06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 26 Home Quit Lesson 6.4 Exercises, pages 478–489 A 3. a) For each triangle, write the Sine Law equation you would use to determine the length of AC. i) ii) A 10 cm A 40⬚ B 5.0 cm C 80⬚ 110⬚ 30⬚ C B Use: 26 b c sin B sin C Use: b c sin B sin C Substitute: ∠ B 30°, ∠C 80°, c 5 Substitute: ∠B 40°, ∠ C 110°, c 10 5 b sin 30° sin 80° b 10 sin 40° sin 110° 6.4 The Sine Law—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 27 Home Quit b) For each triangle in part a, determine the length of AC to the nearest tenth of a centimetre. i) b 5 sin 30° sin 80° ii) b b 2.5385. . . AC is approximately 2.5 cm. 10 sin 40° sin 110° b 6.8404. . . AC is approximately 6.8 cm. 4. a) For each triangle, write the Sine Law equation you would use to determine the measure of ∠ E. i) D 8 cm F 70⬚ ii) 10 cm D 7 cm E 115⬚ 10 cm F E sin E sin D e d sin E sin F Substitute: ∠ D 70°, e 8, d 10 Use: e f Substitute: ∠F 115°, e 7, f 10 sin 70° sin E 8 10 sin E sin 115° 7 10 Use: b) For each triangle in part a, determine the measure of ∠ E to the nearest degree. i) sin E 8 sin 70° 10 Since ∠ E is acute: ∠ E sin 1 8 sin 70° a b 10 ∠E 48.7425. . .° ∠ E ⬟ 49° ©P DO NOT COPY. ii) sin E 7 sin 115° 10 Since ∠ E is acute: ∠E sin1 a 7 sin 115° b 10 ∠E 39.3766. . .° ∠ E ⬟ 39° 6.4 The Sine Law—Solutions 27 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 28 Home Quit B 5. For each triangle, determine the measure of ∠ J to the nearest degree. a) 9 cm G 50⬚ H b) 15 cm G 50⬚ 12 cm 7 cm J J Use: H sin J sin H j h Use: sin J sin H j h Substitute: ∠ H 50°, j 9, h 7 Substitute: ∠H 50°, j 15, h 12 sin 50° sin J 9 7 9 sin 50° sin J 7 1 9 sin 50° sin a b ⬟ 80° 7 sin J sin 50° 15 12 15 sin 50° sin J 12 1 15 sin 50° sin a b ⬟ 73° 12 Since ∠J is obtuse: ∠ J ⬟ 180° 80°, or 100° Since ∠J is obtuse: ∠J ⬟ 180° 73°, or 107° 6. Given the following information about each possible ⌬ABC, determine how many triangles can be constructed. a) c = 10 cm, a = 12 cm, ∠ A = 20° The ratio of the side opposite the angle to the side adjacent to a the angle is: c 12 , which is 1.2 10 a Since c >1, only 1 triangle can be constructed b) c = 18 cm, a = 12 cm, ∠ A = 20° The ratio of the side opposite the angle to the side adjacent to a the angle is: c 12 , which is 0.6 18 sin 20° 0.3420. . . Since sin 20°<0.6<1, two triangles can be constructed c) c = 18 cm, a = 12 cm, ∠ A = 50° The ratio of the side opposite the angle to the side adjacent to a the angle is: c 12 , which is 0.6 18 sin 50° 0.7660. . . a Since c <sin 50°, no triangle can be constructed 28 6.4 The Sine Law—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 29 Home Quit 7. a) For each triangle, determine the length of MN to the nearest tenth of a centimetre. i) ii) K 13 cm 9 cm K 18 cm 40⬚ M 15 cm 100⬚ M N N Determine ∠ N. Determine ∠N. sin N sin M Use: n m Substitute: ∠ M 100°, n 9, m 13 Use: n m Substitute: ∠M 40°, n 18, m 15 sin 100° sin N 9 13 9 sin 100° sin N 13 sin N sin 40° 18 15 18 sin 40° sin N 15 sin N sin M Since ∠ N is acute: Since ∠N is acute: ∠ N sin1 a ∠N sin1 a ∠ N 42.9836. . .° So, ∠ K 180° (100° 42.9836. . .°) 37.0163. . .° ∠ N ⬟ 50.4748. . .° So, ∠ K 180° (40° 50.4748. . .°) 89.5251. . .° 9 sin 100° b 13 Use: k m sin K sin M 18 sin 40° b 15 Use: k m sin K sin M Substitute: ∠ K 37.0163. . .° ∠ M 100°, m 13 Substitute: ∠K 82.5251. . .° ∠M 40°, m 15 13 k sin 37.0163. . .° sin 100° 13 sin 37.0163. . .° k sin 100° 15 k sin 89.5251. . .° sin 40° 15 sin 89.5251. . .° k sin 40° k 7.9472. . . MN is approximately 7.9 cm. k 23.3350. . . MN is approximately 23.3 cm. b) Suppose you had been given the measures for the triangles in part a and not the diagrams. In which triangle would there have been an ambiguous case? Justify your choice. i) Angle M is obtuse, so there is only 1 triangle ii) The ratio of the side opposite the angle to the side adjacent to the angle is: NK 15 , which is 0.83 KM 18 sin 40° 0.6427. . . since sin 40°<0.83<1, then there is an ambiguous case ©P DO NOT COPY. 6.4 The Sine Law—Solutions 29 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 30 Home Quit 8. Here is a part of a proof of the Sine Law for ⌬UVW with obtuse ∠ W. Explain each step. V w h u ␣ U v  T W In ⌬VUT, h sin U = w h = w sin U In ⌬VWT, Using the sine ratio in a right triangle Solving for h h Using the sine ratio in a right triangle sin b = u b = 180° - ␣ Supplementary angles on a line sin b = sin (180° - ␣) The sine of an angle is equal to = sin ␣, or sin W the sine of its supplement. h So, sin W = u h = u sin W u sin W = w sin U u w = sin U sin W sin UWV sin VWT Solving for h Equating expressions for h Dividing each side by sin W sin U 9. Solve each triangle. Give the angle measures to the nearest degree and side lengths to the nearest tenth of a centimetre. a) 24 cm R 35⬚ S 19 cm T Determine ∠T. sin T sin S s Use: t Substitute: ∠ S 35°, t 24, s 19 sin T sin 35° 24 19 24 sin 35° sin T 19 98.5712. . .° r s Use: sin R sin S Substitute: ∠ R 98.5712. . .° ∠S 35°, s 19 r 19 sin 98.5712. . .° sin 35° 19 sin 98.5712. . .° sin 35° Since ∠T is acute: r ∠ T sin1 a r 32.7555. . . 24 sin 35° b 19 ∠ T 46.4287. . .° 30 So, ∠R 180° (35° 46.4287. . .°) 6.4 The Sine Law—Solutions ∠T ⬟ 46°, ∠R ⬟ 99°, ST ⬟ 32.8 cm DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 31 Home Quit b) In ⌬KMN, ∠ M = 70°, KN = 14.1 cm, and MK = 14.5 cm Check how many triangles can be drawn. The ratio of the side opposite ∠M to the side adjacent to ∠M is: M 70⬚ 14.5 cm KN 14.1 , which is 0.9724. . . KM 14.5 N2 sin 70° 0.9396. . . N1 Since sin 70°<0.9724. . .<1, 14.1 cm K two triangles can be constructed: This diagram is not drawn to scale. ≤ MKN1 is acute; ≤ MKN2 is obtuse. In ≤ MKN2 In ≤ MKN1 ∠N2 180° 75.0943. . .° Determine ∠ N1. sin N1 104.9056. . .° sin M Use: n m Substitute: ∠ M 70°, n 14.5, m 14.1 So, ∠ K 180° (70° 104.9056. . .°) sin N1 sin 70° 14.5 14.1 14.5 sin 70° sin N1 14.1 5.0943. . .° ∠N1 sin1 a Substitute: ∠K 5.0943. . .° ∠ N1 75.0943. . .° ∠ M 70°, m 14.1 So, ∠ K k 14.1 sin 5.0943. . .° sin 70° 14.1 sin 5.0943. . .° k sin 70° 14.5 sin 70° b 14.1 180° (70° 75.0943. . .°) 34.9056. . .° Use: k m sin K sin M Substitute: ∠K 34.9056. . .° ∠ M 70°, m 14.1 14.1 k sin 34.9056. . .° sin 70° 14.1 sin 34.9056. . .° k sin 70° Use: m k sin K sin M k 1.3323. . . ∠ N2 ⬟ 105°, ∠K ⬟ 5°, MN2 ⬟ 1.3 cm k 8.5862. . . ∠N1 ⬟ 75°, ∠K ⬟ 35°, MN1 ⬟ 8.6 cm ©P DO NOT COPY. 6.4 The Sine Law—Solutions 31 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 32 Home Quit 10. For each triangle below, can you use the Sine Law to determine the indicated measure? If your answer is yes, determine the measure to the nearest tenth of a unit. If your answer is no, explain why. a) b) A E 10 cm 5 cm 8 cm b 10 cm D F B 100⬚ No, because no angles are given. C 12 cm No, because only one angle is given and it is a contained angle. c) d) G M 10 cm N 30⬚ h 11 cm 48⬚ K 110⬚ H 10 cm Yes; in ≤ GHJ, Yes ∠ H 180° 110° Use: n 70° g h Use: sin H sin G Substitute: ∠ H 70°, ∠ G 30°, g 10 h 10 sin 70° sin 30° 10 sin 70° h sin 30° h 18.7938. . . h ⬟ 18.8 cm 32 K J 6.4 The Sine Law—Solutions sin N sin K k Substitute: ∠K 48°, n 11, k 10 sin N sin 48° 11 10 11 sin 48° sin N 10 Since ∠ N is acute: ∠N sin1 a 11 sin 48° b 10 ∠N 54.8312. . .° U 180° (48° 54.8312. . .°) 77.1687. . .° U ⬟ 77.2° DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 33 Home Quit 11. A surveyor constructed this drawing M of a triangular lot. a) Determine the unknown side lengths. ∠M 180° (25° 110°) 45° Use: p sin P m sin M Substitute: ∠ P 110°, ∠M 45°, m 270 p 270 sin 45° 270 sin 110° p sin 45° sin 110° p 358.8100. . . MN is approximately 359 m. 25⬚ 270 m N Use: 110⬚ P n m sin N sin M Substitute: ∠ N 25°, ∠M 45°, m 270 n 270 sin 25° sin 45° 270 sin 25° n sin 45° n 161.3715. . . PM is approximately 161 m. b) Determine the total length of fencing needed to enclose the lot. Give the answers to the nearest metre. The total length of fencing is: 359 m 161 m 270 m 790 m 12. a) Solve ⌬PQR by drawing a perpendicular from P to QR, then use primary trigonometric ratios in each right triangle formed. Give the angle measures to the nearest degree and the side lengths to the nearest tenth of a centimetre. In ≤ PRN, In ≤ PQN, RN cos 74° 5 sin Q RN 5 cos 74° RN 1.3781. . . sin 74° PN 5 PN 5 sin 74° PN 4.8063. . . P 5.0 cm R 74⬚ N 6.5 cm Q 4.8063. . . 6.5 ∠ Q 47.6830. . .° ∠ Q ⬟ 48° cos Q QN 6.5 QN 6.5 cos 47.6830. . .° QN 4.3760. . . In ≤ PQR, ∠P ⬟ 180° (48° 74°) ⬟ 58° RQ (1.3781. . . 4.3760. . .) cm RQ ⬟ 5.8 cm ©P DO NOT COPY. 6.4 The Sine Law—Solutions 33 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 34 Home Quit b) Use the Sine Law to solve ⌬PQR. sin Q In ≤ PQR, use: q sin R r sin Q sin 74° 5 6.5 5 sin 74° sin Q 6.5 Since ∠ Q is acute: ∠ Q sin1 a 5 sin 74° b 6.5 ∠ Q 47.6830. . .° ∠ P 180° (47.6830. . .° 74°) ∠ P 58.3169. . .° Use: p sin P p r sin R 6.5 sin 74° 6.5 sin 58.3169. . .° p sin 74° sin 58.3169. . .° p 5.7541. . . ∠ Q ⬟ 48°, ∠ P ⬟ 58°, RQ ⬟ 5.8 cm c) Which strategy for solving ⌬PQR was more efficient? Justify your answer. The Sine Law needed 3 calculations, while the primary trigonometric ratios needed 6 calculations; so the Sine Law is more efficient. 13. A sailor made this sketch on her navigation chart. How much closer is the ship at S to lighthouse A than to lighthouse B? N Lighthouse A 20⬚ 11 km 35⬚ 10⬚ Lighthouse B E Ship S In ≤ SAB, ∠ ASB 90° (10° 20°) 60° So, ∠SAB 180° (60° 35°) 85° Use: s b sin B sin S Use: a 11 sin A sin 60° Substitute: ∠ B 35°, Substitute: ∠A 85° ∠S 60°, s 11 a 11 sin 85° sin 60° 11 sin 85° a sin 60° b 11 sin 35° sin 60° 11 sin 35° b sin 60° a 12.6533. . . b 7.2853. . . The required distance is: 12.6533. . . 7.2853. . . 5.3679. . . The ship is approximately 5 km closer to lighthouse A. 34 6.4 The Sine Law—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 35 Home Quit 14. Two ships are 1600 m apart. Each ship detects a wreck on the ocean floor. The wreck is vertically below the line through the ships. From the ships, the angles of depression to the wreck are 40° and 28°. a) To the nearest metre, how far is the wreck from each ship? The wreck could be between the ships or on one side of both ships. Sketch a diagram to show both positions. A 1600 m 28° 40⬚ W1 B 140⬚ W2 Case 1 ≤ABW1 ∠ W1 180° (28° 40°) 112° Case 2 ≤ABW2 ∠ W2 180° (28° 140°) 12° Use: Use: a w sin A sin W1 a w sin A sin W2 Substitute: ∠ A 28°, ∠ W1 112°, w 1600 Substitute: ∠ A 28°, ∠W2 12°, w 1600 a 1600 sin 28° sin 112° 1600 sin 28° a sin 112° a 1600 sin 28° sin 12° 1600 sin 28° a sin 12° a 810.1462. . . a 3612.8535. . . 1600 b Use: sin B sin 112° Use: b 1600 sin B sin 12° Substitute: ∠ B 40° Substitute: ∠B 140° 1600 sin 40° b sin 112° b b 1109.2300. . . The wreck is approximately 810 m and 1109 m from the ships. b 4946.6202. . . The wreck is approximately 3613 m and 4947 m from the ships. 1600 sin 140° sin 12° b) To the nearest metre, what is the depth of the wreck? In ≤ABW1, draw the perpendicular from W1 to AB at N. Then, W1N is the depth of the wreck. In right ≤ANW1: sin 28° W1N AW1 In ≤ABW2, draw the perpendicular from W2 to AB extended to M. Then, W2M is the depth of the wreck. In right ≤AMW2: sin 28° W2M AW2 W2M 4946.6202. . . (sin 28°) W1N 1109.2300. . . (sin 28°) W2M 2322.2975. . . W1N 520.7519. . . The wreck is approximately 521 m deep or 2322 m deep. ©P DO NOT COPY. 6.4 The Sine Law—Solutions 35 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 36 Home Quit 15. Two people use transits to sight the top of a pole that is on the line through the bases of the transits. The distances to the top of the pole are: 19.8 m at an angle of elevation of 38.0°; and 14.4 m at an angle of elevation of 57.8°. To the nearest tenth of a metre, determine the distance between the people. Sketch a diagram. There are 2 solutions. In ≤ABC1, In ≤ABC2, ∠ A 180° (38.0° 57.8°) ∠C 2 180° 57.8° 84.2° 122.2° a c So, ∠ A 180° (38.0° 122.2°) Use: sin A sin C1 19.8° Substitute: ∠ A 84.2°, a c Use: ∠ C1 57.8°, c 19.8 sin A sin C a 19.8 sin 84.2° sin 57.8° 19.8 sin 84.2° a sin 57.8° a 23.2791. . . 2 Substitute: ∠ A 19.8°, ∠C2 122.2°, c 19.8 a 19.8 sin 19.8° sin 122.2° 19.8 sin 19.8° a sin 122.2° A 19.8 m a 7.9260. . . The people are approximately 23.3 m or 7.9 m apart. B 57.8° 38.0° C2 14.4 m 57.8° C1 C 16. Two angles in a triangle measure 60° and 45°. The longest side is 10 cm longer than the shortest side. Determine the perimeter of the triangle to the nearest tenth of a centimetre. Sketch a diagram. The third angle in the triangle is: 180° (45° 60°) 75° The shortest side is opposite the least angle, so let BC a. The longest side is opposite the greatest angle, so AB a 10. A 45° a ⫹ 10 60° B 75° a C a c Use: sin A sin C Substitute: ∠ A 45°, ∠ C 75°, c a 10 a a 10 sin 45° sin 75° a sin 75° a sin 45° 10 sin 45° a(sin 75° sin 45°) 10 sin 45° a 10 sin 45° sin 75° sin 45° a 27.3205. . . b a Use: sin B sin A Substitute: ∠ B 60°, ∠ A 45°, a 27.3205. . . b 27.3205. . . sin 60° sin 45° 27.3205. . . sin 60° b sin 45° b 33.4606. . . The perimeter is: (27.3205. . . 27.3205. . . 10 33.4606. . .) cm ⬟ 98.1 cm 36 6.4 The Sine Law—Solutions DO NOT COPY. ©P 06_ch06_pre-calculas11_wncp_solution.qxd 5/28/11 2:12 PM Page 37 Home Quit 17. A hiker plans a trip in two sections. Her destination is 15 km away on a bearing of N70°E from her starting position. The first leg of the trip is on a bearing of N10°E. The second leg of the trip is 14 km. How long is the first leg? Give the answer to the nearest tenth of a kilometre. Sketch a diagram. ∠ DCB 70° 10° 60° Check how many triangles can be drawn. The ratio of the side opposite ∠ C to the side adjacent to ∠ C is: N D 14 km 10⬚ BD 14 , which is 0.93 BC 15 B 70⬚ sin 60° 0.8660. . . Since sin 60°<0.93<1, two triangles can be constructed: ≤ D1CB is acute; ≤ D2CB is obtuse N D1 In ≤ D1CB Determine ∠ D1. Use: sin D1 d 14 km sin C c ∠D1 68.1073. . .° ∠ B 180° (60° 68.1073. . .°) 51.8926. . .° To determine CD1, b c use: sin B sin C Substitute: ∠ B 51.8926. . .°, ∠ C 60°, c 14 b 14 sin 51.8926. . .° sin 60° 14 sin 51.8926. . .° b sin 60° B D2 15 km Substitute: ∠C 60°, d 15, c 14 sin D1 sin 60° 15 14 15 sin 60° sin D1 14 15 km C C 60⬚ In ≤ D2CB ∠D2 180° 68.1073. . .° 111.8926. . .° So, ∠B 180° (60° 111.8926. . .°) 8.1073. . .° To determine CD2, use: b 14 sin B sin 60° Substitute: ∠B 8.1073. . .°, ∠ C 60°, c 14 b 14 sin 8.1073. . .° sin 60° 14 sin 8.1073. . .° b sin 60° b 2.2798. . . b 12.7201. . . The first leg is approximately 12.7 km or 2.3 km. ©P DO NOT COPY. 6.4 The Sine Law—Solutions 37
© Copyright 2026 Paperzz