765439828...
sin x cos x dx
ex 1
0
2
x
9/4
0
dx
2
4
3
2
2
csc
5
5
5 5 5
1 .660990476320476376040... G
log k
1 .6611554434943963640... 2
k 2 k k 1
1
(1) k kBk
.66130311266153410544... 1
(e 1) 2
k!
k 1
.660653199838824821037...
809 .661456252670475428540...
x2
0 x5 1 dx
cosh cosh 2 sinh cosh 2cosh sin 2
cosh 2k
k!
k 0
1
1
log 2 cos log (1 ei / 2 )(1 e i / 2 )
4
2
k 1 cos k / 2
= ( 1)
k
k 1
1
.661707182267176235156...
4 17 2 6 3 21log(1 2 ) 42 log(2 3 ) 7
105
.661566129312475701703...
Robbins' constant, the avg. distance between points in the unit cube
1 3 log 3
.66197960825054113427...
4
8
2 .662277128832675576187... ( 2) (6)
2 .662448289304721483984...
log( x 2)
dx
x3
1
1
(k!)
k 1
.662743419349181580975...
Laplace limit. Root of
3
6 .662895311501290705419...
k 1 k
.66333702373429058707...
4
1 x 2
1 1 x2
1
k
coth
1
.663502138933028197136...
k 1 F3 k
xe
1
8
k2
4
k 2 k 1
(4 k 2) 1
k 1
1 1 i
1 i
Li3
Li3
2 3
3
2
1 .663814745161414937366...
(3)
.663590714044308562872...
cos k / 4
k3
k 1
(1) k k
4G 2 2
1 2
k 1 ( k 4 )
( 1) k
4G
1
1
k 0 ( k 2 )( k 2 )
1
1
1
28 (3) 3 64 ( 2 ) 64
1 3
2
4
k 1 ( k 4 )
1 ( 2) 1
1
3
28 (3)
3
2
4 k 0 (k 14)
2k
93
1
k
140
1 k 4 ( k 1)
1 .6638623767088760602...
3 .6638623767088760602...
.663869968768460166669...
64 .663869968768460166669...
.66428571428571428571
=
4 .66453259190400037192...
cosh
2
2
1 (2k 1)
k 0
1
2
0 F1 ;1; J 0
e
e
3
2
.66467019408956851024...
x 4 e x dx
8
0
.664602740333427442793...
/2
=
0
e
tan 2 x
2
(1) k
2 k
k 0 ( k!) e
1 2 cos 2 x
dx
cos 6 x cot x
GR 3.964.3
2
x log x
(
)
(
)
dx
1 1 2 x x
6
e
e
1
0
( 3k 1) 1
.66489428584555810021...
k log(1 k 3 )
k
k 1
k 2
2
2 .66514414269022518865... 2
Gelfond Schneider constant, known to be transcendental
5 5
2
6 3
1 .66535148216552671854...
5 log 5 5 log
2 1
5 10
5 5
5
6k (k ) 1
36
=
k
5
k 2
k 2 5k (5k 6)
.66488023368106598117...
.665393011603856317617...
1 2
2
1
2 3 log 3 2 (1) 2 (1)
18
3
3
=
2 .665423390461749394547...
.66544663410202726678...
Hk
k 1
k
k
2k
8 2
arctanh
.665738986368222001365...
(k 2 )
k2
k 1
.665773750028353863591...
arctan
1 .665889619038593371592...
5
.666003775286042277660...
(k!)
B2
2 2
2
k I k k
0
k 2
1 1
log 1
p p
p prime
p prime
1
p( p 1)
HW Thm. 430
.666169509211720802743...
2
2 arctan(1 2 )
3
dx
x
x
4 2
2
2
0 e e
1 .666081101809387342631...
4
( 2k ) 1
k 1
2
1 .666090786005217177154...
1
1 e
3 (k )
k 2
k3
2 k ( k 2)
8 .666196488469696472590...
k!
k 0
e2 / k
2
k 1 k
.666355847615437348637...
2 2
.666366745392880526338...
cos sin 1
.66653061575479140978...
sin 1 si (1) cos1 ci (1) cos1
1
=
log x sin(1 x ) dx
0
.666666666666666666666 =
2
3
2k
1
k
k 0 k 4 ( k 1)(k 2)
F4 k 3
k
k 1 8
=
=
(1) k
2k
(1) k 1
k 1 ( k 3 / 2)( k 1 / 2)
=
1
1 (k 2)
2
2
1 3
k 1
k 2
k 1
=
J1034, Mardsen p. 358
/2
=
sin x
cos x dx
0
/2
=
0
1
dx
1 sin 2 x
=
cosh x
dx
e2 x
0
=
cosh log x
1
=
x8 dx
ex
0
1 .666666666666666666666 =
dx
x3
3
5
3
F4 k 1
k
k 1 8
8
2 .666666666666666666666 =
3
F
= 4kk
k 1 8
1
2 .666691468254732970341...
k 0 ( k!!)!
=
.666822076192281325682...
12
.666995438304630068247...
cosh 3 sinh 3
2
2 3
1 2
.66724523794284173732... 2 log
2
.667457216028383771872...
.66749054338776451533...
arccos
2
( 1) k 1 ( k 12 )!
k !k
k 1
4
1
2 e2i 2 e 2i
4
( k 1) 1 sin
k 1
3k k
k 0 ( 2k 1)!
2
k
.6676914571896091767...
1 1 1
1 3
, ,
2 2 4
2 4
.66774488357928988201...
(2 k ) 1
k
k 1
k 0
(1) k
2k 1
1
2
Li k
k 2
2
log 2
log 3 2
1
Li3
6
6
2
1
x 2 dx
log 2 x dx
log 2 x dx
=
8 3
x
0 1 2x
1 x 2x
0 e 2
1 .66828336396657121205...
2
Li3 ( 2)
.66942898781460986875...
k
2
k 1
96 .67012655640149635441...
o (k )
2
k 1
.669583085926878588096...
2
k2
k
1
1 (k 1)
2 log 2 8 log 2 12 (3)
3
3
x 3 dx
0
1 .6701907046196043386...
1 .67040681796633972124...
15 .67071684818578136541...
20 .67085112019988011698...
e
k 1
5
k
1
1
2
k 1
ex 1
k
k
5
2 3
3
1
1
e 1 e log1 k
e k 0 e (k 2)
(1) k
.671204652601083...
2
3/ 2
k 2 k k
(1) k 1 e1 / k
2 .671533636866672060559...
k5
k 1
1
1 .67158702286436895171... sin sin 1cosh cos1 sinh cos1
2
.670894551991274910198...
1
k! sin
k 0
2k 1
2
2
.671646710823367585219...
e (1 erf 1)
2
.671719601885874542354...
1
dx
2
1
1 5
log log 2 log log
2
3
x 1 x x
6 6
0
e x
0 1 x 2 dx
GR 4.325.6
=
.67177754230896957429...
.671865985524009837878...
=
log x
1
1
0 e e
x
10
1 1
27 3 9 k 1 2k
k
(x
dx
1)3
3
0
1
k
k 1
1
1
(1) k 1 (2k 1) 1 (4k 1) (4k 1)
2 k 1
2 k 1
1
(i) (i)
2
k
3
1
Re 2
k 1 k (k i )
92 4 log 2
1
.672148922218710419133...
75
5
k 1 k ( k 5 / 2)
=
1
.672247528206935894883...
1
.672462966936363624928...
.67270395832927634325...
.672753015827581593636...
.672942823879357247419...
arcsin 2 x arctan 2 x
dx
x2
1
Y0 (2) 2 J 0 (2)
2
90
6
30 (4) (2) (kk) log k
4k
k 1
1
1 3
log
4 3 3
3
3
(k ) 2 (k ) 1
3
(k ) (k )
3
(k ) 1
k 2
4 .67301790986491692022...
k 1
k 2
3 .67301790986491692022...
2
1
cot
4 4 2
2
2 .67301790986491692022...
(1) k 1 H k
k!k !
k 1
2
1
2
2
(1) k ( 3 1)3k 1
3k 1
k 0
k 2
1 .67302442726824453628...
=
.6731729316883003802...
e 2 1 cos 2
cos 2 cosh 2
cos(1 i ) cosh(1 i )
2
4 4e 2
2
16k
k 0 ( 4k )!
1 3
3/ 4 cos
4
2
8
sin 2 x 4
0 x 2 dx
2
1
ee
sinh 1
1
.67344457931634517503...
k 1 q ( k )
2 .67323814048303015041...
1
sin 2 x
.673456768265772964153...
2si (2) 2 dx
2 2
x
1
2
k
.6736020436407296815... k
k 1 4 1
1
.673917363376357541664... 1
2
k (k 1)
k 1
2
3
5 1
log
20 8
2
(k ) 1
1 1
.674012554268124725048...
Li3
3
k
k 2 ( k 1)
k 1 k
.673934654451819223753...
Berndt 9.8
(3k 3)(1 (1) k )
8k !
k 1
2
k2
7 (3)
.674600261330919653608...
6 k (k 1) 1
2
4
k 1 2
pk
3 .674643966011328778996... k pk the kth prime
k 1 2
3 .674225975055874294347...
cosh 3 1
1 .674707331811177969904...
1
J844
2(2k 1)
(2k 1)
k 2
1 2 ( (k ) 1)
k 2
.67475715901610705842...
k
( 2k ) 1
F2 k
log k
2
k 2 ( k 1)
k 1
.67482388341871655835...
.675198437911114341901...
p prime
5 .675380154319224365966...
.67546892106584099631...
.67551085885603996302...
1
p!
(k ) k
(k 1)!
k 1
6
log 2 3 log(2 3 )
5
1
1 log 2 2
arctan 2
2
(1) k
k 0 ( k 1)( k 1 / 6)
sin x
x
0 2
2 arctan
2 2
1
2
3x
0
2
dx
2x 1
3
=
dx
0 x 2 2 x 3
k 0 (k )
2k
k 1
14 .67591306671469341644...
.675947298512314616619...
2
0
dx
1 sin 2 x
m2n2
mn
n 1 m 1 2
log 5
arctan 2
2 2
4 2
1 1 /(1
e
5
5)
e
5/2
/4
0
cos x
dx
1 sin 4 x
kF!2
1
k 2 2 k 4 k
m 3
)
m 1 (1 2
1/
0
2
1
dx
1 x4
k
k 1
k
0
e e
2k
2
k 0 ( 2k 1)!
i
k 2 2k 2
1
2
2
= 1 2 1
k
k ( k 2)
k 2k
k 1
k 1
k 1
( 2k ) 1
1
1
.676565136147966640827...
arctanh
k
2k 1
k 1
k 2 k
3 .676077910374977720696...
1
.675977245872051077662...
/4
sinh
1 .67658760238543093264...
k 1
.676795322990996747892...
k 1
1 .676974972518977020305...
(k )
k!
(k )
2k k
1
e1 / 8 1
erf
2
2
2
.67697719835070493892...
( k )
k 2
.677365284338832383751...
12 2e
.678097245096172464424...
3 .678581614644620922501...
17 .67887848183809818913...
2 .67893853470774763366...
1
k
k 0 k!!2
(k 1)!!
k 1 ( 2k )!!
( k )
16
12 18 cosh 1 14 sinh 1
e
3
( k ) ( k 1)
1
2 12 k 2
2
3
3 1
sin k
3
8
2
k 1 k
2
(k )
k 2 ( k 1)!
( 2 k )!! 2 k
e 2 2 erf 2
k 1 ( 2 k 1)!! k !
1
3
2
.67753296657588678176...
(k )
1
(2k )!(k 2)
k 0
.678953692032834648496...
.67910608050053922751...
cot 1
2
1
K ( 2)
1 2
4
e
4
2 1/ 2
1
sin 2 x dx
0 1 x 2
/2
=
sin
2
(tan x) dx
GR 3.716.9
0
719 .67924568118873483737...
61 7
360i Li7 (i ) Li7 (i )
256
.679270890415917681932...
2
j 2 k 1
2 .67953572363023946445...
1
2
2
log 6 x
0 1 x 2 dx
GR 4.265
4
cosh sinh csch 3
3
.679548341429408583377...
1
jk
1
k2 4
2
k 0 k 3
(k ) 1
k 2
.67957045711476130884...
e k2
dx
1
x
3
4 k 1 (2k )! k 0 4k!
0 e ( x 2)
H k (k ) 1
k
k 2
.679658857487206163727...
2 .679845569858706852438...
11 .680000000000000000000 =
log k
k 1 Fk
292
25
1 .680531222042836769403...
k 2 F2 k
k 1
4k
(1) k (k )
k 2 k ( k 1)
.680531222042836769403...
H
k 2
k
1 (k ) 1
k
k
H (k ) 1 k 1 log k 1
k 2
k
k 2
7 .6811457478686081758...
59
1
cot
1
2
2
2
k 1 k 1
dx
1
.681690113816209328462...
2
x
1
.68117691028158186735...
81 / 4
3
1 i
.681942519346374694769...
2 F1 1,1,1 i, 1
2 F1 1,1, 2 i, 1
2
4
1 .681792830507429086062...
k 1
k2
2k (k 2 1)
.68202081730847307059...
log 2
G
4
.682153502605238066761...
3
k 1
k
3
16
3
192
0 (k )
k 1
3
k
/4
x
2
cot 2 x dx
0
1
3
j k
j 1 k 1
Berndt 6.1.4
k2
(3k 1)
1
1
k!
k 1
k 1
3 .6821541361836286282...
2
3k 1
=
1
1
7 4
21 (4)
log 3 x
dx
2
x
120
4
1
0
1
5 .68219697698347550546...
x3
log 3 x
dx
1 x 2 x 1 1 e x dx
GR 4.262.1
.682245131127166286554...
1
1
2 2 2 2
2
2 (2k 1) 1
k
k 1
.68256945033085777154...
2 sinh ( / 2)
.682606194485985295135... log 5 3
.6826378970268436894...
720
52
cos
143
2
.682784063255295681467...
.682864049225884024308...
(k
k 1
1
1 k (k 7)
1 / 3
2
1) 1
k 1
.68286953823459171815...
=
k 2
1 .682933835880662358359...
1
21 4 2 36 coth 12 2 csc h 2
192
1
k 2 1 1/ k 4
cosh
2 2
2
1
1 2(2k 1)
2
i
1 .68294196961579301331... 2 sin 1 i (e e )
1
1
1
1 .683134192795736841802... cosh cosh sinh cosh sinh sinh
2
2
2
1 e
sinh( k / 2)
=
e e1/ e
2
k!
k 0
k 0
i
7 2 3
9
1
2
log 3 log 2 3 (1)
24
4
8
2
3
1
1
.683853674822667022202... log1 sin
k
k 1 k
.683150338229591228672...
J712
Hk
2
k
3k
k 1
3 .683871510540411993356...
Ei (2) log 2
1
2k
1 e2 x
0 x dx
k 1 k!k
( k )
k
k 1 2
.683899300784123200209...
.68390168402925265143...
1
3
1
192 2 G 2 4 ( 3) ( 3)
32
4
4
1
=
0
.6840280390118235871...
arcsin 4 x
dx
x2
2
6
( 2 k 1)!!
2
k 1 ( 2 k )! k
2 log 2 2
( 2 k )!
2 k
4 k2
( k !)
k 1
.684210526315789473
.6842280752259962142...
Hk
=
k 1 ( k 1)( 2 k 1)
1
log 2 (1 x )
=
dx
x2
0
13
=
19
( k ) 1
k 2 2 ( k )
21 .68464289811076878215...
.6847247885631571233...
=
=
=
2
3
7 4
9 (3)
90
log K0 log 2
1
log 4 x
0 (1 x)4 dx
(2 k ) 1 2 k 1
1
( 1) j 1
j
j 1
k
k 1
K0 Khintchine's constant
1 1
4
(1) k Li2 2
k
2 2 k 2
1
1
( 2 ) log 2 2 Li2 2
k 1
2
k 2
1 1
log1 log1
k k
k 2
log 2 2 Li2
Bailey, Borwein, Crandall, Math. Comp. 66, 217 (1997) 417-431
.68497723153155817271...
( 1)
2
2 k 1
k
k 1 k
1 .685290077416171813048...
k 1
k
k
(k )
k 1
k
1
1
x
0
2x
dx
Prud. 2.3.18.1
1 .68534515180093406468...
2
sec
5
2
1 k
k 1
log 2 k
1
2 .68545200106530644531...
1 k (k 2)
1 .685750354812596042871...
1
K
4
3 .685757453295764112754...
5 2
(3)
4
8
2
1
3k 1
Khintchine's constant
.686320834104453573562...
H k H k 2
k ( k 2)
k 1
(k ) 1
k 1
k 2
.68650334233862388596...
=
=
.686827337720053882161...
5 i 3
5i 3
1
1 i 3
2 1 i 3
2
6
2
1
1
(1) k 1 (3k ) 1
3
2 k 1
k 1 k 1
1
(3k 1) 1
1
2
k 2 k k
k 1
tanh
7
7
4 (3)
.686889658948339591657...
7
3G
.6869741956329142613...
4
1 .687023683370069268005...
2G
.687223392972767270914...
7
32
.687438441825156070767...
2
8
1
2
2
log 2
2
k
k 1
2
1
k2
1
arctan 2 x
x 2 dx
1
cos 2 x sin 3 x
0 x3 dx
(k ) 1
k2 3
1 .687832499411264734869... 3 ( 2) ( 4)
k 2
.687858934422874767598...
.688498165926576719332...
3
3 tanh tanh
8
2
2
(2 2 )
2
.6885375371203397155...
9/4
1
1 k
4
k 1
sin 3 x
e x e x dx
e
0
x2
cos( x 2 ) dx
1 .688761186655448144358...
.688948447698738204055...
.689164726331283279349...
1 2 32 (2k 11)
3 / 2
I 2 ( 2)
3/ 2
1
k!(k 2)!
k 0
( 2k ) 1
k 1
k!
k 0
LY 6.114
e
1/ k2
k 2
1
3 .689357624731389088942...
.689723263693965085215...
(log 2 arccsch 2)
3
6
2 log 2 2 log 2
2
x 2e x
ex 1
0
3 5
2
2
1
1
log
log 5
5
2
5
5
.68976567855631552097...
1
.690107091374539952004...
arccsc
.69019422352157148739...
log( x 2 5)
0 x 2 1 dx
2
1/ 4
(1) k 4 k (k )
5k
k 2
7 .690286020676767839767...
2e
7 log 3
4 .69041575982342955457...
22
e
x2
cos x dx
0
.69054892277090786489...
.690598923241496941963...
.69063902436834890724...
cosh 2 1 1
2
2
3
4
3
1
sinh x cosh x dx
0
2k
1
k 6 (k 2)
k 0
k
1
cos 3k
log 2 2 cos 3
2
k
k 1
1
3 1
log 3 x dx
1
Li2 Li3
3
4 2
2
0 ( x 2)
(1) k 1 k
1
.69088664533801811203...
(cos1 sin 1)
2
k 1 ( 2 k 1)!
1
1
cot
2
2
2 .69101206331032637454... 1
2
2
k 1 k 1 / 2
k 0 k 2k 1 / 2
( 2k )
= k 1
k 1 2
.690759038686907307796...
.691229843692084262883...
2
/2
J1 (1)
cos(sin x) cos2 x dx
0
/2
cos(sin x) sin
0
2
x dx
/2
=
sin(sin x) sin x dx
0
4 .69135802469135802469...
380
81
k4
k
k 1 4
.691367339036293350533...
I 0 ( 2)
.69149167744632896047... 1
e2
.691849430120897679...
3
4
1
4k 1
1 4k 3
k 0
( 1) k 1 (2 k )!
( k !) 3
k 1
sin( 2 ) sinh( 2 )
6 2
.691893583207303682497...
4 2 log 2 4 log 2 2
.69203384606099223896...
( 2 k 1)
( 2 k )
k 1
4
4
1 k
2
kH k
2 ( k 2)
k 1
k
3 (3) log3 2
2
3
(1) k
1 / e
.692200627555346353865... e
k
k 0 k!e
9
.692307692307692307
=
13
1
.6926058146742493275... 2
2
k 2 k log k
1 .692077137409748268193...
.6929843466740731589...
=
( 2)
Hk H
k 1
2k
3 5
3 5
1
1
2 5 Li 2
4 Li 2 2 5 Li 2
5
8
8
4
k 1
(1) Fk F3
4k k 2
k 1
3 2 G
1 ( 3) 3
1
(3)
2
128
4
4
(1) k 1
.69314718055994530941... log 2 (1)
k
k 1
1
1
= k Li1
2
k 1 2 k
1 .6929924684136012447...
/2
0
x 3 dx
sin x
J71
J117
=
2 arcsinh
=
(k )
1
2 2
2 arctanh
1
1
2 2 k 1
3
(2k 1)
k 0 3
K148
2k
(2 k ) 1
K Ex. 124(d)
log(1 k 2 )
k
k 1
k 2
(2k 1) (2k 1)
(4 k 1) (2k )
2 2 k 1
2 4 2 k 1 k
k 1
k 1
1
GR 8.373.1
k 0 ( 2k 1)( 2k 2)
(2k 2)!
(k 1)!
(2k 1)!!
J628, K Ex. 108b
(2k )!
k 1
k 1 ( 2k )!!
k 1 ( 2k )!!( 2k )
1
1
3
[Ramanjuan] Berndt Ch. 2
2 k 1 8k 2k
(1) k
1 2 3
[Ramanujan] Berndt Ch. 2
k 1 8k 2k
3 3 (1) k
[Ramanujan] Berndt Ch. 2
4 2 k 1 27 k 3 3k
Hk
2
k 1 4k 1
k 2
=
=
=
=
=
=
=
=
H (n) k
1
k
n 1
k 1 2
=
cos k
k
k 1
n
1
= lim
n
k 1 n k
1
=
r
r 2 s 1 ( 2 s )
=
=
dx
2 x 2 x
=
e
0
=
x
1
[Ramanjuan] Berndt Ch. 2
J1123
dx
x
3
dx
1
x
e x dx
e
GR 1.448.2
e x
1
dx
=
2
2 x 3x 1
0
x
0
2
dx
3x 1
1
=
log x
log x
dx
dx
2
2
0 ( x 1)
1 ( x 1)
=
log x
(1 x )
GR 4.231.6
GR 4.234.1
dx
2 2
1
1
log(1 x 4 )
=
dx
x3
0
=
/2
0
=
=
x
dx
1 sin x
/4
0
dx
(cos x sin x) cos x
4
sin x
dx
x3
0
x
cosh
2
0
x
dx
/2
=
sin( x) log tan x dx
/2
0
cos( x) log tan x dx
GR 4.393.1
0
1
=
log(sin x) cos 2 x dx
GR 4.384.3
0
=
dx
(1 x ) cosh( x / 2)
2
0
=
tanh( x / 2)
dx
x
x
cosh
0
GR 3.527.15
1
=
li ( x) dx
GR 6.211
0
2 .69314718055994530941...
2 log 2
=
1
log( 2 x ) log x
dx
x2
2
J0
3
(k )
14 .69353284726928223312... 3
k!
k 1
.69384607460674271193... (3)
.693436788179183190098...
5 .69398194001564144374...
2k 1
k
k 1 2 k
2
3
(1) k
2 k
k 0 ( k!) 3
2 (3)
k 2
k 2
2k
k (k 1) (k ) 1 (k 1)
3
=
(i j ) (i j ) 1
i 1 j 1
.694173022150715234759...
=
.694222402351994931745...
.694627992246826153124...
1 .69476403337322634865...
k
k 1
(1) k 1 4k
k 1 ( 2k )!k
log k
2
2k
6
9 .695359714832658028149...
94
.69568423498636049904...
k !k
(2k )!
2 log 2 ci(2)
7 .69529898097118457326...
8 .69558909395047469286...
1 /
k 2
1 3e1 / 4
1
erf
4
4
2
.69515651214315706410...
8 6 6 log 2
(k 1)k 2
k 1
2k
i
2 ei 2 e i
2
( k 1) 1 sin k
k 1
1 .696310705168963032458...
e
2 sinh 2
2
2 .696310705168963032458...
cosh e
1 .696711837754173003159...
i
1 (1)1 / 4 1 (1)1 / 4 1 (1)3 / 4 1 (1)3 / 4
4
1
k
(1) k 1 (4k 1) 1
4
1
2
k
k 1
k 1
ek
k 1 ( 2k )!
ek
k 0 ( 2k )!
u(k )
k
1
2
k 1
( 1)
Ei (1)
.69717488323506606877...
e
k 1
1
.697276598391672325965... k
k 1 2 k
2
16
1 .697652726313550248201...
3
1 / 2
k 1
( k 1) e k
k!
log 2 x
1 3x 2 x dx
1
2 Li3
3
.6976557223096801684...
.697712084144029080157...
1
1 I 0 (1) L0 (1) e x arccos x dx
2
0
.69777465796400798203...
I 1 ( 2)
I 0 ( 2)
Borwein-Devlin, p. 35
has continued fraction {0, 1, 2, 3, 4, 5, …}
.69778275792395754630...
.69795791415052950187...
.698035844212232131825...
2
1 1
Li2
18 3 2
4 2
csc
2
1
log x
( x 2)( x 1) dx
0
1 2k
k 2
1
2
1
625
3 5 log 5 5 log 25 11 5 3 5 log 2
log
2
5 3 5
FF
= k k k 2
k 1 4 k
1
1
(1) k 1 (5k 2) 1
.698098558623443139815... 5
2 k 1
k 1 k 1
1
7 .69834350925012958345...
sinh 4
2
4k
1
k 0 k !( k 2 )
.6984559986366083598...
sin 2 (1) k 2k
2
k 0 ( 2k 1)!
=
(1) k 1 2k k
(2k )!
k 0
GR 1.411.1
.699524263050534905034...
8 6 log 2
.699571673835753441499...
| ( k )|
k
k 1 2 1
2k
k 1
2
1
k /2
.70000000000000000000
7
=
10
.700078628972919596975...
=
.700170370211818344953...
1 p 2 p 4
2 2
p prime (1 p )
1
1
(1 i ) (1 i ) (1 (1) 2 / 3
4 4(1)1 / 3
6
2
2 .700217494355001975743...
.700946934031977688857...
k (k ) 1
3
3
k 2
.700367730879139217733...
1
1
1 (1)1 / 3 1 (1) 2 / 3 1 (1) 21 / 3
4 4(1)1 / 3
6
2
1
1 (1)1 / 3 1 (1) 2 / 3
6
1
1
(1) k 1 (6k 3) 1
3
3
2 k 1
k 1 k k
(2k 1)
1 1
k Li2 2
2
k k
k 1 ( k 1)
k 1
1
2k
k 1
S 2( 2 k , k )
k 1 ( 2k )!k
1 2
1 .70143108440857635328...
x 2 dx
0 e x x
.7020569031595942854...
.70240403097228566812...
=
.70248147310407263932...
.702557458599743706303...
dx
1
1
(3) 3 3
x
2
k 1 k
1
1 1 i
1 i
(1 i )
(1 i )
2
4
4
1
2
1
k 1 k k 1 k
2 5
x
0
42 e
dx
5
2
1
k ! 2 ( k 2)
k
k 0
.703156640645243187226...
1 .70321207674618230826...
.703414556873647626384...
5
2
8
2 log 2
3
k
2
log 3 (k )
3 3
k 2 3
arctanh
1
1
1
log tanh
4
2
e
9k
k 1
e
k 0
2
4
6k
1
(2k 1)
( 2 k 1) / 2
J945
1
1
1
log 2 sin
log
4
2(1 cos(1 / 2))
2
cos(k / 2)
1
=
log (1 ei / 2 )(1 e i / 2
k
2
k 1
k
2
2 .703588859282703332127... 2 HypPFQ1,1,1, 2,2,2,2
2
k 1 k!k
(k ) 1
2
1
log1 k
.703734447652443020827... k 2
(k 1)
2
k 2 2
k 2 k
.703585635137844663429...
GR 1.441.2
G4
dx
.7041699604374744600... x
x
1
.703909203233587508431...
.7044422...
48 .70454551700121861822...
1
1
p ( p 1)
p prime
4
2
(k ) 1
1
(k )
1
(k )
k 2 (k )
k 2
k 2 k ( k 1)
(k )
1
2
.70521114010536776429...
=
k
1
= k
m 1 k 2 m ( k )
(k )
1 .70521114010536776429...
k 2 k 1
1
.7052301717918009651...
, p(k) = product of the first k primes
k 1 p ( k )
k 1
k
.70535942170114943096...
exp( ( x) 1) 1 dx
2
.70556922540701800526...
315
sin 17
13 17
1
1 k (k 8)
1
1
k 1 ( k 1)
.70561856485887755343... ( 1)
log 1
k
2 k
2k
k 1
k 1 k
(1) k
.70566805723127543830... 2 J 2 (2) 2
k 0 k!( k 2)!
2 .70580808427784547879...
4
36
k 1
0 (k )
k 1
k2
2 ( 2)
Titchmarsh 1.2.2
=
( 2) (k )
k 1
k2
12
17
3
1
.7060568368957990482...
1 log 1
dx
2
2( x 1)
2
0
137
1 .70611766843180047273...
(6)
60
.7058823529411764
=
.70615978322619246687...
2 (k ) 1)
4
k
k 2
.70673879819458419449...
(k 1) (k ) 1
k 2
.7071067811865475244...
2
1
cos cos sin
2
2
4
12
12
2k
1 2k
k 1
= ( 1) k k
4 k k 0 8 k
k 0
( 2 k 1)!! k
=
k
k 1 ( 2 k )!! 2
(1) k
= 1
6k 3
k 1
( 1) k
= 1
2 k 1
k 1
1 .707291400824076944916...
.707355302630645936751...
3 (3)
(6)
20
9
(1) k
1
6k 3
k 0
0 (k 2 )
k 1
k
3
J1029
lc(k )
3
k 1 k
Titchmarsh 1.2.9
2
2k
1
k
k 2 k 16 ( k 2)
k
1
1 log 2
( k ) 1
2
k 2 k 1
15 .707963267948966192313... 5
(k 1) 1
1 1
.70796428934331696271...
Li2
2
k
k
k 1
k 2 k
.70754636565543917208...
.70796587673887025351...
.7080734182735711935...
7
7
1
2
11
sin 2 1
2 k (1) k
k
7
k 0 k
1 cos1 (1) k 1 22 k 1
H ( 2 )1 / 2
2
(2k )!
k 1
GR 1.412.1
.70807785056045689679...
2 i
2 i
4 i
4 i
4 log 2
4
4
4
4
( 1) k 1
2
k 1 k ( k 1 / 4)
=
45 3 5
6 .70820393249936908923...
.70828861415331154324...
.70849832150917037332...
1 1 1
1 2
, ,
6 2 6
2 3
(1) k
3k 1
k 0
(1) k 1
2k 1
sin
k
2
k 1
1
1
1
(cos log2 2 cos1sin
2
2
2
.70865675970942402651...
(k ) log (k )
k 2
.70869912400316624812...
231
1024
1
0
x11 / 2
dx
1 x
GR 3.226.2
.70871400293733645959...
.70875960579054778797...
1
k
k 2 k
1
2
8
4G 2
=
e
2
1 .70953870969937540242...
.70978106809019450153...
1 .709975946676696989353...
.710131866303547127055...
Hk
2
k
4k
k 1
4 .7093001693271033307...
3( 8)
9
log 2 log 2 2
2
2
8 2
3
,0,1
2
e
2
=
1 .710249833905893368351...
5
4 2 (2)
2
k (k 1)
log( x ) log(1 x)dx
2
sinh 2 16
1 4
120
k
k 3
1
k
k 1
1
2
)!
2
2
0
1/ 3
0
.7102153895707254988...
k 0
(1 i )e( 1 i )
1
k
(k
(1 i ) e( 1 i )
k 1
k2 1/ 9
2
cos2 x
dx
1 x4
8 .71034436121440852200...
4 log 2
x2
0 1 cos x dx
GR 3.791.6
1
1
( 3k 2 k ) / 2 ( 3k 2 k ) / 2
2
2
k 1
1
= 1 1 k
2
k 1
2k
(k 1) 1
.711392167549233569697... 1
2
k 1 k 1
.71121190491339757872...
(1)
3 .711471966428861955824...
1
k 1
Hall Thm. 4.1.3
3 5
1
2
2 2
(7 3 5 )
5 3 5
1 5
2
=
F (k ) 1
k 1
k 2
.711566197550572432097...
.711662976265709412933...
.71181724366742530540...
MHS (2,1,2)
9 (5)
2 (2) (3)
2
3
coth
2 4
13
4
tan
3
2
13
1 .71206833444346651034...
0 (k ) (k ) (k ) 1
1 .71219946584900048341...
2 ( 2k )
1
k 1 ( 4k )
1 .71231792754821907256...
(1) k
1 log 3 log 4 1 k
k 1 3 k
k 2
2 ( k )
2s
s 1 k 2 k
2 ( k )
2
k 2 k 1
.712319821093014476375...
(1)k H k (k ) 1
k 2
3
.71238898038468985769...
4
2
4 .71238898038468985769...
3
2
.712414374216044353028...
log 7 4
.71250706440044539642...
(1) k
3
k 0 2k 1
1
k
k k 1 log
k 2
( k 12 )!( k 12 )!
k 1 ( k 1)!( k 1)!
2k (k 1)
2k
k 0
k
sin 3 2 x
0 x3
k 1
k
.712688574959647755609...
B2 k 2 k
1
coth 1
2
2
e 1 2
k 0 ( 2 k )!
J948
=
1 .71268857495964775561...
sin x / 2
dx
x
0 e 1
coth
2
1
J948
4k 1
2
3 log 3
1 2
l l
3 .7128321092365460381... 3 log 3
2
3 3
.71296548717191086579... cos1 si (1) sin 1 ci (1) sin 1
2
2
2
k 1
Berndt 8.17.8
1
=
log x cos(1 x ) dx
0
1 .713009166242679...
1
dx
( x)
1
2
1
.71317412781265985501...
.71342386534805756839...
(1 / 2)
(5 / 6)(1 / 3)
(1) k
1
3k
k 1
2
log 2 1
16
2
4
J1028
1
x arctan
2
x dx
0
1 .71359871118296149878...
(3k 1)
k 1
1 .714264112625455810924...
1
(k 1)(2k 3) log k
k 2
.714285714285714285
=
1 .714907565066229321317...
5
7
2G
2
H
.715249551433006868051... k k 2
k 1 2 k
.715636602030672568737...
cos
( 4)
1
1 3
arcsin x
.715884762286616949300...
dx
log
2
2
3
0 x (1 2 x )
2
1 k (k 1)
k 2
1
.71616617919084682703...
3
1
2
4 4e
1
1
cosh x
sinh x
0 e x dx 1 0 e x dx
.71637557202648803549...
.71653131057378925043...
2 2
e 1 / 3
sin
1
2
1 2k
2
k 2
k
(1)
k
k 0 k!3
1
.716586630228190877618...
.716814692820413523075...
1 .716814692820413523075...
log 5 arctan 2 2 log(1 4 x 2 ) dx
0
7 2
8 2
(1) k
2
2
k 1 ( k 1 / 4)
256
125
log
.716890415241513593513...
1
e2 1
log
2
2
.717740886799541002535...
k 2
8 .7177978870813471045...
.718233512793083843006...
2
Lk
k
k 1 4 k
.716863707177261351536...
1
ex
0 e x e x dx
(k ) 1
k k 2
76 2 19
2 3
3 3
CFG G1
.7182818284590452354...
1 .7182818284590452354...
2 .7182818284590452354...
1
1
1
k 2 k!
k 0 k!( k 3)
k 0 k!( k 1)( k 2)
1
=
k 0 ( k 1)! 2 k !
k2
k
Hk
e 1
k 0 ( k 1)!
k 1 k!( k 2)
k 2 k ( k 2)!
1
2i /
e i
k 0 k!
e 2
=
log x
dx
2
(
1
/
)
x
e
0
k3
3 .7182818284590452354... e 1
k 0 ( k 1)!
.718306293094622894468...
=
i
i
csch
log
log 1
1
2
2
2
2
1
k 1 ( 2k )
(
1
)
log1 2
k
2 k
2k
k 1
k 1
.71837318344184047318...
2 log 2 log 3 log 2 3 1
12
=
e
x
0
.718402016690736563302...
2
1
1
Li2 Li2 2
2 3
2
4
x
2
x3
0 (e x 1)2 dx
6 (3) (4)
.719238483455317260038...
(3k 1)
k
3
(k )
.71967099502103768149...
k 2 k!
k 1
3k
k 1
k
3
1
11
log x
.71994831644766095048...
2
dx
5
48
0 ( x 1)
.72032975998875729633...
4
=
tanh
4k
2
k 1
2
sin 5 x cos x
0 x5 dx
1
4k 2
J950, GR 1.422.2
sin 2 x
sinh 2 x dx
GR 3.921.1
0
.7203448568537890207...
sin x
e x
0
H ( 3) k
k
k 1 2 k
=
.720383533753944655666...
2 .720416382101518554054...
2 .720699046351326775891...
.72072915625988586463...
.721225488726779794821...
.72123414189575657124...
.72134752044448170368...
e
1
cos
2
5
cosh
2
5 (3) 2 (2)
3
2
19
k 2
k
2
1 k
k 1
2
1
2
(k 1)
(1) k
k 0 ( k 1)( k 1 / 3)
19
2
4
3 (3)
5
1
log 4 e
log 4
2
3
tanh
arcsinh
8 .72146291064405601592...
x
( k )
k
k 0
2
1
k 5
J153
.721631677641841900027...
1 .72194555075093303475...
.722066688901...
3 4 3
2
arccsch
7 7 7
3
3k
2k
k
(1)k 1
k 1
log
(1) k
1
k 2 k 1
k 1
13
.722222222222222222222 =
18
6 .72253360550709723390...
1 x2
0 log(1 x) (1 x)4 dx
2e 3 / 2
2
k
1
3
k 1 2 ( k 1)!
21 ( 3) 2 log 2
log( x ) log(1 x )
dx
16
8
1 x2
0
1
.72256362741482793148...
1 .72257092668332334308...
.72305625265516683539....
3
18
9 log 3 3 3 (k ) 1
k 2
2
3
k 2
4
3 3
.72319350127750277100...
.72330131634698230862...
(k ) 1
2
k 2 (k )
3
k (3k 1)
k 2
sin x
2 sin x dx
0
13 .72369128212511182729...
1 .724009710793808932286...
.72475312199827158952...
1 .724756270009501831744...
4 .7247659703314011696...
.724778459007076331818...
.72482218262595674557...
2e3 1
3
2
12
k 1
3 (3)
4
(3 2 )
8
3k k
(k 1)!
(1)
k 1
k 1
k 1
k3
log x sin x
dx
x3
0
1
K
16 3
, volume of the unit sphere in R7
105
2e
erfi
1
2
(1) k 1
k 1 ( 2k 1)!!
1
2
cot
2 3
3
k 1
(2 k )
3
k
(1)k 1
k 1
3k
k 1
2k
2k
k!
k
1
2
1
1 .72500956916792667392...
.72520648300641149763...
2 log 2 2
6
40
log x
( x 2)( x 1) dx
GR 4.237.3
0
97
, probability that three points in the unit square form an
150
obtuse triangle
.725613396022265329004...
1 .72569614761160133072...
e e log(e 1)
e 1
log 3
2
Hk
e
k 1
k
/2
log(3 tan x) dx
GR 4.217.3
0
1
2 x dx
.72589193317292292137...
tanh sin
2
2
sinh x
0
1
.726032415032057488141...
8 3
1
1
.7264245534...
pk pk 1
p k prime
2
2
.72649594689438055318... log 3 log 2
.726760455264837313849...
.7268191868...
18 .726879886895150767705...
2
4
log(1 x 2 )
0
sinh
x
2 dx
x
cosh 2
2
1
1 2
2
p ( p 1)
p prime
7 (2) 6 (3)
k (k ) (k 1)
3
k 2
8k 5k 4k 1
k 2 (k 1)3
k 2
sin 2k
i
.72714605086327924743...
Li2 e 2i Li2 e 2i 2
2
k
k 1
2 .727257300559364627988... ( 2) (4)
8
.72727272727272727272 =
11
/2
1 sin 2
.72732435670642042385...
cos2 (cos x ) sin x dx
2
4
0
=
3
2
(1) k
.727377349295216469724... e
k
k 0 k!
3
.727586307716333389514... Li2
5
1 /
GR 4.373.5
2
7
(3)
2
2
1
1 .72763245694004473929... 1
k!2k
k 1
1
.72784877051247490076... 1
k !k!
k 2
sinh
.72797094501786683705... 1
.72760303948609931052...
6 .72801174749956538037...
.728102913225581885497...
.728183137492543041149...
.72856981255742977004...
k
( k 1 / 2)
k 1
3
2
4 3
log 3
4
x2
1 x 4 x 2 1 dx
log 2
2
1 3
2 Li3 (3)
2 2
12
1
=
1 .728647238998183618135...
22 .72878790793390202184...
log 2 x
0 ( x 1)3 ( x 2) dx
root of ( x) 2
7 4
30
log 4 x
1 ( x 1)2 dx
.7289104820416069624...
.72898504860058165211...
.72908982783518197945...
.729329433526774616212...
21
dx
4
64 2 0 ( x 1) 3
1
cosh
45 (5)
log 4 x
3
dx
64
x x
1
1 2e 2
4 log 2
2 log 2 4 H k
3
3
k 1 k ( 2k 3)
1
cosh(cosh 2 sinh 2) sinh(cosh 2 sinh 2) e
807 .729855042097228216666...
2
1 e2
e k sinh k
=
e e
2
k!
k 0
2
1
1 .7299512698867919550...
cosh(log ) cos(i log )
2
.729439101865540537222...
.73018105837655977384...
log 2
8
/4
=
2k 2
k
2
k 0
G
2
2 k 1
1
2 (2k 1) 2
2k
/4
x tan x dx x cot x dx
0
Borwein-Devlin, p. 138
0
/4
=
Berndt 9.32.4
/ 4 x tan x
cos 2 x
0
dx
GR 3.797.3
/4
=
log(cos x sin x) dx
GR 4.225.1
0
/4
=
log(
tan x cot x ) dx
GR 4.228.7
0
1
=
arctan x
x(1 x ) dx
GR 4.531.7
2
0
1 .730234433703700193420...
.730499243103159179079...
.731058578630004879251...
1
e1 / 4
ex
1 erf x 2 dx
2
2
0 e
1/ 3
2 / 3
e
1 tanh 1 / 2
(1) k e k
e 1
2
k 0
(k )
1 2 k!
=
J944
k 1
k 2
.73108180748810063843...
2 2
log x
3 dx
27
0 x 1
x log x
1 x
0 x3 1 dx 0 1 x3 log x dx
1
=
x(1 e x )
0 e x (1 e3 x ) dx
1 .73137330972753180577...
1 .73164699470459858182...
.731771876673200892827...
1
1 2
k 2
k
3
1
e Ei log 2
2
.731796870029137225611...
3k (3k ) 1)
k 1
2 .731901246276940125002...
GR 3.411.26
(k )
k
k 2
1/ k
e
7
k 1 k
(k 7)!
k 7
3
Hk
k!2
k 1
3
(1 k 3 ) 2
k
( 1) k 2 k
k
k 0 2 ( k 1) k
1 2k
k
3 tan k k
1 .732050807568877293527...
3
k 0 6 k
k 0 6
5
3 .732050807568877293527... 2 3 tan
12
2
4
2
7
log 4 x
21 .732261539348840427114...
dx
4
3
45
0 (1 x )
1
3 1
.732050807568877293527...
.732454714600633473583...
1 .732454714600633473583...
1 .732560378041069813992...
2k
k
AS 4.3.36
1
3 log 2
1
1 i Li2 1 i
G log 2 iLi2
i
2
8
2
2
x 2 1 dx
1 log x 1 x 2 1
(k )
.732869201123059587436... 2
k 2 k 1
=
.733333333333333333333 =
11
15
(2k 1)!!
k 1 ( 2k )! ( k 3)
=
GR 4.298.14
2k
k 1
.733358251205666769682...
3 .73345333387461085916...
k (3k 1) 1 k
k 2
csc1 1
.73402021044145968963...
2
k
1
(1 k 3 ) 2
1 1
,
1
2
k 1
k 1
1
k 4 (k 3)
k
0
(k )
2 2
( k 12 )!
.7340226499671578742... 16 16 log 2
2 ( 3) 3
1
3
k 1 k ( k 2 )!
(k 3)
2
=
(1) k 1
4
3
2k 1
k 1 2k k
k 1
( k 12 )!
.73417442372548447512...
2 1
k
k 1 k ! 2
.7343469699579425786...
e cos1
2
e
log x coslog x dx
1
.73462758513149342362...
2
2
sin
sinh
2
1
1 4
4k
2
k 1
2
1 .734956638731129275406...
sinh 2 csc h
3
4
.735105193895722732682...
3
1 k
k 1
2
1
2k 2
CFG G1
k3
1 .735143209673105397603... 3000 1103e
k 1 k!( k 5)
( k )
2 .73526160397004470158...
k
k 1 2
k 1
2
1 csch1 (2 1) 2
.735689548825915723523...
2
k 1 k 1 /
3
2
2
k k k
.73575888234288464319...
(2,1) (1)
e
(k 1)!
k 1
=
xe
1 x 2
(1) k 1 k 5
k!
k 1
dx
0
3 .7360043360892608938...
2
1/ 4
1
4 dx
log1 2 x
0
1 .736214725290954627894...
1 i
1 i
2 2
2 2
1 .73623672732835559651...
H (k 1) 1)
2
k 1
.73639985871871507791...
2 3 1
(2k )!!
27
3 k 1 (2k 1)!!4k
/2
=
0
.73655009813423404267...
k
cos x
dx
( 2 cos x ) 2
(1)
k
( k ) ( k 1) 1
k 2
k
.736576852723235053198...
1
( x)
dx
xx
.736651970465936181741...
k 1
.736842105263157894
=
14
19
( 2k ) 1
e1 / k
2
(k 1)!
k 2 k
2
1
2k
k 1
k
CFG F17
1 .736901061414085912424...
.73710586317587034347...
3 (3)
( 2 ) (i ) ( 2 ) ( i )
.73726611959445520569...
( k ) 1
k 2
2k 3
.73735096638620963334...
k
3/ 2
1
k
arctanh
k 2
1
F k (k 1)
k 1
3 .73795615464616759679...
k
4 2
16
8 2
cosh x / 4
log(1 x ) sinh
x/4
log 2 1
2
2
0
GR 4.373.6
1 .7380168094946939249...
3
k
2
2 (k )
3k
1
k 1
2
.73806064483085791066... Li3
3
p
4 .73863870268621999272... k
k 1 k !
5
5 log 3 5 log 2
.73873854352439301664... 1
4
3
4 3
1
3
(1) k 1 (k 1)
.73879844144149771531...
log
3
2
2k k
k 1
512
1
.7388167388167388167
=
6,
693
2
k 1
.739085133215160641655...
.7391337000907798849...
19 .739208802178717237669...
k
root of arccos x x
2 1
12
.740267076581850782580...
7 .740444313946792661639...
i
Li3 (ei ) Li3 (e i )
2
(1) k 1 sin k
Davis 3.34
k3
k 1
2 2
.739947943495465512256...
(1) k 5k (k )
6k
k 2
1
k
k 1 k 1
3
6
(1) j 1
k jk
k 2 j 1
coth 3
1
6
k
k 1
2
1
3
2 I 0 (2) 2 I1 (2) I 0 (2) 3I1 (2) I 2 (2)
J124
k4
k 1 k!k!
.740480489693061041169...
CFG D10
3 2
e
Fk
.740520017895247015105...
2
k
e e 1
k 1 e
7 (3)
5 2
.740579177528952263276...
log 2
4
24
18k 2 11k 2
=
2
3
k 1 2k ( 2 k 1)
1
.740726784269006256431...
K 2 S1( k , 2)
.740740740740740740740 =
.7410187508850556118...
k2
k
k 1 4
3 log 1 3
=
2
5
sinh
2
5e
k 1
(k 1)
k
3
1
hg
3
(1) k 1 Fk
k!
k 1
(1) k 1 k 2
k!
k 1
sin x
dx
x
1
2
2
2 coth
3
7 5 log 2
8
4
3 .741657386773941385584...
2
k
2 (k
k
k 2
k
k 1
2
1
(k 1 / 2)
2
3
2
1)
14
(1) e
.741982753502604212262...
e
0
1 .741433975699931636772...
k 1
1
2
k
log(1 x )
dx
x2
0
1
.741227065224583887196...
3k
3
.741027921523577355842...
.741089701006868123721...
k 3
k 2 (k )
2k
3 log 3 3
2
6
1
(1)
k 1
20
27
1 .740802061377891359869...
k
( k ) 1
1
k 2
11 .743029813183056451016...
k (k ) (k 1) 2
2
k 2
.7431381432026369649...
2G
log 2
2
1
arcsin x
x(1 x) dx
0
1
=
arccos x
dx
1
x
0
GR 4.521.2
/2
=
x sin x
1 cos x dx
GR 3.791.12
0
log(1 x )
1
=
1 x2
pf ( k )
e
0
.74314714161123874...
k 0
.74343322147602010957...
dx
GR 4.292.1
1
(k 1)(k 1) log k
k 2
7 .743684425536057169182...
.74391718786976797494...
4
90
11 6 6 (4)
(k )
k 1
k
(2)
.744033888759488360480...
k
2 (2
k
k 1
k
1)
log (2k )
x 3 log x
0 e x 1 dx
(k )
k 1
k2
1
k
k
k
k
1
k 1
k 1 2 2 2
k
= k k
k 1 2 ( 2 1)
G
.744074106070984777872... (3)
2
3
3
sin k / 5
.744150640327195684211...
k3
125
k 1
2
1 (k )
k 1
2k
/4
.74430307976049287481...
cos x dx
0
.74432715277120323111...
2 .744396466297114626366...
2
8
1
arcsinh
5 5 5
2
(1) k 1
k 1 2 k 1
k
log
5 .74456264653802865985...
1 .74471604990971988354... =
1 .7449110729333335623...
33
2
log x dx
2
1
0
2x
Titchmarsh 1.6.2
2 .744033888759488360480...
4 2
1
5e
1
(3 cosh1 2 sinh 1)
4
8
8e
GR 1.443.5
=
k2
k 1 ( 2k 1)!
.74521882569020979229...
(k ) log (k )
k 2
5
( 1) k 2 k
.7453559924999298988...
k
k
3
k 0 5
.74562414166555788889... sin sin 1
1 .745804395794629191549...
16( G log 2 ) 24
(1) k 1
2
2
k 1 k (k 1 / 4)
.74590348439289584727...
(k ) (2k ) 1
k 1
7 .7459666924148337704...
60 2 15
21 .74625462767236188288...
8e
(k )
2 .746393504673284119151...
(k 6)!
k 6
9 .7467943448089639068...
.7468241328114270254...
e 1 / k
6
k 1 k
95
erf 1
2
( 1) k
k 0 k !( 2 k 1)
J973
1
=
e
x2
dx
0
5 .74698546753472378545...
2 2
1
2 log 2 2 4 Li2
2
3
( k ) ( k ) 1
(k )
k 2
1
log 2 x
0 ( x 12) 2 dx
.747119662029117550247...
2 .747238274932304333057...
1
2 5 15 6 5
2
5 5 5 5 5 5 5 ... [Ramanujan] Berndt Ch. 22
=
59535 (7) 62 6
x log 7 x
24
( x 1) 3
0
1
17 .7476761359958500014...
(k ) (k 2)
1
(k 1)
k 2
.747727141203212136438...
2 .747896782531657045164...
3G
9 .748110948000252951799...
e 2 log 2 Ei (2)
2k H k
k!
k 1
1 .748493952693942358428...
.748540032992591012012...
=
=
.74867010071672042744...
2 .748893571891069083655...
.748989900377804858183...
H ( 3) k
11 (5) 2 (3)
2
2
3
k 1 k
1
2 coth (2 i) (2 i )
2
2
1 i
(1 i ) i (1 i )
2
k 1
(1) k 1 (2k ) (2k 1) 2
3
k 2 k k
k 1
2
(1) k 1 ( 3k 1)( k 1)
8G
2
4k
k 1
7
8
1
1
dx
(4) 4 4
x
3
k 1 k
1
3 3
3
/ 2
.749306001288449023606... e
.74912714295902753882...
.749502656901677316351...
1
2 (k 1)
k 1
k
( 1) k 1 ( k 12 )! 2 k
k!
k 1
.750000000000000000000 =
=
=
=
=
3
k
i sin (i log 2) k
4
k 1 3
(2k ) 1 21
k 1
k 2 k 1
1
2
k 1 k 2k
1
k (2k ) (2k 2)
2
k 3 k 2k
k 1
1
1
( k 3) 2
k 1
=
log 4 x dx
1 x3
7
4
11
2 .750000000000000000000 =
4
1 .750000000000000000000 =
p prime
1 p 2 p 4 p 6 p 8
1 p 2 p 6 p 8
372 .750000000000000000000 =
.75000426807018511438...
1 .750021380536541733573...
k6
k
k 1 3
(1 e) hg (e)
cos
1
4
1
arctan 3 tan 1
2
3
2 cos d
0
e
k ( k e)
k 1
1
2k
k 0
log 4 k
( iv )
(3)
k3
k 2
1 .75013834593848950211...
.7507511041240729095...
2
sin 2
.751125544464942482859...
1 / 4
.75128556447474642837...
5 (3)
8
2
k
tan
H ( 2) k
k
k 1 2 k
(1)
k 1
k 1
Hk
k2
log(1 x ) log(1 x )
dx
x
0
1
=
.751300296089510340494...
7 .75156917007495504387...
3
3
4
1
2 1 log1
dx
3x 1
0
(1) k 1
3
k 1 ( k 1 / 2)
2
t
log tan 4 dt
2
0
J369, J605
K133
Borwein & Borwein, Proc. AMS 123, 4 (1995) 1191-1198
1
1
2k
k
.75159571455123294364...
log 2 2 Ei ( 2) ( 1)
2
2e
k ! k ( k 1)
k 1
1
1
.75173418271380822855...
I 0 2(1)1 / 4 J 0 2(1)1 / 4 0 F1 1, i 0 F1 1, i
2
2
1 .751861371518082937122...
(k 4)
k 0
k! 2 k
2
1 .751938393884108661204
2
1 .75217601958756461842
e1 / 2 k
4
k 1 k
2
k 1
k
1 4 3 3
1 1
1
( 2) 1
3
,
3,
36 27
3 108 6
3
1 i 3
1 1 i 3
Li3
Li3
2
2
3 2
1 i 3
i 3 1 i 3
Li3
Li3
3
2
2
1
(1 x) log 2 x
=
1 x6
0
4
.752252778063675049264
3
=
(3)
23
log x
.75267323992255463004...
2
dx
4
96
0 ( x 1)
.753030298866585425452... 4 3 ( 4)
11 .753304951941822444427...
e 2 I1 (2)
1 .75331496320289736814
1. 75338765437709039572...
.75375485838430604734...
2
=
cos x sin 4 x
0 x 4 dx
2k 2 1
k (k 1)!
k 0
2k
k
k (k 1)!
k 0
1
k
2
1
e I0
2
GR 4.261.8
1
e I0 1
2
(2 k 1)!!
k 1 ( 2 k )! k !
1
e
cos2 x
dx
0
coth 2
2( k 1)
3
k 1 k 2 k
1 2k
k 1
.75338765437709039572...
(1) k
k 0 ( 2k )!( 2k )!
( 1)
k 1
1
1 1 i 2 1 i 2
2
k 1
2 k (2 k ) (2 k 1)
.
75405876648941912567...
(1)
k
k 2
9 .75426251387257056568...
.754610025770972168663...
( k 2)
(k )
15
(5) ( 2 ) ( 3)
2
H 0 (1) Y0 (1) x
2
e
.75464783578494730955...
4 .75488750216346854436...
e 1
1 e
e
e
xe
x
dx
1 x
0
.754637885420670280961...
3
Hk
(conj.)
2
k 1 ( k 1)
2
e
x
18 MI 4, p. 15
arcsinh x dx
0
dx
0
1
log 2
6
3
x
1
log 1 6 dx
x
2
0
3 log 2 3
( 1) k
1
k 0 ( k 1)( k 2 )
5 1
5 1
2
Li2
log 2
.75539561953174146939...
2
10
2
3 5
2
Li2
=
30
2
5
(5k )
1 .75571200920378862263...
e1 / k 1
k!
k 1
k 1
1 .75529829246990261963...
2 log 2
3 .756426333323976072885...
csc
2
cot
2 Ei ( log 2)
MIS
4
2 2
2
2
2
4
sinh
6 .756774401573431365862...
1 4
2
2
k
k 1
Bk
.756943617774572695997...
k 0 ( 2k )!
.757342086122175953454...
Berndt Ch. 9
csc
2
(1) k 1 k 2
2
2
k 1 ( k 1 / 2)
dx
2 ( x 1)
x
0
.75735931288071485359...
.7574464462934689241...
53 2
2(5) (2)(3) (3)
.75748739771880741669...
e
1
1
4
.757612458715149840955... (3)
9
k 0
2
k
( 4 )
2
k 2 Hk
4
k 1 ( k 1)
.757672098556372684654...
2
8
(3)
k (2k ) (2k 1)
1
8
2
2
k2 1
3
2
k 2 ( k 1) ( k 1)
k 1
=
1 .757795988957853130277...
=
=
.757872156141312106043...
3
3 (3)
4
32
3 (3) 1
(2 2i ) Li3 (i ) (2 2i ) Li3 (i )
4
4
1
1
1 x
log 2 x
2
log
x
dx
0 1 x 4
0 1 x x 2 x3 dx
e 1 erf 1
e
x
0
1 .758268564325381820406...
=
.758546992994776145344...
.7587833022804503907...
dx
1 x
3 3 cot
2 3 cot
9 csc 2
72
3
3
3
k2
(2k )
k
k 1 3
1
(1) k
k 0
k
1
Ei (1) Ei (2) e log 2
e
1
e
x
log(1 x ) dx
0
3 3 3 log 3
2
hg
2
6
2
3
.75917973947096213433... 2 ( 3) ( 2 )
.758981249114944388204...
1 .75917973947096213433...
2 (3) (2) 1
k (k 2) 1
2
k 1
=
k
k 1
.7596695583288265870...
e
1
x
.759835685651592547331...
31 / 4
2
12
Hk
(k 1)
x dx
e x
.759747105885591946298...
.759967033424113218236...
2
1
1
Li2 ei / 2 Li2 e i / 2
16
2
k
(1) k 1
cos
2
2
k
k 1
1
( k )
.75997605244503147746... e 2
j
k 2 k!
k 1 j 1 ( k )!
FF
44
1 .760000000000000000000 =
k kk 3
25 k 1 4
1
( 1) k
.7602445970756301513... cos
2 k 0 ( 2 k )! 2 k
=
AS 4.3.66GR 1.411.3
1
k
k 1
S1(2k , k )
.760339706025444015735...
(2k )!
k 1
.7603327958712324201...
1 5
(1) k (1) k
1
log(2 3 ) 1
6k 1
3
k 1 6k 1
.760345996300946347531...
(1) k (2k )!!
k
k 1 2 ( 2k 1)!!
=
=
(1)
k
k 0
=
x
2
1 .76040595997292398625...
17 .760473930229652590715...
32 G
.761310204001103486389...
5I 0 (2) 4 I1 (2)
J86
( 2 k 1)!2
k
4
3
k 0 k ! 16 ( k 1)
k5
(k!)
k 1
2
(1) (k ) (k 1) 1 k
k
cot
1
k
k 1
1
J267
dx
3
16 log 2
.7612801797083721299...
k 1
2k
2k
k
k
2
k 2
.76122287570839003256...
(1)
k 1
k!
(2k 1)!!
.761130385915375187862...
J83
3
k 2
2
log
1 (k )
2
(k 1)
k 1
k
5 i 3
3i 3
3 i 3
1 3 i 3
5
i
4
4
4
2 3 4
(1) k
= 2
k 0 k k 1
u( k )
1 .761365221094699778983...
k 1 k !
(k 1) 1
.761378697273284672250...
k!
k 1
e( k )
.761390022682049161058...
k 2 k!
.761393810948301507456...
e1 / k 1
k
k 2
2
x
e sinh x dx
(e 1)
2
4
.761549782880894417818... log ( 1)
0
e2 1
.76159415595576488812... tanh 1 2
i tan i
e 1
J148
=
1 2 (1) k e 2 k
k 1
4k (4k 1) B2 k
(2k )!
k 1
=
1
=
dx
cosh
0
1 .761634557784733194248...
=
.761747999761543071113...
AS 4.5.64
2
x
97 6 4
2
2 (3) 2 2 (3)
(1 (3)) 3 (5)
22680 72
6
H k H k 1
k4
k 1
21 / 3
3 3
x
0
dx
2
3
3
2
e
1
(1) k 1
erf
.761964863942319850842... 1
e
2
k!!
2
k 1
3
1 ( 3) 1 4
26
(1) 1
.7619973727342293746...
(3)
3 54
3 9 3
3
.761759981416289230432...
.762054692886954765011...
sin
e 1
K0
2
2
e
0
dx
x
2
1 x2
k2
4
k 1 ( k 1 / 3)
2 .76207190622892413594...
2 log 2
3
log 3 2
1
Li3
2
6
e 2 e 2
2
log(1 2 x ) log x
dx
x
0
1
4k
k 0 ( 2 k )!
16
= 1 2
2
(2k 1)
k 0
583
k7
2 .762557614159885046570...
(1) k 1 k
k!2
128 e
k 1
(k ) (k )
.76258964475273501375... 0 k
2
k 2
3 .7621956910836314596...
cosh 2
AS 4.5.3, GR 1.411.2
J1079
2 log 1 2 2arcsinh1
1 .762747174039086050465...
dx
1 e
(k 1)(k 2)(k 3) (k )
( 3) 3
19 .763312534850599760254...
4k 4
4 k 4
x
0
arcsinh x
dx
x2
1
.763459046974903889864...
2
3 e
4
k3
k
k 1 ( k 1)!2
(1) k
.76354658135207244811... 2 sin 1 cos1 1
k 0 ( 2 k )!( k 1)
1 3
2
5 .76374356163660007721... 6 log 2 7 log 2 l l
4 4
.76378480769468103146...
2
k 1
k
Berndt 8.17.8
Hk
H k 1
.76393202250021030359...
3 5
.76403822629272751139...
(1)
k
(k )
k
16
2
.76410186989382872062... 8G
9
k 2
.764144651390776192862...
1
( k 3 / 4)
k 1
2
(k ) 1
(k )
k 2
12
sin s k
4
6
k 1 k
1
( 1) k 1
k
.764499780348444209191... k
k 1 2 1
k 1 2 1
.764403182318295356985...
=
1
k
k 1 2 ( 2 1)
1
k
( 1)
k 1
( 4 k 1)
2 k ( 4 k 1)
2
Berndt 4.6
(1) k
k 2 S 2( k , 2)
=
6 .764520210694613696975...
1 .764667736296682530356...
5 4
2 (2)
72
(4)
0 (k ) 2
k 1
k2
(2) (3) (4)
13
17
sin 31 / 4 sinh 31 / 4
.7649865348150167057...
2 2 3
.7647058823529411
Titchmarsh 1.2.10
=
2
(1) k
2 k
k 0 ( k!) 4
.76519768655796655145...
J 0 (1) I 0 (i )
.765587078525921485814...
2 3
81
(1) k
2
k 0 (( 2k )!!)
sin 2 k / 3
k3
k 1
.76586968364661172132...
3
4
1 k
GR 1.443.5
1
1 k (k 1)(k 2)
8
13 (4)
31 2 3
360 (5)
180 (3)
63
2
6
4
k 1
6
4 .7659502374326661364...
.7662384356489860248...
=
(1) k (k ) 1
3
5
log
2
3
5
k
e
0
x
dx
2/3
e 1
.766245168853747101523... 1 Ei (1) Ei ( 2)
2 e
.766652850345066212403...
=
8 .767328087571963189563...
ex
0 (1 x)2 dx
1 3 coth csch 2 i (3,1 i ) (3,1 i
1
1
i
3
(k i )3
k 1 ( k i )
=
1
1
x 2 sin x
x 2 sin x
dx
dx
0 e x 1
2 0 e x e x 1
2 1 Ei (1) 1
kH k
(k 1)!
k 1
.767420291249223853968...
(log 2)
2k
k 1
1 .767766952966368811002...
(2k 1)!!k 2
k
2 2
k 1 ( 2k )!!2
5
2k k 2
k
k 0 k 8
1 .76804762350015971349...
8 3
2i
Li3 (1)1 / 3 Li3 (1) 2 / 3
81 3
3
1
=
log 2 x dx
log 2 x dx
0 x 2 x 1 0 x3 1
GR 4.261.3
1
2
csc h sinh 3 1 2
k 1
3
k 1
21 (3)
1 3i 3
.76816262143574939203... 6G
6 Li3 (i ) 6 Li3 ( i )
8
2
5 .7681401910013092414...
=
.7684029568860641506...
8
arcsin x
=
dx
x2
0
1
3
6G
21 (3)
2
3
13
( k 2 )
(2) coth
8
4
k2
k 2
1
= ( 2 k ) 1 6
2
k 1
k 2 k k
1 .76842744993939215689...
2
2
/ 12
2
( 1) k 1 / k
k 1
3 1 1
.76844644669358040493...
6 22 / 3 3
1
4 .7684620580627434483... = 1 k 1
2
k 1
3
.768488694016815547546... G
.7687004249195908632... =
e
x3
cos x 3 dx
0
1
(k 2)!! k !!
k 0
3 .768802042217039515528...
cos 2( 1)
1/ 4
cosh 2( 1)
1/ 4
26k
k 0 ( 4 k )!
log( x 2 2)
2 .768916786048680717672... arcsinh1 log 1 2
dx
x2 1
0
6 .769191382058228939651...
.769238901363972126578...
1
2
3
2
cos x
4 2 cos x dx
0
cos log 2 Re 2i
1
1 .769461593584860406643...
2 log 2 4 G 6 arccos2 x log x dx
0
411
3
k 4Hk
31 .769476621622465729670...
15 log k
61
2
k 1 3
2
1
.769837072045672480216...
coth 2csch 2 csch 2 sinh 2 csch 2
4
8
4
1
k
= ( 1) k ( k ) ( 2k )
(1) k 1 k (2k ) 1
4 k 1
k 2
2
k
= 2
2
k 1 ( k 1)
7
.769934066848226436472... ( 2)
8
1
.76998662174450356193...
2 J1 2 ( 1) k 1
k !( k 1)!2 k
k 0
.770151152934069858700...
.770747041268399142066...
.77101309425278560330...
1
1 1 (1) k
cos
2
2 2 k 0 (2k )!
1
B
kk
2( e 1)
k 0 k!2
2
1
1 4
4 e
4
J777
2
K1/ 2 (2)
2
sin 2 2 x dx
0 1 x 2
/2
=
sin
2
(2 tan x) dx
GR 3.716.9
0
.771079989624934599824...
2 ( 2k )
4k
1
2 2 log 2 35 (3)
G
16
k 1
1 .7711691814070372309...
1 .771508654754528604291...
.771540317407621889239...
k
k 1
.772029054982133162950...
.77213800480906783028...
1 .772147608481020664137...
k 1
k
k
k
3
4 (2) 4 (3)
k
(2k ,1)
cosh 1
2
e 1
(2k )
2
k 1 k!
k 1
1 .7720172747445211300...
23k
2
k
1
1
2 sinh
2 2
e
1/ 2
(3)
2
12
1
1
sin
cos
2
2
log 2
cos x
1 x
0
4
dx
1 .7724538509055160273...
1
2
1
( k 2 )!
=
k 1 ( k 1)!
.77258872223978123767...
=
1
2 ( k 2)
k
k 0
( 2 k 1)!! k
(2 k )! ( k 1)
4 log 2 2
k 1
2
(k ) 1
2k 2
k 2
1
2 )( k 1)
k 0
dx
= x x
0 e e 1 / 2
=
(k
1 1
=
1
x y
1 xy dx dy
0 0
1 .77258872223978123767...
2 .77258872223978123767...
=
=
H k 1
k
k 1 2
(k 1) H k
4 log 2
2k
k 1
1
k 0 ( k 1)( k 1 / 2)
(k )
k 2
k 2 2
4 log 2 1
2k 1
1
k
k 4 (k 1)
k 0
=
.773126317094363179778...
sin 4 2 x
0 x3 dx
63
256
.773156669049795127864...
k 2 p prime
=
2
1
0
x9 / 2
dx
1 x
1
pk
(k )
GR 3.226.2
k 2
p
(k )
p prime
1
p( p 1)
k3 k
(k )
=
log ( sk )
k
s 2 k 1
1
2 cos 2 2 sinh 2
1 .773241214308580771497...
4
3
.773485474588165713971... (3)
7
.773705614469083173741... log 6 4
k 2
(22kk)!
k 1
k
2
1 .773877583285132343802...
1
F F
k 1
.773942685266708278258...
40 .774227426885678530404...
k
k 1
sin(e )
15e
k4
k 0 k!
1 .77424549995894834427...
3 3
64
2
5 .77436967862887418899...
1
sinh
2
GR 0.249
( 1) k 1
( 1) k 1
3
( k 1 / 4) 3
k 1 ( k 1 / 4)
sin x sinh x dx
0
( 1) k 2 k
.7745966692414833770...
k
k
k 0 6
2k 2 k
1 .774603255583817852727... 64 44 2
2 8k
k 1
3
5
(1) k
k
k 0 2 k
.774787660168805549421...
2 .77489768853690375126...
8 .7749643873921220604...
2
5
(1)
6
2
(3k 1)( k 1)
( k 2)
6k
k 1
77
(1) k 1
.776109220858764331948... 1 J 0 ( 2)
k 1 k!k!
k 1
.776194758601534772662... k 1
k 2 k
3 .776373136163078927203...
.77699006965153986787...
(3)
1
dx
0
x
2 x
2 .77749955322549135074...
.777504634112248276418...
=
e1 / k
5
k 1 k
(k )
(k 5)!
k 2
1
1
1 log(e 1) Li2 Li2 (1 e)
6
2
e
Bk
1
Li2 1
e k 0 (k 1)!
2
1
=
x dx
x
1
e
0
.77777777777777777777
=
7
9
17 .77777777777777777777
=
mil/degree
2 k 1
2e
k 0 k!
1/ 4
10
14 .778112197861300454461...
1 .778279410038922801225...
2
pf ( k )
k 0 e k !
tan 1
( 1) k 1 2 2 k 1 (2 2 k 1) B2 k
.778703862327451115254...
2
(2 k )!
k 1
1
k 1 ( 2k )
.778758579552758415042... ( 1)
1 cos
k
(2k )!
k 1
k 1
1 .77844719779253552618...
.778800783071404868245...
1 .778829983276235585707...
1 .779272568061127146006...
.77941262495788297845...
1 .78005080846154620742...
.780714435359267712856...
e 1 / 4
(1) k
k
k 0 k!4
2
log cos 2 x
0 1 x 2
1 e 2
(3)
log
e2
2
arctan
e 3
3 3
3
6
cos
tanh
5
2
k 1
GR 4.322.3
1
e
0
x
dx
e x 1
1
1 k (k 3)
3
k
.7808004195655149546... k
k 1 e 1
(k )
.780833139853360038254... k
k 1 2 k
1 .781072417990197985237...
e
k
k!
k 0
=
=
lim
1 ( n)
n log log n
1
1 p 1
n log n
pn
lim
HW Thm. 323
1
.781212821300288716547...
Y1 (1)
.781302412896486296867...
g2
1 (1) 1
1
1
2
(1)
2
2
9
(3k 1)
3
3 k 1 (3k 2)
J310
1
=
log x
dx
2
0 1 x x
GR 4.233.1
.78149414807558060039...
.781765584213411527598...
6 .781793170552500031289...
2k
2k
k 1 2
21
3 log 3
8
10
2
2 3
3
(3)
3
1
k (k ) (k 2)
2
4k k 2 2k 1
k 3 (k 1) 2
k 2
=
2
3
( 1) k 1
1
6k 5
k 1
1 .78179743628067860948...
2
5/ 6
2
.781838631839335317274...
1 / 2k
1
k 1
1538 .782144009188396022791...
113 .782299427444799775042...
6 .78232998312526813906...
1
4
( 3)
2
1 2e
e ee / 2
2
46
k 1
k
sinh k
k!
1
1 .7824255962226047521...
2 HypPFQ [{1,1,1},{2, 2, 2},1]
log 2 x dx
0 e x
.78245210647762896657426...
F (2 k ) 1
k 2
.78279749383106249726...
k
1 8 log 2
6
9
(1) k 1
.7834305107121344070593...
kk
k 1
.783878618887227378020...
1 .783922996312878767846...
(k ) 1
k 2
1
20
Fk
log( x 3)
dx
x3
1
1
x dx
x
Prud. 2.3.18.1
0
5 1 e(1
5) / 2
5 3
5 2 5e
(k F2)!k
5
k
k 2
4 .784000000000000000000 =
2 .784163998415853922642...
.7853981633974483096...
598
125
(1)
k 1
k 1
Fk k 4
2k
3/ 2
2
1
(1) arcsin
4
2
(1) k
k 0 2k 1
AS 23.2.21, K135
=
i arctanh i Im log(1 i Im Li1 (i )
=
1
1
4arctan arctan
2
3
Borwein-Devlin p. 73
=
1
1
4 arctan arctan
5
239
Borwein-Devlin p. 73
=
=
1
1
1
3 arctan arctan arctan
Borwein-Devlin p. 73
20
1985
4
1
GR 0.232.1
1 2
k 1 ( 4k 1)( 4 k 1)
( 1) k 1
J523
sin( 2 k 1)
2
k 1 ( 2 k 1)
sin(2k 1)
=
GR 1.442.1
2k 1
k 1
sin k / 2
=
k
k 1
3
sin k
=
GR 3.828.3
k
k 1
(1) k cos( ( 2 k 1))
=
/ 2
Berndt Ch. 4
2k 1
k 0
2
[Ramanujan] Berndt Ch. 2, Eq. 7.3
= arctan
2
(2k 2)
k 0
=
=
k 1
=
=
1
2
arctan 2k
1
k 1
k 1
2
( 1) k 1 arctan 2
k
k 1
arctan k
2
[Ramanujan] Berndt Ch. 2, Eq. 7.6
K Ex. 102, LY 6.8
[Ramanujan] Berndt Ch. 2
=
k 1
k ( k 1)
=
1
1 (2k 1)
(k 1 / 2)
k 1
=
GR 0.261, J1059
J1061
dx
dx
0 ( x 2 1)2 0 x 2 4
=
2
2
dx
0 x 2 2 x 2
x dx
1 x
dx
2
1
4x
0
GR 2.145.4
4
0
=
1
=
dx
0 x3 x 2 x 1
x
0
4
dx
22 / 3
x dx
1 x4
0
log x
log x
= 2
dx
2 dx
( x 1)
( x 2 1) 3
0
0
=
e
0
/2
=
0
=
0
=
0
=
=
=
sin x x cos x
x3
0
=
0
0
4
/2
sin x cos x
dx
x2
2
sin x
dx
x2
0
sin x
dx
2 sin 2 x
sin x cos x
dx
x
/2
dx
e x
0
x
x dx
(sin x cos x) 2
1 x cot x
dx
sin 2 x
=
si( x) sin x dx
0
=
sin x
1 e x dx
0
x
sin x cos 2 x
dx
x
0
3
sin x cos x
dx
x3
0
sin 2 x cos 2 x
dx
x2
/2
(sin
=
2
x) log tan x dx
0
1
=
0
x(1 x)
sin log x dx
log x
GR 4.429
=
(1 x arccot x) dx
GR 4.533.1
0
1
=
( x) sin x cos x dx
GR 6/469/1
0
1 .7853981633974483096...
2k
1
4
k 0 2 k 3
k
2 .785562097456829308562...
k 1
.78569495838710218128...
16
sin
16
( 1) k
1
8k 4
k 1
J1029
11
14
8
8
1
.78620041769482291712...
arcsinh
9 27
2 2
( 1) k
1 1
= 2 F1 11
, , ,
2 8
k 0 2k k
2
k
.7857142857142857142
cos
p (k )
, p(k) = number of partitions of k
k!
=
1 .78628364173958499949...
k log k
2k
k 2
6 .78653338973407709094...
4
1
log n k
2k
n 1 ( n 1)!k 2
( 2k ) 1
k 1
1 .78657645936592246346...
1
k 1 ( k )1 ( k )
1
p prime
p
k 1
2k
1
k 1
p
Silverman constant
1 .78657645936592246346...
1
( k ) ( k )
k 1
.78668061788579802349...
=
1 p
p prime
1
k 1
2k
1
k 1
p
1
e cosh(cosh 2 sinh 2) sinh (cosh 2 sinh 2)
2
2
1
e e1 / e
2
sinh k
k
k 0 k!e
dx
1
5
5
x
k 1 k
1
k
2
( 1)
.78693868057473315279... 2
e k 0 ( k 1)! 2 k
1
4
.786927755143369926331...
(5)
.78704440142662875761...
(2) 2 Li3 (3)
1
2
2 .787252017813457378711...
e
k 1
3
1
k/2
1
e 4
9
4 .78749174278204599425... log 5!
1 .787281880354185304548...
1
3
2
log 2 x
0 ( x 1) 2 ( x 2) dx
Berndt 6.14.4
3k
k 0 ( k 2)!
1
log 2 2
.787522150360869746141...
coth
csch
2 4
2
4
2
1 1 i
i
1 i
1 1
4 2
2
2
k 1
k 1
= ( 1)
k (k 2 1)
k 1
.78765858104243429...
.78778045617246654606...
8 6 (3) H ( 3)1 / 2
1
, lfac(k ) LCM (1, ..., k )
k 2 lfac ( k )
3 .78792362044502928224...
i
2
3
( 2k ) 1
k 1
15 (5)
(5) ( 4 )
22
1
i
i
log 2 i Li 2 Li 2
.78800770172316171118...
4
2
2
.78797060627038829197...
1 .78820673932582791427...
k 2
0
(k ) log (k )
log 2 log sin 2
1 x cos x
dx
x
0
log x
dx
2
4
x
1
log (k ) log (n k )
k 2
k 1
(1) B2 k 4
( 2 k )!( 2 k )
k 1
.788230216655105940660...
n 3 k 1
2k
[Ramanujan] Berndt Ch. 5
2
=
.788337023734290587067...
4
coth
[Ramanujan] Berndt Ch. 5
(3)
3
2k 3
.7885284515797971427...
k ( k 1) (2 k 1) 1 2
3
2
16
k 2
k 2 ( k 1)
1 1
(k ) 1
log k
log1 2
.78853056591150896106...
k 1
k k 2 k k
k 2
k 2 k
=
(k ) 1
n 1 k 2
1 .78853056591150896106...
k
n
1
1
Li k k
n 1 k 2
n
k 1 (k ) 1
k
k 2
4
5
8 .78889830934487753116... 8 log 3
1 .78885438199983175713...
.789473684210526315
=
4 .78966619854680943305... =
15
19
.78969027051749582771...
k2!kk!
2 I1 2 2
( 1)
k 1
k (k ) 1
log k
188
4
k 2H
44 log k k
81
3
k 1 4
1
k
k 1 2 H k
k!!
1
1
k 1 k !!( k 1)
k 0 ( k 2)!
k 1 ( k 2)!! k!!
3
Hk
3
k 1 ( k 1)
k
5 5
log 6 Li1 k
6 k 1 6 k
(1) k 1
csc
1 2
2
2
k 1 k 1 / 2
i
2
coth i (i ) 2 (1) (1 i ) (1) (1 i )
2
2
4
Hk
2
k 1 k 1
k 2
2 .789802883501667684222...
.790701923562543475698...
.7907069804229852813...
.7916115315243421172...
1 .791759469228055000813...
1 .791831656602118007467...
1 .792363426894272110844...
=
log 3
.792481250360578090727... log 4 3
2 log 2
7
2 .79259596281002874558...
2
2
1
x
dx
2 x
.792902785140609359763...
e
k 1
2
1 .793209546954886070955...
.7939888543152131425...
.794023616383282894684...
2
k
1
k 2
(1) k
1
4k
k 1
(1 / 2)
(9 / 8)(3 / 8)
J1028
2 e
Berndt 8.17.17
xesin 1x dx
i
.79423354275931886558... Im (i )
(1) (1 i ) (1) (1 i )
2
(1)
x
0
1 .79426954519229214617...
(k 1) 1 H
k 1
9 .79428970264856009459...
25 .794350166618684018559...
1
2
I 0 ( 2 e) I 0
e
4
30 log 2 20
.795371500563939690401...
1 / 5
.79569320156748087193...
sinh k cosh k
( k !) 2
k 1
3
(3)
.794415416798359282517...
.7953764815472385856...
2k
k3
k
k 0 2 ( k 1)( k 2)
1
1
HypPFQ[{111
, , },{ ,2}, ]
2
4
sin
( 1) k
2k
k 0
( k 1)
k
2
1
1
.795749711559096019168... Li2 Li3
e
e
.7958135686991373424... tan 1 tanh 1
4 .7958315233127195416...
23
2
H
.795922775805343375904... kk
k 1 3
( 1) k 1
1 e x
.79659959929705313428... Ei ( 1)
dx
k !k
x
k 1
0
= HypPFQ[{1, 1},{2 , 2}, 1]
1
J289
0
=
xe
xe x
dx
1
=
log x dx
ex
0
( 1)k 1
k 1 ( k 1)! k !
4
k 1 ( 2 k 1)
8 Ei( 1) ( 1)
k !k
k 1
( 1)k
2
k 0 k !( k 1)
=
8 .7965995992970531343...
.796718392705881508606...
3
Berndt 2.9.8
(3k ) 1
k 1
.79690219140466371781...
k 2
.797123679538449558285...
.797267445945917809011...
(k )
(k 2) 1
1
x
( x log
dx
1)( x 2)
log 2 2
log 2 2
9
2
0
1
2
(1) k
log 1 k 1
2
3
k
k 1 2
log 2 k
k 2 k ( k 1)
2
.79788456080286535588...
2
1 .7977443276183680508...
.797943096840405714600...
9 .7979589711327123928...
.7981472805626901809...
2 (3)
k 1
3
k 2 k
(1) (k ) (k 2)
k
k 2
96
3
tanh
2 3
1
3
2 3
3 3e
3
=
(6k 2) (6k 3) (6k 5) (6k 6)
k 0
1 .7981472805626901809...
tanh
2 3
2 3
3 3 3e 3
3 i 3
i 3 3 i 3
= 1
3 2
2
3
=
1
1
k 0 k k 1
2
GR 4.261.4
2 (3 5 )e 5
Fk
e 1 5 / 2
5 5
k 1 ( k 1)!
k 1 k ( k 1)
.798512132844508259187... ( 1)
(k )
k!
k 3
e2 1
2k
.798632012366331278403...
8
k 0 k !( k 1)( k 3)
2 2 (1 ) (1
1 (2 )
.79876560170621656642...
( 1)
3 .79824572977119450443...
=
.798775991447889498103...
(k ) 1
1
k 2 k (k )
k 2
k 2
3 cos 2
sin 2
2
2
(1) k 1 4k
k 1 ( 2k )!( k 1)
.7989752939540047561...
.79917431580735514981...
1 .799317360448272406365...
.799386105379510436347...
2 sin 2 1
k 0
(2 k 1)
k 1
2k k
( 1) k
( k 1)!( k
1
2
)
1
1
log 1 2
2k
k 1 k
kj
( k ) k
3
k j
2 k 2 2k
k 2 j 1 2
1
log 2
4 4 sinh
2
1
i
i
1 i
1 i
1 1
8 2
2
2
2
(1) k
3
2
k 0 k k k 1
=
.79978323254211101592...
4
1 e
4
/2
cos(2 tan x )dx
0
GR 3.716.10
4 (1) k
5 k 1 4 k
F2 k
= k
k 1 4
(1) k 1 (2k )
.800182014766769431681...
2 k 1
k 1 ( 2k 1)!2
.800000000000000000000 =
J352
1
1
k sin 2k
k 1
log( k 1)
k2
k 1
1 .8007550560052829915...
=
1
6 .80087349079688196478...
.80137126877306285693...
.801799890264644999725...
12 .80182748008146961121...
.8020569031595942854...
.80257251734960565445...
1 .802685399488733367356...
.80269608533157794645...
H ( x)
dx
x2
( 3) ( k )
k 1
k
2 ( 3)
3
7 (3) 1
8
4
k 2 (2 k 1)
4k
k 1
log 9!
2
5
1
14
arccsch 2
5 5 5
( 3)
(4 k )
k 1
k!
( 1) k 1
k 1 2 k
k 1
14
e k 1
3 3
sin
2
3
1
2
1 3k
k 2
.8027064884013474243...
si (2)
2
( 1) k 4 k
k 0 ( 2 k 1)!( 2 k 1)
3 ( 3)
( 1) k
1 .8030853547393914281...
2 ( 3) 2
3
2
k 0 ( k 1)
1
log 2 x
dx
=
1 x
0
GR 4.261.11
1
=
x log 2 x
0 (1 x) 2 dx
=
1
GR 4.261.19
log 2 x
dx
x2 x
x2
0 e x 1 dx
1 1
=
.80325103994524191678...
log( xy )
dx dy
0 0 1 xy
4G 1
log 2
2
2
4
/2
0
x 2 sin 2 x
dx
1 cos x
.8033475762076458819...
1
k 1
2
k 1 2
1 .8037920349100624...
(1)
k 1 1/ k
e
k 1
.80384757729336811942...
6 3 3
3 3
12
2 .80440660163403792825...
2
log 5
.80471895621705018730...
Relog 2 i
2
1
1 .804721402853249668...
1 k
2 k
k 1
e1/ k
2 .80480804893839018764... 4
k 1 k
1 .8049507064891153143...
.8053154534982627922...
4
(3k 1)
k 1
k!
.80612672304285226132...
.8061330507707634892...
e
1
1/ k 3
k
k 1
1 csch 2 csc h 2 ( (1 i )
1 2
2
4
2
2
4
4
( i )
2
Hk
=
2
k 1 k ( k 1)
1
.80568772816216494092... 1 k
6
k 1
2 ( i )
4
1
L1/ 2
2
2
4
9 3
k 1
k 1
k
k 1
1
k
2k
k
(i )
2
2 (i )
4
k ( k 2)
4 5
=
3 3 k 1 ( k 1 / 3)( k 2 / 3)
=
(x
dx
1) 2
3
0
1 .8061330507707634892...
4
1
9 3
=
(x
k 1
k 1
k
2k
dx
1) 2
3
0
.8063709187317308602...
1
2 2 log 2 log 2 2 3 log 3 2 log 2 log 3 log 2 3 2 Li2
3
1
=
log x log( x 2) dx
0
.80639561620732622518...
dx
0 e x x
e
0
x dx
x
x
2
9
5
10
k
1 .80649706588366077562...
k 0 k ! 1
1 .806457594638064753844...
.806700467600632558527...
2 2
sin
1
1 2(2k )
2
2 2
k 1
2
.80687748637583628319... 128 32 G 4 8 48 log 2
log(1 x ) log x
dx
x 3/ 4
0
1
=
J1061
21/ k
2 .80699370501978937177... 2
k 1 k
( k 2 2)
.8070991138260185935...
k2
k 2
( 1) k
.80714942020070612009... 1
2k
k 2
2 .80735492205760410744... log 2 7
.807511182139671452858...
4 1 1
,1
3 3 3
.80768448317881541034...
13
1
e
0
x3
dx
2 .80777024202851936522...
dx
( x) Fransén-Robinson constant
0
.80816039364547495593...
2 .8082276126383771416...
(k ) 1
k 2 (k )
4 (3) 2
=
(1 x ) log 2 x
0 1 x dx
4 (3)
=
log(1 x1/ 2 ) log x
dx
0
x
1
4 .8082276126383771416...
1
1 1
5 .8082276126383771416...
log( x 2 y 2 )
dx dy
1 xy
0 0
=
4 (3) 1
k (k 1) (k 2) 2
2
k 1
.80901699437494742410...
.80907869621835775823...
.8093149189514646786...
.80939659736629010958...
=
2
1 5
4
2 log 2
1
2
( k 1)
k 1
2k
1
2
,
3
1
1
cosh
1/ 3
3
3 ( 1) ( 1) 2 / 3
2
1
5 i 3 5 i 3
2 2
1
(3k ) 1
= 1 3 exp
k 1
k
k
k 2
Hk ( k 1)
1 .8098752090298617066...
2k
k 1
1
.81019298730410784673...
120 4 2 24 ( (4) (5) (6)) log(1 x) log 4 x dx
0
7 .8102496759066543941...
.81040139440963627981...
61
1
2 csch
2
2
( 1) k
2
k 0 2k 1
k
4
11 .81044097243059865654...
k 1 k
/2
4 .81047738096535165547... e
e i log i
8
4
.81056946913870217...
2
3 ( 2 )
1 .81068745341566177051...
(2 k )
2
( 2 k 1)
(2 k 1)
2
k
k 1
( 1) k 1
( 1) k 1
3
2
( k 1 / 6) 2
k 1 ( k 1 / 6)
36 2 2
k 1
1
sin
1
1
k2
k 2
.8108622914243010423...
.810930216216328764...
1
2 (log 3 log 2) ,1,1
2
=
e
x
0
.81114730330175217177...
dx
1/ 2
15
tanh
2
k6
551 .8112111771861827781... 203e
k 0 k !
log( k / ( k 1))
.81139857387224308909...
( k 2 3)
k 2
1 .81152627246085310702... arccosh
15
(1) k
k
k 0 2 ( k 1)
k
k 0
2
1
k 4
.8116126200701152567...
1
2
arcsinh 1
2
4
( 1) k 1 (2 k )!!
(2 k 1)!!
k 1
( 1) k 1 4 k
2k
k 1
k
.8116826944033783883...
=
Hk
2
k
2k
4 log 2 2 log 2 2 1
k 2
Hk
2
1 .8116826944033783883... 4 log 2 2 log 2
2
k 1 2k k
=
log 2 H k 1 (2k ) 1
k 2
1 .8117424252833536436...
MHS (2,2)
1
2
k j 1 k j
2
log1 k 2
Hk ( ( 2 k ) 1)
1 k 2
k 1
k 2
.8117977862339265120...
3 (4)
4
143 .81196393273824608939...
.81201169941967615136...
1 .81218788563936349024...
.81251525878906250000...
.8126984126984126984
=
.81320407336421530767...
.81327840526189165652...
1 .81337649239160349961...
5 (k )
k 1
k!
k 4
6
k 1 2 k
1
(
)
e2
k!
2e
3
1
1
1
1
2 2 2 2 2 ...
2 2
2
22
256
1
5,
315
2
2
2
1
sin
1 2
3
3
9k 1
k 1
21 / 4 3 3
1
3 / 4 sin
4
4 4
8
J1064
sinh 2
4k
1 .8134302039235093838...
2
k 0 ( 2 k 1)!
4
= 1 2 2
k
k 1
11
( 3)
.81344319810303241352...
6 log 2 4 log 2 2
4
4
1
2
(1 x ) log(1 x )
=
dx
x
0
GR 1.411.2
GR 1.431.2
4 log 768
kH
k2 k
9
18
k 1 4
1
1
1
2
hg hg
1 .81379936423421785059...
3
2
2
3
3
2
2
=
sin
3
3
d
=
2 cos 2
0
.81354387406375956482...
1
= log 1
dx
x ( x 1)
0
/2
=
log(1 x 3 )
0 x 3 dx
sin x
sin x
E
dx
2
x) / 4 2
1 (sin
0
GR 6.154
2
k2
(k 1) 1
.814748604226469748138... 4 2
2 log 2
6
k 1 k 2
2
sin 2k
2
.8149421467733263011...
3
3
3
k
k 1
.8152842096899305458...
3 2 2 3
3
GR 1.443.5
1 x 4
0 log 1 x 3 dx
47 .81557574770022707230...
5 5
log 2 x dx
2
32
x 1
0
=
5 5
x4
24i Li5 (i ) Li5 (i ) x
16
e e x
x 4 dx
=
cosh x
0
.815690849684834190314...
1
E
k 1
.81595464948157421514...
.8160006632992495351...
.816048939098262981077...
2 .816190603250374170303...
3 .816262076667919561...
2 .81637833042278439185...
GR 3.523.7
2k
3
38
2 1
tanh(log )
2 1
3
4
1
2k 1
1 2k 2
2
(3)
12
k 0
19
24
k 1
1 2
I I 2 e
2 0 e 0
6
1
2
12
2 (2)
Hk Hk
k (k 3)
k
cosh
( k !)
2
k 0
k 1
f (k )
k2
Titchmarsh 1.2.15
.81638547489578...
(3k 1) (3k 1) (3k ) 1
k 1
.8164215090218931437...
k 1
=
(
k 1
.81649658092772603273...
( 2k )
2 1
1
k
2)
2
3
2k
(2k 1)
22 k 1 1
log k
k2
2
k 2
k 1
( 1) k 2 k
k
k
k 0 8
1
2
k 0
2k
J168
.81659478386385079894...
3 log 2
8
1 .81704584026913895975...
k 1
1 .81712059283213965889...
3
1 x 2 dx
log
1 x 1 x
GR 4.298.12
H ( 3) k
k!
6
5 .8171817154095476464...
.817222646239917754960...
k5
33 10e
k 1 ( k 2 )!
e 2
K1 / 2 (1)
cos x sin x
dx
x ( x 1)
0
=
cos x sin x
x dx
x2 1
0
1
.81734306198444913971... ( 6)
5
.81745491353646342122...
=
4 .81802909469872205712...
.818181818181818181
=
1
6
k 1 k
Prud. 2.5.29.23
dx
x
6
1
3
9 2
cos 3k
2
4
6
k2
k 1
1
Li2 e3i Li2 e 3i
2
e
GR 1.443.2
9
11
1
arccsch
3
1
4 .818486542041838256132...
k 0 K k (1)
1 .81844645923206682348...
1 .81859485365136339079...
2 sin 2 ( 1) k 1
k 1
2 .81875242548180183413...
.8187801401720233053...
4k
(2 k 1)!
3
11
2 log 2 log
log x
cosh
0
( 3)
1 .81895849954020784402...
( 2)
3 .819290222081750098649...
2 6 32 log 2
k3
k
k 1 2 (k 2)
2
x
dx
GR 4.371.3
k 2 2k 2
26 .819615475040601592527... 3 sinh csc 3 2
k 1 k 2 k 2
1
1
log 2 x
1 .81963925367740924975...
dx
4,3, 2
4
2 1 x 4
1
(k )
k
.82025951154241682326... k
k 1 e 1
k 1 e
(8k 6)
1 .82030105482706493402...
( 2k 1)!
k 1
1 .82101745149929239041...
2
sinh
k 1
1
k4
( 2 k )
k 1
.8221473284524977102...
k
Berndt 6.14.4
2
( k ) 1
k 2
1
1 .82222607449402372567...
3 ( 3) 2 ( 3) 2 ( 3)
0
1 .82234431433954947433...
( k 3)
k!
k 1
2
.82246703342411321824...
12
x 2 log x
dx
ex 1
e1/ k 1
k3
k 1
(1) k 1
k2
k 1
Hk
k
k 1 2 k
S1(k ,1)
k!k
k 1
( k ) (1)
k
1
2
k 2
=
=
=
=
x
dx
=
1 ex
0
log 2
=
0
=
1
log x
log(1 x 2 )
dx
dx
x2 x
x
0
1
x
dx
1 e x
log(1 x )
0 x dx
1
J306
GR 3.411.5
log1 e dx
x
Andrews p.89, GR 4.291.1
0
log(1 x 2 )
=
dx
x
0
=
1
2
log x
x 1 dx
1
GR 4.295.11
[Ramanujan] Berndt Ch. 9
1
=
log x
dx
x 1
0
GR 4.231.1
1
=
log1 e x dx
0
=
log(1 x 2 )
0 x(1 x 2 ) dx
GR 4.295.18
1 x2 x
dx
= log
x2 1 x2
0
=
GR 4.295.16
1 dx
x
log1 x
1
log( x 2 1)
dx
=
x ( x 2 1)
0
=
e
x3
1
x2
0
=
0
dx
e 2 x
x
ee 1
dx
GR 3.333.2
=
=
xe x
0 sin x dx
x2
0 cosh 2 x dx
1 .82303407111176773008...
( 4 k 2)
(2 k 1)!
k 1
.82329568993650930401...
2
k 1
.8235294117647058
.8236806608528793896...
=
14
17
1 .82378130556207988599...
1 .82389862825293059856...
.82395921650108226855...
2
18
2
3
(k )
2 k 1
1
2
sinh k
k 1
1
2
6
2
0
3
( 2)
17
3 log 3
4
sin 3 x
2
k 1 x
x log 2 xdx
ex
.82413881935225377438...
1
ci ( ) log
2
/2
0
sin 2 x
x
1
e
k
k
.82436063535006407342...
k 1
k
2
k 0 k !2
k 0 k !2
k 0 (2 k )!!
2
2
.82437753892628282491... 5
2 (3) k 2 (k 3) 1
3
k 1
k 1
=
2
3
k 2 k ( k 1)
1
16
.82447370907780915443...
sin 2 sinh 2 1 4 4
k
4
k 1
1 .824515157406924568142...
=
5
3 5
EllipticTheta 2 2, 0,
4
2
1
2 k 1
5
4k 2 1
k 0 F 2 k 1
4
3
3
.82468811844839402431...
3 log 2 hg (1) k 1 (k 1)
3
2
4
4
k 1
3
=
k 1 k ( 4k 3)
(2 k )
.8248015620896503745...
k!
k 1
8 .8249778270762876239... 2
i (1) 2 i
k
(1) 2 i
.825041972433790848534...
2
2
2
2
2
k 1 ( k 1 / 4)
(1) k k 5
1 .82512195293745377856... J 3 ( 2 ) 6 J 2 ( 2 ) 7 J1 ( 2 ) J 0( 2 )
2
k 0 ( k !)
2k 2
2
13 .82561975584874069795... (1 e)
LY 6.41
k!
k 0
9
9 .82569657333515491309...
G
k
2 .82589021611626168568...
k 2 k ! 1
k
(1) k p (k )
2k
k 0
.825951986065842738464...
.82606351573817904...
k k
k 2
4
k
3
1
1 (1/ 2)
k 1
(1)
k2 k 1
k
k (2 k 1)
3k
.82659663289696621390...
2
2
k
3
k 2
k 1 ( 3k 1)
1 cos 2
( 1) k 1 2 4 k 1
2
.8268218104318059573... sin 2
2
( 2 k )!
k 1
2 3
log 2 2
log 2
3 .82691348635397815802...
2
24
2
dx
2
= log x sin 2 x
x
0
.8269933431326880743...
3 3
1
1 2
2
9k
k 1
cos 3 2
k 1
.8270569031595942854...
=
0
1 / 3
( 3)
.82789710131633621783...
4 .82831373730230112380...
k
3
8
1
1
/ 2
1 e
1 ii
3 log 5
( 1) k 2 k
.828427124746190097603... 2 2 2 k
k 0 4 ( k 1) k
1 .828427124746190097603...
2 2 1
(2 k 1)!!
(2k )!!2
k 1
.82853544969022304438...
1
log 2 3
0
k
x dx
3x
1
5 .82857445396727733488... 12 Li4
2
x 3 dx
0 e x 1 / 2
.82864712767187850804...
.8287966442343199956...
log k !
k!
k 2
1
1
14 (3) 16 ( 2 ) 2
1 3
2
k 2 ( k 2)
x2
dx
= x / 2 x
e 1
0 e
GR 4.424.1
GR 1.431
=
GR 1.412.1
16 .8287966442343199956...
14 (3)
.8293650197022233205...
(k )
2
k 1
.82945430337211926235...
1
2
k 0
p prime
1 .83048772171245191927...
1
2
)3
1
k !log k !
k 21
.82979085694614562146...
1
(k
1
2p
2
k
(2)
( 3) ( 2 )
( k 1)
( k 1)
k 1
2
1 cos1 i ei 1 i 1 cos1 i sin 1
i
sin 1
e 1
(cos i sin i 1)
.83067035427178011249...
log ( k )
k 2
5 .83095189484530047087...
.83105865748950903...
2 .83106601246967972516...
.8313214416001597873...
34
H (2)2/ 3
3
log 7
2
5
arccot
3
3
1
cot
2 2 e
e
k 2
log( x 2 8)
0 x 2 1 dx
(2 k )
e
k
ek
k 1
1
1
2
8 .8317608663278468548...
78
1
.83190737258070746868...
( 3)
(k )
k 1
k
3
1
p
1
p3
.83193118835443803011...
1 .83193118835443803011...
2G 1
x tanh x
dx
ex
0
2G i Li2 (i ) Li2 (i )
=
( k !) 2 4 k
2
k 0 ( 2 k )!( 2 k 1)
/2
=
0
=
x
dx
sin x
x
cosh x dx
0
1
=
arcsin x
dx
x2 1
0
Berndt 9
Adamchik (2)
1
=
arcsin h x
dx
x2 1
0
=
arctan x
x
0
1 x2
dx
GR 4.531.11
1
=
K (x ) dx
GR 6.141.1
0
1
=
K( x
2
) dx
Adamchik (16)
0
.83205029433784368302...
3 .83222717267891019358...
3
13
( 1) k 2 k
k
k
k 0 9
1
9 log 3 3
4
1
( k 1)( k 1 / 3)
k 0
.83240650875238373999...
1 .83259571459404605577...
.83261846163379315125...
2
1
3 log 2 e 2 x log x dx
4
2
0
7
12
GR 4.383.1
1/ 3
45 (5)
log 3 x
log(1 x )
dx
x
8
0
1
5 .8327186226814558356...
.83274617727686715065...
.8330405509046936713...
=
log 2
3
8 2
(x
0
4
dx
1) 2
k ( k 1)
5 7
4 4 k 1 ( k 1 / 4)( k 3 / 4)
2
Li2
3
5
=
6
( 1) k
=
k
k 0 5
.83327188647738995744...
.83333333333333333333
=
1
( k 1)( k 2)( k 3)
k 1
k5 k4 k3 k2 k 1
k7 k
k 2
=
J1061
2k
(2 k 1)!!
1
k
k 1 4 ( k 2) k
k 1 ( 2 k )! ( k 2)
=
| ( k )|( 1) k | ( 2 k )| 2 k
.8333953224586338242...
2k 1
4k 1
k 1
k 1
4k
k
.83373002513114904888... cos1 cosh 1 ( 1)
( 4 k )!
k 0
1 .83377265168027139625... root of ( x ) x
(2 k )
1 .83400113670662422217...
1
1
(2 k 1)! k sinh k
k 1
k 1
15 90
( 2) 1
4
90
( 4) 1
11
3
2 e cos
.83471946857721096222...
3 e
2
2
7 .8341682873053609132...
(1) k
k 0 (3k )!
pf ( k )
k!
k 0
1
sin 2 k
.83501418762228265843... ( 3)
Li3 ( e2i ) Li e 2i 3
k
4
k 1
2
1
.83504557817601534828...
8 log 2 8 3
2
3
k 1 k k / 2
(1) k 1 ( k )
= 8
2k
k 3
( k 12 )!
= 2
1
k 1 k ( k 2 )!
h(k )
.835107636...
2
100 AMM 296 (Mar 1993)
k 1 k
1
.8352422189577681...
k 1 Fk k
3 .83482070063335874733...
4 .8352755061892873386...
31 6 28350 (5)
84
1
0
x log 6 x dx
( x 1) 3
5
(2 log 2) 2 G
24
2
2
1 .835299163476728902487...
135
3 2 ( 4 )
45
2
sin x x cos x
.835542758210333500805...
dx
5/2
x
3
0
1
2 dx
log(1 x) log 1 x
0
4
.83535353257772361697...
Prud. 2.5.29.24
log 2
.83564884826472105334...
3
3 3
( 1) k
=
k 0 3k 1
=
1
2 .83580364656519516508...
1 .83593799333382666716...
1
J79, K135
K Ex. 113
dx
3
x 1
0
5 3
27
3 3
1
k 1
1
dx
2
x x 1
6k 5 6k 2
e
x
0
dx
e 2 x
( 1) k 1
( 1) k 1
3
( k 1 / 3) 3
k 1 ( k 1 / 3)
1
(k !!)!!
k 1
.83599833270096432297...
(k )
k
k 2
.8362895669572625675...
2
(1)
1
1
Li k k
2
k 1
k
k ! 1
k 2
(1) k
k
k 0 ( k 1)!e
.8366854409273997774...
e e11 / e
6 .8367983046245809349...
2
.83772233983162066800...
8
3 3
3k
k 0 2k 1
k
4 10
log x dx
/2
1
0
x
4 .83780174825215167555...
4 csc 2
.837866940980208240895...
Cosh int1
.837877066409345483561...
log(2 ) 1
2
(2 k )
k (2 k 1)
Wilton
k 1
1 .837877066409345483561...
.83791182769499313441...
.83800747784594108582...
1 .838038955187488860348...
1
cos
3
=
(1) k
k
k 0 ( 2 k )! 3
AS 4.3.66, LY 6.110
3
37
sinh
1
2
( 2 i ) ( 2 i )
Messenger Math. 52 (1922-1923) 90-93
log 2
1
2
1 k
k 2
(4k 1)!
k 0
k 2k 2
2
2k 1
k 1
k
2
4k
2 e2
.83856063842880436639... log 2
J157
e 1
B 2k
= k
[Ramanujan] Berndt Ch. 5
k 1 k!k
125
(5k )
.83861630300787491228...
3
k
124 (3)
k 1
2
.83899296971642587682... G
k ( k 1)
95 .83932260689807153299... e ( 1)
GR 1.212
k!
k 0
5
( 1) k 1 k 6
.83939720585721160798...
1
e
k 1 ( k 1)!
5
1 .83939720585721160798...
3,1
e
1
1
2
2 .83945179140231608634... log 3 2 2 arctan
log 1 2 dx
x
2
0
.84006187044843982621...
1 .8403023690212202299...
1 2
log
2
2
1
arcsin x
2 dx
)
x (1 x
0
2
sin 2 x
2 2
dx
2
0 1 sin x
7 e 45
8
2
.84042408656431894883...
.84062506302375727160...
2
GR 4.521.6
log1 x
0
2
2
dx
2
k
k !(k 7)
k 0
2 4 2 1
log1 x
0
sin 2
sinh 21/ 4
.840695833076274062...
2 2
( 3)
.84075154011728336936... 2
(5)
1/ 4
4
1
dx
1
2
4
1 k
2
( 1) k 1
.84084882503400147649... k
k
k 1 3 2
2
.84100146843744567255...
8
1
1 .84107706809181431409... 1
k !
k 2
/2
6 .84108846385711654485...
log 2
2
0
4 x 2 cos x ( x ) x
dx
sin x
GR 3.789
2 .84109848849173775273...
7 4
240
x4
0 cosh 2 x dx
1 1 1
log xyz
dx dy dz
1 xyz
0 0 0
3 .84112255850390000063...
111 2 341
36
216
2 (3)
H k 3
2
k 1 k
x cos x
2
dx
5 .84144846701247819072... log 2 4 G
1 sin x
0
GR 3.791.4
=
log1 sin x dx
GR 4.4334.10
0
.8414709848078965067...
sin 1 Imei Imi 2 / 3
=
0
1 /
1
J1 ,1
2 2
=
1
k 1
=
1
cos 2
k 1
=
k
1
k2
2
4
=
GR 1.439.1
1 3 sin
k 1
1
cos x dx
1
3k
2
GR 1.439.2
e
0
1
.84168261071525616017... ( 7 )
6
coslog x
dx
x
1
1
7
k 1 k
.841722868303139881174...
1
1 2 log 2
2
.84178721447693292514...
2 3
dx
x
7
1
2k
(k ) 1
k 2 k ( k 1)
log1 x
0
1 .84193575527020599668...
AS 4.3.65
=
(1) k
k 0 ( 2 k 1)!
1
Ei (2) log 2
2
2
1
dx
3
2k
2
k 0 k !( k 1)
.842048876481416666671...
cos x
2 K 0 (1)
1 x2
0
.842105263157894736
119 .842226666212576253...
=
dx
16
19
1
1 ( 5) 1
log 5 x
( 5) 3
0 ( x 2 1) dx
4
4
4096
1
(1) k
2
3 J1
;
2
;
F
0 1
3 k 0 k!(k 1)!3k
3
1
.84240657224478804816... k
k 1 2 Fk
Bk
1
.8425754910523763415...
3
3 e 3 k 1 3k k
.84233963038644474542...
.84270079294971486934...
=
(1) k
k 0 k !( 2 k 1)
2
erf (1)
AS 7.1.5
1
2
e
x2
dx
0
6 .84311396670851712778...
10 .84311984239192954237...
=
.8432441918208866651...
.8435118416850346340...
( 1) k
1
5
k 0 ( k 6 )( k 6 )
3
3 log 3 4 log 2 log 2 12 log 2 4
2
1
5
l l
6 6
k2
k
k 1 4 1
1
arctan 2 x dx
2 log 2
G
2
16
4
x
0
3 3 log
/4
=
0
.8437932862030881776...
16 .84398368125898806741...
.8440563052346255265...
.84416242155207814332...
3 1
3 1
x 2 dx
sin 2 x
GR 3.837.2
1 1
(1 312 k )
( 1) k
3 4 k 0
( 2 k )!
2k 1
2
e I0 (2)
k 0 k k !
cos3
2 sin
2
1
2
Berndt 8.17.8
( 1) k 1 2 k
(2 k )!
k 1
( 1) k 2 k
k 0 ( 2 k 1)!( k 1)
483 log 2 261 log 2 2 917
2
2
4
GR 1.412.4
k 4 Hk
= k
k 1 2 ( k 1)( k 2 )( k 3)
1185 .84441907811295583887... 120 ( 6) 360 (5) 39 ( 4 ) 180 ( 3) 31 ( 2 ) 1
=
k (k ) 1
5
k 2
.84442580886220444850...
9666 .84456304416576336457...
3
Li3
4
cosh
2
4k
(2 k )!
k0
.844657620095592823802...
=
2 (5 5 )
4 2 2
(151 75 5 ) arc csc 2 5 1
11 11 55
53 2 5
3/ 2
arc csc h 2 1 5
Fk
2k
k 1
k
5481948
k 4 Fk 2
350 .84467200000000000000 =
k
15625
k 1 4
1 1
5 1 1
, 0, 1 ,1
.84483859475710240076...
4 4
4 4 4
1
(1) k
.84502223280969297766... cos
k
k 0 ( 2 k )!
5
( 1) k 2 k
.8451542547285165775...
k
7
k
k 0 10
(1) k
k 0 k!( 4k 1)
AS 4.3.66, LY 6.110
k3
.84515451462286429392... 9 3e
k 1 ( k 2 )!
(2k )
1
1
.84528192903489711771...
sinh
2 k 1
2k
k 1 ( 2 k 1)! 2
k 1 k
2
1
(1) k ( k !) 2 4 k
2
.84529085018832183660...
log 1 2
2
8
2
k 0 ( 2 k )!( 2 k 1)
/2
=
0
x sin x
dx
2 sin 2 x
1 .84556867019693427879...
.846153846153846153
=
3 2
11
13
x 2 log x
0 ex dx
Berndt Ch. 9, 32
.84633519370869490299...
1 .84633831078181334102...
( 6)
( 3)
7
6
(k )
k 1
k3
k 71
(1) k ( k )
.84642193400371817729...
k 2 ( k 2 )!
.84662165026149600620...
.84699097000782072187...
k
k 0
.84657359027997265471...
2k
21 3
k
k 1
1
e
2 1/ k
log 2 1
2
2
2( e)
log x
2 x 2
dx
cosh(log(1 x)) x
3
1
( k ) ( k 2 )
(2) (3) 2
k 2
2k 1
2k 4 k 3
k 1
2 .84699097000782072187... ( 2 ) ( 3)
=
k
5
(1) k
5
4
3
2
k 0 k k k k k 1
.8470090659508953726...
.8472130847939790866...
.847406572244788...
.8474800638725324646...
3
4
1
k
k 1 2 F k
1
sin x cos x dx
0
(1 e) Ei (1) eEi ( 1)
=
/2
2
(1 k )
( k 1)!
1
=
k 1 m 1 m !( k 1)!
1 2k
3 .8474804859040022123...
3
k 1 ( k !) k
log 2 2
Hk
( k 1)!
k 1
k 1
k
1 .84757851036301103063...
( 1)k 1 e
k 1 m 1 m !( k 1)!
2
k
k
log
k 1
k 2
k
2
=
H ( x) dx
0
.84760282551739384823...
2 .84778400685138213164...
4 3 1
2
9
(k 4)
k 0
k!
( k 12 )!( k 12 )!
(2 k )!
k 1
e1/ k
4
k 1 k
AMM 101,7 p.682
Prud. 5.5.1.15
k
7 3
1
.84782787797694820792...
3 sin
256
4
k 1 k
1 i
1/ 4
2 Li3 e i / 4 Li3 ei / 4
= ( 1)
4 4
3
k
.84830241699385145616... 3 ( 3k ) 1 3
k 1
k 2 k 3
k
1
i
3 .848311877703679270993...
Li2 (ei / 2 ) Li2 (e i / 2 ) 2 sin
2
2
k 1 k
1 .84839248149318749178...
=
5 .84865445990480510746...
.8488263631567751241...
9 .8488578017961047217...
.84919444474737692368...
log( x 3)
dx
x2
1
(k )
1 ??
(k )
k (k 1)
k 2
sum of inverse non-trivial powers of products of distinct primes
16 2
27
8
3
log x dx
x 3/ 2 1
0
1
2
1 4k
k 2
97
.84887276700404459187...
(2k )
k 2
8 log 2
3
.84863386796488363268...
GR 1.443.5
e1/ 4
erfi
1
2
1
54 (3)
( k )
.849320468840464412633...
k
k 1 3
(1) k k !
(1) k
(2k 1)! (2k 1)!!2
k 0
1
3
( 2)
k 0
k
1
1
(3) k 1 (3k 2)3
6
(1) k 1
.849581509850335443955...
2
k 1 ( k !!)
(k ) (k )
.849732991384718766...
0 4
k
k 1
18 .84955592153875943078...
.84985193128795296818...
H (2k ) 1
k 1
1
1
1
k log 1 k log 1 log 1 2
1)
k
k
k
k 2
log 2
(2k ) 1 log 2
1
1
arctan h
4
2k 1
4
k
k 1
k 2 k
=
2 k 1
2( k
1
2
.8504060682786322487...
.85068187878733366234...
3 3
3
e
( 1)k
k
k 0 ( k 1)!3
1
log x
G
dx
2
8 2 0 ( x 1) 2
1 i
1 i
2 4 log 2
2 4
2 4
k E2 k
1 .85081571768092561791... sec1 ( 1)
( 2 k )!
i
2
.8509181282393215451... csch1
sin i
e e 1
1
= 2 2 k 1
k 0 e
2 ( 2 2 k 1 ) B2 k
= 1
( 2 k )!
k 1
.85069754062437546892...
.851441200981879906279...
2 (2)
1
(
1
3
)
i
4
3 2 2 / 3
=
AS 4.5.65
1 1 1
(1 i 3 )
2 2 2
GR 1.232.3
1/ 3
J132
1
(2k 1) (2k 1)
k 0
2
1/ 4
2/3
2 2 2
4
1/ 3
1
1
H 1/ e 1
e
k 1 k ( ek 1)
(k )
= k 1
k 2 e
( 1) k
.85153355273320083373... e log 1 e e k
k 0 e ( k 1)
i 1 i
1 i
3 i
3 i
.85168225614364627497...
4
4
4
4 4
.85149720152646256755...
=
sin x
cosh x dx
0
1 .851937051982466170361...
si ( )
4 .85203026391961716592...
7 log 2
.85212343939396411969...
.85225550915074454010...
sin x
dx , Wilbraham-Gibbs constant
x
0
i
i
2
2
2
2
1
log 2
2
k (k
k 1
2
1
1 / 2)
1 /( 2 k 1)
(2k 1)
(2k )1 / 2 k
k 1
Berndt 8.17.8
1 .85236428911566370893...
.85247896683354111790...
log 2 x
1 x 2 3 dx
1
1
3, 3,
4
2
3 ( 2 ) ( 4 ) 3
(1) k (k ) (k 3)
k
k 2
2k k 2k 1
k 4 ( k 1) 2
k 2
4
1
1 3
1/ 3
2/3
(1) (1) k 1 8k
2
2
=
.853060062307436082511...
.85358153703118403189...
4
3
44
log 2
3 3
1
k (k 3 / 2)
k 1
=
xe
x
1 e x dx
GR 3.451.1
0
.85369546139223027354...
2 log 2
2
3
k ( ( k ) 1)
2 k 1
k 2
4
4k 1
2
k 2 ( 2 k 1) k
1
k
k 1 2 k
5
2
1
1
1 1 5
2 2 2 F1 , , ,1
4 2 4
4 4
=
1 .85386291731316255056...
7 .85398163397448309616...
1 .85407467730137191843...
=
.85410196624968454461...
4 .854318108069644090155...
0
dx
x4 1
1
K
2
3 55
2
(1) k 2 k
k
k 0 5 ( k 1) k
4 2 log 2 1
0
( k )
16
dx
2
log x log1 x
GR 4.222.3
1
k
k 2
k 1
log 2
log x cos x
.85459370928947691247...
dx
2 8
4
ex
0
1 .85450481290441694628...
(2 k 3)!
6 .85479719023474902805...
ee e1/ e
ecosh 1 sinh(sinh 1)
2
k
3/ 2
sinh
sinh k
k!
k 1
GR 1.471.1
.85562439189214880317...
(1) k
k
k 0 k ! 2 ( 2 k 1)
1
1
2
erf
2
bp( k )
2 .85564270285481672333...
k
k 0 2
1 2
k 0
2k
47
6 .85565460040104412494...
(1) k k 3
(k ) 1
k!
k 2
k 2 e1/ k k 2 3k 1
=
k 3e1/ k
k 2
1 .85622511836152235066...
8 .856277053111707602292...
2 e 2
5
e
0
.85646931665632420671...
1 e 1 /
.85659704311393584941...
( 2)
.857142857142857142
6
7
=
.85745378253311466066...
.85755321584639341574...
.85788966542159767886...
coth
(1) k
k
k 0 6
4G
coscos1
(k )
2
k 2
.857842886877026832381...
4
( 1) k
k
k 0 k ! ( k )1)
.85758012275100904702...
sin 2 x dx
x
k
1
4 (5)
2
3
x 1 Li2 ( x ) 2 dx
0
3
1
(3) 2 Li3
2
2
.858007616357088565688...
S1(k ,3)
2k
k 3
cos2 x
.85840734641020676154... 4
(1 sin x ) 2
0
1
=
arccos x
dx
1 x
0
1
log 2 x
0 ( x 1)( x 2) dx
=
log(1 x
2
)
0
.85902924121595908864...
.85930736722073099427...
35
128
1
0
cosh x x sinh x dx
x2
cosh 2 x
x 7 / 2 dx
1 x
24 e
2 k ( k 3)
k!
k 0
7 .85959984818146412704...
.859672000699493639687...
k 1
5 .85987448204883847382...
.86009548753481444032...
GR 4.376.11
0
e2 k
3
k 1 k
(k ) (2k ) 1
e
Not known to be transcendental
2 (2k ) 1
k 1
( 2 k )!
.86013600393341676239...
k2
96 35e
k 1 k !( k 4 )
.860525175709529372495...
1 1 / 3
2 (2) 2 / 3
1
1 2 1 1
1
3
1
3
i
i
1/ 3
2
3 21 / 3
2
2
1
(1) k 1 (3k )
= 3
2 k 1
k 1 k 1 / 2
k 1
4 1/ 3
k 1
e
k
3
k 0 k !3
1 .8608165667814527048...
.86081788192800807778...
1 5
4
log
5 2
4
1
arcsinh
2
5
.8610281005737279228...
.861183557332564183...
.8612202133408014822...
.8612854633416616715...
k 1
1
coth 2
4
2 2
1
1
(2, 2, )
2
4
1
(8)
7
Fk
k
k
2
(1) k
dx
2
x x 1
2k
k 0
(2k 1) 2
k
=
3
36
k
k 1
log x dx
x2 2
1
1
8
k 1 k
dx
x
1
8
2
1
2
J124
1 .86148002026189245859...
8 log 2 3 (3)
erf 1 1
.86152770679629637239...
.86213147853485134492...
2
8
.86236065559322214...
4
/2
4
3 log
3
k cosh k
k!
k 0
( 1) k
k
k 0 3 ( k 1)
e
0
2 1 3 csc
log
k 1
k
AS 4.3.46
12
27
(3k )
3
k
26 (3)
k 1
11
40
sin 6 x
0 x 6 dx
GR 3.827.15
1
sin 4 k
cos 2
cos 4
3e 4e cossin 2 e cossin 4 k !
8
k 1
1/ 3
2
4
6 3 9 1
sec1/ 3
sec1/ 3
sec1/ 3
9
9
9
.8645026534612020404...
1 3 1
3 3
, ,
8 2 4
2 4
.8646647167633873081...
1 e 2
[Ramanujan] Berndt Ch. 22
(1) k 1 2 k
k!
k 1
9
k 1
2
8
(2)
.864988826349078353...
1
k
k 1
2
1
1/ 3
kH k (k 1) 1
2 .86478897565411604384...
x
48
.86390380998765775594...
1 .864387735234080589739...
2
6
3 .86370330515627314699...
.86403519948264378410...
x 2 dx
(sin x cos x) 2
1
.86393797973719314058...
(1) k 1
k 1 k!( 2 k 1)
k
.8630462173553427823...
0
1 1/ e
e e2 e
2e
4 .8634168148322130293...
0 0 0 0
G
w x y z
dw dx dy dz
1 wxyz
1
1 1
1 , 0,1
e
2 2
20 .8625096400513696180...
.8632068016894392378...
3
1 1 1 1
4
2 (k )
k 1
log 2
2
1
3 ( (k ) 1)
k 2
k
(1) k
3/2
k 0 ( 2k 1)
.86525597943226508721...
1 .8653930155985462163...
e
7 (2) 12 (4) 18 (3) 1
=
( 1) k ( k ) ( k 1)
k
3
k 2
8k 4 k 3 k 2 3k 1
k 2 ( k 1) 4
k 2
(8k 6)
1
k 6 cosh 4 1
k
( 2 k )!
k 1
k 1
=
.86558911417184854991...
.86562170856366484625...
.86576948323965862429...
=
1 2
2 arctan e
gd 1
2
arctan (sinh 1)
(1)
k
=
k 1
1
arctan
(k 1 / 2)
[Ramanujan] Berndt Ch. 2, Eq. 11.4
arcsin (tanh 1)
3
sin cos
2
3
6
k
( 1) 2 k
=
k
k
k 0 12
.86602540378443864676... =
(1) k
1 5
csch
2
2
10
5
k 0 5k 1
( 1) k
1
2 log 1 2
4 2
k 0 4k 1
1
1
8k 3
k 1 8k 7
.86683109649187783728...
.86697298733991103757...
=
=
=
=
K135
J82, K ex. 113
1
2 2
2 arctan 2 2 2 arctan 2 2 log
16 4 2
2 2
7
3
3
cot 4 2 logsin log sin
4 2 cot
16
8
8
8
8
1
4 .86698382463297672998...
dx
2
x x 2
1
dx
1 x
4
0
2
( 6 log 2 )
3
1
(k 1)(k 1 / 4)
k 0
1
.86718905113631807520... 2arcsinh
2
5 .8673346208932640333...
( 1) k 1 2 k
2k
k 1
k2
k
11 .8673346208932640333...
1 .86739232503269523903...
5 .86768692676152924896...
1 ( 3) 1
( 3) 3
6
4
4
128
0
x 3 tanh x
dx
ex
1 ( 3) 1
x dx
( 3) 3
4
4 0 cosh x
128
1
3
sin 1 i sin 1 i csc h 2
(k )
k 1
Fk
k 4 2k 2 2
k 4 2k 2
k 1
(1) k
k 1 S 2 ( 2k , k )
.86768885868496331882...
1 .86800216804463044688...
.86815220783748476168...
2
3/ 4
x
4
0
dx
1/ 2
13 (3)
13 (3)
1 ( 2) 1
5
( 2)
18
108
432
6
6
(1) k
(1) k
3
3
( 3k 2 ) 3
k 0 ( 3k 1)
1
( 3)
3
=
.86872356982626095207...
(3)
6
MHS (4,2)
2268
(1) k
1
.86887665265855499815... k
log 1 k
2
k 1 ( 2 1) k
k 1
( 2k )
1
cosh 1
.86900199196290899881...
k
k 1 ( 2k )!
k 1
1 .86883374092715470879...
114 .86936465607933273489...
2
1 2e
e e 2 / e 2
2
2 k cos k
k!
k 1
1/ k
k 1
3 .8695192413979994957...
k 2 k 1
.869602181868503186151...
2
2
2 1
1
1
1
(1)
(1)
2
16 2
2
2
4
2 2
cot
16
2
J312
=
Hk
2
2
4k
k 1
1 .86960440108935861883...
2 8
k
k 1
9 .86960440108935861883...
2
2
1/ 4
2
1 sin x dx
x
2k (k )
k!
k 1
2
log 1 sin x
0
7 .8697017727613086918...
1
e
2/k 3
k 1
GR 4.324.1
1
2
log 2
e x log x dx
4
2
0
.87005772672831550673...
3 .87022215697339633082...
.870282055991212145966...
=
.87041975136710319747...
=
.87060229149253986726...
.87163473191790146006...
1 .871660178197549229156...
.87235802495485994177...
I 0 ( 2) I1 ( 2)
k3
2
k 1 ( k !)
GR 4.333
k 3 2k
k 0 ( 2 k )! k
1 2i 3
cos 1 2i 3 cos 5
cos
2
2
2
3
1
1 3
3
k (k 1)
k 1
1
1
2 arcsin
2 arctan
2
3
( 1) k
(2 k )!!
k
k
k 0 2 ( 2 k 1)
k 1 ( 2 k 1)!! 3 k
4
H ( k 1)
2
4 log 2 2 ( 3) 3k
72
k 1 k ( 2 k 1)
1
1/ 4
3e 2
2
(1) k
(1) k
1
2
( 4 k 1) 2
8 2
k 1 ( 4 k 1)
=
1 9
5
3
7
8
8
8
64 8
=
(1) ( k 1) / 2
2
k 0 ( 2k 1)
J327
=
log x dx
x4 1
0
Prud. 5.1.4.4
.87245553646666678115...
.87247296676432182087...
.87278433509846713939...
1 .8729310037130083205...
5e
1
k3
16 16e
k 1 ( 2 k )!
(k ) 1
k 2 ( k 1)
29
(7) 1
20
x 2 dx
1 e x e x
(1) k 2k
15 3 k
k 0 6 ( k 1) k
.87298334620741688518...
15
3 .87298334620741688518...
.87300668467724777193...
( 1) (3k 1) (3k ) (3k 1) 3
k 1
k 1
=
1
2
3
2 k 1 k 1
k3
2 .87312731383618094144... 4e 8
k 1 k !( k 2)
k4
9 .87312731383618094144... 4e 1
k 1 ( k 1)!
10 .87312731383618094144...
4e
( k ) 1
1
(k )
k 2
1
log
1 .8732028500772299332...
.87356852683023186835...
2 ( k ) 1
(k )
k 2
J153
1
1 .87391454266861876559... 1
2k
k 1
k
2 .87400584363103583797...
7 .8740078740118110197...
.87401918476403993682...
3 log 2 2
8 2
62
log 2 x
0 2 x 2 1 dx
1
1
2
6 2 4
/2
sin
0
log 2 x
0 x 2 2 dx
/2
3/ 2
x dx
cos
3/ 2
0
xdx
GR 3.621.2
(k )
.87408196435930900580...
(2 k 2)!
k 2
.87427001649629550601...
.87435832830683304713...
1
k cosh
k 1
1 i
1 i
2 i
2 i
2 4
4
1
H
3
3 3
2k k
3 log 3 log
4
2
3 3
k 1 3
(k )
1
k
k 2 n2 n
ω a nontrivial
.87446436840494486669...
.87500000000000000000
1 .87500000000000000000
3 .87500000000000000000
=
=
.87578458503747752193...
1
3G
7
8
15
8
1 k (k 5 / 2)
31
8
3 .87578458503747752193...
=
k 1
8
3
(2k 1) (2k 1) 1
k 1
e
k 1
1
9
k
3
2
8
3
0
k
(1) k
log 2 x
0 x 2 1 dx
x2
0 cosh x dx
2 i Li3 (i ) Li3 ( i )
4
Prud. 5.3.1.1
x 2 tanh x
dx
ex
1
Re(1)1 / 6
2
(1) k
=
k
k 0 ( 2k )!4
2 .87759078160816115178... G
( 1) k 1
.87764914623495130981...
log 2 2
2
k 1 2 k k
.87758256189037271612...
integer power
(1) k
k
k 0 7
Hk
=
k 1 ( k 1)( k 3)
=
(k ) (k ) 1
k 2
.87468271209245634042...
1 1
k k
GR 3.523.5
x2
e x e x
cos
AS 4.3.66, LY 6.110
=
Lik (i ) Lik (i )
k 2
1
=
dx
log1 x x
2
0
GR 4.295.2
=
1
log1 ( x 1)
2
0
dx
1 x2
= log
dx
1 x2
0
1
/2
=
x dx
1 cos x
Prud. 2.5.16.18
0
1 1
=
0 0
1 .87784260817365902037...
x y
dx dy
2 2
y
1 x
coth
1 .8780463498072068965...
109 e1/ 3
81
k4
k
k 1 k ! 3
5 .8782379806992663077...
3
1
2 , 4 ,
8
2
log 3 x
1 x 2 2 dx
1
( 1) k
1
4 cos
4
.878429128033657480583... 2 2 sin
k
2
2
k 0 ( 2 k )! 2 ( k 1)
1
1
k 1 ( 2 k 1)
.879103174146665828812... ( 1)
log 1 2
k
k
k 1
k 1 k
log k
.87914690810034325118... 2
k 1 k 1
1
.87917903628698039171...
Related to Gram’s series
k 1 k!k ( k 1)
.87919980032218190636...
.87985386217448944091...
.8799519802963893219...
2k
k
k
k 0 2 ( 1)
k!
k
k 1 k
0 (k )
1
k
j k
k 1 3 1
k 1 j 1 3 1
=
1
3
i 1 j 1 k 1
ijk
( 1) k
2 J1 1
k
k 0 k !( k 1)! 4
.88010117148986703192...
1 .880770870194...
0 (k )
k (k 1)
k 1
=
j 1 k 1
1
k
k 1
1
jk ( jk 1)
1
1
k
4 .880792585865024085611...
I 0 ( 3)
1 tanh 1
e
( 1) k
.88079707797788244406...
2k
2
e2 1
k 0 e
1 1
(k!) 2
5 .88097711846511480802... 2 F1 2, 2, ,
2 4 k 1 (2k 2)!
.88107945069109218989...
1 .88108248662437028022...
J994
1
(1) k 2
;
4
,
6
0 F1
k
2
k 0 k!( k 3)!2
1
(k 1)(k 5 / 6)
9 log 3 12 log 2 3 3
k 0
=
(k )
6
k 2
1 .88109784554181572978...
cosh2
2
1
2
k 1/ 2
k 0
1 i
1 i
= i
2
2
2 .88131903995502918532...
k 2
tanh
k
2
( 1) k 2 k
k
k 0 4 ( 2 k 1) k
.881373587019543025232...
=
log(1 + 2) = arcsinh1
log tan
8
log sin
3
log sin
8
8
1
i arcsin i
2
k 12
.88195553680044057157...
2
k 1 2 ( 2 k 1)
1
1 .88203974588235075456... 2
k 1 k log( k 1)
.88208139076242168...
.8823529411764705
=
arctanh
2
15
=
17
erf 2
.88261288770494821175...
e
1/ k !
k 2
(1) k 2 2 k 1
k 0 k !( 2 k 1)
1
1 3
.88261910877658153974...
csc 3
3
6
10 .88279618540530710356...
2 3
log1 x
0
(1) k
2
k 2 k 3
63
dx
1
2
J85
.883093003564743525207...
3 .88322207745093315469...
2k
k
k 1 4 1
5 1
log1 x
2
0
4
dx
1
.88350690717842253363...
(2k 1) (2 k ) 1
k 1
3 .8836640437859815948...
e 1 Ei ( 1)
Hk
( k 1)!
k 1
(1) k 1
HypPFQ1,1, 2, 2, 2, 1
2
k 1 ( k!) k
.88383880441620186129...
4 3
.88402381175007985674...
g3
81 3
64 5
1 .88410387938990024135...
volume of the unit sphere in R5
10395
1 .88416938536372010990...
1 .8841765026477007091...
e log 2
11 3
4
2
x
7
2
e x log x dx
0
.88418748809595071501...
=
Hk k ! k !
k 1 ( 2 k )!
2 (1) 1
2
(1) 3 (2 log 3)
27
3
3
1 i 3
i 3 1
2 2 log 3
i Li2
iLi2
2
3
2
3 3 3
16
16
1
k !k !
arcsinh ( 1) k
.88468759253939275201...
17 17 17
4
(2 k )!4 k
k 0
=
2G
1 .88478816701605060798...
2
1 cosh 3
3
1 .88491174043658839554...
log 2
2
3 .88473079679243020332...
1 .8849555921538759431...
.88496703342411321824...
Hk 2 k ( k !)2
(2 k )!
k 1
3k
3 sinh 3 k
k 0 2 ( k 1)
1
log 2 x dx
2
G
2 2
32
0 (1 x )
3
5
1
2
k2
2
2
12 16
k 2 ( k 1)
J310
=
k (2k ) 1
k 1
1 .885160573807327148806...
2 log 2 2
6
2
log 2 x dx
0 ( x 2)2
25 .88527799493115613083...
2 k kHk
e 1 2 Ei (2 ) 2 log 2 1
k!
k 1
2
3
1 .88538890738563...
2
( x) dx
2
2 .885397258254306968762...
.88575432737726430215...
2
6
4 log 2 log 2 2
12
2 (2) (3)
=
2 Hk
k (k 1)
k 1
=
1
=
0
x
x log 2 x
0 ( x 1)2 dx
1
2
x 2 dx
x x
x
2
0 e e e
8
1 .88580651860617413628...
5 15 log 2 5
4
4
8
3
x dx
0
1
8 .88576587631673249403...
.8858936194371377193...
2
x 2 dx
e
arccos x log
log 2 x
dx
x( x 1) 2
2
1
5k (k ) 1
4k
k 2
35
16
5 .8860710587430771455...
( 4 , 1)
e
2 .88607832450766430303... 5
.88620734825952123389...
.88622692545275801365...
(1) k 1 32 k 1
erf 3
2
k 0 k !(2 k 1)
2
3
=
2
( 1) k 1 ( k 12 )! 3k
=
k!
k 1
k 1/ 2
= 1
k 3/ 2
k 0
AS 6.4.2
AS 6.1.9
sin 2 x 2
0 x 2 dx
=
=
e
x2
dx
LY 6.29
0
=
e
tan 2 x
0
sin x
dx
x cos 2 x
GR 3.963.1
x4
dx
.88626612344087823195... 24 (5) 1 x x
0 e e 1
1
24 .88626612344087823195...
.88629436111989061883...
1 .886379184598759834894...
.88642971056031277996...
2 .88675134594812882255...
.88679069171991648737...
.8868188839700739087...
.887146038222546250877...
24 (5)
2 log 2
(4)
log 4 x
1
dx
1 x
0
1
2
5 2
2
cot 2 2
2 k (2 k ) 1
2
2
k 2 k 2
k 1
k
(1)
k 1
k 1 k
5
3
1
2
( 1) k
csch
2
2
3
3
k 0 3k 1
E2 k
1
2
sech 1/ 2
AS 4.5.66
1/ 2
k
2
e e
k 0 ( 2 k )! 4
1 i 3
1 i 3
log
log
2
2
1
log 1 3
k
k 1
log 4 k
24 .8872241141319937809...
k 2 k ( k 1)
=
9 .88751059801298722256...
9 log 3
(1) k 1
k
k 1 3 2
Fk 2
2 .88762978583276585795...
k 1 k !
.88760180330217531549...
( 1)
k 1
k 1
(3k )
k
.8876841582354967259...
1
( 1) k
2 log 2 Ei ( )
2 k 0 ( k 1)!2 k ( k 1)
38 .88769219039634478432...
k (k ) 1
5
2
k 2
3 3
6
.88807383397711526216...
CFG D14
8 .8881944173155888501...
79
.88888888888888888888
=
1 .88893178779049819496...
8
9
(1) k
k
k 0 8
3 2
5
25 2
7 .8892749112949219724...
( 1) k 1
( k 1 / 5)
k 1
2
( 1) k 1
( k 1 / 5) 2
1
k ! (k 1) 1
k 1
.8894086363241...
1
1 k ( k 2)( k 4)
k 1
1 .89039137863558749847... 4 Li3
.89045439704411550353...
5 .89048622548086232212...
.890729412672261240643...
1 .89082115433686314276...
.890898718140339304740...
1
2
2 3 3
81
x 2 dx
0 ex 1 / 2
log x
dx
( x 3 1) 2
0
15
8
2 log 2
3
5
log 3
6
2
1
1
2, 3,
4
2
2
1/ 6
log 2 x
1 x 2 2 dx
(1) k
1
6k 1
k 1
1
.8912127981113023761...
445 199 5
1 5
2
4 2
log
32 (85 38 5 ) 5 log 56 24 5
80
5
k
1 3
(1)
1
=
10 5
10 k 0 5k 1
.88831357265178863804...
1 log 2 x dx
HypPFQ [{1,1,1},{2, 2, 2},1]
2 0 ex
(1) k 1
2
k 1 k!k
(1) k
=
3
k 0 k!( k 1)
.89164659564565004368...
.89169024629435739173...
3 5
8 2
x 4 dx
e
x2
0
1
/2
1 e 2 cos2 (tan) dx
4
GR 3.716.10
0
=
cos 2 x
0 1 x 2 dx
(k )
.891809...
k (k 1)
k 1
.89183040111256296686...
x
1
2
dx
log(1 x )
5
.89257420525683902307... 4 log
4
.89265685271018665906...
1 .8927892607143723113...
(1) k
1
4
k
k
k 0 4 ( k 1)
k 1 5 k
e
0
x
dx
1/ 4
1 / 3
1 / 2
3 log 3 2
3 .89284757490956280439...
.892894571451266090457...
ek
k
0 k!2
1
p
k 2 p prime k
ee / 2
( p) 1
p prime
1 1
log 1 in Mertens’ Theorem HW 22.7
p p
p prime
log (k )
= (k )
k
k 2
2i
2 i
.89296626185090504491... Li4 e Li4 e
.892934116955422937458...
B1
1 1
4
.89297951156924921122...
3
3 3
.89324374097502616834...
=
e
x3
dx
0
3 3 1
HypPFQ1 , , ,
2 2 4
2
/2
H0 (1)
sin(cos x) dx
0
(1) k
2
k 0 (( 2 k 1)!!)
2 .89359525517877983691...
0
1 .89406565899449183515...
x 2 log(1 x )
dx
ex 1
7 4 H ( 2 ) k
360 k 1 k 2
1
=
log(1 x)
0
log 2 x
dx
x
i
i
2 cos e / 2 i i (i ) ( i )
2
3
1
1
2
.894374836885259781174... 8G
( 3) 14 ( 3)
4
2
96
1 .89431799614475676131...
2
.8944271909999158786...
5
17
.894736842105263157
=
19
.89493406684822643647...
=
=
1 .89493406684822643647...
2
1 .89511781635593675547...
.89533362517016905663...
.89580523867937996258...
.89591582830105900373...
2k
k
2
1
6
4
1
(1 x x 2 ) log x
dx
0
x 1
( k 1) 1
e1/ k
2
( k 1)!
k 1
k 2 k
1
Ei (1) li ( e)
k 1 k ! k
si ( 2 )
(1) k 2 k
2
k 0 ( 2 k 1)!( 2 k 1)
i
sin k
i
i
Li4 ( e ) Li4 ( e ) 4
2
k 1 k
2
csc
4
2
k 1
( 1)
2
k 1 2 k 1
=
k2
4
k 1 (k 1 / 4)
3
2k 1
( 1) k k ( ( k ) 1)
2
6
4
k 2 k ( k 1)
k 2
1
1
3
( k ) (2 k )
2
k k2
k 2 k k
k 2
k2 k 1
2
3
3
2
k 1 k 2 k
k 2 ( k 1) k ( k 1)
.895105505200094223399...
( 1) k
k
k 0 16
1
2
AS 5.1.10
.89601893592680657945...
.89603955949396541657...
1
1
16k 2 1
2 2 k 1
log( x 2 1)
2
log 3
dx
9
x2 1
3
0
sin
1
.896488781929623341300...
x
x2
dx
0
.89682841384729240489...
1
1
2 Li2 , 2, 1
2
2
1
log 2 2 2 log 2 log 3 log 2 3 2 Li2
3
=
( 1) k
= k
2
k 0 2 ( k 1)
1 .89693992379675385782...
( k 3)
k !2k
k 0
2
.89723676373539623808...
1 .89724269164081069031...
.89843750000000000000
e
x
0
x
12
e1/ 2 k
3
k 1 k
11
7
3 1
6 2
dx
1 x
12 / 7
0
115
1
=
, 3, 0
128
5
.89887216380918402542...
k3
k
k 1 5
1 log 2 k
2 k 1 k ( k 1)
( 1) k 2 k
.8989794855663561964... 2 6 4 k
k 0 8 ( k 1) k
4 .8989794855663561964...
.89917234483108405356...
.89918040670820836708...
.89920527550843900193...
9 .8994949366116653416...
5 .899876869190837124551...
24 2 6
3
1
erf
2
3
( 1) k
k
k 0 k ! 3 ( 2 k 1)
1
2
cot
2
2
2 2
k 1 2k 1 / 4
3
17
tan
2
4
17
98
3 (3)
k
k 1
2
1
3k 2
17 4 5 2 1
360
24
4
H k H k 2
k2
k 1
J1064
11 .89988779249402195865...
1
1 G
.90000000000000000000
=
.9003163161571060696...
=
9
10
2 2
(1) k
k
k 0 9
1
1
16k 2
k 1
0
1 / 4
k 2
=
cos 2
k 1
2 .900562693409322466279...
GR 1.439.2
3 ( 3) 2
log 2
16
24 2
1
arccot x log
2
x dx
0
2 (2k )
1 .90071498596850182787...
GR 1.431
2k
1
2 .90102238777699398997...
k 1 k ! 1 / 2
k 1
30 .90110011304949758896...
11e 1
k5
k 1 ( k 1!
1
.90128629936044729873...
K
2
2
2
2k (1) k
32k
k 0 k
.90135324420067371214...
1 si ( 2)
log x cos2 x dx
2
4
0
.90154267736969571405...
(1) k 1
3 (3)
(3) 1,3,0
k3
4
k 1
1
1
=
log(1 x)
0
=
.901644258527509671814...
1 .902160577783278...
GR 4.315.1
x 5dx
e
0
log x
dx
x
AS 23.2.19
x2
1
1 4 1
2 F1 1, , ,
3 3 2
(1) k
k
k 0 2 (3k 1)
Brun’s constant, the sum of the reciprocals of the twin primes:
1
p atwin p
prime
Proven by Brun in 1919 to converge even though it is still unknown
whether the number of non-zero terms is finite.
.902378221045831516912...
( 1)
k 1
k 1
k 2 ( k 1)
2k
.90268536193307106616...
.9027452929509336113...
cos 2
2 2
5
3 3
3
2 .90282933102514164426...
( 1)
k
k 2
1 .902909894538287347105...
3
( k ) 1
I k (1)
k 0 k!
1 2 log k
2 k 2 log2 k x ( x) 1dx
2
e
.9036746237763955366... sin
Imi e
2
(k )
1
.90372628629864941069...
k 2 ( k 3)
1 .9036493924...
463
1
, 5, 0
512
5
3 2
7 ( 3)
.9043548893192741731...
log 2
8
4
(1) k k 2 ( k )
=
2k
k 2
6 .90429687500000000000
3
(1) k
log 2 3
6
6
k 0 6k 1
1
.90406326728086180804... k
k 0 3 1
2 3 4 2 2 / 3 2
2
1 .904148792675624929571...
e I 0 I1
1 F1 ,2,
3 2 3 3
3
3
k 2k
=
k
k 0 k !3 k
.90377177374877204684...
=
6
k5
k
k 1 5
16k 2 6k 1
3
k 2 k 2 k 1
( 1) k
.9045242379002720815...
k 0 (2 k )!( 4 k 1)
2
1 dx
cos 2 2
=
C
2 1
x x
2k
9 .905063057727520713501... 8 (3)
3 (k 1) 1
2
k 1 k
e3 1
.90514825364486643824...
e3 1
J974
J148
4108
1
16 .90534979423868312757...
, 5, 0
243
4
(k ) 1
.90542562608908937546...
Fk 1
k 2
1 .90547226473017993689...
k5
k
k 1 4
e
si ( 2)
( 1) k
1
k 0 k !( k 2 )( 2 k 1)
kHk
( 1) k 1 Hk
2
.90584134720168919417... 2 log 2 log 2 k
1
( k 1)( k 2)
k 1 2 ( k 1)
.90575727880447613109...
=
4k
k 1
.90587260444153744936...
.90609394281968174512...
12 .906323358973207156143...
Hk
2k
1
2
2 (2k 1
k
k 1
6 .90589420856805831818...
(k 1)(1k 1 / 6)
3
3 3 log 3 4 log 2
5
e
3
2
8 (3)
2 k (k 1) 1
3
k 0
k
2
k 1
5 1 1
.90640247705547707798...
4 4 4
=
e
x4
dx
0
.90642880001713865550...
1
k ! k
k 1
2
k
1 1
(1) 2k
.9064939198463331845.... 2 F1 , ,2,1 k
2 2
k 0 16 (k 1) k
.9066882461958017498...
.9068996821171089253...
=
2
2 3
log x sin x
dx
x
0
3
sin
3
1
(1)
k
(k 1)(3k 1)
k 0
1
6k 1 6k 5
J84, K ex. 109e
k 0
maximum packing density of disks
=
CFG D10
( 1) k
k
k 0 3 ( 2 k 1)
dx
dx
4
= 2
2
3
1
x
x
x
0
0
=
=
x
4
1
=
x
0
1 .90709580309488459886...
dx
2
1
3x
0
2
0
J273
2
x dx
x2 1
1
log 1 3 dx
x
1
3
cosh
4
2
3
1 (2k 1)
k 1
2
3
k2 3/ 2
2
2
2
k 0 k 1/ 2
(k )
b( k )
.90749909976283678172... 2 ( 2)
log (2 k )
k 1 k
k 1 k
8 .907474904294977213681...
3 csc h
sinh
Titchmarsh 1.6.3
.90751894316228530929...
(k ) 1 log k
k 2
23 .90778787385011353615...
5 5
64
x4
0 ex e x dx
/2
=
log tan x
4
dx
GR 4.227.3
0
1
=
.907970538300591166629...
.90812931549667023319...
=
.90819273744789092436...
log 4 x
0 1 x 2 dx
5 2 log 2 2
1 i
1 i
Li2
Li2
48
4
2
2
1
4 2
cos( k / 2)
90 48 96 768
k4
k 1
1
Li4 ei / 2 Li4 e i / 2
2
5 i 3
5 i 3
1
2
3
2
2
k 1
(3k 1) (3k ) 2
3
k 2 k 1
k 1
5
1
4
=
6 k 1 k k
1 (2) 4
k
( 1) 4
.90857672552682615638...
3
3 6
3
k 1 ( k 1 / 3)
GR 4.263.2
=
GR 1.443.6
.90861473697907307078...
0 (k )
log(1 2 k )
k
k 1
k
2 k
k 1
(1) 2
.90862626717044620367...
k
(k )
2
2
j 1 k 1
1
jk
jk
k 2
.90909090909090909090
=
.90917842589178437832...
k 2
.9092974268256816954...
(1) k
k
k 0 10
1
k !log k
10
11
sin 2
(1) k 2 2 k 1
k 0 ( 2 k 1)!
1 e(cos1 sin 1)
.90933067363147861703...
2
3 log 3 2 log 2
AS 4.3.65
e
sin log x dx
1
1
1 .90954250488443845535...
2 k sin( k / 2 )
k!
k 1
2
log1 x dx
0
1 .90983005625052575898...
1 .90985931710274402923...
1 .91002687845029058832...
.91011092585744407479...
.91023922662683739361...
.91040364132111511419...
.91059849921261470706...
.91060585540584174737...
1 .910686134642447997691...
5
3 5 1 cos
2
5
6
1
k
k 0
5
(4)
4
(2k )
1
Li2 2
k 2
2k
k 1 2 k
k 1
1 ( 2) (3)
1
log 3
Hk 1
3
k 1 k
dx
3
J153
x
0
1
1
coth 2 2
8 4
k 0 k 4
sin(log ) Im i
4
Li3
5
1
2
e
1
erf
2
2
k !2k k
k 1 ( 2 k )!
244 .91078944598913500831...
8 3
96 64 log 2 x 3/ 2 Li2 ( x ) 2 dx
3
0
.911324776360696926457...
2k 2
k
5 (k 1)
(k ) (k ) 1
k 2
k 2 n2
(k )
nk
.91189065278103994299...
.91194931412646529928...
1 .911952134811735459360...
23 .9121636761437509037...
.91232270129516167141...
1 .9129311827723891012...
.91339126049357314062...
.9134490707088278551...
3 .91421356237309504880...
.9142425426232080819...
9
2
3
34
11
7
1
2
1 2
sech
cosh
k k 2
2
2
3
k 1
65
(5, 1)
e
1
19 14 2 csc( 2 2 )
112
3
7
1
k 1 2 k
k
( 3)
2
5
2
2
2
1
arctan
7
7
7
CGF D4
x
0
2
dx
x2
32
1
( 4 ,1 / 2 ) k
35
k 0 4 (k 4)
k
3
2 .91457744017592816073... cosh 3
k 0 ( 2 k )!
1
1
.91524386085622595963...
cot
2
2
i
i e 1
i cos1 i sin 1 1
=
2 cos1 i sin 1 1
2 ei 1
.9142857142857142857
=
sin k
a
a0
k 1 k
(1) k
.91547952683760158139...
k 0 7k 1
=
lim
k4
k 1 k !( k 5)
1
3 .91585245904074342359... 3 tanh
2
2 3
k 0 k k 1 / 3
4 .91569309392969918879...
120 ( 46e 125)
( 1) k B2 k
(2 k )!
k0
.91596559417721901505...
=
G (2) Im Li2 (i) , Catalan’s constant
log 2
8
LY 6.75
i 1 i
1 i
Li2
Li2
2 2
2
(1) k
2
k 0 ( 2 k 1)
1
1
2
2
(4 k 1)
k 1 ( 4 k 3)
=
=
=
=
=
=
1
( k !) 2 4 k
2 k 0 ( 2 k )!( 2 k 1) 2
1 (3k 1)( k 1)
( k 2)
16 k 1
4k
1 k
3
k k 1,
8 k 1 2
4
3
1
log 2 3
8
8 k 0 2k
( 2 k 1) 2
k
=
e
1
0
Adamchik (28)
log x
dx
x2 1
1 x
1
=
Adamchik (27)
x
dx
e x
x
0
=
Adamchik (23)
log x
dx
2
1
x
1
dx
log 1 x 1 x
2
GR 4.297.4
0
=
1 x dx
log
x x2 1
0
Adamchik (12)
=
1 x 2 dx
log
2 x2 1
0
Adamchik (13)
=
1
1
/4
log tan x dx
GR 4.227.4
0
=
1
2
/2
0
x
dx
sin x
Adamchik (2)
=
1
x sechx dx
2 0
Adamchik (4)
/2
arcsinh(sin x ) dx
=
Adamchik (18)
0
=
/4
/4
0
0
2 log(2 sin x ) dx 2 log(2 cos x ) d
1
=
arctan x
0 x dx
Adamchik (5), (6)
arctan x
dx
x
1
GR 4.531.1
arctan x
dx
1 x2
0
=
=
1
K ( x 2 ) dx
2 0
=
1
E ( x 2 ) dx
2 0
1
Adamchik (16)
1
1 1
=
(x y )
0 0
.9159981926890739016...
5 .91607978309961604256...
.91629073187415506518...
.91666666666666666666
=
=
.9167658563152321288...
Adamchik (17)
1
dx dy
1 x 1 y
(8 3 18 log 2)
12 2
Adamchik (18)
log(1 x 4 )
4
dx
x (1 x 4 )
0
35
5
3k
3
Li1 k
2
5
k 1 5 k
k
(1)
11
12 k 0 11k
k5 k4 k2 k 1
1
4
3
7
(k k )(k 1)
k 2
k 2 k k
log
cos 4 2 cosh 4 2
(1) 2
k 0 ( 4 k )!
k
1 3 1
HypPFQ , , ,1,
4 4 64
k3 k 1
.91767676628886180848... 2 (4) 5
4
k 2 k k
.91775980474025243402...
.91816874239976061064...
k 2
(1) k 2 k
k 0 ( 4 k )! k
log(1 x )
3(log 3 1) 3
dx
9
x (1 x )
3
3
0
6
5
k 1
3
1
k
k
.91681543444030774529...
3
1
(1) k
1
1 / 4 J1 / 2
2 k 0 ( 2 k 1)! 2 k
2
2
7
13 1/ 4
k !k 2
1
.91874093588132784272...
e
erf
2
16 32
k 0 ( 2 k )!
n
n!e
.91893853320467274178... log 2 lim n 1 / 2 (1)
n n
.91872536986556843778...
2 sin
= Stirling’s constant
,
GKP 9.99
log n
1
the constant in log n! n log n n
...
2
12n
1
=
log (x ) dx
GR 6.441.2
0
1
=
1
x
x
dx
log x 1 x 2 x log x
GR 4.283.3
0
sinh
1
(4 k ) 1
.9190194775937444302...
1 4 exp
k 1
4
k
k
2
1
=
2 2 i 2 i
7
.9190625268488832338...
4
.91917581667117981829...
(1) (i ) (1) (i )
2 .91935543953838864415...
Hk 2
k 1 k !
1
.9193953882637205652... 2 2 cos1 4 sin
2
2
.92015118451061011495...
2
2
e
1
, 1, 0
2
(e 1)
e
(k )
= k
k 1 e 1
.92068856523896973321...
2 .92072423350623909536...
2
e1 / 8
erfi
log 2
2
sin 2 x
dx
2
0 1 sin x
.920673594207792318945...
( 1) k
k 1 ( 2 k 1)! k
1
2 2
k 0
0
k
e
log1 2 x
1
2
dx
1
k
(1) k k!
k
k 0 ( 2k 1)!2
1
2G
0
log(1 x )
1 x2
dx
GR 4.292.1
1
=
arccosx
dx
1 x
0
GR 4.521.2
/2
=
x sin x
1 cos x dx
GR 3.791.9
0
12 .92111120529372434463...
.92152242033286316168...
(1) k
2 8csch 2
2 k 0 k 1 / 4
2
sin 2 sinh 2
2 2 cosh 2 cos 2
1
1 4
1 ( 1) k 1 (4 k ) 1
k 2 k 1
k 1
Hk
2
1 .92181205567280569867... 4 log 2
k 1 k ( k 1 / 2 )
2
e I 0 ( 2) 1
1 2 k 1
7 .9219918406294940337...
2
2 k 0 ( k 1)! k
=
.92203590345077812686...
=
.92256201282558489751...
2
1
16
cos( k / 2 )
k2
k 1
6
4
1
Li ei / 2 Li2 e i / 2
2 2
1
( 1)1
erf
k
2
k 0 k ! 4 ( 2 k 1)
1
.92274595068063060514...
( x 1) dx
0
.92278433509846713939...
3
( 3)
2
1 .92303552576131315974...
k 1
2
( 2 k ) 1
12
(1) k
k
13
k 0 12
(1) k 1 ( 4 k )
.92311670684442125248...
( 2 k 1)!
k 1
.923076923076923076
=
.92370103378742659168...
.923879532511286756128...
.92393840292159016702...
1
k
k 1
2
sin
4 1
tanh
2
4 1
1
k2
k
k 0
2
1
k
3
2 2
cos sin
8
2
8
90
1
(k )
4
4
(4)
k 1 k
x
.9241388730...
point at which Dawson’s integral, e
x2
e
0
t2
dt , attains its
maximum of 0.5410442246.
AS 7.1.17
4 log 2
( 1) k
1 2
.92419624074659374589...
3
3
k 1 27 k 3k
Hk / 2
= k
k 1 2
(1) k
.924299897222937...
k 2 log k
.924442728488380072202...
2
25
.92465170577553802366...
cot
5
(1)
csc
5
0
Berndt 2.5.4
log x
dx
x5 1
k
8k 1
k 0
5 5 log 3
5
5k (k ) 1
3
2
3k
6 3
k 2
log 2
1
.92491492293323294696...
log( 3 2 2 )
3
3 2
k
( 1)
=
k 0 ( k 1)( 4 k 1)
k 2 (2k )
k 2 (4k 2 1)
3 2
.92527541260212737052...
4
2
3
32
4k
k 1
k 1 ( 4 k 1)
5 .924696858532122437317...
=
.925303491814363217608...
arctan x
dx
1 x2
1
erfi (1) 2
( k 12 )!
1
k 1 k !( k 2 )!
sec1
1
i
2
e e i
1 csch1
e 2 2e 1
.925459064119660772567...
2
2e 2 1
.92540785884046280896...
(1) k
= 2 2
k 0 k 1
.9260001932455275726...
1
2
sinh
2
=
.92655089611797091088...
k
1
2
4
2
cosh 2
1
(k i )
k 1
2k 2
2k 2 1
k 1
.92614448971326014734... 3 2 (5)
2
1
( k i )2
Prud. 5.1.8.9
.92684773069611513677...
1
8 .92697404116274799947...
.92703733865068595922...
.927099379463425416951...
2
8
k ( k )
2k
k 2
log 2
1 2
log2 2
12
2
log 3 x
0 (x 2)(x 1) dx
1
1 1 5
2 2 F1 , , ,1
4 2 4
8 4
GR 4.262.3
dx
x4 1
1
3 log 2 3
1
6 log 2 log 3 6 log 2 2 3 Li2
4
2
( 1) k
= k
2
k 0 3 ( k 1)
.92727990590304527791...
4k 1
k 1
1
2k (2k 1)
1
e
x
0
x
13
5 3 5 5 5 5 3 5 5 5
10
10
2
2
2k 1
=
(1) k Fk 1 ( k ) 1
2
k 2
k 2 k ( k k 1)
1
4
1
.927295218001612232429... 2 arctan arcsin
arctan
7
5
4
2
i
i
(1) k
= i log1 i log1 k
2
2 k 0 4 (2k 1)
7 (2)
.92753296657588678176...
4
2
1
cos( k / 2 )
i/2
i / 2
.927695310470230431223...
Li3 e Li3 e
2
k3
k 1
4
(8)
(k )
.92770562889526130701...
4
105 ( 4 )
k 1 k
2 .92795159370697612701...
=
HW Thm. 300
e2 cos 1 sin( 2 sin 1) sin( 2 sin 1) cosh( 2 cos1) sinh( 2 cos1)
i 2 ei
i
e e2 e
2
2 k sin k
k!
k 1
1 .92801312657238221592...
4
2 (1 log 2 ) log 1 2 log x dx
x
0
3 .928082040192025996...
k 1
pd ( k )
k!
( 1) k 2 k
k
k 0 12 ( k 1) k
.92820323027550917411...
4 36
2k k 2
k
k 1 k 6
6 .92820323027550917411...
48 4 3
GR 4.222.3
.9285714285714285714
(1) k
k
k 0 13
13
=
14
1 .92875702258534176183...
2
49
3
36
(1 x 3 ) log x
0 x 1 dx
1
1
2k
.92875889011460955439...
I (2 2 )
2 2
k 0 k !( k 2 )!
sin 5k
5
i
1 e5i
.92920367320510338077...
log
5i
k
2
2
1 e
k 1
4 .92926836742289789153... e
.92931420371895891339...
(2) (3) (4) 3
k2 k 1
k4
k 2
k2 k 1
3 .92931420371895891339... ( 2) ( 3) ( 4)
k4
k 1
( 3k )
3
1 .92935550865482645193...
e1/ k 1
k!
k 1
k 1
.929398924900228268914...
3 log 3 1
0
2
3
9
2 dx
log x log 1 x
GR 4.222.3
k2
2
1 .929518610520789484999...
2
3
4
k 1 ( k 1 / 9 )
(1) k
1 4 1
.92958455909241192604... 2 F1 1, , , k
3 3 3
k 0 3 ( 3k 1)
.93002785739908278355...
.930191367102632858668...
263
csc 15
2310 2 15
e
.93052667763586197073...
(k )
k !( k 1)!
k 2
.93122985945271217726...
.93137635638313358185...
6 .93147180559945309417...
.9314760947318097375...
1 1 1
I1 2
k k k
k 1
1
log 2 3
2
| ( k )|
2k
k 1
2 arcsinh
10 log 2
(3)
4
360
k Hk
( k 1)
k 1
3
1
(1) k 2k
k
2 k 0 8 (2k 1) k
1 .9316012105732472119...
.93194870235104284677...
e ee
2
2
3 4
32 2
cosh k
k
k 0 k !e
log x
dx
( x 4 1) 2
0
(1) k
.93203042415025124362...
k 0 9k 1
log k
3
3 .932239737431101510706... 3/ 2
2
k 1 k
4
1
.9326813147863510178...
1
2 sinh
2
16k 4
k 1
.932831259045789401392...
1 .932910130264518932837...
2
(1) k 1
dx
2 log 2 3
Li2 ( x 2 ) 2
2
12
x
k 1 2k k
0
2
37
(3)
16
12
1
x Li ( x)
2
2
dx
0
(1) k
2k
k 0 ( 2 k )! e
k7
2383 .93316355858267141097... 877 e
k 1 k !
14
( 1) k
.93333333333333333333 =
k
15
k 0 14
.93309207559820856354...
1
cos
e
AS 4.3.66, LY 6.110
1 ( 3) 1
log 3 x dx
( 3) 3
5 .9336673104466320167...
2
4
4 1 x 1
1256
1
1 .93388441384851971997...
1
(1) k 1 e k
e
.93401196415468746292... 1 e 1 cosh e sinh e
k!
k 1
e
=
e
x
dx
0
151 .93420920380567881895...
.93478807021696950745...
.93480220054467930941...
413
( 1) k k 10
e
k!
k 0
2 7 4
k (k 12)
1
1
6 3
k 1 ( k 3 )( k 6 )
2
2
J1061
(2k )!!
3
(1)
2
2
k 1 ( 2 k 1)!!k ( 2k 1)
4
1
=
2
k 1 ( k 1 / 2)
( 1) k ( k 1) ( k )
2k 2
k 2
4
(2 k 1)
k 1
2
1 .934802200544679309417...
2 .934802200544679309417...
4 .934802200544679309417...
=
2
2
x yz
dx dy dz
1 xyz
1 1 1
3
0 0 0
2
2
2
0
2
x sin 2 x dx
1 cos x
1
(1) i log i
2
2
1
2,
1
2
2)
4k
(k 1)!(k 1)!4k
(2k )!
k 1 2k 2
k 21
k
k
1
(k
3 (2)
k 0
=
(2k )!!
(2k 1)!!k
k 1
2
2
4k 2 k 1
= k ( k ) ( k 1) 2
2
k 2
k 2 k ( k 1)
2
= 2 arcsin 1
log 3 x
dx
=
4
(
1
)
x
0
2
=
1 x
dx
log 1 x x(1 x
2
2
0
=
.93534106617011942477...
1 tan dx
x
log 1 tan x
2
0
8 .93480220054467930941...
)
GR 4.323.3
2
1
4 (1)
2
2
4
( 1) k
7
( 1) k
4
1
4
729
( 3k 1) 4
k 1 ( 3k 1)
5
.93548928378863903321...
5 5
2 2
2i
2 i
.93594294416994206293... Li3 e Li3 e
0
1
1
sin 1
2
5
25k 2
1 / 5 k 1
(1) k
.93615021799926654078... log 2
3 2
k 0 ( 2 k 1)( 3k 1)
1
.93615800314842911627... 1
( k ) ( k 1)
k 2
.936342294367604449...
sin1
1 2
5 .936784413887151464...
GR 4.297.5
e
1
3
k 2
x dx
e x
x
1
1
k2
2
.93709560427462468743...
8
/2
(1 2 log 2)
log(sin x) cos
2
x dx
GR 4.384.10
0
1
=
1 x 2 log x dx
GR 4.241.9
0
=
xe
x
1 e 2 x dx
GR 3.431.2
0
7 .9372539331937717715...
63 3 7
1 .93738770119278726439...
3 2 log 2
2
2
6
2
k2
( k ) 1
k 1 k 1
Adamchick-Srivastava 2.23
15
(1)
k
16
k 0 15
(1) k 1
.9375000000000000000000 =
.93750000000013113727...
kk
k 1
.93754825431584375370...
=
.93755080503059465056...
=
k
log k
2
k 1 k
1
log n k
k3
n 1 ( n 1)! k 1
( 1) k 1
(2 )
kk
k 1
3
1 .93789229251873876097...
2
log 2 x dx
2
( x 1) 2
16
0
i Li3 (i ) Li3 (i )
1
=
k
log 2 x dx
0 x 2 1
Berndt 8.23.8
x 2 dx
0 e x e 2 x
log 2 x dx
1 x 2 1
GR 4.261.6
=
log 2 x dx
4
x 1
0
/4
=
log tan x dx
2
GR 4.227.7
0
1 1
=
log( x 2 y 2 )
dx dy
2 2
1
x
y
0 0
k H 1
1
15 2 3i 2 (i ) 2 (i )
24
(1) k
.93809428703288482665...
k 0 10k 1
.93795458450141751816...
k
k 2
4
.93836264953979373002...
.93846980724081290423...
1
1
4 sin 8
2
2
( 1) k
1
J1
k
2
2
k 0 ( k !) 16
8 cos
(1) k 1 ( 2 k )
.93852171797024950374...
( k 1)!
k 1
k 2 Hk( 3)
6 .938535628628181848...
2k
k 1
( 1) k
k
k 0 ( 2 k )! 4 ( k 1)
k
k 1
1
2 1/ k 2
e
2 .93855532107125917158...
( k ) 1 ( k ) 1
1
k 2
2
( 1) k 1
1 .93872924635600957846... 2 csc
2 2 2
6
2
k 1 k ( k 1 / 2)
coth
2
5 5
5 5 25 log 5 5
2
1
1 .93896450902302799392...
log
4
4
2
5 5
5
5
1
(k )
=
k 2
k 1 k (5k 1)
k 0 ( k 1)( k 4 / 5)
k 2 5
.93892130408682951018...
4 .939030025676363443...
3 ( 2)
( 4)
2
4
256
2
23040
3
where a( k ) is the nearest integer to k .
1
1 .939375420766708953077...
Li2 (3)
1
a(k )
k 1
4
AMM 101, 6, p. 579
log x
x 1 / 3 dx
0
.93958414182726727804...
3
33
H
1
2 2
log
2kk
2
2 2
k 1 2
kH
1
2 2
4 .9395976608404063362... 3 log 2
log
2kk 1
2
2
2 2
k 1
1 .9395976608404063362...
log 2
(k ) ( p ) 1
.93982139966885912103...
p k kth prime
k
.9399623239132722494...
2 2 (6)
1 p 2
21
(4) p prime 1 p 2 p 4
.94002568113...
g4
J310
(k )
.94015085153961392796...
(k 1)k !
k 2
1 .94028213339253981177...
( 2 k 1)
k 1
k!
115
.94084154990319328756...
384
e1/ k 1
k
k 1
sin5 x
0 x5
GR 3.827.11
1 .94112549695428117124...
2
24 2 32
1 2 k 2
k
k
8
k 0
16
(1)
k
17
k 0 16
9
(1) k
.94226428525106763631... 8 log k
8
k 0 8 ( k 1)
.9411764705882352
4 .9428090415820633659...
=
.94286923678411146019...
=
.942989417989417
k
=
4
2 2
3
2
CFG D4
sin k
1
3
6
4 12
k 1 k
i
Li e i Li3 ei
2 3
7129
1
7560
k 1 k ( 3 k / 3)
Davis 3.32
HypPFQ [{1,1,1,1},{2, 2, 2, 2},1]
( 1) k
=
4
k 0 k !( k 1)
.94308256800936130684...
.94318959229937991745...
5 2
cot 2
4
4
=
k
k 2
2
1
2
2 (2k ) 1
k 1
k 1
1 .943596436820759205057...
(2) (3)
(6)
(k )
k (k )
k 1
1 p 6
=
2
3
p prime (1 p )(1 p )
(1) k
5 .94366218996591215818... 3 2 6 csch
2
6
k 0 k 1 / 6
1
1
p ( p 1)
p prime
.94409328404076973180...
(3)
4
1
0
arcsin 2 x 2 arcsin 3 x
x
dx
/2
=
x
2
log(2 cos x) dx
0
Latter result due to Peter J.C. Moses and Seiichi Kirikami (A193712)
( 1) k 2 k
4 58 k
k 0 16 ( k 1) k
80 4 5
17
(1) k
k
18
k 0 17
1
(1) k
cos
3
( 2 k )! 9 k
.9442719099991587856...
8 .9442719099991587856...
.94444444444444444444
=
.94495694631473766439...
1
.9451956893177937492... 2 Li3
2
log 2 x
=
dx
2x2 x
1
AS 4.3.66, LY 6.110
( 1) k
k
3
k 0 2 ( k 1)
x2
0 2e x 1 dx
1
=
log 2 x
0 x 2 dx
0 (k )
.94529965343349825190...
(k 1)!
k 1
8
5
15
2
(2k )
2
1 .9455890776221095451...
I 0 1
2
k
k 1 ( k !)
k 1
.94530872048294188123...
1 .94591014905531330511...
6
log 7 Li1
7
1
.94608307036718301494...
si (1)
sin x
dx
x
0
( 1) k
=
k 0 ( 2 k 1)!( 2 k 1)
=
AS 5.2.14
1 dx
x
sin x
1
1
=
log x cos x dx
0
4 .94616381210038444055...
.946190799031120722026...
3 e
pf ( k ) k
2k
k 0
log 6 2 2
(1)k
k 2
2k
(k ) 1
k
1 .9467218571726023989...
k
sin 2
k 1
.946738452432832464562...
(k )
k!
k 1
5 .94678123535278519168...
5 tan
2 5
k
k 0
2
1
k 1/ 5
sin 3 k
1 cos 1
cos 3
3e sin(sin1) e sin(sin 3) k !
4
k 1
i
i
i
3i
3i
3ee 3ee ee ee
8
(1) k 1
7 4
7 ( 4 )
(4)
720
8
k4
k 1
1 i
(1 i )
cot (2 )1/ 4 coth 1/ 4
3/ 4
2
2 4
.94684639467237257934...
k
=
.94703282949724591758...
.947123885654706166761...
J306
=
k2
4
k 1 k 2
.94716928635947485958...
tanh
11
18
.947368421052631578947...
19
2
(1) k
k
k 0 18
k
k 1
2
1
k3
2
16
1 .94752218030078159758...
11
2
2 8 log 2 8 log 2 2
=
e
x2
log 2 x dx
GR 4.335.2
0
.947786324594343627...
sin
.94805944896851993568...
1
1
k 1
1
k2
3
1
1
1 2
8k 7 8k 1
8
J78, J264
k 1
Q( k )
k 1 k !
( 2 ) ( 3)
.94899699000260690729...
3
1
4 .949100893673262820934...
( 3) 1
1 .94838823193110849310...
.94939747687277389162...
arctan(sinh 1csc 1)
(1)
k
k 1
1
arctan
k 1
[Ramanujan] Berndt Ch. 2, Eq. 11.4
k
.9494332401401025766... k
k 1 3 1
.949481711114981524546...
.94949832897257497482...
.9497031262940093953...
2
=
9 .9498743710661995473...
3k
( 1) k
k
1
k 0 k !( k 2 ) 4
( 1) k
( 1) k
1
2
(6k 1) 2
6 3
k 1 (6 k 1)
0
k 1
2
1 ( k )
6
2 sin 1
log x
dx
x6 1
99
J329
.95000000000000000000
=
.95023960511664325898...
.95038404818064742915...
.95075128294937996421...
.95105651629515357212...
.9511130618309...
1 .95136312812584743609...
.9513679876336687216...
.95151771341641504187...
(1) k
k
k 0 19
19
20
2
1 5
3 log
6
2
2
.9520569031595942854...
3 1
1
2
2 3
6
k 1 k 3 / 2
8
( 2k )
7 (3)
k3
k 1
1
2
10 20 sin
cos
4
5
10
(k )
( 1) k 1 4
k
k 1
(1) k 1 8k
2 sin 2 2
( 2 k )!
k 1
2
15 e
2k
8
k 0 k !( k 6)
1 (1 ) 1
(1) k
(1 ) 2
2
6
3
36
k 0 ( 3k 1)
log x
=
dx
1 x3
0
Berndt Ch. 9
coth
1
(1) k ( k !) 2
2
k 0 ( 2 k )!( 2 k 1)
(3)
1
4
x log x
1 1 x 3
k
k 2
2
e
0
x
x dx
e 2 x
1
1
5
k k k3
=
( k ) (2 k 1)
k 2
.95217131705368432233...
=
.95247416912953901173...
2 .95249244201255975651...
cos x log(sin x )dx
0
20
(1)
k
21
k 0 20
1 1
1
, 2,
4 2
2
.952380952380952380
/4
2 log 2
2 2
k
( e 1) 2
j 1 k 1
(1) k
k
2
k 0 2 ( 2k 1)
1
j!k !
e
1
3
1 tanh
e 1
2
2
3
.95257412682243321912...
.9527361323650899684...
3
2 e
1
1 t
0
2
cos
t
dt
2
(1) e
k
3k
J944
5 .952777785411260053338...
11 4
11 (4)
1
x
x 2 log 2 2 cos dx
180
2
0
2
Borwein & Borwein, Proc. AMS 123, 4 (1995) 1191-1198
.953530125551415563988...
(k )
(k 4) 1
551
k5
.95353532563643122861...
101e
2
k 0 ( k 3)!
n
(k )
k (k )
.954085357876006213145...
, where ( n) ( k )
k 2 k!
k 1 ( k 1)!
k 1
k 2
4 .95423435600189016338...
.95460452143223173482...
3 .954608700594592236394...
.95477125244221922768...
Ei ( 2 ) log 2
1 ( 4) (5)
2 (3)
3
2k
k 1 k ! k
AS 5.1.10
2 (2) (3)
3
log 3 log 2
2
1
1
log1 2 x dx
0
2
7 .954926521012845274513...
2 I 0 (1)
e
sin x
dx
0
.95492965855137201461...
=
=
2 .95555688550730281453...
.95623017736969571405...
=
2 .95657573850025396056...
1
1
k 1 36k 2
cos
6 2k
k 1
3
GR 1.431
GR 1.439.1
0
1 / 6
2k ( k ) 1
k!
k 2 k
7
3 ( 3)
k 3 ( 2 k 1) 1
128
4
k 1
4
2
k ( k 4 k 1)
( k 2 1) 4
k 2
1587
k6
293e
2
k 0 ( k 3)!
.956786081736227750226...
1 cosh sinh
.95698384815740185727...
5
162
e
x
dx
0
3
sin k / 3
k3
k 1
GR 1.443.5
G
.95706091455937067489...
6 .9572873234262029614...
x ( x) 1 dx
2
2
.957536385054047800178...
log (s n)
s 2 n 1
.957657554360285763750...
1 .95791983595628290328...
2980 .95798704172827474359...
.958168713149316111695...
1
cot 2
2
arcsinh 1
2
1
2
k 1
k
tan
1
2
k 1
Berndt ch. 31
2 log 1 2
log( x 2 1)
0 x 2 2
8
e
2
2
1
1
(1 i ) (1 i ) ( 2 ) (1 i ) ( 2 ) (1 i )
2
8
5i (1)
(1 i ) (1) (1 i ) 2 ( 3)
8
=
( 1) k ( k ) (2k 1)
k
2
k 2
.95833608906520793715...
.95835813283300701621...
.95838045456309456205...
( 1) k 1
2
k 1 ( k )!
1
1
(1) k
cos
cosh
2
2
k 0 ( 4 k )!
1 ( 2 ) 5
3
1
( 2 ) 2 ( 2 ) 2 3 cot csc2
8
8
8
1024
8
8
=
(1) k
(1) k
1
3
( 4 k 1) 3
k 1 ( 4 k 1)
=
(1) ( k 1) / 2
3
k 0 ( 2k 1)
.95853147061909644370...
1 3 1
cos
3 2
3 e
(1) k
k 0 ( 3k 1)!
1 tanh( / 2)
e / 2
/2
( 1) k e k
2
e e / 2
k 0
1 1 3
2 .95867511918863889231...
4
4
1
( 1) k
1
.9588510772084060005... 2 sin
1 2 2
k
2 k 0 (2 k 1)!4
4 k
k 1
.95857616783363717319...
J944
GR 1.431
=
0
1 / 2
(1) k 1
2
k 1 ( 2 k 1)! k
.95924696800225890378...
4 ci (1)
.95951737566747185975...
1
e
2 sinh(1 / 2)
e 1
.95974233961488293932...
.95985740794367609075...
2 2 / 3
3 3
e
( k 1/ 2 )
J942
k 0
x dx
3
2
x
0
1
1
1
( 1) cos log2 2 cos1sin
2
2
2
1
k sin
k 1
2k 1
2
.9599364907945658556...
(k ) (k 1) 1
k 1
k ( 2 ( k ) 1)
k!
k 2
16
1
( 1) k 1 ( k !) 2
.96031092683032321590...
arcsinh
k
4
17
k 0 ( 2 k 1)! 4
4
1
(1) k
4
2
.9603271579367892680...
erf
k
2
e1/ 4
k 0 ( k 1)! 4 ( 2 k 1)
1 .96029978618557568714...
.96033740390091314086...
1 .9604066165109950105...
32 2
15
2
1
2
1 16k
k 2
log 2 log 2 2
48 8
4
4
/2
log sin x
2
0
.96090602783640284933...
.960984475257857133608...
.96120393268995345712...
1 .96123664263055641973...
.961533506612144893495...
Hk
2 log 2 2
k 1 k ( 2 k 1)
(k )
(1) k 1 k
2 1
k 1
1
(1) k
2 2 arctan
k
2 2
k 0 8 ( 2 k 1)
3 ( 3) ( 2 )
8 8
11 2
Li2 e 4i Li2 e 4i
6
4 ( 3)
5
2
( 2 k 1)
ek
2 .96179751544137251057...
3
k 1 ( k 1)!
k 1 k
4
1
(1) k
.96201623074638544179... 4 log arctan k
5
2 k 0 4 (2k 1)(k 1)
.96164552252767542832...
cos2 x dx
1
1 5
(1) k 2 k
2 log
k
2
2
k 0 16 ( 2 k 1) k
1
.96257889944434482607... log 7 2
arccot 3 3
2 3
3
1
(1) k 1
= 1 3k 1
6k 1 6k 1
k 1 3
.962423650119206895...
2 arcsinh
1 .962858173209645782869...
1
L
k 1
.96307224485663007367...
2 (5)
.96325656175755909737...
5 (1) (1) (1) (1)
1/ 5
k
=
3/ 5
4 /5
1
1
5
1 k
k 2
5
8
1
32k 6
k 1
(1 / 2)
1
.963510026021423479441... 2 log 2 1
1
2
(1 / 2)
3
= 1
2
1 .96349540849362077404...
2/5
32k
2
.96400656328619110796...
(1 log 2 )
log(1 x 2 )
0 x 2 (1 x 2 ) dx
e2 e 2
e2 e 2
.9640275800758168839...
tanh 2
3 .9640474536922083937...
(i 1) ( i ) (i 1) (i )
.9641198407218830887...
.96438734042926245913...
.96534649609163603621...
.96558322350755543793...
.9656623982056352867...
2
3 ( 3)
2
4 log 2
6
4
(k )
1
5
(5)
k 1 k
(10)
(k )
5
(5)
k 1 k
1
k
k 0 2 2
(2 k )
2 k 1
1
k 1 2
( 1) k 1
4
3
k 1 2 k k
HW Thm. 300
.9659258262890682867...
.96595219711110745375...
6 5 3
108
3
.96610514647531072707... erf
2
4 .96624195886232883972...
1 .9663693785883453904...
5
1
sin
12
6 2
2
1 3
4
AS 4.3.46
log x
dx
( x 6 1) 2
0
(1) k 32 k 1
k !22 k 1 (2k 1)
2
( 2 ) ( 3) ( 4 ) (5)
i
1 1 1
i
, 3 , i 2 Li3
Li3
4 2 2
2
2
.9667107481003567015...
=
log 2 x
1 x 2 1/ 2 dx
1
cosh1 sin1 cos1sinh1
2
4 .96672281024822179388...
1
cos x cosh x dx
0
1
1 k !!
k 1
.96676638530855214796...
=
1 .96722050079850408134...
.96740110027233965471...
.96761269589907614401...
.9681192775644117...
.96854609799918165608...
7
sin
1
1
7
49k 2
k 1
0
1 / 7
3
8
1 1 1 1
4G 2 log 2
0 0 0 0
5
1 ( 1) 1
5
(1 )
8
8
64
log x
dx
1 x4
0
=
3 .96874800690391485217...
w x y z
dw dx dy dz
2 2 2 2
y z
1 w x
3
(k ) (k 1)
(1) k k 2
1
4
2
2
k 2
( 4 k 3)
4k 3
1
k 1 2
2
1
=
GR 1.431
x log x
1 x 3 x 1 dx
(1) k
2
k 0 ( 4 k 1)
x 2 log x
1 1 x 4 dx
x
1
log x
dx
x 2
2
2
5 1 5
25 2 5 log 2 arcsinh 2 5 5 log 1 5 51 5 arccsch 2
=
4 .96888875288688326456...
.96891242171064478414...
.96894614625936938048...
=
=
Fk Hk
k
k 1 2
2 (k )
k 2 ( k 2 )!
1
cos Re (1)1 / 12
4
3
(1) k
( 3)
3
32
k 0 ( 2 k 1)
i
Im Li3 (i ) Li3 (i ) Li3 (i )
2
sin k / 2
k3
k 1
1 1 1
=
(1) k
k
k 0 ( 2k )!16
AS 23.2.21
dx dy dz
2 2 2
y z
1 x
0 0 0
5 .96912563469688101600...
2k
k 1 k ! ( 2 k 1)
.969246344554363083157...
(4k ) 1
k 2
2
csc
1
12
2 2
2
( 1) k 1
=
4
2
k 1 2 k k
4 5
g5
.96944058923515320145...
729 3
.96936462317800478923...
(k )
Titchmarsh 14.32.3
2 .9706864235520193362...
9 .9709255847316963903...
.97116506982589819634...
2
2 2
G 1/ 3
43867
B9
798
2
2
cos x
sin x dx
2
.97201214975728492545... 2
1
dx
3 0 2 cos x
0 2 sin x
54 .9711779448621553884
=
3 .972022361698548727395...
k (k ) (k 1) 1
k 2
J310
k 4 Hk
379 .97207708399179641258... 276 150 log 2
k
k 1 2
15 (5)
(1) k 1
.97211977044690930594...
(5)
(1, 5, 0)
16
k5
k 1
15 (5)
(1) k
.97211977044690930594...
5
16
k 0 ( k 1)
2 2
log 2
log(1 2 )
3
2
3
3
1
=
k 0 ( k 1)( 2 k 1)( 4 k 1)
1
(1) k
.97245278724951431491...
6 sin
k
6
k 0 6 ( 2 k 1)!
1
= 1
6 2 k 2
k 1
log 7
.97295507452765665255...
2
(1) k
(1) k
= 1 3k 1
3k
( 6k 1) 3 ( 6k 1)
k 1 3
.97218069963151458411...
2
AS 23.2.19
K ex. 108
1 .97298485638739759731...
H (k ) 1
k 2
1 .97318197252508458260...
k 1
5 3
13 (3)
8
81 3
=
=
=
.97336024835078271547...
2 .97356555791412288969...
1 (2) 2
x 2 dx
( 2) 1
x
3
6
216
e e 2 x
0
( 3) 2
1/ 3
(1)1/ 3 Li3 (1) 2 / 3 (1) 2 / 3 Li3 (1
2
3
1
2
log x
log 2 x
x log 2 x
0 x 3 1 dx 1 x 2 x 1 dx 1 x 3 1 dx
1
1
2 2
2 / 3
3
3 3
(2 )
4 ( 2 ) 3 ( 3)
2 2 75
1 .973733516712056609118...
48
S2 ( 2 k , k )
.97402386878476711062...
( 2 k )!
k 1
.97407698418010668087...
log(1 e )
kH k H k
(k 1)(k 2)(k 3)
k 1
.974428952452842215934...
3e 3
log 2 x
0 ( x 1)( x e) dx
i
i
i Li2 Li2
2
2
1 1
1
(1) k
, 2, k
=
4 4
2
k 0 4 ( 2k 1)( 2k 1)
8
2
sin
8 2 2 cos k 3
.97449535840443264512...
8
2
k 1
(1) k
1
.97499098879872209672...
2 log 1 2
2
k 0 k 3 / 4
.9744447165890447142...
2 1
=
(1 x
0
1 .97532397706265487214...
2
GR 1.439.1
dx
) cosh x / 4
GR 3.527.10
3 4 2 log 2 log 2 2
64
16
16
0
log 2 x
dx
x2 4 x2
sin Im(i )
2
2
.97536797208363138516...
1 .975416977098902409461...
1 .97553189198547105414...
25 .97575760906731659638...
1 .97630906368989922434...
3 2 log 2 21 (3)
4
8
2 sin 2
k 1
(1) 16
(2k )!
k 1
4 4
24 ( 4 )
15
/2
0
x3
dx
sin 2 x
k
x4
0 ex e x 2
I 0 (1) L0 (1)
1
=
exp(sin x) dx
0
1
11 4
3
Hk
( 4) 2 ( 2)
2
2
360
2
k 1 ( k 1)
1
(1) k 1
.97645773647066825248... sin k
2 k 1
2
1)
k 1
k 1 ( 2 k 1)!( 2
2
1
1
cos 1 2
.976525256762151736913...
2
2
1 2
(2 k 1)
k 1
2
2 .9763888927056300267...
1 (1) 1
5
(1)
36
6
6
2
( 3)
(k )
1 .9773043502972961182... ( 2 ) ( 3)
13
6
k
k 1
.976628016120607871084...
18 MI 4, p. 15
h2
J314
k 1
1 ( k )
k2
HW Thm. 290
2 log 2
7 (3)
.977354628657892959404...
(2)
2
3
k 1 ( k )
.97745178 ...
( 1)
k3
k 1
3 .97746326050642263726...
I 0 (1)
k 12
k 1
k2
ecos x dx
e
0
0
cos 2 x
dx
2 2
log 2 2
2 .9775435572485657664... 1
log 2 log 2
2 24
2
=
.977741067446923797632...
4 .9777855916963031499...
log 2 x sin 2 x
0 x 2 dx
1
2 1
4
2k 2
1 2k 3
k 0
3
k 2k
e I 0 (1) I1 (1) 1F1 ( ,2,2) k
2
k 0 k!2 k
35
109 .9778714378213816731... 55
2
2k k 3
k 0 2k
k
7G 3
(1) k 1 k 5
2
3
4
8
k 1 ( k 1 / 4 )
1 ( 1) 1
3
.97797089479890401141...
( 1)
10
5
100
1 .977939789810133276346...
=
x log x
1 x3 x 2 dx
2
.97829490163210534585...
G 1/ 4
1 .9781119906559451108...
2
6
1
log x
dx
5
1
x
0
2
log xdx
ex
0
(1) k
2
k 0 (5k 1)
GR 4.355.1
40320 (9) ( 8) (1)
3
.97846939293030610374... Li2
4
40400 .97839874763488532782...
.97895991797814145164...
4 2
/2
=
0
log (3 2
x dx
sin x cos x
2 ) i 2arc cot(1 2 2arc cot(1 2 )
.97917286680253558830...
.97929648814722060913...
.97933950487701827107...
.97987958188123309882...
.98025814346854719171...
( 1) k
1
1
cos 3/ 4 cosh 3/ 4
k
2
2
k 0 ( 4 k )! 2
1
(1) k
2 2 sin
k
2 2
k 0 ( 2 k 1)!8
1
( 1) k
16 sin2
k
4
k 0 ( 2 k 1)! 4 ( k 1)
log
1 3
2
1
log(1 x 2 )
dx
1 x2
2k (1) k
2 log 2 k
k 0 k 32 ( 2k 1)
GR 4.295.38
0
k3
(k 1) 1
k 1 k 1
1
( 1) k
.98158409038845673252... 3sin k
3 k 0 9 (2 k 1)!
1
= 1
9 2 k 2
k 1
2 .981329471220721431406...
.98174770424681038702...
2 (3)
5
16
.98185090468537672707...
k 1
.98187215105020335672...
=
1 .98195959951647446311...
(2k )
k !2
k
x 5/ 2
dx
1 x
(2k )
GR 3.226.2
(2k )!! e
k 1
.98265693801555086029...
1/ 2 k 2
6
5
1
k 1
i
Li2 (1) 3/ 4 Li2 (1)1/ 4
2
sin k / 4
k2
k 1
2
3
3
csc
5
5
5 5
1 tanh 2
e2
.98201379003790844197...
2
2
e e 2
19 e1/ 3
k3
.982097632467988927553...
k
27
k 0 k !3
1 .9823463240711475715...
dx
1 x
5/ 3
0
(1)
k
e 4 k
J944
k 0
2 e x 2
22 2 log 2
2 1 e2 x dx
2
GR 3.438.2
9
3
3
x x
x3 x
0
2 ( 6)
1 cosh 3
1
i 3
2
.98268427774219251832...
2
2 sin
12
6
2
2
1
6
1 k
k 2
.982686076702760592745...
.98295259226458041980...
.983118479820648366...
945
(k )
5 .98358502084677797943...
.98361025039925204067...
.98372133768990415044...
1
log 2 x
0 x 2 2
i i
i
Li3
Li3
2
2
2
691 6
675675
1
6
p prime 1 p
( 2 ) ( 3) ( 4 ) (5) ( 6)
( 1) k 1
3
2G log 2
3
2 16
k 1 k ( 2 k 1)
1 (1 ) 1
(1) k
7
( 1)
2
12
12
144
k 0 ( 6k 1)
=
k 1
1 1
1
, 3,
8 2
2
=
.983194483680076021738...
6
1
(6)
(1) k
k 0 2k
(2k 1)3
k
k6
1
1
sin
1 4 2
k
k 1
.98318468929417269520...
1 1 3 3 3 1
HypPFQ , ,1,1, , , ,
2 2 2 2 2 4
x log x
dx
3
x 3
x
1
3k 2 3k 1
2 4 ( 2 ) 2 ( 3) 2
3
k 2 k ( k 1)
10 .98385007371209431669...
=
(k
k 2
.98419916936149897912...
.9843262438190419103...
.9845422648017221585...
2
k ) ( k ) 1
403 6
6
393660
23
( 6) ( 5)
63
2
(3)
2 log 2 2
6
4
.98481748453515847115...
( 1) k
k 4
k 1 k
.98517143100941603869...
2
.98542064692776706919...
1
log
3
J312
(1 x ) log 2 (1 x )
dx
0
x2
1
2 1 21/ 4 , from elliptic integrals
16
(2 k )
4
k4
15 ( 4 )
k 1
(1) k 1
31 6
31 ( 6)
.9855510912974351041...
( 6)
30240
32
k6
k 1
3
( 1) k
4 .98580192112184410715... 4 2 log sin
log sin
1
3
8
8
k 0 ( k 4 )( k 4 )
.9855342964496961782...
1 .98610304049995312993...
96
1 ( 2 ) 5
( 2 ) 1
8
512
8
J306
1
log 2 x
0 x 4 1 dx
=
.98621483608613337832...
6 .98632012366331278404...
.9865428606939705039...
log 2 x
1 x 2 x 4 dx
( 1) k
k
k 0 ( 2 k 1)! 4 ( 2 k 1)
5e2 9
2k k 2
4
k 0 k !( k 3)
1
2 si
2
11 4
1
768 2
=
(1) ( k 1) / 2
4
k 0 ( 2k 1)
( 1) k
( 1) k
4
(4 k 1) 4
k 1 ( 4 k 1)
J327, J344
.98659098626254229130...
=
12 .98673982624599908550...
.98696044010893586188...
Prud. 5.1.4.4
5 3
13 (3)
1 ( 2) 2
1
( 2 )
2
432
162 3
3
6
(1) k
3
k 0 ( 3k 1)
28402
(1) k 1 k 10
2187
2k
k 1
2
10
1856 380
4
8 .98747968146102986535...
log
243
81
3
.98776594599273552707...
.98787218579881572198...
=
6 .98787880453365829819...
k 4 Hk
k
k 1 4
sin 2
4
7 4 15
csc 4 15 csch 4 15
105
420
(1) k
4
k 2 k 15
2 4
6
15
( x 1) log 3 x
0 1 x dx
1
.98829948773456306974...
.98861592946536921938...
2
18 3 1
3 2
3
2
=
0
log x
dx
x12 1
cos 3 2
k 1
1
3 1 1
144 k 2
k 1
=
k 2
GR 1.431
0
1 / 12
2 2 k 1
sin 1 sinh 1 ( 1)
( 4 k 2 )!
k 0
1
= 1 4 4
k
k 1
.98889770576286509638...
k
GR 1.413.1
1 ( 3) 1
3
( 3)
4
4
1536
i
= Li4 (i ) Li4 ( i )
2
(1) k
sin k / 2
=
4
k4
k 0 ( 2 k 1)
k 1
.98894455174110533611...
1 .98905357643767967767...
.9890559953279725554...
3
log 2 x dx
6
x 1
9 3
0
2
2
log 2 (2 x)dx
2
12
e2 x
0
log 2 k
k2
k 1
1 .98928023429890102342...
( 2 )
1 .989300641244953954543...
(3 i) (3 i )
.98943827421728483862...
k 1
.98958488339991993644...
.98961583701809171839...
=
0 (k )
2k
4
(2 i) (2 i)
5
k
1
1
( 1) k
cos cosh
k
2
2
k 0 ( 4 k )! 4
1
( 1) k
4 sin
k
4
k 0 ( 2 k 1)!16
1
1
16 2 k 2
k 1
.98986584618905381178...
1 .98999249660044545727...
.99004001943815994979...
4 arcsinh
1
4
2k
( 1) k
k
k 0 k 64 ( 2 k 1)
1 cos 3 2 sin 2
3
2
( 1) k 1 9 k
(2 k )!
k 1
3
1 (2) 5
7
1 (7 4 3 )
( 2 ) 2 ( 2 )
12
12
12
3456
432
( 1) k
( 1) k
1
3
(6k 1) 3
k 1 ( 6k 1)
=
.990079321507338635294...
1 2
7
15
4 20 14 2 (1) (1)
256
16
16
=
log x dx
2
x 6
x
1
10
74
4 .990384604362124949925...
3 81 3
78 .99044152834577217825...
1
212
e
.99076316985337943267...
k3
k 1 2k
k
(1) k k 10
k 0 ( k 1)!
k (k ) 1
2
k 2
.99101186342305209843...
21 .99114857512855266924...
5 .991155403803739770668...
1
(i 1) ( i ) (i 1) (i )
4
7
1
7
3
176 4 2 (3) ( 3)
4096
8
8
4 .9914442354842448121...
=
log 3 x dx
1 x 2 x 2
6
( 3)
.99166639109270971002...
.99171985583844431043...
1 2 3 4 1
HypPFQ , , , , ,
5 5 5 5 3125
(k )
1
7
(7)
k 1 k
1
(5k )!
k 0
7
6 .99193429822870080627...
(k )
k 2
2 .9919718574637504583...
.99213995900836...
2 3
3
7
Borwein-Devlin p. 35
1 .992173853105526785479...
I
k 0
.99220085376959424562...
.99223652952251116935...
1 .992294767124987392926...
1 .992315656154176128013...
.99259381992283028267...
.99293265189943576028...
(1)
4 3
sin 2 k / 5
125
k3
k 1
56 7
g7
94815 3
e(e 1)
1
, 2, 0
3
(e 1)
e
GR 1.443.5
J310
k2
k
k 1 e
5
i Li5 (i ) Li5 (i )
768
63 ( 7 )
(1) k 1
(7)
k7
64
k 1
2
1
(1 e )
.99297974679457358056...
k
sin(tan x)
0
AS 23.2.19
dx
x
GR 3.881.2
( 3k 2 )
2 3k 2 1
1 ( 2 ) 5
1
( 2 )
8
8
1024
k 1
.99305152024997656497...
2
.99331717348313360398...
2 2
.993317230688294041051...
i
i
2 2 1 1
2 2
.993703033793554457744...
.9944020304296468447...
.99452678821883983884...
1 .9947114020071633897...
.99532226501895273416...
3
Li2 e 2i Li2 e 2i
17 (4)
3 (3)
4
k
k 1
6 log 2 log 2 2 2
k (k
k 1
2
1
1 / 4)
Hk Hk
2
(k 1)
2
6
k3
k
2
k 1 2 ( k 1)
3
18 3
5
2
h3
J314
(1) k 2 2 k 1
erf 2
k 0 k !( 2 k 1)
2
1 .9954559575001380004...
dx
x
x
0
1 .99548129134760281506...
.99551082651341250945...
10 .99557428756427633462...
21 .99557428756427633462...
.995633856312967456342...
2
log x sin x
( log 2 )
0
(91 45 5 ) 4
1
18750
7
2
7
11
2
dx
x
GR 4.421.1
( 1) k
( 1) k
4
(5k 1) 4
k 1 (5k 1)
2k k 2
k 1 2k
k
1 ( 4 ) 3
5
1
7
( 4 ) ( 4 ) ( 4 )
8
8
8
8
786432
(1) k
(1) k
= 1
5
( 4 k 1)5
k 1 ( 4 k 1)
=
(1) ( k 1) / 2
5
k 0 ( 2k 1)
.99585422505141623107...
Prud. 5.1.4.4
2 (k )
2k
arctan k
.99591638044188511306...
2k
k 1
sinh
1/ 4
.99592331507778367120...
sin ( 1) 3/ 4
3 sin ( 1)
8
sinh
=
cosh 2 cos 2
16 3
k 2
1
8
1 k
k 2
8
7 .99601165442664514565...
( k )
k 2
k3
1 .99601964118442342116... 142 e 384
k 0 k !( k 4 )
8
5207
.99608116021237162307...
8
49601160
15 .996101835651158622733...
.99610656865...
32 238
3
81 3
g8
J312
k4
k 1 2 k
k
J310
(1) k
5 5
(5)
.99615782807708806401...
5
1536
k 0 ( 2 k 1)
127 8
127 (8)
.99623300185264789923...
(8)
1209600
128
( 1) k 1
k8
k 1
J306
19 5
4096 2
( 1) k
( 1) k
= 1
5
(4 k 1)5
k 1 ( 4 k 1)
.99624431360434498902..
AS 23.2.21, J345
.996272076220749944265...
.99633113536305818711...
8 .99646829575509185269...
2
tanh
log 3
tan i
e e
i
e e
1/ 2
K (k )k
dk
4 3/ 4 0
2 1
2
k
(k )
2
3
x sin x dx
3
2 log 2 9 (3)
1 cos x
0
GR 6.153
k 2 ( k )
2k
k 2
e(e 4 263 66e 2 26e 1)
k5
1
, 5,0 k
119 .99782676761602472146...
(e 1) 6
e
k 1 e
2
2
3
11
7 ( 3)
16k 6k 1
.99784841149774479093...
log 2
3
8
2
4
k 2 2 k ( 2 k 1)
k 2 ( ( k ) 1)
=
2k
k 2
.997494864721368727032...
( 1) k
9
8 .99802004725272736007...
(k )
k 2
.998043589097895...
9
J312
3236
g9
55801305 3
( 1) k
23 4
( 1) k
.9980715998379286873...
1
4
( 6k 1) 4
1296 3
k 1 ( 6k 1)
9
.9980501956570772372...
255 (9)
.99809429754160533077... (8)
256
2 .998095932602046572547...
Hk Hk
k (2k 1)
k 1
( 1) k 1
k9
k 1
J310
AS 23.2.19
e 2
1 tanh
.99813603811037497213...
(1) k e 2k
2
2
1 e
.9983343660981139742...
3
1
128 2 64
3
1
(8k 5)
3
J944
1
3
(8k 3)
( k 1)( k 2 )( k 3) Hk
1016 512
4
17 .99851436155475931539...
log
81
27
3
4k
k 1
k 1
.99851515454428730477...
3 2
.99857397195353054767...
19
1
14
2 3 5 3
.9986013142694680689...
9 2
log1 x
2
0
2
2
4
1
dx
2
( 1) k
( 1) k
6
(4 k 1) 6
k 1 ( 4 k 1)
J327
1
(1) k
1 1 1 2 5
.99861111319878665371... HypPFQ , , , , , ,
( 6k )!
6 3 2 3 6 46656
k 0
1 ( 5) 1
( 1) k
( 5) 3
.99868522221843813544... ( 6)
AS 23.2.21
4
4 k 0 (2 k 1) 6
491520
.998777285931944...
h4
J314
33 .99884377071514942382...
.999022588776486298...
.99903950759827156564...
1 .99906754284631204591...
5e4 1
4k k
8
k 0 k !( k 2 )
10
48983
10
4591650240
73 10
511 (10)
(10)
6842880
512
6 2
4 sin 1sinh 1
4 1
(1) k 1
k 10
k 1
J306
4
k4
k 2
e e e 2 1/ e e 2 1
sinh k
1 .99916475865341931390...
2e
k 1 ( k 1)!
7
1 .99919532501168660629...
11
3 7 4 3
log 2 x dx
1 .99935982878411178897...
12
x 1
216
0
.99915501340010950975...
.99953377142315602297...
.9995545078905399095...
1
4
3 2
( 1) k
61 7
( 7)
7
184320
k 0 ( 2 k 1)
AS 23.2.21
.99955652539434499642...
2
307 7 2
1
1310720
11 5
h5
1944 3
305 5
.9997427569925535489... 2
1
93312
.999735607648751739...
.9997539139218932560...
( 1) k
( 1) k
7
( 4 k 1) 7
k 1 ( 4 k 1)
=
=
J314
( 1) k
( 1) k
5
(6k 1) 5
k 1 ( 6k 1)
sinh
2 3
sin ( 1)1/ 6 sin ( 1)5/ 6
cosh
12 5
2
sinh
2 3
cosh
2 cosh cos 3
24 5
1
1 12
k
k 2
( 1) k
.99980158731305804717...
k 0 ( 7 k )!
24611 8
.99984521547922560046...
1
165150720 2
.99984999024682965634...
(8)
( 1) k
( 1) k
8
(4 k 1) 8
k 1 ( 4 k 1)
J327
1
(7) 1
3
( 7 )
4
4
330301440
(1) k
8
k 0 ( 2 k 1)
=
.99992821782510442180...
1681 6
1
933120 3
( 1) k
( 1) k
6
(6k 1) 6
k 1 ( 6k 1)
J327
( 1) k
6385 9
( 9)
9
41287680
k 0 ( 2 k 1)
( 1) k
.99997519841274620747...
k 0 (8k )!
301 7
h7
.9999883774094057879...
524880 3
(1) k
33367 7
(1) k
.99998844843872824784... 2
1
7
100776960
(6k 1)7
k 1 (6k 1)
.99994968418722008982...
AS 23.2.21
J314
( 1) k
.9999972442680777576...
k 0 ( 9 k )!
(1) k
(1) k
.99999727223893094715...
1
8
(6k 1) 8
1410877440 3
k 1 (6k 1)
25743 8
J329
( 1) k
.99999972442680776055...
k 0 (10k )!
© Copyright 2026 Paperzz