Annals of Botany 84, 475–499, 1999 Article No. anbo.1999.0942, available online at http :\\www.iealibrary.com on Microsporogenesis in Monocotyledons C A R O L A . F U R N E S S * and P A U L A J . R U D A L L Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK Received : 20 January 1999 Returned for revision : 5 April 1999 Accepted : 21 June 1999 This paper critically reviews the distribution of microsporogenesis types in relation to recent concepts in monocot systematics. Two basic types of microsporogenesis are generally recognized : successive and simultaneous, although intermediates occur. These are characterized by differences in tetrad morphology, generally tetragonal or tetrahedral, although other forms occur, particularly associated with successive division. Successive microsporogenesis is predominant in monocotyledons, although the simultaneous type characterizes the ‘ lower ’ Asparagales. Simultaneous microsporogenesis also occurs in Japonolirion and Petrosaia (unplaced taxa), some Araceae, Aponogeton, Thalassia and Tofieldia (Alismatales), Dioscorea, Stenomeris and Tacca (Dioscoreales), and some Commelinanae : Arecaceae (Arecales), and Cyperaceae, Juncaceae and Thurniaceae (Poales). Simultaneous microsporogenesis is of phylogenetic significance within some of these groups, for example, Asparagales, Dioscoreales and Poales. An intermediate type is recorded in Stemonaceae (Pandanales), Commelinaceae (Commelinales) and in Eriocaulaceae and Flagellariaceae (Poales). There is little direct relationship between microsporogenesis type and pollen aperture type in monocots (except for trichotomosulcate and pantoporate apertures), although trichotomosulcate apertures in monocot pollen, and equatorial tricolpate and tricolporate apertures in eudicot pollen, are all related to simultaneous microsporogenesis. # 1999 Annals of Botany Company Key words : Microsporogenesis, monocotyledons, pollen apertures, phylogeny, tetrads, simultaneous, successive, systematics. INTRODUCTION Microsporogenesis has been shown to be an important character in monocot phylogeny through work on the order Asparagales (Rudall et al., 1997). In this paper, microsporogenesis is reviewed in a systematic context throughout the monocotyledons, based both on records from the literature and from our own observations. New records are presented, particularly for taxa that are taxonomically isolated or otherwise hold a critical systematic position. Microsporogenesis type is evaluated in relation to recent monocot phylogenies, and also in relation to pollen aperture type. Apertures in monocot pollen are either distal (located across the distal pole in the tetrad) or derived from distal apertures, for example, disulcate, spiraperturate and pantoporate. Inaperturate pollen is widespread and common in monocotyledons (Furness and Rudall, 1999 a, b). In angiosperms generally, two basic types of microsporogenesis are recognized : successive and simultaneous. In successive microsporogenesis, a callose wall is laid down separating the two daughter cells after the first meiotic division, this is known as the dyad stage. Tetrads resulting from successive division are tetragonal (or isobilateral), Tshaped, linear, rhomboidal or decussate. In simultaneous microsporogenesis, the second meiotic division immediately follows the first, with no wall formation until four nuclei are present. The resulting tetrads are tetrahedral. Decussate * For correspondence. Fax j44 (0)181 332 5278, e-mail c.furness!rbgkew.org.uk 0305-7364\99\100475j25 $30.00\0 tetrads are also associated with simultaneous microsporogenesis, since the centres of the daughter cells (in two pairs) are arranged in a tetrahedral orientation (Muller, 1970). Actually, intermediates exist between the two microsporogenesis types (see reviews by Murty, 1964 ; Bhandari, 1984 ; Blackmore and Crane, 1998). In the ‘ modified simultaneous ’ type, an ephemeral cell plate is laid down after the first meiotic division, which then disappears and simultaneous cytokinesis occurs, or sometimes the second division quickly follows the first, before the cell plate is completely formed. There are also two different modes of cell cleavage, although again, intermediates can occur. Generally, successive divisions occur by the formation of centrifugal cell plates and simultaneous by centripetal furrows, although this may not always be the case. The patterns of organelle and plastid distribution also differ during successive and simultaneous microsporogenesis (Rodkiewicz, Kudlicka and Stobiecka, 1984). MATERIALS AND METHODS Material examined Material was obtained from the living collections of the Royal Botanic Gardens, Kew (HK : followed by Gardens accession number), or collected from the wild (collectors name and collection number given). K indicates material from the spirit collection of the Kew Herbarium. Species examined with both light (LM) and transmission electron microscopy (TEM). Anigozanthos flaida DC. (HK : 1983-4125), Anthurium andraeanum Linden (HK : 498-63# 1999 Annals of Botany Company 476 Furness and Rudall—Microsporogenesis in Monocots 49801), Carex elata All. ‘ Bowles Golden Sedge ’ (HK : s.n.), C. pendula Huds. (HK : s.n.), Dioscorea sylatica Ecklon (HK : 1994-796), Eriophorum aginatum L. (HK : 307-7602977), Ficinia gracilis Schrad. (HK : 1997-6062), Globba atrosanguinea Teijsm. & Binn. (HK : 302-84-03036), Luzula forsteri DC. (HK : 1982-177), Narthecium ossifragum Huds. (Furness & Rudall 1, UK), Tacca chantieri Andre! (HK : 1994-948), T. pinnatifida J. R. Forst. & G. Forst. (HK : 02186-00329), Tradescantia irginiana L. (HK : 1983-426), Typha laxmanni Lepech. (HK : 1995-257). Species examined with differential interference microscopy (DIC). Blandfordia grandiflora R.Br. (HK : 1968-1105), Eriocaulon thwaitesii Koern. (K : E. Barnes B9, S. India), Japonolirion osense Nakai (Hokkaido University Botanic Garden 11826), Mayaca fluiatilis Aubl. (s.n., Brazil), Narthecium ossifragum (Furness & Rudall 1, UK), Petrosaia borneensis Becc. (K : Chew, Corner & Stainton 601, Mt. Kinabalu), Sciaphila albescens Benth. (K : N. Y. Sandwith 1095, British Guiana), Tofieldia sp. cf. okubai Makino (HK : 1979-5209), Triglochin procerum R.Br (Jacobs S. J. 6548), Xyris trachyphylla Mart. (M. G. Sajo 16n12n97, Brazil). Methods LM and TEM. Anthers dissected out of fresh buds were placed in 2n5 % glutaraldehyde in 0n1 cacodylate buffer (pH 7n2), de-aerated under vacuum for 1 h and fixed for 16–20 h at 4mC. They were then washed in cacodylate buffer, postfixed in 1 % buffered osmium tetroxide for 3 h at room temperature and washed again. Anthers were dehydrated through an ethanol series followed by three changes of 100 % ethanol and embedded in LR White resin (London Resin Co., Reading, UK) in gelatin capsules. Semithin (approx. 1 µm) sections were cut using a Reichert Ultracut and a dry glass knife, stained with toluidine blue, and examined using a Nikon Labophot light microscope with normal brightfield optics to determine the stage of development. Appropriate stages were mounted in DPX (SigmaAldrich Co., Gillingham, UK) and photographed using the same microscope and a Nikon AFX-II camera attachment (for example, Globba atrosanguinea, Fig. 5 H, I). Ultrathin (gold) sections were then cut using a diamond knife, stained with uranyl acetate followed by lead citrate in an LKB Ultrostainer and examined using a JEOL JEM-1210 TEM. DIC. For examination of microsporogenesis using differential interference microscopy (DIC), flowers of suitable stages were fixed in FAA and transferred to 70 % alcohol, the anthers were then removed and dissected on a microscope slide in a few drops of a modified version of Herr’s clearing fluid (lactic acid : chloral hydrate : phenol : clove oil : Histoclear, in proportions 2 : 2 : 2 : 2 : 1 by weight). The slides were examined using differential interference contrast (DIC) optics on a Leitz Dialux 20 photomicroscope. In some taxa (for example, Juncaceae) pollen is shed as tetrads, but in most taxa tetrads are present only in young buds, making this character less accessible, and often several sizes of bud have to be dissected to obtain the required tetrad stages. RESULTS AND DISCUSSION Results are presented in Table 1 and discussed below in a systematic context. The system of monocot relationships used here is based on Chase et al. (1995 b) and Chase et al. (1999), and the orders are those recognized by the Angiosperm Phylogeny Group (1998). Records of microsporogenesis type for 191 taxa both from the published literature and from our own observations of 23 taxa are presented in Table 1. We have used literature records from more than one source for each taxon where possible to increase the level of reliability. More recent records may include LM or TEM photographs (but not always) and older records may have line drawings (but not always). Nevertheless, when these records are arranged according to the independent (mainly molecular) phylogeny, a definite pattern emerges. Taxa which do not fit this pattern or where further data are required (for example, some Araceae and Eriocaulaceae) are discussed below. We have found the work of some older authors such as Schnarf (1931), for example, to be generally substantiated by more recent data. We have attempted to subdivide the process of microsporogenesis into types based on the patterns observed at different stages of microspore development. Three basic microsporogenesis types are recognized in Table 1 (see Introduction) : (1) successive, where dyads and\or tetragonal, T-shaped, linear, rhomboidal or decussate tetrads are described ; (2) simultaneous, where dyads are not described and tetrads are tetrahedral or decussate ; and (3) intermediate or irregular, where there are ephemeral cell plates or the second division occurs quickly after the first, before the cell plate is completely formed, and tetrads may be described as irregular. Actually, as in many developmental processes, a continuum may exist between all three categories, dependent upon the exact mode and timing of meiosis (Blackmore and Crane, 1998), however, the types recognized above do appear to have systematic significance (see below). ‘ Primitie ’ dicotyledons We have used the term ‘ primitive ’ dicotyledons to refer to the phylogenetically ‘ basal ’ angiosperm groups : Ceratophyllales, Laurales, Magnoliales and Piperales, and some unplaced familes including Amborellaceae, Austrobaileyaceae and Canellaceae (Angiosperm Phylogeny Group, 1998). These groups are all characterized by monosulcate or monosulcate-derived pollen. Among the ‘ primitive ’ dicotyledons, which include the putative sister groups to the monocotyledons, many taxa have simultaneous microsporogenesis, for example in Illiciaceae, Schisandraceae and Winteraceae (Hayashi, 1960 ; Walker, 1974), which are unplaced within the ‘ primitive ’ dicots according to the Angiosperm Phylogeny Group (1998). Some other ‘ primitive ’ dicots have successive microsporogenesis, such as Ceratophyllum (Ceratophyllales–Ceratophyllaceae : Takahashi, 1995), Hedycarya and Tambourissa (Laurales– Monimiaceae : Sampson, 1982 ; Rowley and Flynn, 1990– Furness and Rudall—Microsporogenesis in Monocots 477 T 1. Microsporogenesis and pollen aperture type in monocotyledons ; arrangement based on the orders of the Angiosperm Phylogeny Group (1998). For Asparagales, see Rudall et al. (1997). References to Stenar (1925), Schnarf (1931), Dahlgren, Clifford and Yeo (1985) and Grayum (1991) include literature cited therein Taxon Microsporogenesis type and source Japonoliriaceae Japonolirion Simultaneous (this paper, Fig. 1 A, B) Petrosaviaceae Petrosaia Simultaneous (this paper, Fig. 1 C) Triuridaceae Andruris Successive (Ru$ bsamen-Weustenfeld, 1991) Sciaphila Successive (Wirz, 1910 ; Schnarf, 1931 ; Ohga and Sinoto, 1932 ; Ru$ bsamen-Weustenfeld, 1991 ; this paper Fig. 1D) Seychellaria Successive (Ru$ bsamen-Weustenfeld, 1991) Pollen aperture type and source Monosulcate (Takahashi and Kawano, 1989) Monosulcate (Caddick et al., 1999 a) Inaperturate (Ru$ bsamen-Weustenfeld, 1991) ( ?) Monosulcate (Ru$ bsamen-Weustenfeld, 1991), monosulcate (Grayum, 1992) Inaperturate or ( ?) monosulcate (Ru$ bsamenWeustenfeld, 1991) Inaperturate or monosulcate (Ru$ bsamen-Weustenfeld, 1991), possibly inaperturate (Grayum, 1992) Triuris Successive (Ru$ bsamen-Weustenfeld, 1991) - Acorales : Acoraceae Acorus Successive (Grayum, 1991) Monosulcate (Grayum, 1992 ; Rudall and Furness, 1997) Alismatales : Alismataceae Alisma Successive (Stenar, 1925 ; Schnarf, 1931) Successive (Schnarf, 1931) Successive (Schnarf, 1931) Successive (Schnarf, 1931) Pantoporate (Chanda, Nilsson and Blackmore, 1988 ; Grayum, 1992) Pantoporate (Chanda et al., 1988) Pantoporate (Chanda et al., 1988) Pantoporate (Chanda et al., 1988 ; Grayum, 1992) Simultaneous and successive (Stenar, 1925 ; Schnarf, 1931) Monosulcate (Zavada, 1983 ; Dahlgren et al., 1985 ; Grayum, 1992) Successive (Grayum, 1991) Successive (Stenar, 1925 ; Grayum, 1991 ; this paper, Fig. 1 E–H), simultaneous (Gow, 1913) Successive (Stenar, 1925), successive and simultaneous (Maheshwari and Khanna, 1956) Successive (Pacini and Juniper, 1983) Successive (Palm, 1920, as Microcasia ; Grayum, 1991) Successive (and simultaneous) (Banerji, 1937) Successive (Stenar, 1925 ; Schnarf, 1931) Successive (Stenar, 1925 ; Grayum, 1991) Simultaneous (Gow, 1913) Successive (Palm, 1920 ; Stenar, 1925 ; Grayum, 1991) Successive (Grayum, 1991) Successive (Stenar, 1925 ; Grayum, 1991) Successive (Grayum, 1991) Successive (Grayum, 1991) Successive (Grayum, 1991) Inaperturate (Grayum, 1992) Diporate, 3–4 porate, polyporate, rarely inaperturate (Grayum, 1992) Inaperturate (Grayum, 1992 ; Ohashi, Murata and Takahashi, 1983) Inaperturate (Grayum, 1992) Inaperturate (J. Bogner, reported in Grayum, 1992) Inaperturate (Grayum, 1992) Ulcerate (Erdtman, 1952 ; Grayum, 1992) Inaperturate (Grayum, 1992) Inaperturate (Grayum, 1992) Monosulcate (Grayum, 1992) Inaperturate (Grayum, 1992) Monosulcate (Grayum, 1992) Inaperturate (Grayum, 1992) Inaperturate (Grayum, 1992) Inaperturate (Grayum, 1992) Successive (Stenar, 1925 ; Schnarf, 1931) Monosulcate (Chanda et al., 1988 ; Grayum, 1992) Successive (Ducker, Pettitt and Knox, 1978) Successive (Yamashita, 1976) Successive (Ducker et al., 1978 ; Pettitt, 1981) Inaperturate (Ducker et al., 1978) Inaperturate (Pettitt and Jermy, 1975) Inaperturate (Ducker et al., 1978 ; Pettitt, 1981) Successive (Stenar, 1925 ; Schnarf, 1931) Successive (Schnarf, 1931) Successive (Pettitt, 1981) Inaperturate (Erdtman, 1952) Inaperturate (Pettitt, 1980) Inaperturate (Pettitt and Jermy, 1975 ; Pettitt 1980, 1981) Inaperturate (Erdtman, 1952) Inaperturate (Erdtman, 1952) Inaperturate (Takahashi, 1994) Monosulcate-operculate (Erdtman, 1952) Inaperturate (Pettitt 1980, 1981) Damasonium Echinodorus Sagittaria Aponogetonaceae Aponogeton Araceae Ambrosina Anthurium Arisaema Arum Bucephalandra Colocasia Lemna Peltandra Philodendron Pothos Spathyphyllum Symplocarpus Synandrospadix Theriophonum Zantedeschia Butomaceae Butomus Cymodoceaceae Amphibolis Halodule Thalassodendron Hydrocharitaceae Elodea Enhalus Halophila Hydrocharis Limnobium Ottelia Stratiotes Thalassia Successive (Schnarf, 1931) Successive (Schnarf, 1931) Successive (Schnarf, 1931 ; Islam, 1950) Successive (Schnarf, 1931) Simultaneous (Pettitt, 1981) 478 Furness and Rudall—Microsporogenesis in Monocots T 1. (cont.) Taxon Microsporogenesis type and source Pollen aperture type and source Successive (Schnarf, 1931) Inaperturate or faintly monosulcate (Sharma,1967) Successive (Schnarf, 1931) ; mostly successive but irregular (this paper, Figs. 1 I, 2A, B) Inaperturate (Cranwell, 1953 ; Grayum, 1992) Successive (Stenar, 1925 ; Schnarf, 1931) Inaperturate (Erdtman, 1952 ; Grayum, 1992) Successive (Stenar, 1925 ; Schnarf, 1931) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1930) Pantoporate (Chanda et al., 1988) 4–5 porate (Chanda et al., 1988) Successive (Stenar, 1925 ; Schnarf, 1931) Inaperturate (Kuprianova, 1948 ; Pettitt and Jermy, 1975 ; Zavada, 1983) Potamogetonaceae Potamogeton Successive (Stenar, 1925 ; Schnarf, 1931) Ruppia Successive (Stenar, 1925 ; Schnarf, 1931) Inaperturate (Kuprianova, 1948 ; Cranwell, 1953 ; Pettitt and Jermy, 1975 ; Grayum, 1992) Inaperturate (Cranwell, 1953 ; Pettitt and Jermy, 1975), tritenuate (Grayum, 1992) Scheuchzeriaceae Scheuchzeria Successive (Schnarf, 1931) Inaperturate (Kuprianova, 1948 ; Erdtman, 1952 ; Zavada, 1983 ; Grayum, 1992) Simultaneous (Stenar, 1925 ; Huynh, 1976 ; this paper, Fig. 2 C) Disulcate (Schulze, 1978b ; Huynh, 1976 ; Takahashi and Kawano, 1989 ; Dı! az Lifante, Dı! ez and Ferna! ndez, 1990) Successive (Schnarf, 1931) Inaperturate (Cranwell, 1953 ; Pettitt and Jermy, 1975 ; Grayum, 1992) Successive (Stenar, 1925 ; Schnarf, 1931 ; Pettitt and Jermy, 1975) Inaperturate (Pettitt and Jermy, 1975) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Successive (Schnarf, 1931) Ulcerate (Harling, 1958) Ulceroidate to sulcoidate (Harling, 1958 ; Grayum, 1992) Successive (Cheah and Stone, 1975 ; Periasamy and Amalathas, 1991) Ulcerate (Cheah and Stone, 1975 ; Huynh, 1980 ; Huynh and Stone, 1981), possibly inaperturate (Grayum, 1992) Successive or intermediate and irregular (Palm, 1920), successive (Stenar, 1925 ; Schnarf, 1931) Monosulcate (Van der Ham, 1991) Velloziaceae Barbacenia Unknown Vellozia Successive (Stenar, 1925 ; Schnarf, 1931 ; Dutt, 1970 b) ; Monosulcate (Ayensu, 1972 ; Ayensu and Skvarla, 1974), disulcate (Halbritter and Hesse, 1993) Inaperturate ? (Small, indistinct pores) (Ayensu, 1972 ; Ayensu and Skvarla, 1974) Vallisneria Juncaginaceae Triglochin Lilaeaceae Lilaea Limnocharitaceae Hydrocleys Limnocharis Najadaceae Najas Tofieldiaceae Tofieldia Zannichelliaceae Zannichellia Zosteraceae Zostera Pandanales : Cyclanthaceae Carludoica Cyclanthus Pandanaceae Pandanus Stemonaceae Stemona Dioscoreales : Burmanniaceae Apteria Burmannia Campylosiphon Successive (Ru$ bsamen, 1986) Successive (Stenar, 1925 ; Schnarf, 1931 ; Arekal and Ramaswamy, 1973 ; Ru$ bsamen, 1986) Successive (Ru$ bsamen, 1986) Dictyostega Gymnosiphon Miersiella Successive (Ru$ bsamen, 1986) Successive (Ru$ bsamen, 1986) Successive (Ru$ bsamen, 1986) Corsiaceae Unknown Dioscoreaceae Dioscorea Tamus Simultaneous (Stenar, 1925 ; Schnarf, 1931 ; this paper, Fig. 2 D-G) Simultaneous (Schnarf, 1931) Inaperturate, monosulcate (Ru$ bsamen, 1986) 1-, 2-(3-, poly-) porate, monosulcate (Chakrapani and Raj, 1971 ; Ru$ bsamen, 1986) (1-)2-porate (Chakrapani and Raj, 1971 ; Ru$ bsamen, 1986) 2-porate (Chakrapani and Raj, 1971 ; Ru$ bsamen, 1986) Inaperturate (Ru$ bsamen, 1986) 2(1)-porate (Chakrapani and Raj, 1971 ; Ru$ bsamen, 1986) Monosulcate (Erdtman, 1952), monoporate (Caddick et al., 1999 a) Monosulcate, 2–3 sulcate (Erdtman, 1952 ; Radulescu, 1973 ; Zavada, 1983) Disulcate (Clarke and Jones, 1981) Furness and Rudall—Microsporogenesis in Monocots 479 T 1. (cont.) Taxon Nartheciaceae Narthecium Microsporogenesis type and source Pollen aperture type and source Successive (Stenar, 1931 ; this paper, Figs 3G-I, 4 A–C) Monosulcate (Schulze, 1978b ; Takahashi and Kawano, 1989) Simultaneous (Caddick et al., 1999 a) Monosulcate (Erdtman, 1952 ; Caddick et al., 1999 a) Simultaneous (Stenar, 1925 ; Schnarf, 1931 ; this paper, Figs 2H, I, 3 A-F), possibly successive (Palm, 1920) Monosulcate (Cranwell, 1953 ; Grayum, 1992) Successive (Schnarf, 1931) Inaperturate (Cranwell, 1953), ulcerate (Ru$ bsamen, 1986) Unknown Successive or irregular (Rao, 1955) 4–5 pantoporate (Erdtman, 1952 ; Caddick et al., 1999 a) Monosulcate (Caddick et al., 1999 a) Successive (Stenar, 1925) Monosulcate (Schulze, 1978 a) Successive (Dutt, 1970 a) Successive (Dahlgren and Lu, 1985) Monosulcate (Erdtman, 1952 ; Dutt, 1970 a) Inaperturate (Dahlgren and Lu, 1985) Successive (Stenar, 1925) 2- polyporate (Radulescu, 1973), 2, 4 porate (Schulze, 1975 b) Liliaceae Fritillaria Successive (Stenar, 1925) Gloriosa Lilium Successive (Stenar, 1925) Successive (Stenar, 1925 ; Heslop-Harrison, 1968) Tulipa Successive (Huynh, 1976) Monosulcate, monosulcate-operculate (Radulescu, 1973 ; Schulze, 1980) Monosulcate (Radulescu, 1973) Monosulcate (Erdtman, 1952 ; Radulescu, 1973 ; Schulze, 1980 ; Halbritter and Hesse, 1993) Monosulcate, monosulcate-operculate, trisulcate, irregular, inaperturate (Romanov, 1959 ; Radulescu, 1973 ; Huynh, 1976 ; Schulze, 1980) Stenomeridaceae Stenomeris Taccaceae Tacca Thismiaceae Thismia Trichopodaceae Aetra Trichopus Liliales : Alstroemeriaceae Bomarea Campynemataceae Campynema Campynemanthe Colchicaceae Colchicum Luzuriagaceae Luzuriaga Melanthiaceae Veratrum Zigadenus (as Amaianthium) Petermanniaceae Petermannia Philesiaceae Lapageria Smilacaceae Smilax Unknown Monosulcate (Schulze, 1982 a) Successive (Stenar, 1925) Successive (Eunus, 1951) Monosulcate-operculate (Radulescu, 1973 ; Halbritter and Hesse, 1993) Monosulcate-operculate (Halbritter and Hesse, 1993) Successive (Conran, 1988) Monosulcate (Erdtman, 1952) Successive (Cave, 1966) Inaperturate (Schulze, 1982 a, Cauneau-Pigot, 1988 ; Furness and Rudall, 1999 a, b) Successive (Stenar, 1925 ; Schnarf, 1931 ; Pacini and Franchi, 1983) Inaperturate, 1-sulcoidate, clypeate (Erdtman, 1952 ; Schulze, 1982 b ; Pacini and Franchi, 1983 ; Furness and Rudall, 1999 a, b) Successive (Stenar, 1925 ; Takahashi, 1987) Inaperturate (Takahashi, 1982, 1983, 1987) Successive (Takahashi and Sohma, 1979) Successive (Stenar, 1925) Monosulcate (Takahashi and Sohma, 1979) Monosulcate with insulae (Radulescu, 1973) Trilliaceae Trillium Uvulariaceae Disporum Tricyrtis Asparagales (not recorded previously) : Blandfordiaceae Blandfordia Unplaced Commelinanae : Bromeliaceae Aechmea Simultaneous but irregular (this paper, Fig. 4 D–G) Monosulcate (Schulze, 1982 c) Successive (Schnarf, 1931) Ananas Bilbergia Successive (Schnarf, 1931) Successive (Schnarf, 1931) Cryptanthus Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Inaperturate, diffuse sulcate, sulcate with insulae, 2, 3, 4-porate, polyporate (Ehler and Schill, 1973 ; Halbritter, 1992) 2-porate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate with insulae, diffuse sulcate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate with insulae (Ehler and Schill, 1973 ; Halbritter, 1992) 480 Furness and Rudall—Microsporogenesis in Monocots T 1. (cont.) Taxon Microsporogenesis type and source Pollen aperture type and source Nidularium Pitcairnea Successive (Stenar, 1925 ; Schnarf, 1931) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Puja Tillandsia Successive (Schnarf, 1931) Successive (Schnarf, 1931) Vriesea Successive (Stenar, 1925 ; Schnarf, 1931) Dasypogonaceae Dasypogon Successive (Rudall et al., 1997) Monosulcate (Erdtman, 1952 ; Chandra and Ghosh, 1976) Hanguanaceae Hanguana Successive (Rudall, Stevenson and Linder, 1999) Rapateaceae Simultaneous (Tiemann, 1985) Inaperturate (Linder and Ferguson, 1985 ; Rudall et al., 1999 ; Furness and Rudall, 1999 a, b) Monosulcate, trichotomosulcate (with monosulcate), disulcate, zonisulculate (Carlquist, 1961) Arecales : Arecaceae Arecoideae Calamoideae Simultaneous, Hydriastele and Pinanga simultaneous and successive (Harley, 1996, 1998) Successive (Harley, 1996, 1998) Ceroxyloideae Simultaneous (Harley, 1996, 1998) Coryphoideae Simultaneous and successive (Harley, 1996, 1998) Nyphoideae Phytelephantoideae Commelinales : Commelinaceae Aneilema Successive (Harley, 1996, 1998) Unknown Callisia Cochliostema Commelina Successive (Schnarf, 1931, as Spironema) Successive (Schnarf, 1931) Successive (Stenar, 1925 ; Schnarf, 1931 ; Huynh, 1976, as Commelinantia anomala) Cyanotis Intermediate (Rau, 1930) Dichorisandra Gibasis Palisota Tinantia Successive (Schnarf, 1931) Successive (Stevenson and Owens, 1978) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Succesive (Schnarf, 1931) Tradescantia Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931 ; Huynh, 1976 ; Nanda and Gupta, 1977 [as Rhoeo] ; Tiwari and Gunning, 1986 a ; this paper, Figs 4 H, I, 5 A–E) Successive (Schnarf, 1931) Zebrina Haemodoraceae Anigozanthos Xiphidium Successive (Schnarf, 1931) 2-porate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate with insulae, diffuse sulcate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate, monosulcate with insulae, diffuse sulcate (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate, monosulcate with insulae (Ehler and Schill, 1973 ; Halbritter, 1992) Monosulcate, disulcate, trichotomosulcate, monoporate, triporate, incomplete zonosulcate (Harley, 1996) Monosulcate, disulcate, monoporate, diporate, inaperturate (Harley, 1996) Monosulcate, trichotomosulcate, monoporate (Harley, 1996) Monosulcate, disulcate, trichotomosulcate (Harley, 1996) Zonosulcate (Harley, 1996) Monosulcate (Harley, 1996) Monosulcate, some spp. with insulae or pila (Erdtman, 1952 ; Sharma, 1967 ; Poole and Hunt, 1980) Monosulcate (Poole and Hunt, 1980) 1–2 sulcate, some spp. with insulae, pila or spines (Sharma, 1967 ; Poole and Hunt, 1980), triaperturate (as Commelinantia anomala : Rowley and Dahl, 1962 ; Huynh, 1976) Monosulcate, some spp. with insulae or pila (Erdtman, 1952 ; Sharma, 1967 ; Poole and Hunt, 1980) Monosulcate (Erdtman, 1952 ; Poole and Hunt, 1980) Monosulcate (Poole and Hunt, 1980) Monosulcate (Erdtman, 1952 ; Poole and Hunt, 1980) Monosulcate, triaperturate (Erdtman, 1952 ; Sharma, 1967 ; Poole and Hunt, 1980) Monosulcate (Sharma, 1967 ; Huynh, 1976 ; Poole and Hunt, 1980) Monosulcate (Poole and Hunt, 1967) Successive (Stenar, 1927 ; this paper, Fig. 5 F, G) Successive (Stenar, 1925 ; Schnarf, 1931 ; Simpson, 1989) Diporate (or triporate) (Simpson, 1983) Monosulcate (Simpson, 1983) Philydraceae Orthothylax Successive (Hamann, 1966) Philydrum Successive (Hamann, 1966 ; Simpson, 1985) Monosulcate (Hamann, 1966 ; Simpson, 1985 ; Grayum, 1992) Monosulcate (Hamann, 1966 ; Simpson, 1985 ; Grayum, 1992) Pontederiaceae Eichhornia Heteranthera Successive (Stenar, 1925 ; Schnarf, 1931 ; Banerji and Haldar, 1942) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Monochoria Successive (Banerji and Haldar, 1942) Disulcate (Simpson, 1987 ; Grayum, 1992) Disulcate (Simpson, 1987), possibly monosulcate (Grayum, 1992) Disulcate (Simpson, 1987) Furness and Rudall—Microsporogenesis in Monocots 481 T 1. (cont.) Taxon Microsporogenesis type and source Pollen aperture type and source Successive (Stenar, 1925 ; Schnarf, 1931 ; Huynh, 1976) Disulcate (Huynh, 1976 ; Simpson, 1987 ; Grayum, 1992) Successive (Stenar, 1925 ; Rowley and Skvarla, 1986 ; Tiwari and Gunning, 1986 b), simultaneous (Kracauer, 1930) Inaperturate (Skvarla and Rowley, 1970 ; Rowley and Skvarla, 1986) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Successive (Stone, Sellers and Kress, 1981) Spiraperturate with a short colpus, spiraperturate with 2 pores, pantoporate (Punt, 1968) Spiraperturate with a short colpus (Stone et al., 1981) Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931 ; Stone, Sellers and Kress, 1979) Inaperturate, functionally monoaperturate (Kress, Stone and Sellers, 1978 ; Kress and Stone, 1983 ; Kress, 1986) Marantaceae Calathea Successive (Schnarf, 1931) Maranta Successive (Stenar, 1925 ; Schnarf, 1931) Phrynium Thalia Musaceae Musa Successive (Schnarf, 1931) Successive (Schnarf, 1931) Inaperturate (Erdtman, 1952 ; Furness and Rudall 1999 a, b) Inaperturate (Erdtman, 1952 ; Saad and Ibrahim, 1965 ; Sharma, 1967) Inaperturate (Erdtman, 1952) Unknown Successive (Stenar, 1925 ; Schnarf, 1931 ; Juliano and Alcala, 1933) Inaperturate (Kuprianova, 1948 ; Erdtman, 1952 ; Sharma, 1967) Successive (Schnarf, 1931 ; Kronestedt-Robards and Rowley, 1989) Inaperturate (Saad and Ibrahim, 1965 ; Hesse and Waha, 1983 ; Kronestedt-Robards and Rowley, 1989) Zingiberaceae Alpinia Successive (Schnarf, 1931) Amomum Successive (Schnarf, 1931) Curcuma Successive (Palm, 1920 ; Stenar, 1925 ; Schnarf, 1931) Elettaria Globba Successive (Schnarf, 1931) Successive (Schnarf, 1931 ; this paper, Fig. 5 H, I) Zingiber Successive (Theilade and Theilade, 1996) Inaperturate, (monosulcate) (Sharma, 1967 ; Liang, 1988) Inaperturate, (faintly monosulcate) (Sharma, 1967 ; Liang, 1988) Inaperturate, (monosulcate) (Sharma, 1967 ; Liang, 1988) Inaperturate (Erdtman, 1952) Inaperturate, (1–2 sulcate) (Sharma, 1967 ; Liang, 1988 ; Furness and Rudall, 1999 a, b) Inaperturate (Liang, 1988 ; Theilade et al., 1993 ; Theilade and Theilade, 1996) Pontederia Zingiberales : Cannaceae Canna Costaceae Costus Tapeinochilos Heliconiaceae Heliconia Strelitziaceae Strelitzia Poales : Abolbodaceae Abolboda Anarthriaceae Anarthria Centrolepidaceae Brizula Centrolepis Cyperaceae Bulbostylis Carex Successive (Tiemann, 1985) Inaperturate (Carlquist, 1960) Unknown Ulcerate (Linder and Ferguson, 1985) Successive (Hamann, 1975) Successive (Hamann, 1975) Ulcerate (Chanda, 1966 ; Hamann, 1975) Ulcerate (Chanda, 1966 ; Hamann, 1975) 1-aperturate (Huang, 1972) 1–4 pores, basal pore dominant, or pores lacking or obscure (Cranwell, 1953 ; this paper, Fig. 7 C) 1–3 sulci and 1 pore (Sharma, 1967) Unknown 1–4 pores, basal pore dominant, or pores absent (Cranwell, 1953) Eriophorum Ficinia Fuirena Hypolytrum Isolepis Kyllinga Simultaneous (Tanaka, 1941) Simultaneous (Juel, 1900 ; Tanaka, 1939 ; Khanna, 1963) Simultaneous (Schnarf, 1931 ; Tanaka, 1941) Simultaneous (Schnarf, 1931) Simultaneous (Schnarf, 1931 ; Strandhede, 1965, 1973 ; Dunbar, 1973), intermediate (Juel, 1900 ; Ha/ kansson, 1954) Simultaneous (Schnarf, 1931 ; this paper, Fig. 6 B) Simultaneous (this paper, Fig. 6 C) Simultaneous (Schnarf, 1931) Unknown Simultaneous (Schnarf, 1931) Simultaneous (Tanaka, 1941) Mapania Rhyncospora Scleria Unknown Simultaneous (Tanaka, 1941) Simultaneous (Tanaka, 1941) Cyperus Dulichium Eleocharis 1-aperturate (Sharma, 1967) Obscure (this paper, Fig. 6 F) 1-aperturate (Huang, 1972) Ulcerate (Erdtman, 1952) Unknown 1-sulcate, pantoaperturate or trichotomosulcate (Sharma, 1967), 4-aperturate (Huang, 1972) Ulcerate, rarely 2-poroid (Erdtman, 1952) Basal pore (Erdtman, 1943) 1-aperturate (Huang, 1972) 482 Furness and Rudall—Microsporogenesis in Monocots T 1. (cont.) Taxon Microsporogenesis type and source Pollen aperture type and source Simultaneous (Schnarf, 1931 ; Cranwell, 1953) 1–4 pores, basal pore dominant, or pores lacking or obscure (Cranwell, 1953) Unknown Ulcerate (Chanda and Rowley, 1967) Successive or intermediate and irregular (Palm, 1920) ; successive or rarely with tetrahedral tetrads (Stenar, 1925 ; Schnarf, 1931 ; Arekal and Ramaswamy, 1980 ; this paper, Fig. 9 C, D) Mostly simultaneous, some successive tetrads (Monteiro-Scanavacca and Mazzoni, 1978) Successive (Ramaswamy and Nagendran, 1996) Spiraperturate (Sharma, 1965 ; Thanikaimoni, 1965 ; Ueno, 1980 ; Furness, 1985, 1988) Successive or intermediate and irregular (Palm, 1920) ; successive (Schnarf, 1931) Ulcerate (Erdtman, 1952 ; Ferguson and Linder, 1985) Hydatellaceae Hydatella Unknown Trithuria Unknown Monosulcate or monoporate (Bortenschlager, 1966), monosulcate (Hamann, 1976) Monosulcate (Bortenschlager, 1966 ; Hamann, 1976 ; Linder and Ferguson, 1985) Scirpus Ecdeiocoleaceae Ecdeiocolea Eriocaulaceae Eriocaulon Leiothrix Syngonanthus Flagellariaceae Flagellaria Joinvilleaceae Joinillea Juncaceae Distichia Juncus Luzula Oxychloe Mayacaceae Mayaca Poaceae Many genera Agropyron Oryza Panicum Paspalum Phragmites Triticum Zea Restionaceae Elegia Hypolaena Leptocarpus Restio Sparganiaceae Sparganium Thurniaceae Typhaceae Typha Xyridaceae Xyris Clypeate (Thanikaimoni, 1965) Spiraperturate (Thanikaimoni, 1965 ; Ramaswamy and Nagendran, 1996) Unknown Ulcerate (Chanda and Rowley, 1967) Simultaneous (Schnarf, 1931) Simultaneous (Schnarf, 1931), intermediate (Wulff, 1939) Simultaneous (Stenar, 1925 ; Schnarf, 1931 ; Lambert, 1969, 1970, this paper, Figs 7 E–I, 8 A–D) Simultaneous (Schnarf, 1931) Unknown Ulcerate (Cranwell, 1953) Successive (this paper, Fig. 9 E) Monosulcate (Erdtman, 1952) Successive Successive Successive Successive Successive Successive Successive (Schnarf, 1931) (Huynh, 1972) (Stenar, 1925) (Stenar, 1925) (Palm, 1920) (Stenar, 1925) (Stenar, 1925 ; El-Ghazaly and Jensen, 1986) Ulcerate (Cranwell, 1953 ; this paper, Fig. 8 G) Ulcerate (Heusser, 1971 ; Wingenroth and Heusser, 1983) Successive (Stenar, 1925 ; Maheshwari, 1950) Ulcerate (Huynh, 1972) Ulcerate (Sharma, 1967 ; Page, 1978) Ulcerate (Sharma, 1967 ; Page, 1978) Unknown Ulcerate (Erdtman, 1943) Ulcerate (Sharma, 1967 ; Rajendra et al., 1978 ; ElGhazaly and Jensen, 1986) Ulcerate (Skvarla and Larson, 1966) Successive Successive Successive Successive Ulcerate Ulcerate Ulcerate Ulcerate (Kircher, (Kircher, (Kircher, (Kircher, 1986) 1986) 1986) 1986) (Chanda, (Chanda, (Chanda, (Chanda, 1966) 1966) 1966) 1966 ; Linder and Ferguson, 1985) Successive (Mu$ ller-Doblies, 1969) Simultaneous (Hamann, 1961 ; Dahlgren et al., 1985) Ulcerate (Cranwell, 1953 ; Grayum, 1992) Ulcerate (Zavada, 1983 ; Dahlgren et al., 1985) Successive (Stenar, 1925 ; Schnarf, 1931 ; Skvarla and Larson, 1963 ; Asplund, 1972 ; Takahashi and Sohma, 1984 ; this paper, Figs 8 H, I, 9 A) Ulcerate (Skvarla and Larson, 1963 ; Grayum, 1992) Successive (Schnarf, 1931 ; Rudall and Sajo, 1999 ; this paper Fig. 9 F) 1–3 sulcate, operculate (Erdtman, 1952) 1991), many (but not all) Annonaceae (Magnoliales : Walker, 1971 ; Bygrave, 1999), and Aristolochia (Piperales– Aristolochiaceae : Samuelsson, 1914). This character requires further review in this group, for example, Lauraceae (Laurales) were described as successive but with pre- dominantly tetrahedral tetrads (Heo, Van der Werf and Tobe, 1998), although Stone (1987) described Sassafras as simultaneous. The intermediate type of microsporogenesis is recorded in Magnolia (Magnoliales–Magnoliaceae : Hayashi, 1960). 483 Furness and Rudall—Microsporogenesis in Monocots C A B C C PT PT D F E C C PT G H I F. 1. A, B, Japonolirion osense (DIC). A, Tetrahedral (Th) and decussate (D) tetrads. B, Tetrahedral tetrad. C, Petrosaia borneensis (DIC), tetrahedral tetrad. D, Sciaphila albescens (DIC), first meiotic division. E–H, Anthurium andraeanum. E, Tetrads in an anther locule (LM). F–H, Tetrads surrounded by thick callose (TEM). F, Tetragonal. G, Decussate. H, T-shaped. I, Triglochin procerum (DIC), tetragonal tetrad. C l callose, PT l plasmodial tapetum. Bars : in A–D, I l 10 µm ; in E–H l 5 µm. 484 Furness and Rudall—Microsporogenesis in Monocots Eudicots Most eudicots have simultaneous microsporogenesis and tricolpate or tricolpate-derived pollen, although both the successive and simultaneous type are recorded in Nelumbo (Nelumbonaceae : Kreunen and Osborn, 1999) and Proteaceae (Blackmore and Barnes, 1995). Nelumbonaceae, Platanaceae and Proteaceae are now placed in a separate order, Proteales, basal to the other eudicots, and may represent relicts from an ancient group (Chase et al., 1993 ; Angiosperm Phylogeny Group, 1998 ; Bremer, Bremer and Thulin, 1998). It is possible that the developmental mechanisms controlling microsporogenesis are more labile in such groups. Simultaneous microsporogenesis in eudicots is associated with three equatorial tricolpate apertures, or apertures derived from these, such as tricolporate. Unplaced monocot taxa Japonolirion and Petrosaia, which are probably closely related to each other, both have the simultaneous type of microsporogenesis (Table 1, Fig. 1 A–C). Recent molecular data have indicated a tentative relationship with Dioscoreales (Chase et al., 1999), where the simultaneous type also occurs (see below), although inclusion of Japonolirion and Petrosaia within Dioscoreales is not well supported (for example, by a recent analysis by Caddick et al., 1999 b). Triuridaceae are uniformly successive (Table 1, Fig. 1 D) and of uncertain affinity, although recent rbcL sequence data indicate they belong in Pandanales (Chase, pers. comm.), which are also successive (see below). Early-branching monocotyledons Acorales. Acorus, which has successive microsporogenesis (Table 1), was formerly included in Araceae, but is now placed in a separate family, Acoraceae (Acorales), sister to the rest of the monocotyledons. Alismatales. The Angiosperm Phylogeny Group (1998) included Araceae, the alismatid families and Tofieldiaceae in Alismatales. Apart from Tofieldia (Tofieldiaceae), which has simultaneous microsporogenesis (Fig. 2 C), most taxa of this order have successive microsporogenesis (Table 1), although there are a few records for the simultaneous type in Araceae and alismatids (see below). The tapetum is plasmodial throughout Alismatales, except in Tofieldia, which has a secretory tapetum (as in Acorus), so if Tofieldia is correctly placed here, then reversals have occurred in these two characters. Reversals also occur in the same two characters (although in the opposite direction) in Hypoxidaceae (Lilianae–Asparagales : Rudall et al., 1997 ; Furness and Rudall, 1998). Most Araceae have successive microsporogenesis (Table 1), although there are some records of the simultaneous type : according to Gow (1913), in Anthurium crystallinum the appearance of the tetrads indicates that the divisions are simultaneous, and he also described Philodendron wendlandii as simultaneous, although did not give the tetrad type in either case. Other records for Anthurium are successive, and the mainly tetragonal tetrads are surrounded by thick callose walls (Table 1, Fig. 1 E–H). Tetrads of Arisaema wallichianum were described as isobilateral, decussate or tetrahedral by Maheshwari and Khanna (1956), although microsporogenesis was described as successive. Tetrahedral and isobilateral tetrads were recorded in Colocasia antiquorum, although it may not be typical due to irregularities in meiosis : the first meiotic division is irregular and some of the chromosomes do not line up on the metaphase plate but move to the poles. The daughter nuclei do not always contain an equal number of chromosomes and the chromosomes remaining in the cytoplasm form diminutive spindles (Banerji, 1937). The simultaneous type has been recorded in the alismatid taxa Aponogeton (together with successive) and Thalassia (Table 1), although most alismatids are successive, for example, Triglochin (Juncaginaceae : Figs 1 I, 2 A, B). Linear tetrads occur in some Hydrocharitaceae : in Ottelia and Thalassia they occur with tetragonal, T-shaped and intermediate tetrads, whereas in Halophila successive transverse partitioning of an elongated microsporocyte forms a row of reniform pollen grains dispersed together (Islam, 1950 ; Pettitt, 1981). Elongated microsporocytes are also found in Stenomeris (Dioscoreales : Caddick et al., 1999 a, see below). In Ottelia and Thalassia, pollen is spherical and dispersed singly. The tetrad configurations in Thalassia appear more indicative of the successive type of microsporogenesis. The callose special cell wall surrounding the tetrads is lacking in some Cymodoceaceae (Amphibolis, Halodule and Thalassodendron) and Hydrocharitaceae (Halophila and Thalassia) and these have inaperturate pollen lacking exine ; the walls are composed of polysaccharides. This is associated with hydrophilous pollination, as is filiform pollen in Amphibolis, Halodule, Thalassodendron and Zostera (Yamashita, 1976 ; Ducker, Pettitt and Knox, 1978 ; Pettitt, 1981). Hydrophily has evolved independently several times within alismatids (Les, Cleland and Waycott, 1997). Lilianae Lilianae (sensu Chase et al., 1995 b) comprise four orders : Pandanales, Dioscoreales, Liliales and Asparagales, although the monophyly of Lilianae is not supported by molecular data (Chase et al., 1995 a). Pandanales. All Pandanales (Cyclanthaceae, Pandanaceae, Stemonaceae and Velloziaceae) have successive microsporogenesis (Table 1). However, in Stemona (Stemonaceae) the second division generally rapidly follows the first, sometimes before the first partition wall is completely established. The orientation of the meiotic spindles may give rise to a row of four cells (Palm, 1920), as in Stenomeris and Tacca (Dioscoreales : see below). Unusual microsporogenesis has also been recorded in Pandanus odoratissimus, in which no callose is laid down. Division is successive, and the two cells divide by centrifugal cleavage, then the two naked protoplasts move apart from each other before undergoing a second similar division (Periswamy and Amalathas, 1991). Normal callose deposition was however reported in P. parus (Cheah and Stone, 1975). 485 Furness and Rudall—Microsporogenesis in Monocots C A B C ST Th ST D ST C D E F C C G H I F. 2. A, B, Triglochin procerum (DIC). A, Decussate tetrad. B, Irregular tetrad. C, Tofieldia sp. cf. okubai (DIC), tetrahedral tetrads. D–G, Dioscorea sylatica. D, Tetrads in an anther locule (LM). E, Tetrahedral (Th) and a decussate (D) tetrad (LM). F, Tetrahedral tetrad (TEM). G, Decussate tetrad (TEM). H, I, Tacca chantieri (LM). H, Tetrads in an anther locule. I, Tetrahedral tetrad. C l callose, ST l secretory tapetum. Bars : in A–C l 10 µm ; in E–G, I l 5 µm ; in D and H l 20 µm. 486 Furness and Rudall—Microsporogenesis in Monocots C C F C C ST ST A B C Th N F N C D N C C D D E F TS ST Tg G H I F. 3. A, E, Tacca chantieri. A, Decussate tetrad (LM). E, Detail of the proximal faces of three young microspores in a tetrahedral tetrad (TEM). B–D, F, Tacca pinnatifida. B, Decussate tetrad. C, Centripetal furrow forming at cytokinesis (TEM). D, Detail of a developing furrow (TEM). F, Detail of the proximal faces, with nuclei, of four young microspores in a decussate tetrad (TEM). G–I, Narthecium ossifragum (LM). G, Tetrads in an anther locule. H, Two tetragonal tetrads with the microspores in different orientations. I, A T-shaped (TS) and a tetragonal tetrad (Tg) tetrad. C l callose, F l furrow, N l nucleus, ST l secretory tapetum. Bars l 5 µm ; except C and F which l 2 µm, D l 1 µm and G l 20 µm. Furness and Rudall—Microsporogenesis in Monocots Dioscoreales. In some Dioscoreales (Burmanniaceae and Thismiaceae), microsporogenesis is successive, whereas in others (Dioscoreaceae and Taccaceae), it is simultaneous (Caddick et al., 1999 a ; Table 1). Dioscoreaceae and Taccaceae (Figs 2 D–I, 3 A–F) have both tetrahedral and some decussate tetrads, and division is by centripetal furrowing in Tacca (Fig. 3 C, D). Narthecium, which probably belongs in this order (Chase, pers. comm.), has the successive type (Figs 3 G–I, 4 A–C). Stenomeris has unusual elongated microsporocytes which appear to undergo simultaneous division, although the orientation of the meiotic spindles may occasionally give rise to a row of four cells (Caddick et al., 1999 a). Interestingly, some young tetrads with four cells forming a row were described in Tacca (Palm, 1920), although this was interpreted as possible successive division. Microsporogenesis has not been observed in Corsiaceae or Trichopodaceae (Caddick et al., 1999 a) ; Trichopus was described as successive by Rao (1955), who illustrated dyads, and tetragonal, T-shaped, decussate, and tetrahedral tetrads. Liliales. Liliales are uniformly successive (Table 1). Asparagales. Asparagales consist of a paraphyletic ‘ lower ’ asparagoid grade with simultaneous microsporogenesis and a ‘ higher ’ asparagoid clade with successive microsporogenesis (Rudall et al., 1997). Among the ‘ lower ’ asparagoids, in most Hemerocallidaceae trichotomosulcate apertures are associated with simultaneous microsporogenesis and regular tetrahedral tetrads, for example, in Dianella (Rudall et al., 1997). In Blandfordia (Blandfordiaceae : Table 1, Fig. 4 D–G), which was not previously recorded for this character, microsporogenesis is simultaneous but irregular, with monosulcate apertures, as in Aloe (Asphodelaceae : Rudall et al., 1997), confirming its placement in the ‘ lower ’ asparagoids. A reversal to the successive type occurs in Hypoxidaceae (see above). Commelinanae The monophyly of the superorder Commelinanae is well supported by both molecular and morphological analyses, but several commelinoid taxa are still currently unplaced within the group, pending further analysis. Unplaced Commelinanae. Bromeliaceae have successive microsporogenesis, with fairly diverse apertures, including monosulcate, 2–4 porate and inaperturate (Table 1). Recent molecular data place them as sister to Poales (Chase et al., 1999). Dasypogonaceae, the possible sister group to palms (Chase et al., 1995 b), also have successive microsporogenesis (Table 1). Hanguana (Hanguanaceae) is successive and the inaperturate, spinulate pollen with a thick intine indicates possible affinities with Zingiberales (Furness and Rudall, 1999 a, b ; Rudall, Stevenson and Linder, 1999 ), but molecular data indicate Hanguana is in a clade with both Zingiberales and Commelinales (Fay and Chase, pers. comm.). Rapateaceae have simultaneous microsporogenesis (Tiemann, 1985). The diverse aperture types (Table 1) include trichotomosulcate frequently found with monosulcate apertures in two species of Schoenocephalium (Carlquist, 1961), which indicates simultaneous micro- 487 sporogenesis and this suggests a possible relationship with the Cyperaceae-Juncaceae-Thurniaceae clade in Poales. Arecales. Both simultaneous and successive microsporogenesis occur in Arecaceae and the pollen apertures are diverse, including (unusually) trichotomosulcate associated with the simultaneous type (Table 1). Arecaceae are isolated and phylogenetically basal within the commelinoids, thus the developmental mechanisms controlling microsporogenesis may be more labile, as in Proteales (see above). Commelinales. The four families of Commelinales are uniformly successive (Table 1, Figs 4 H, I, 5 A–G) and there appears to be only one record which deviates from this type : Cyanotis (Commelinaceae : Table 1), where an ephemeral cell plate is laid down after the first division. This disappears and tetragonal tetrads are formed by simultaneous furrowing. In Tradescantia, the tetrads are located inside vacuoles in the plasmodial tapetum (Figs 4 H, I, 5 A–E), these vacuoles disappear if the tonicity of the fixative is increased (Owens, pers. comm.). The distribution of amyloplasts during microsporogenesis in Tradescantia was observed by Rodkiewicz et al. (1984). At the beginning of cytokinesis they form a loose group between the two nuclei, which are divided into two parts by a broad zone of cytoplasm where the cell plate develops. In the dyad, the amyloplasts encircle the nuclei and at the end of the second meiotic telophase again occupy the middle zone of each cell. In the early tetrad stage, amyloplasts are at the proximal walls and nuclei are at the distal. Rodkiewicz et al. (1984) compared this with the amyloplast distribution in the eudicot Impatiens (asterids–Ericales–Balsaminaceae) with simultaneous microsporogenesis. Here the amyloplasts occupy the equatorial plane, forming a dense plate separating the cell into two zones ; this plate persists during the second division of both nuclei and then reshapes to form a four-lobed structure with the lobes lying between the nuclei. The cell plates then appear and the amyloplasts group at the proximal side of each tetrad and the nuclei at the distal side. Zingiberales. Zingiberales are a relatively well-established and coherent order, and are uniformly successive (Table 1). The callose walls surrounding the microsporocytes, dyads and tetrads are thin (Fig. 5 H, I) and pollen is mostly exineless and inaperturate (see Furness and Rudall, 1999 a, b, for a review). Division is by centripetal furrowing in Globba (Fig. 5 H). Simultaneous division by centrifugal extension of cell plates was recorded in Canna (Kracauer, 1930) but has not been confirmed by other workers who have found it to be successive (Table 1). Poales. The successive type is predominant in Poales, although there are no records for Anarthria, Ecdeiocolea and Joinillea, and Flagellaria is variable : either successive or intermediate with irregular tetrads. However, major exceptions are Cyperaceae (Figs 6 A–I, 7 A–D), Juncaceae (Figs 6 E–I, 7 A–G) and the related family Thurniaceae, which all have simultaneous microsporogenesis (Table 1). They are also unusual in that the meiotic products remain together to form permanent tetrahedral tetrads in Juncaceae and Thurniaceae, while in Cyperaceae only one meiotic nucleus survives to form pseudomonads. Ephemeral cell plates have been reported at the dyad stage in Eleocharis and Juncus (Juel, 1900 ; Wulff, 1939 ; 488 Furness and Rudall—Microsporogenesis in Monocots C C S C ST A B C C C C D E F C * * PT G H PT I F. 4. A–C, Narthecium ossifragum (TEM). A, Tetragonal tetrad adjacent to a secretory tapetum (ST). B, Tetragonal tetrad with the microspores in a different orientation to A. C, Detail of one microspore in a tetrad with the sulcus (S) developing at the distal face. D–G, Blandfordia grandiflora (DIC). D, Irregular divison, possibly forming a dyad. E, Simultaneous division. F, Young tetrahedral tetrad before cytokinesis. G, Tetrahedral tetrad. H, I, Tradescantia irginiana. Tetragonal tetrads surrounded by the plasmodial tapetum (PT). H, (LM). I, (TEM). Arrows l spindle fibres, C l callose, * l primary callose wall. Bars l 5 µm ; except C l 2 µm. Furness and Rudall—Microsporogenesis in Monocots Ha/ kansson, 1954), although they were not found by other workers (Table 1). In Carex, the nucleus divides to give four nuclei, which have a tetrahedral or decussate arrangement. One nucleus becomes larger and remains in the centre of the cell, while the three smaller ones migrate towards one end, and a cleavage furrow or a cell plate separates them from the functional nucleus. These smaller nuclei may also be divided by septa and can undergo mitosis, although they ultimately degenerate (Tanaka, 1939 ; Khanna, 1963). Their remnants are sealed in by thick intine at the apex of the pear-shaped pseudomonad (Fig. 7 A, B, D). The functional nucleus divides to give a generative and a vegetative nucleus (Fig. 6 H) and two spindle-shaped sperm cells are formed by the generative nucleus (Fig. 6 I). These migrate to the basal part of the pseudomonad where the pore is situated (Fig. 7 C). Microsporogenesis in other Cyperaceae which have been examined appears to follow this pattern (Table 1, for example, Eriophorum, Fig. 6 A, B, and Ficinia, Fig. 6 C–F), although in Rhyncospora the nuclei apparently degenerate in the basal part of the pseudomonad and the generative cell is positioned towards the apex (Tanaka, 1941). Callose walls surrounding the microsporocytes or young pseudomonads appear to be absent in Cyperaceae (Fig. 6 A–D). In Eleocharis, the four nuclei have a tetrahedral or tetragonal arrangement, less commonly a linear one. They are separated by cell plates whose degree of completeness varies between individual tetrads. The degeneration of three of the nuclei and formation of pseudomonads is similar to that described in Carex (Dunbar, 1973 ; Strandhede 1965, 1973). A variety of apertures have been described in Cyperaceae (Table 1), including trichotomosulcate in Kyllinga (Sharma, 1967), but further data are required. Hypolytrum and Mapania have spheroidal, thick-walled pollen with one distinct aperture (ulcus), although flattened triangular grains with poroid apertures at two of the apices are occasionally found in Mapania humilis (Erdtman, 1952). Erdtman (1952) questioned if the Mapanioideae actually form pseudomonads and this is currently under investigation. The pattern of exine sculpture of mapanioid genera clearly differs from the usual granule type in other cyperaceous grains (Koyama, 1969). The four nuclei in Juncaceae are usually arranged tetrahedrally and the cells are divided by centripetal furrows. Callose walls are absent and exine is formed around the outside of the entire tetrad (Meyer and Yaroshevskaya, 1976 ; Figs 7 E–I, 8 D–G). The resulting permanent tetrads are of the calymmate type (Blackmore and Crane, 1988). Intine is deposited along the furrows and at the outer edge between adjacent microspores in Luzula (Fig. 8 A–F). Each of the four pollen grains has a pore where the exine thins and is underlain by a layer of electron-dense material which is probably the oncus containing germination proteins (Fig. 8 G). Pollen of Hydatella inconspicua (Hydatellaceae) is also shed as tetrads, with monosulcate or possibly monoporate apertures, but as it is shrunken and possibly sterile the tetrad type and microsporogenesis type are unknown (Bortenschlager, Erdtman and Praglowski, 1966 ; Hamann, 1976). This suggests a possible relationship with Juncaceae and Thurniaceae, or Typhaceae (see below), depending on 489 the microsporogenesis type ; the other species of Hydatella and the related genus Trithuria are however monosulcate monads (Table 1), which is an unusual aperture type in Poales, which are predominantly ulcerate (although Mayaca and Xyris are monosulcate : Table 1). Linder and Ferguson (1985) reported a spinulate surface in Trithuria, which is also found in Eriocaulon (for example, Furness, 1985). The sister pair Typhaceae and Sparganiaceae are both successive (Table 1) and pollen is shed as permanent tetrads in some species of Typha. These are mainly tetragonal or rhomboidal, although linear, T-shaped, decussate and asymmetrical forms also occur, due to different spindle orientations during the second meiotic division (Skvarla and Larson, 1963 ; Fig. 8 H). The developing microspores are surrounded by individual callose walls and each microspore in a tetrad has an exine, they are joined by fusion of the tecta to form acalymmate tetrads (Skvarla and Larson, 1963 ; Takahashi and Sohma, 1979 ; Figs 8 I, 9 A, B). Microsporogenesis is also mainly successive in several families that are now regarded as either belonging to, or closely allied to Poales (for example, Angiosperm Phylogeny Group, 1998) : Abolbodaceae, Eriocaulaceae (but see below), Mayacaceae and Xyridaceae (Table 1, Fig. 9 C–F). Recent molecular sequence data place Orectanthe (which is very close to Abolboda) sister to Xyris, close to Eriocaulaceae and embedded in Poales (Chase, pers. comm.). Microsporogenesis in Eriocaulon is successive (Table 1, Fig. 9 C, D), but there are rare records of tetrahedral tetrads, or the second division very rapidly following the first, sometimes before the cell plate is complete (intermediate type), forming irregular tetrads. Leiothrix is simultaneous or successive according to Monteiro-Scanavacca and Mazzoni (1978), who reported mostly tetrahedral but some isobilateral tetrads. Most Eriocaulaceae have spiraperturate pollen (Table 1), which may relate to this variability in microsporogenesis, since this aperture type may be associated with unusual tetrad configurations or partitioning after meiosis (Furness, 1985). Leiothrix has clypeate pollen apertures according to the illustration by Thanikaimoni (1965) (a related type in which the aperture divides the exine into regular plates : Halbritter and Hesse, 1995). Microsporogenesis is equivocal as a character for Eriocaulaceae since they could be derived from either a successive or a simultaneous ancestor ; however, they are sister to Cyperaceae–Juncaceae–Thurniaceae in some analyses (for example, Chase et al., 1995 b) ; and the presence of simultaneous microsporogenesis supports this placement. CONCLUSIONS Microsporogenesis is usually (but not always) consistent within a family. Families where it is not are often phylogenetically early diverging lineages within a group, for example, Annonaceae, Arecaceae, Nelumbonaceae and Proteaceae. Indeed, among angiosperms, microsporogenesis is more diverse within ‘ primitive ’ dicots and monocots than in eudicots. This may be because the developmental mechanisms that control microsporogenesis are more labile in early-branching groups. In monocotyledons, reversals 490 Furness and Rudall—Microsporogenesis in Monocots PT C PT PT A B PT C C PT * * C PT D E F F C F PT G IT H IT I F. 5. A–E, Tradescantia irginiana, tetrads surrounded by a plasmodial tapetum. A, Two tetragonal tetrads with three microspores visible (LM). B, Tetragonal tetrad with three microspores visible (TEM). C, T-shaped tetrad (LM). D, T-shaped tetrad, different orientation to C (TEM). E, Irregular tetrad (TEM). F, G, Anigozanthos flaida. F, Dyads in an anther locule (LM). G, Detail of a dyad (TEM). H, I. Globba atrosanguinea (LM). H, Formation of a dyad by centripetal furrowing. I, A dyad. C l callose, F l furrow, IT l invasive tapetum, PT l plasmodial tapetum, * l primary callose wall. Bars l 5 µm. 491 Furness and Rudall—Microsporogenesis in Monocots Mc ST ST FN N A B C ST I GN VN D E F SC FN VN V SC GN G H H II F. 6. A, B, Eriophorum aginatum (TEM). A, Detail of a microsporocyte (Mc). B, Young pseudomonad with a functional nucleus and four nonfunctional nuclei visible (arrowheads). C–F, Ficinia gracilis. C, Young pseudomonads with their bases adjacent to the secretory tapetum and the non-functional nuclei at the apices, separated by septa. A tetrahedral arrangement can be seen (arrows) (LM). D, Young pseudomonads in an anther locule (LM). E, The generative nucleus and lobed vegetative nucleus (TEM). F, A mature pseudomonad (TEM). G–I, Carex elata (TEM). G, Vacuolate pseudomonad. H, Pseudomonad with vegetative and generative nuclei. I, Two sperm (SC) cells migrating through the cytoplasm. FN l functional nucleus, GN l generative nucleus, I l intine, N l nucleus, ST l secretory tapetum, V l vacuole, VN l vegetative nucleus. Bars l 5 µm ; except A and I l 1 µm, and B and E l 2 µm. 492 Furness and Rudall—Microsporogenesis in Monocots E I SC I ST P ST A B C E F E I D ST ST N N G H I F. 7. A, C, D, Carex elata (TEM). A, Remnants of a non-functional nucleus (arrow) close to the pseudomonad wall where the intine is developing. C, Detail of the base of a mature pseudomonad with the pore (P) adjacent to the secretory tapetum. The sperm cells (SC) are near the pore. D, Detail of the apex of a mature pseudomonad with remnants of the non-functional nuclei (arrows) sealed in by thick intine. B, Carex pendula (LM). Mature pseudomonad with the base adjacent to the secretory tapetum and thick intine at the apex. E–I, Luzula forsteri. E, Immature tetrahedral tetrad (LM). F, Mature tetrahedral tetrad (LM). G, Immature decussate tetrad (LM). H, Immature decussate tetrad (LM). I, A furrow (arrows) developing between two nuclei of a tetrahedral tetrad (TEM). E l Exine, I l intine, N l nucleus, ST l secretory tapetum. Bars l 5 µm ; except A l 0n5 µm, D l 1 µm and I l 2 µm. 493 Furness and Rudall—Microsporogenesis in Monocots I E E A B C E I E I E I D E F H I P EL G F. 8. A–G, Luzula forsteri (TEM). A, A centripetal furrow (arrows) developing. B, Detail of a furrow (arrows) with intine and some exine developing adjacent to the outer wall of a tetrad. C, Furrows (arrows) meeting at the junction of three cells of an immature tetrahedral tetrad. D, A mature tetrahedral tetrad with three pollen grains separated by intine (with traces of exine, arrows) and exine around the outside of the entire tetrad. E, Detail of layered intine and the exine at the junction of two pollen grains in the tetrad shown in D. F, Detail of the intine and exine surrounding the tetrad. G, The pore (P) of one pollen grain of a tetrad underlain by an electron-dense layer (EL). H, I, Typha laxmanni. H, Tetrads in an anther locule (LM). I, Four microspores of a permanent tetragonal tetrad (TEM). E l exine, I l intine. Bars l 1 µm ; except D and I l 5 µm, and H l 20 µm. 494 Furness and Rudall—Microsporogenesis in Monocots ST * E * A B C ST C C C D E F F. 9. A, B, Typha laxmanni (TEM). A, Three microspores of a permanent tetragonal tetrad. B, Detail of the fused exines of two microspores. C, D, Eriocaulon thwaitesii (DIC). C, Dyad with a centrifugal cell plate forming (*), in a locule surrounded by secretory tapetum. D, Tetragonal tetrad in a locule surrounded by secretory tapetum. E, Mayaca fluiatilis, tetragonal tetrad (DIC). F, Xyris trachyphylla, tetragonal tetrads. C l callose, E l exine, ST l secretory tapetum. Bars : in A, B, F l 5 µm ; in C, D, E l 10 µm. in Tofieldia (early-branching monocots–Alismatales) and Hypoxidaceae (an early-branching ‘ lower ’ asparagoid), may also reflect this tendency. Microsporogenesis is predominantly successive in monocotyledons, apart from in Japonolirion and Petrosaia, a few Alismatales, some Dioscoreales, the ‘ lower ’ Asparagales, some Arecaceae, and some Poales. Simultaneous microsporogenesis is of systematic significance within these groups, for example, in Dioscoreales, Asparagales, and Poales. Comparison of this distribution with independentlyderived (mainly molecular) phylogenies indicate that it has arisen several times independently within monocotyledons. Comparisons of microsporogenesis type with pollen aperture type in monocotyledons (Table 2) demonstrate that there is no direct relationship between the two, with the exception of trichotomosulcate apertures which are associated with simultaneous microsporogenesis (Rudall et al., 1997), and pantoporate which are associated with successive. Otherwise, the main monocot aperture types are found both in taxa with successive and simultaneous microsporogenesis (Table 2), and a change in microsporogenesis type does not usually relate to a change in aperture type. The situation is however probably more complex than this, since evidence shows that aperture position is controlled by the orientation of the microtubules of the meiotic spindle (Heslop-Harrison, 1971 ; Sheldon and Dickinson, 1983, 1986 ; Dickinson and Sheldon, 1984). Trichotomosulcate apertures in monocot pollen, and equatorial tricolpate and tricolporate apertures in eudicot pollen, are all associated with simultaneous microsporogenesis. Detailed studies of individual apertures have revealed some interesting observations, for example, Asphodeline, Asphodelus and Eremurus (Asphodelaceae) have simultaneous microsporogenesis and the sulci may be either Furness and Rudall—Microsporogenesis in Monocots T 2. Relationship between the main pollen aperture types in monocotyledons and microsporogenesis type Aperture type Microsporogenesis type Monosulcate Successive, for example, Acorus, Liliaceae, Commelinaceae. Some simultaneous, for example, some Dioscorea, Taccaceae, Asphodelaceae and Blandfordiaceae (‘ lower ’ Asparagales : Rudall et al., 1997). Simultaneous, for example, Tofieldia, some Dioscorea ; successive, for example, Pontederiaceae. Simultaneous, for example, Hemerocallidaceae (‘ lower ’ Asparagales : Rudall et al., 1997), some Rapateaceae, some Arecaceae. Successive, for example, Cyclanthaceae, Pandanaceae, Poaceae (Poales) ; simultaneous, for example, Cyperaceae, Juncaceae (Poales). Successive, for example, Alismataceae, some Burmannia, some Colchicum. Successive, for example, Costaceae ; simultaneous, for example, some Crocus (Iridaceae : Rudall et al., 1997) ; both types in Eriocaulaceae or intermediate. Successive, for example, many Araceae, Zingiberaceae ; simultaneous, for example, some Iridaceae (Furness and Rudall, 1999 a, b). Disulcate Trichotomosulcate Ulcerate Pantoporate (or polyporate) Spiraperturate (including clypeate) Inaperturate longitudinal (parallel to the longest axis of the grain) or transverse (perpendicular to the longest axis of the grain) (Schulze, 1975 a ; Huynh, 1976 ; Dı! az Lifante, 1996), compared with the longitudinal sulcus of Lilium (Liliaceae : successive). It is unclear at present if these apertures are oriented differently with respect to the tetrad, or merely appear to be oriented differently in mature grains because the individual microspores become elongated in different directions ; further work is required. In future, a greater understanding of the processes and subcellular mechanisms involved in microsporogenesis, and ultimately of the genes controlling these mechanisms, is required to achieve a more sophisticated understanding of the evolution of microsporogenesis in monocot lineages. More detailed observations on microsporogenesis are needed, using more sophisticated techniques such as indirect immuno-fluorescence microscopy, to gain insights into the subcellular processes, including the early stages of cell plate formation and the distribution and time of appearance of spindle microtubules. A C K N O W L E D G E M E N TS We thank Surrey County Council and English Nature for permission to collect material of Narthecium ossifragum, and S. Fry (SCC) for assistance in the field. We are grateful to H. Takahashi and Hokkaido University Botanic Garden for material of Japonolirion osense, and M. G. Sajo for Xyris trachyphylla. Thanks are due to our colleagues especially P. Bygrave, L. R. Caddick, M. W. Chase, A. M. Muasya, S. J. 495 Owens, D. A. Simpson and P. Wilkin for discussion of various aspects of this work and for help with obtaining material. We also thank two anonymous referees for their comments. REFERENCES Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85 : 531–553. Arekal GD, Ramaswamy SN. 1973. Embryology of Burmannia pusilla (Wall. ex Miers) THW. and its taxonomic status. BeitraW ge zur Biologie der Pflanzen 49 : 35–46. Arekal GD, Ramaswamy SN. 1980. Embryology of Eriocaulon hookerianum Stapf. and the systematic position of Eriocaulaceae. Botaniska Notiser 133 : 295–309. Asplund I. 1972. Embryological studies in the genus Typha. Sensk Botanisk Tidskrift 66 : 1–17. Ayensu ES. 1972. Studies on pollen morphology in the Velloziaceae. Proceedings of the Biological Society of Washington 85 : 469–480. Ayensu ES, Skvarla JJ. 1974. Fine structure of Velloziaceae pollen. Bulletin of the Torrey Botanical Club 101 : 250–266. Banerji I. 1937. Sterility in Colocasia antiquorum Schott. Journal of the Indian Botanical Society 16 : 159–164. Bhandari NN. 1984. The microsporangium. In : Johri BM, ed. The embryology of angiosperms. Berlin : Springer-Verlag, 71–80. Blackmore S, Barnes SH. 1995. Garside’s rule and the microspore tetrads of Greillea rosmarinifolia A. Cunningham and Dryandra polycephala Bentham (Proteaceae). Reiew of Palaeobotany and Palynology 85 : 111–121. Blackmore S, Crane PR. 1988. The systematic implications of pollen and spore ontogeny. In : Humphries CJ, ed. Ontogeny and systematics. New York : Colombia University Press, 85–115. Blackmore S, Crane PR. 1998. The evolution of apertures in the spores and pollen grains of embryophytes. In : Owens SJ, Rudall PJ, eds. Reproductie biology in systematics, conseration and economic botany. Kew : Royal Botanic Gardens, Kew, 159–182. Bortenslager S von, Erdtman G, Praglowski J. 1966. Pollenmorphologische Notizen u$ ber einige Blu$ tenpflanzen incertae sedis. Botaniska Notiser 119 : 160–168. Bremer K, Bremer B, Thulin M. 1998. Introduction to phylogeny and systematics of flowering plants. Uppsala University : Department of Systematic Botany. Bygrave P. 1999. Molecular systematics of the Annonaceae. PhD thesis. Royal Botanic Gardens, Kew. Caddick LR, Furness CA, Stobbart KL, Rudall PJ. 1999 a. Microsporogenesis and pollen morphology in Dioscoreales and allied taxa. Grana (in press). Caddick LR, Rudall PJ, Wilkin P, Chase MW. 1999 b. Yams and their allies : systematics of Dioscoreales. In : Wilson KL, Morrison D, eds. Systematics and eolution of monocots. Collingwood : CSIRO (in press). Carlquist S. 1960. Anatomy of Guayana Xyridaceae : Abolboda, Orectanthe, and Achlyphila. Memoirs of the New York Botanical Garden 10 : 65–117. Carlquist S. 1961. Pollen morphology of Rapateaceae. Aliso 5 : 39–66. Cauneau-Pigot A. 1988. Biopalynological study of Lapageria rosea and Iris unguicularis. Storage of pollen. Grana 27 : 297–312. Cave MS. 1966. The female gametophytes of Lapageria rosea and Philesia magellanica. Gayana. Botanica 15 : 25–31. Chakrapani P, Raj B. 1971. Pollen morphological studies in the Burmanniaceae. Grana 11 : 164–179. Chanda S. 1966. On the pollen morphology of the Centrolepidaceae, Restionaceae and Flagellariaceae, with special reference to taxonomy. Grana Palynologica 6 : 355–415. Chanda S, Ghosh K. 1976. Pollen morphology and its evolutionary significance in Xanthorrhoeaceae. In : Ferguson IK, Muller J, eds. The eolutionary significance of the exine. London : Academic Press, 527–559. 496 Furness and Rudall—Microsporogenesis in Monocots Chanda S, Ghosh K. 1979. Apertural evolution in the pollen of monocotyledons and early dicotyledons. Proceedings of the 4th International Palynological Conference, Lucknow 1 : 551–567. Chanda S, Rowley J. 1967. Apertural types in pollen of the Restionaceae and Flagellariaceae. Grana Palynologica 7 : 16–36. Chanda S, Nilsson S, Blackmore S. 1988. Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27 : 257–272. Chase MW, and 41 others. 1993. Phylogenetics of seed plants : an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80 : 528–580. Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguiarte LE, Hartwell J, Fay MF, Caddick LR, Cameron KM, Hoot S. 1995 a. Molecular phylogenetics of Lilianae. In : Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, eds. Monocotyledons : systematics and eolution. Kew : Royal Botanic Gardens, 109–137. Chase MW, Stevenson DW, Wilkin P, Rudall PJ. 1995 b. Monocot systematics : a combined analysis. In : Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, eds. Monocotyledons : systematics and eolution. Kew : Royal Botanic Gardens, 685–730. Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WJ, Sullivan S, Joseph J, Givnish T, Sytsma KJ, Price C. 1999. A combined analysis of multiple datasets and a new phylogenetic classification of the monocotyledons. In : Wilson KL, Morrison D, eds. Systematics and eolution of monocots. Collingwood : CSIRO (in press). Cheah CH, Stone BC. 1975. Embryo sac and microsporangium development in Pandanus (Pandanaceae). Phytomorphology 25 : 228–238. Clarke GCS, Jones MR. 1981. The northwest european pollen flora, 23. Dioscoreaceae. Reiew of Palaeobotany and Palynology 33 : 45–50. Conran JG. 1988. Embryology and possible relationships of Petermannia cirrosa (Petermanniaceae). Nordic Journal of Botany 8 : 13–17. Cranwell LM. 1953. New Zealand pollen studies. The monocotyledons. Bulletin of the Auckland Institute and Museum 3 : 1–91. Dahlgren R, Lu A-m. 1985. Campynemanthe (Campynemaceae) : Morphology, microsporogenesis, early ovule ontogeny and relationships. Nordic Journal of Botany 5 : 321–330. Dahlgren RMT, Clifford HT, Yeo PF. 1985. The families of the monocotyledons. Structure, eolution and taxonomy. Berlin : Springer-Verlag. Dı! az Lifante Z. 1996. Pollen morphology of Asphodelus L. (Asphodelaceae) : taxonomic and phylogenetic inferences at the infrageneric level. Grana 35 : 24–32. Dı! az Lifante Z, Dı! ez MJ, Ferna! ndez I. 1990. Morfologia polinica de las subfamilias Melanthioideae y Asphodeloideae (Liliaceae) en la peninsula Iberica y su importancia taxonomica. Lagascalia 16 : 211–225. Dickinson HG, Sheldon JM. 1984. A radial system of microtubules extending between the nuclear envelope and the plasma membrane during male haplophase in flowering plants. Planta 161 : 86–90. Ducker SC, Pettitt JM, Knox RB. 1978. Biology of Australian seagrasses : pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Australian Journal of Botany 26 : 265–285. Dunbar A. 1973. Pollen development in the Eleocharis palustris group (Cyperaceae). I. Ultrastructure and ontogeny. Botaniska Notiser 126 : 197–254. Dutt BSM. 1970 a. Hypoxidaceae. Bulletin of the Indian National Academy of Science 41 : 368–372. Dutt BSM. 1970 b. Velloziaceae. Bulletin of the Indian National Academy of Science 41 : 373–374. Ehler N, Schill R. 1973. Die pollenmorphologie der Bromeliaceae. Pollen et Spores 15 : 13–45. El-Ghazaly G, Jensen WA. 1986. Studies in the development of wheat (Triticum aestium) pollen. I. Formation of the pollen wall and Ubisch bodies. Grana 25 : 1–29. Erdtman G. 1943. An introduction to pollen analysis. Waltham, Massachusetts : Chronica Botanica Co. Erdtman G. 1952. Pollen morphology and plant taxonomy. Angiosperms. Stockholm : Almqvist & Wiksell. Eunus AM. 1951. Contributions to the embryology of the Liliaceae. V. Life history of Amaianthium muscaetoxicum Walt. Phytomorphology 1 : 73–79. Furness CA. 1985. A review of spiraperturate pollen. Pollen et Spores 27 : 307–320. Furness CA. 1988. The northwest european pollen flora, 39. Eriocaulaceae. Reiew of Palaeobotany and Palynology 57 : 27–32. Furness CA, Rudall PJ. 1998. The tapetum and systematics in monocotyledons. Botanical Reiew 64 : 201–239. Furness CA, Rudall PJ. 1999 a. Inaperturate pollen in monocotyledons. International Journal of Plant Sciences 160 : 395–414. Furness CA, Rudall PJ. 1999 b. Aperture absence in pollen of monocotyledons. In : Harley MM, Morton CM, Blackmore S, eds. Pollen and spores : morphology and biology. Royal Botanic Gardens, Kew (in press). Gow JE. 1913. Observations on the morphology of the aroids. Botanical Gazette 56 : 127–142. Grayum MH. 1991. Systematic embryology of the Araceae. Botanical Reiew 57 : 167–203. Grayum MH. 1992. Comparative external pollen ultrastructure of the Araceae and putatatively related taxa. Monographs in Systematic Botany of the Missouri Botanical Garden 43 : 1–167. Ha/ kansson A. 1954. Meiosis and pollen mitosis in X-rayed and untreated spikelets of Eleocharis palustris. Hereditas 40 : 325–345. Halbritter H. 1992. Morphologie und systematische Bedeutung des Pollens der Bromeliaceae. Grana 31 : 197–212. Halbritter H, Hesse M. 1993. Sulcus morphology in some monocot families. Grana 32 : 87–99. Halbritter H, Hesse M. 1995. The convergent evolution of exine shields in angiosperm pollen. Grana 34 : 108–119. Hamann U. 1961. Merkmalsbestand und Verwandtschaftsbeziehungen der Farinosae. Wildenowia 2 : 639–768. Hamann U. 1966. Embryologische, morphologische-anatomische und systematische Untersuchungen an Philydraceen. Willdenowia 4 : 1–178. Hamann U. 1975. Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceae. Botanische Jahrbucher 96 : 154–191. Hamann U. 1976. Hydatellaceae–a new family of Monocotyledonae. New Zealand Journal of Botany 14 : 193–196. Harley MM. 1996. Palm pollen and the fossil record. PhD Thesis, University of East London. Harley MM. 1999. Tetrad variation : its influence on pollen form and systematics in the Palmae. In : Kurmann MM, Hemsley AR, eds. Eolution of plant architecture. Kew : Royal Botanic Gardens (in press). Harling G. 1958. Monograph of the Cyclanthaceae. Acta Horti Bergiana 18 : 1–428. Hayashi Y. 1960. On the microsporogenesis and pollen morphology in the family Magnoliaceae. Science Reports of Tohoku Uniersity. 4th series (Biology) 26 : 45–52. Heo K, Van der Werf H, Tobe H. 1998. Embryology and relationships of Lauraceae (Laurales). Botanical Journal of the Linnean Society 126 : 295–322. Heslop-Harrison J. 1968. Wall development within the microspore tetrad of Lilium longiflorum. Canadian Journal of Botany 46 : 1185–1192. Heslop-Harrison J. 1971. Wall pattern formation in angiosperm microsporogenesis. In : Symposium of the Society for Experimental Biology No. XXV. Control mechanisms of growth and differentiation. Cambridge : Cambridge University Press, 277–300. Hesse M, Waha M. 1983. The fine structure of the pollen wall in Strelitzia reginae (Musaceae). Plant Systematics and Eolution 141 : 285–298. Heusser CJ. 1971. Pollen and spores of Chile. Tucson : University of Arizona Press. Huang T-C. 1972. Pollen flora of Taiwan. National Taiwan University : Botany Department Press. Huynh K-L. 1972. The original position of the generative nucleus in the pollen tetrads of Agropyron, Itea, Limnanthes, and Onosma, and its phylogenetic significance in the angiosperms. Grana 12 : 105–112. Furness and Rudall—Microsporogenesis in Monocots Huynh K-L. 1976. Arrangement of some monosulcate, disulcate, trisulcate, dicolpate, and tricolpate pollen types in the tetrads, and some aspects of evolution in the angiosperms. In : Ferguson IK, Muller J, eds. The eolutionary significance of the exine. London : Academic Press, 101–124. Huynh K-L. 1980. La morphologie du pollen de Pandanus subg. Vinsonia (Pandanaceae) et sa signification taxonomique. Pollen et Spores 22 : 173–189. Huynh K-L, Stone BE. 1981. On a new subsection of Pandanus section Cauliflora (Pandanaceae) with paniculate staminate inflorescence structure, distinctive leaf anatomy and pollen morphology. Botanical Journal of the Linnean Society 83 : 213–220. Islam AS. 1950. A contribution to the life history of Ottelia alismoides Pers. Journal of the Indian Botanical Society 29 : 79–91. Juel HO. 1900. Beitra$ ge zur Kenntniss der Tetradentheilung. Jahrbuch fur wissenschaftliche Botanik 35 : 626–659. Juliano JB, Alcala PE. 1933. Floral morphology of Musa errans (Blanco) Teodoro var. Botoan Teodoro. Philippine Agriculturalist 22 : 91–126. Kircher P. 1986. Untersuchungen zur BluW ten- und Infloreszenzmorphologie, Embryologie und Systematik der Restionaceen im Vergleich mit Gramineen und erwandten Familien. Dissertationes Botanicae, 94. Berlin : J.Cramer. Khanna P. 1963. Male gametophyte and obturator in Cyperus rotundus L., and C. triceps Endl. (l Kyllinga triceps Rottb.). Current Science 32 : 133–134. Koyama T. 1969. Delimitation and classification of the CyperaceaeMapanioideae. In : Gunkel JE, ed. Current topics in plant sciences. New York : Academic Press, 201–228. Kracauer P. 1930. Die Haploidgeneration von Canna indica L. Dissertation Berlin. Kress WJ. 1986. Exineless pollen structure and pollination systems of tropical Heliconia (Heliconiaceae). In : Blackmore S, Ferguson IK, eds. Pollen and spores : form and function. London : Academic Press, 329–345. Kress WJ, Stone DE. 1983. Morphology and phylogenetic significance of exine-less pollen of Heliconia (Heliconiaceae). Systematic Botany 8 : 149–167. Kress WJ, Stone DE, Sellers SC. 1978. Ultrastructure of exine-less pollen : Heliconia (Heliconiaceae). American Journal of Botany 65 : 1064–1076. Kreunen SS, Osborn JM. 1999. Pollen and anther development in Nelumbo (Nelumbonaceae). American Journal of Botany (in press). Kronestedt-Robards EC, Rowley JR. 1989. Pollen grain development and tapetal changes in Strelitzia reginae (Strelitziaceae). American Journal of Botany 76 : 856–870. Kuprianova LA. 1948. Pollen morphology and phylogeny of the monocotyledons. Trudy Botanischeskogo Instituta Akademii Nauk SSR. Leningrad. Series 1. Flora Sistematika 7 : 163–262. (In Russian). Lambert A-M. 1969. Observations sur la premie' re mitose pollinique de Luzules. Compte Rendu de l’AcadeT mie des Sciences. Paris. Series D. 269 : 153–156. Lambert AM. 1970. Formation et diffe! rentiation des grains de pollen chez les Luzules (structures et ultrastructures). Bulletin AcadeT mie et SocieT teT Lorraines des Sciences 9 : 147–149. Les DH, Cleland MA, Waycott M. 1997. Phylogenetic studies in Alismatidae, II : Evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany 22 : 443–463. Liang Y-H. 1988. Pollen morphology of the family Zingiberaceae in China–pollen types and their significance in the family. Acta Phytotaxonomica Sinica 26 : 265–281. (In Chinese with English summary). Linder HP, Ferguson IK. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. Grana 24 : 65–76. Locke JF. 1936. Microsporogenesis and cytokinesis in Asimia triloba. Botanical Gazette 36 : 159–169. Maheshwari P. 1950. An introduction to the embryology of angiosperms. New York : McGraw-Hill. Maheshwari SC, Khanna PP. 1956. The embryology of Arisaema wallichianum Hook. F. and the systematic position of the Araceae. Phytomorphology 6 : 379–388. 497 Meyer N, Yaroshevskaya AS. 1976. The phylogenetic significance of the development of pollen grain walls in Liliaceae, Juncaceae and Cyperaceae. In : Ferguson IK, Muller J, eds. The eolutionary significance of the exine. London : Academic Press, 91–100. Monteiro-Scanavacca WR, Mazzoni SC. 1978. Embryological studies in Leiothrix fluitans (Mart.) Ruhl. (Eriocaulaceae). Reista Brasileira de Botanica 1 : 59–64. Muller J. 1970. Palynological evidence on early differentiation of angiosperms. Biological Reiews 45 : 417–450. Mu$ ller-Doblies U. 1969. U$ ber die Blu$ tensta$ nde und Blu$ ten sowie zur Embryologie von Sparganium. Botanische Jahrbucher 89 : 359–450. Murty YS. 1964. Cytokinesis and microspore tetrad. In : Nair PKK, ed. Adances in palynology. Lucknow : National Botanic Gardens, 176–202. Nanda K, Gupta SC. 1977. Development of the tapetal periplasmodium in Rhoeo spathacea. Phytomorphology 27 : 308–314. Ohashi H, Murata J, Takahashi M. 1983. Pollen morphology of the Japanese Arisaema (Araceae). Science Reports of Tohoku Uniersity. 4th series (Biology) 38 : 219–251. Ohga I, Sinoto Y. 1932. Cytological studies on Sciaphila japonica Mak. (Preliminary note). II. On pollen–and embryo sac–development. Botanical Magazine of Tokyo 46 : 311–315 (In Japanese). Pacini E, Franchi GG. 1983. Pollen grain development in Smilax aspera L. and possible functions of the loculus. In : Mulcahy DL, Ottaviano E, eds. Pollen biology and implications for plant breeding. Amsterdam : Elsevier, 183–190. Pacini E, Juniper BE. 1983. The ultrastructure of the formation and development of the amoeboid tapetum in Arum italicum Miller. Protoplasma 117 : 116–129. Page JS. 1978. A scanning electron microscope survey of grass pollen. Kew Bulletin 32 : 311–319. Palm BJ. 1920. Preliminary notes on pollen development in tropical monocotyledons. Sensk Botanisk Tidskrift 14 : 261–266. Periasamy K, Amalathas J. 1991. Absence of callose and tetrad in the microsporogenesis of Pandanus odoratissimus with well-formed pollen exine. Annals of Botany 67 : 29–33. Pettitt JM. 1980. Reproduction in seagrasses : nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Annals of Botany 45 : 257–271. Pettitt JM. 1981. Reproduction in seagrasses : pollen development in Thalassia hemprichii, Halophila stipulacea and Thalassodendron ciliatum. Annals of Botany 48 : 609–622. Pettitt JM, Jermy AC. 1975. Pollen in hydrophilous angiosperms. Micron 5 : 377–405. Poole MM, Hunt DR. 1980. Pollen morphology and the taxonomy of the Commelinaceae : an exploratory survey. American Commelinaceae : VIII. Kew Bulletin 34 : 639–670. Punt W. 1968. Pollen morphology of the American species of the subfamily Costoideae (Zingiberaceae). Reiew of Palaeobotany and Palynology 7 : 31–43. Radulescu D. 1973. Recherches morpho-palynologiques sur la famille Liliaceae. Acta Botanica Horti Bucurestiensis 1973 : 133–248. Rajendra BR, Tomb AS, Mujeeb KA, Bates LS. 1978. Pollen morphology of selected Triticeae and two intergeneric hybrids. Pollen et Spores 20 : 145–156. Ramaswamy SN, Nagendran CR. 1996. Embryology of Syngonanthus nitens var. nitens (Eriocaulaceae). South African Journal of Botany 62 : 173–177. Rao AN. 1955. Embryology of Trichopus zeylanicus Gaertn. Journal of the Indian Botanical Society 34 : 213–221. Rau NS. 1930. On reduction division in pollen-mothercells of Cyanotis cristata. Journal of the Indian Botanical Society 9 : 79–113. Rodkiewicz B, Kudlicka K, Stobiecka H. 1984. Patterns of amyloplast distribution during microsporogenesis in Tradescantia, Impatiens and Larix. Acta Societas Botanicorum Poloniae 53 : 437–441. Romanov ID. 1959. The embryo sac and pollen morphology in Tulipa. In : Proceedings of the IX International Botanical Congress, Montreal. Vol. II, abstracts. Montreal : University of Toronto Press : 331–332. Rowley JR, Dahl AO. 1962. The aperture of the pollen grain in Commelinantia. Pollen et Spores 4 : 221–232. Rowley JR, Flynn JJ. 1990–1991. Tambourissa (Monimiaceae). 498 Furness and Rudall—Microsporogenesis in Monocots Microspore development in the tetrad period. Annales des Sciences Naturelles. Botanique. Paris. 13th series 11 : 125–147. Rowley JR, Skvarla JJ. 1986. Development of the pollen grain wall in Canna. Nordic Journal of Botany 6 : 39–65. Ru$ bsamen T. 1986. Morphologische, embryologische und systematische Untersuchungen an Burmanniaceae und Corsiaceae (Mit Ausblick auf die Orchidaceae-Apostasioideae). Dissertationes Botanicae, 92. Berlin : J. Cramer. Ru$ bsamen-Weustenfeld T. 1991. Morphologische, embryologische und systematische Untersuchungen an Triuridaceae. Bibliotheca Botanica 140 : 1–113. Rudall PJ, Furness CA. 1997. Systematics of Acorus : ovule and anther. International Journal of Plant Sciences 158 : 640–651. Rudall PJ, Sajo MG. 1999. Systematic position of Xyris : flower and seed anatomy. International Journal of Plant Sciences 160 : 795–808. Rudall PJ, Stevenson DW, Linder HP. 1999. Structure and systematics of Hanguana, a monocotyledon of uncertain affinity. Australian Systematic Botany 12 : 311–330. Rudall PJ, Furness CA, Chase MW, Fay MF. 1997. Microsporogenesis and pollen sulcus type in Asparagales (Lilianae). Canadian Journal of Botany 75 : 408–430. Saad SI, Ibrahim RK. 1965. Palynological and biochemical studies of Scitaminae. Journal of Palynology 1 : 62–66. Sampson FB. 1982. Variation in position of the nascent generative cell in pollen of Hedycarya (Monimiaceae). Grana 21 : 9–14. Samuelsson G. 1914. U$ ber die Pollenentwicklung von Anona und Aristolochia und ihre systematische Bedeutung. Sensk Botanisk Tidskrift 8 : 181–189. Schnarf K. 1931. Vergleichende Embryologie der Angiospermen. Berlin : Borntra$ ger. Schulze W. 1975 a. Beitra$ ge zur Taxonomie der Liliifloren. I. Aphodelaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 24 : 403–415. Schulze W. 1975 b. Beitra$ ge zur Taxonomie der Liliifloren. II. Colchicaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 24 : 417–428. Schulze W. 1978 a. Beitra$ ge zur Taxonomie der Liliifloren. III. Alstromeriaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 27 : 79–85. Schulze W. 1978 b. Beitra$ ge zur Taxonomie der Liliifloren. IV. Melanthiaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 27 : 87–95. Schulze W. 1980. Beitra$ ge zur Taxonomie der Liliifloren. VI. Der Umfang der Liliaceae. Wissenschaftliche Zeitschrift FriedrichSchiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 29 : 607–636. Schulze W. 1982 a. Beitra$ ge zur Taxonomie der Liliifloren. VII. Philesiaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 31 : 277–283. Schulze W. 1982 b. Beitra$ ge zur Taxonomie der Liliifloren. VIII. Smilacaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 31 : 285–289. Schulze W. 1982c. Beitra$ ge zur Taxonomie der Liliifloren. IX. Anthericaceae. Wissenschaftliche Zeitschrift Friedrich-Schiller UniersitaW t Jena, Mathematische-Naturwissenschaftliche 31 : 291–307. Sharma M. 1965. Pollen morphological studies of Eriocaulon L. from India. Palynological Bulletin 1 : 45–48. Sharma M. 1967. Pollen morphology of Indian monocotyledons. Journal of Palynology. Special olume. Lucknow : Palynological Society of India, 1–98. Sheldon JM, Dickinson HG. 1983. Determination of patterning in the pollen wall of Lilium henryi. Journal of Cell Science 63 : 191–208. Sheldon JM, Dickinson HG. 1986. Pollen wall formation in Lilium : The effect of chaotrophic agents, and the organisation of the microtubular cytoskeleton during pattern development. Planta 168 : 11–23. Simpson MG. 1983. Pollen ultrastructure of the Haemodoraceae and its taxonomic significance. Grana 22 : 79–103. Simpson MG. 1985. Pollen ultrastructure of the Philydraceae. Grana 24 : 23–31. Simpson MG. 1987. Pollen ultrastructure of the Pontederiaceae. Evidence for exine homology with the Haemodoraceae. Grana 26 : 113–126. Simpson MG. 1989. Pollen wall development of Xiphidium coeruleum (Haemodoraceae) and its systematic implications. Annals of Botany 64 : 257–269. Skvarla JJ, Larson DA. 1963. Nature of cohesion within pollen tetrads of Typha latifolia. Science 140 : 173–175. Skvarla JJ, Larson DA. 1966. Fine structural studies of Zea mays pollen. I. Cell membranes and exine ontogeny. American Journal of Botany 53 : 1112–1125. Skvarla JJ, Rowley JR. 1970. The pollen wall of Canna and its similarity to the germinal apertures of other pollen. American Journal of Botany 57 : 519–529. Stenar H. 1925. Die embryologie der Amaryllideen. PhD Thesis, University of Uppsala. Stenar H. 1927. Zur Entwicklungsgeschichte der Gattung Anigozanthos Labill. Botaniska Notiser 1927 : 104–114. Stenar H. 1931. Die Art der Pollenbildung bei Narthecium ossifragum Huds. Botaniska Notiser 1931 : 51–54. Stevenson DW, Owens SJ. 1978. Some aspects of the reproductive biology of Gibasis enustula (Kunth) D. R. Hunt (Commelinaceae). Botanical Journal of the Linnean Society 77 : 157–175. Stone DE. 1987. Developmental evidence for the convergence of Sassafras (Laurales) and Heliconia (Zingiberales) pollen. Grana 26 : 179–191. Stone DE, Sellers SC, Kress WJ. 1979. Ontogeny of exineless pollen in Heliconia, a banana relative. Annals of the Missouri Botanical Garden 66 : 701–730. Stone DE, Sellers SC, Kress WJ. 1981. Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos (Zingiberales : Costaceae) pollen. American Journal of Botany 68 : 49–63. Strandhede SO. 1965. Chromosome studies in Eleocharis, subser. Palustres. I. Meiosis in some forms with 15 chromosomes. Hereditas 53 : 47–62. Strandhede SO. 1973. Pollen development in the Eleocharis palustris group (Cyperaceae). II. Cytokinesis and microspore degeneration. Botaniska Notiser 126 : 255–265. Takahashi M. 1982. Pollen morphology in North American species of Trillium. American Journal of Botany 69 : 1185–1195. Takahashi M. 1983. Pollen morphology in Asiatic species of Trillium. Botanical Magazine of Tokyo 96 : 377–384. Takahashi M. 1987. Development of omniaperturate pollen in Trillium kamtschaticum (Liliaceae). American Journal of Botany 74 : 1842–1852. Takahashi M. 1994. Pollen development in a submerged plant, Ottelia alismatoides (L.) Pers. (Hydrocharitaceae). Journal of Plant Research 107 : 161–164. Takahashi M. 1995. Development of structure-less pollen wall in Ceratophyllum demersum. L. (Ceratophyllaceae). Journal of Plant Research 108 : 205–208. Takahashi M, Kawano S. 1989. Pollen morphology of the Melanthiaceae and its systematic implications. Annals of the Missouri Botanical Garden 76 : 863–876. Takahashi M, Sohma K. 1979. Pollen wall formation and tapetum in Disporum smilacinum A. Gray (Liliaceae). Science Reports of Tohoku Uniersity. 4th series (Biology) 37 : 273–281. Tanaka N. 1939. Chromosome studies in Cyperaceae, V. Pollen development of Carex grallatoria Maxim. var. heteroclita Ku$ kenth. ex Matsum. Japanese Journal of Genetics 15 : 153–157. (In Japanese with English summary). Tanaka N. 1941. Chromosome studies in Cyperaceae, XII. Pollen development in five genera with special reference to Rhyncospora. Botanical Magazine Tokyo 55 : 55–65. Thanikaimoni G. 1965. Contribution to the pollen morphology of Eriocaulaceae. Pollen et Spores 8 : 181–191. Theilade I, Mærsk-Møller M-L, Theilade J, Larsen K. 1993. Pollen morphology and structure of Zingiber (Zingiberaceae). Grana 32 : 338–342. Theilade I, Theilade J. 1996. Ontogeny of pollen grains in Zingiber spectabile (Zingiberaceae). Grana 35 : 162–170. Tiemann A. 1985. Untersuchungen zur Embryologie, Blutenmorphologie und Systematik der Rapateaceen und der Xyridaceen-Gattung Abolboda (Monocotyledoneae). Dissertationes Botanicae, 82. Vaduz : J. Cramer. Tiwari SC, Gunning BES. 1986 a. Cytoskeleton, cell surface and the Furness and Rudall—Microsporogenesis in Monocots development of invasive plasmodial tapetum in Tradescantia irginiana L. Protoplasma 133 : 89–99. Tiwari SC, Gunning BES. 1986 b. Development of tapetum and microspores in Canna L. : an example of an invasive but nonsyncytial tapetum. Annals of Botany 57 : 557–563. Ueno J. 1980. On the spiraperturate pollen grains. Japanese Journal of Palynology 25 : 33–47. (In Japanese with English summary). Van der Ham RWJM. 1991. Pollen morphology of the Stemonaceae. Blumea 36 : 127–159. Walker JW. 1971. Pollen morphology, phytogeography, and phylogeny of the Annonaceae. Contributions to the Gray Herbarium 202 : 1–132. 499 Walker JW. 1974. Aperture evolution in the pollen of primitive angiosperms. American Journal of Botany 61 : 1112–1136. Wingenroth M, Heusser CJ. 1983. Pollen of the High Andean flora. Proince of Mendoza, Argentina. Argentina : Consejo Nacional de Investigaciones Cientficas y Te! cnicas. Wulff HD. 1939. Die Pollenentwicklung der Juncaceen. Jahrbuch fuW r wissenschaftliche Botanik 87 : 533–556. Yamashita T. 1976. U$ ber die Pollenbildung bei Halodule pinifolia und H. unineris. BeitraW ge zur Biologie der Pflanzen 52 : 217–226. Zavada MS. 1983. Comparative morphology of monocot pollen and evolutionary trends of apertures and wall structures. Botanical Reiew 49 : 331–379.
© Copyright 2026 Paperzz