Algebra: 8.2.3 Graphing with Technology Solutions Name ______________________________ Block _____ Date ______ Bell Work 1/16 Factor each quadratic equation completely, and then find the roots. Show sufficient work. a. y = x2 + 4x + 3 1 ๐ฆ = (๐ฅ + 3)(๐ฅ + 1) ๐ฅ 3 ๐ฅ ๐ฅ2 3๐ฅ ๐ฅ 3 b. y = 4x2 โ 1 ๐ฆ = (2๐ฅ + 1)(2๐ฅ โ 1) Use Graphing Calculator Technology: 8-77. Find the zeros, and vertex, y-intercept and graph y = x2 โ 3x โ 7. a. What keystrokes are used to graph? Y = โฉ๐ข๐ง๐ฉ๐ฎ๐ญ ๐๐ช๐ฎ๐๐ญ๐ข๐จ๐งโช, Window โฉ๐๐๐ฃ๐ฎ๐ฌ๐ญโช, Graph b. What keystrokes are used to find the zeros? 2nd, Trace, 2, Left โฉ๐๐ง๐ญ๐๐ซโช, Right โฉ๐๐ง๐ญ๐๐ซโช โฉ๐๐ง๐ญ๐๐ซโช Zeros: โ โ๐. ๐ and ๐. ๐ -1.5 4.5 c. What keystrokes are used to find the y-intercept? Y-Intercept = โ๐ Trace, 0 โฉ๐๐ง๐ญ๐๐ซโช -7 d. What keystrokes are used to find the vertex? (1.5, -9.25) 2nd, Trace, 3 or 4, Left โฉ๐๐ง๐ญ๐๐ซโช, Right โฉ๐๐ง๐ญ๐๐ซโช โฉ๐๐ง๐ญ๐๐ซโช Vertex โ (๐. ๐. โ๐. ๐๐) 8-78. Find the zeros, and vertex, y-intercept and graph y = โx2 + 3x + 6 (1.5, 8.25) Zeros โ โ๐. ๐ and ๐. ๐ 6 Vertex โ (๐. ๐. ๐. ๐๐) y-intercept = ๐ -1.4 4.4 8-79. Graph y = 3(x โ 2)2 โ5 a. How does this graph compare to the parent ๐ฆ = ๐ฅ 2 ? 7 3 times as steep, right 2, down 5 b. Find the roots: โ ๐. ๐ and ๐. ๐ .7 3.3 c. Find the y-intercept. ๐ (2, -5) d. Find the vertex. (๐, โ๐) ๐ฆ = 3(๐ฅ โ 2)2 โ 5 ๐ฆ = 3(๐ฅ 2 โ 4๐ฅ + 4) โ 5 e. Simplify this equation. ๐ฆ = 3๐ฅ 2 โ 12๐ฅ + 12 โ 5 ๐ = ๐๐๐ โ ๐๐๐ + ๐ โ2 โ2๐ฅ 4 ๐ฅ ๐ฅ2 โ2๐ฅ ๐ฅ โ2 8-80. Graph y = (x + 1)2 โ 16 a. How does this graph compare to the parent ๐ฆ = ๐ฅ 2 ? Left 1, down 16 b. Find the roots: โ๐ and ๐ 3 -5 c. Find the y-intercept. โ๐๐ d. Find the vertex. (โ๐, โ๐๐) -15 (-1, -16) 2 e. Simplify this equation. ๐ฆ = (๐ฅ + 1) โ 16 ๐ฆ = ๐ฅ 2 + 2๐ฅ + 1 โ 16 ๐ = ๐๐ + ๐๐ โ ๐๐ +1 1๐ฅ 1 ๐ฅ ๐ฅ2 1๐ฅ ๐ฅ +1 2 8-81. Graph y = (x + 2) โ 3 a. How does this graph compare to the parent ๐ฆ = ๐ฅ 2 ? Left 2, down 3 b. Find the roots: โ๐. ๐ and โ๐. ๐ 1 c. Find the y-intercept. ๐ d. Find the vertex. (โ๐, โ๐) e. Simplify this equation. -3.7 +2 2๐ฅ 4 ๐ฅ ๐ฅ2 2๐ฅ ๐ฅ +2 ๐ฆ = (๐ฅ + 2)2 โ 3 ๐ฆ = ๐ฅ 2 + 4๐ฅ + 4 โ 3 ๐ = ๐๐ + ๐๐ + ๐ -.3 (-2, -3) 8-83. Use the Zero Product Property to find the roots of the quadratics below. โ1 โ3๐ฅ a. 3x2 โ 7x + 4 = 0 ๐=๐ ๐ฅ+6= 0 ๐ = โ๐ 4 ๐ฅโ1= 0 ๐=๐ ๐ฅ 3๐ฅ 2 โ4๐ฅ 3๐ฅ b. x2 + 6x = 0 ๐ฅ (๐ฅ + 6) = 0 c. (x + 5)(โ2x + 3) = 0 ๐ฅ+5= 0 ๐ = โ๐ 3๐ฅ โ 4 = 0 3๐ฅ = 4 ๐ ๐= ๐ โ4 โ2๐ฅ + 3 = 0 โ2๐ฅ = โ3 ๐ ๐= ๐ The following are ANSWERS ONLY. Show SUFFICIENT WORK for credit! 8-85. Solve the equations below for x. Check your solutions. (factor, set factors = 0, solve each) ๐=โ ๐ ๐ a. (6x โ18)(3x + 2) = 0 ๐=๐ b. x2 โ 7x + 10 = 0 ๐=๐ ๐=๐ c. 2x2 + 2x โ12 = 0 ๐ = โ๐ ๐=๐ d. 4x2 โ 1 = 0 ๐=โ ๐ ๐ ๐= ๐ ๐ 8-86. Sketch each parabola below with the given information. a. A parabola with x-intercepts (2, 0) and (7, 0) and y-intercept (0, โ8). b. A parabola with exactly one x-intercept at (โ1, 0) and y-intercept (0, 3). c. The parabola represented by the equation y = (x + 5)(x โ 1). a. b. c.
© Copyright 2026 Paperzz