____ 7 ME J Lesson 5 Reteach DATE PERIOD Algebra: Properties Property Symbols Commutative a+b=b+cz a.b=b’a Associative (a+6+c=a+(b+c) (a b)•c=a’b’c) Identity ct+0—i a’l=a .‘ Numbers 5+3=3+5 5.3=3.5 (2+3)+4=2+(3±4) (23).4=2.(3.4) 5+0=5 5.1=5 Example 1 Determine whether 6 + (4 + 3) and (6 + 4) + 3 arc equivalent. The numbers are grouped differenth They are equivalent by the Associative Property. So. 6 + (4 + 3) = (6 + 4) + 3. Use the properties to make mental math easier. Example 2 The formula for the perimeter of a triangle is P a + b + c, where a, b, and c are side lengths. Find the perimeter of a triangle where a= 12,b5,andc=8. F F P P = = = = a + b + c 1.2 + 5 + S Write the formula. Replace a with 12, b with 5, and c with 8. 12 ± 8 + 5 25 units Commutative Property Exerdses Determine whether the two expressions are equivalent. If so, tell what property is applied. If not, explain why 1. 9. 1 and 9 yes; Identity Property 3. 6 (3 2) and (6 — 3) 2. 7. 3 and 3 . 7 yes; Commutative Property - 2 no; the first expression equals 5 and the second equals 1. 4. (10. 2). 5 and 10 . (2 . 5) yes; Associative Property 5. The formula for the volume of a rectangular prism is V = 1w/i. where [is the length. iv is the width, and h is the height. Find the volume of a rectangular prism, in cubic units. if the length is 8 units, the width is 11 units, and the height is 10 units. Use the Commutative Property V=15.8.2=1528=3Q8=24Ocubicunits Course I Chapter 6 Expressions 97 _____ NAME DATE PERIOD Lesson 5 Skills Practice Algebra: Properties Determine whether the two expressions are equivalent. If so, tell what property is applied. If not, explain why. 1. 2.(3’7)and(2.3).7 2. 6±3and3+6 yes; Associative Property 3. 26 — i9 7) and (26 — — 9) 7 no; the expressions equal 24 and 10. 5. 7 . 2 and 2 . 7 yes; Commutative Property yes; Commutative Property 4. 18. 1 and 18 yes; Identity Property 6. 6 — (4 — 1) and (6 — 4) 1 no; the expressions equal 3 and 1. (3 t (- ..: 7. 7 + 0 and 7 — , (. 8. 0 + 12 arid 0 yes; Identity Property 9. 625 + 281 and 281 + 625 yes; Commutative Property 11. 2 ± (8 + 2) and (2 + 8) + 2 yes; Associative Property no; the expressions equal 12 and 0. 10. (12. 18) .5 and 12. (18.5) yes; Associative Property 12. 40 ÷ 10 and 10 ÷ 40 no; the expressions equal 4 and cL 31 ‘5 -)O1 4-. Qrn3dC.±) Use one or more properties to rewrite each expression as an expression that does not use parentheses. 6 . 3 l (pl)• p.6 14.(a+5)+23 a+28 .\1/ 15.7.(v.3)y.2l 16.(b±4)+17 b+21 F C73 ( 17. 6 ± x + 50) C 98 2 E% t 1 uL x +56 18. (v200). 2 y.400 y ((3() Course I Chapter 6 Expressions ______ NAME DATE PERIOD Lesson 6 Reteach The Distributive Property • To multiply a sum by a number, multiply each addend by the number outside the parentheses. • a(b ± c) = ab ac • (b + c)a ba = ± ca Example 1 Find 6 x 38 mentally using the Distributive Propert 6 x 38 = 6(30 + 8) Write38as3O+8. = 6(30) + 6(8) Distributive Property = 180 + 48 Multiply mentally. = 228 Add, So. 6 x 38 228. = Example 2 Use the Distributive Property to rewrite 4(x + 3). 4(x ± 3) = 4(x) + 4(3) Distributive Property = 4x + 12 Multiply. So, 4(x + 3) can be rewritten as 4x + 12. Exercises Find each product mentally. Show the steps you used. L4x82 4 x 82 2.9x26 4(80 + 2) = 4(80) + 4(2) =320+8 = 328 9 x 26 = 3.12x44 9(20 + 6) = 9(20) + 9(6) =180+54 = 4.8x5.7 12 x 44 12(40 + 4) 12(40) + 12(4) =480+48 =528 8 x 5.7 = = 8(5 + 0.7) = 8(5) + 8(0.7) =40+5.6 =45.6 = Use the Distributive Property to rewrite each algebraic expression. 5. 5(y + 4) 5y + 20 6. (7 ± rh,) 1)3 73 8. (b + 2)9 9b + 18 21 + 3r 7. 12(x 7 9. 4(4 ± a) 16 + 4a 1O 9(7 ± a) 63 + 9v ‘‘ =. •‘ I I J74. 12x +60 5) ii(} / 11 ± I ., ,_)/ / 99 - —‘I / I ‘ (I ‘- — 7/ I ‘7 ___________ _ _ NAME _____________ DATE _______ PERIOD Lesson 6 Skills Practice The Distributive Property Find each product mentall Show the steps you used. L3x78 t7x74 3(70)-i-3(8)=234 7(70)+7(4)=518 ‘19c>-taa aai 3.8x92 4.6x57 8(90)+8(2)=736 6(50)+6(7)=342 .3cc tQ. 73(t 5.15x4 6.12x51 15(2)+15(f)=40 7.6x5.2 6(5) + 6(0.2) 12(5)-i- 12(4)=62 8. 4x9.4 = 31.2 4(9) + 4(0.4) = 3Z6 3Otjc 37J Use the Distributive Property to rewrite each algebraic expression. L7(y+2)7y-l-14 1O.(8+r)432-l-4r 11.8Cz+9)8x+72 9(SfYrWc) 3ai-qr 12.(b+5)12 12b-I-60 18.4(2+a)8-l-4a 0/lID 14. 7(6+u) J 42+7v JWb)ti1o) 15. (b — 5)15 15b + 75 3(’5)-3() 15-Sv 15b-75 ‘t 100 16. 3(5—u) 15 + 3v )7x#/& 3(9Xt’1) j j 17. 6(11—s) 66-- 6s CO)-&(& (60%_3 % ki9u-aL) Casual • j5(i Chapter 6 Expressions ‘-3A) ________ NAME DATE PERIOD Lesson 7 Reteach Equivalent Expressions • Commutative Property: The order which numbers are added or multiplied does not change the sum or the product. •a ± b = b ± a or a . b b . a. • Associative Property: The way in which numbers are grouped does not change the sum or the product. •(a±b)+c=a ±(b±c)or(a.b).c=a.(b.c) • Like terms contain the same variables. Examples: 2y, y, and 7y are all like terms. but 4x is not. Example 1 Simplify the expression 16 + (v + 4). 16 + (v + 4) 16 + (4 ± ct = (16 4) ± v = 20 + v Commutative Property Associative Property Add. So, 16 + (u + 4) in simplified form is 20 + v. Example 2 Simplify the expression 3x + (6y + 2x). 3x+(6y+2x)=3x+(2x+6y) = (3x + 2x) + 6y = 5x ± 6’ E Commutative Property Associative Property Combine like terms. So, 3x + (6y + 2s) in simplified form is 5x + 6y. Exercises Simplify each expression. JusLify each step. 2. 6 1.5± x + 3 io + (8+x K 4. 8x 3. (b + 10) + 15 ± (x + 4) Cf2A P 5. i12 ± 5 ± 2x tX / ± 2u) L /2/2 3 lOx + 5 5+2u L 7. 9x + (4z + 3x) (12x + 4z b + 25 ‘ ii I 18p+8 iv Q_c’I :/‘ 8. (8z + .12x) + (2z + 7x) (lOz + 19x 9. Sy + 4z + 7z 5y + liz 2 / Course I Chapter 6 Expressions I5) ,/ 6. lip ± S + 7p S 0 ( NAME DATE PERIOD Lesson 7 Skills Practice Equivalent Expressions Simplify each expression. 1.x+4±3x 2. 3±.x+6 ; 4x + 4 3. 15 + (6 + x) + x 21 + x 7 .o t) k± 4. (6 + x) + 9 5. x + 2 + Sx 5±x \ yr .k 9x + 2 I / 8. 15 29y+5x 5 L. 6. (4x ± 3v) + 23r [4x + 26y x -(3y :c) 7. (25v ± 5x) ± 4)’ . (5 . x) 28x 1k. 11. x ± 2 + x 12x + 16 12. 5 2x + 2 • 3 . x. 10 50x (&icx / x) oLy) 9. 7(4x) S75x 10. 8x + (16 + 4x) 13. ç17 )c 4- 14. & + 17’ + 9x 15.3x + (24x + 8) 7 K51x ‘9 17x + 17y 16. 4(15x) 17. 2x + 8 + x 60x 27x + 8 •/:)f:. 18. (5x ± 9v) + 32x 3x±8 © (37x+9y iX:t ;4j). )Lf n Y A car company charges x dollars to znt a car plus any extra options shown in the table. Use the information to answer Exercises 19 and 20. 19. Three people each rented a car with insurance and one more person rented a car with a car wash. Write an expression that represents the total cost of the car rentals and extra options. [ Extra Options Cost Car Seat $50 Insurance $75 Car Wash S15 3(75) + x + 15 + x + x 20. Simplify your expression. Justify each step. 240 + 3x Course I Chapter 6 Expressions
© Copyright 2025 Paperzz