2 โˆ’ 1 + 4x + 3 - Tate County School District

Algebra: 8.2.3 Graphing with Technology
Solutions
Name ______________________________
Block _____ Date ______
Bell Work 1/16 Factor each quadratic equation completely, and then find the roots. Show sufficient work.
a.
y = x2 + 4x + 3
1
๐‘ฆ = (๐‘ฅ + 3)(๐‘ฅ + 1)
๐‘ฅ
3
๐‘ฅ ๐‘ฅ2
3๐‘ฅ
๐‘ฅ
3
b.
y = 4x2 โˆ’ 1
๐‘ฆ = (2๐‘ฅ + 1)(2๐‘ฅ โˆ’ 1)
Use Graphing Calculator Technology:
8-77. Find the zeros, and vertex, y-intercept and graph y = x2 โˆ’ 3x โˆ’ 7.
a. What keystrokes are used to graph?
Y = โŒฉ๐ข๐ง๐ฉ๐ฎ๐ญ ๐ž๐ช๐ฎ๐š๐ญ๐ข๐จ๐งโŒช, Window โŒฉ๐š๐๐ฃ๐ฎ๐ฌ๐ญโŒช, Graph
b. What keystrokes are used to find the zeros?
2nd, Trace, 2, Left โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช, Right โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช
Zeros: โ‰ˆ โˆ’๐Ÿ. ๐Ÿ“ and ๐Ÿ’. ๐Ÿ“
-1.5
4.5
c. What keystrokes are used to find the y-intercept?
Y-Intercept = โˆ’๐Ÿ•
Trace, 0 โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช
-7
d. What keystrokes are used to find the vertex?
(1.5, -9.25)
2nd, Trace, 3 or 4, Left โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช, Right โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช โŒฉ๐ž๐ง๐ญ๐ž๐ซโŒช
Vertex โ‰ˆ (๐Ÿ. ๐Ÿ“. โˆ’๐Ÿ—. ๐Ÿ๐Ÿ“)
8-78. Find the zeros, and vertex, y-intercept and graph y = โˆ’x2 + 3x + 6
(1.5, 8.25)
Zeros
โ‰ˆ โˆ’๐Ÿ. ๐Ÿ’ and ๐Ÿ’. ๐Ÿ’
6
Vertex โ‰ˆ (๐Ÿ. ๐Ÿ“. ๐Ÿ—. ๐Ÿ๐Ÿ“)
y-intercept = ๐Ÿ”
-1.4
4.4
8-79. Graph y = 3(x โˆ’ 2)2 โˆ’5
a. How does this graph compare to the parent ๐‘ฆ = ๐‘ฅ 2 ?
7
3 times as steep, right 2, down 5
b. Find the roots: โ‰ˆ ๐ŸŽ. ๐Ÿ• and ๐Ÿ‘. ๐Ÿ‘
.7
3.3
c. Find the y-intercept. ๐Ÿ•
(2, -5)
d. Find the vertex. (๐Ÿ, โˆ’๐Ÿ“)
๐‘ฆ = 3(๐‘ฅ โˆ’ 2)2 โˆ’ 5
๐‘ฆ = 3(๐‘ฅ 2 โˆ’ 4๐‘ฅ + 4) โˆ’ 5
e. Simplify this equation.
๐‘ฆ = 3๐‘ฅ 2 โˆ’ 12๐‘ฅ + 12 โˆ’ 5
๐’š = ๐Ÿ‘๐’™๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’™ + ๐Ÿ•
โˆ’2 โˆ’2๐‘ฅ
4
๐‘ฅ ๐‘ฅ2
โˆ’2๐‘ฅ
๐‘ฅ
โˆ’2
8-80. Graph y = (x + 1)2 โˆ’ 16
a. How does this graph compare to the parent ๐‘ฆ = ๐‘ฅ 2 ?
Left 1, down 16
b. Find the roots: โˆ’๐Ÿ“ and ๐Ÿ‘
3
-5
c. Find the y-intercept. โˆ’๐Ÿ๐Ÿ“
d. Find the vertex. (โˆ’๐Ÿ, โˆ’๐Ÿ๐Ÿ”)
-15
(-1, -16)
2
e. Simplify this equation. ๐‘ฆ = (๐‘ฅ + 1) โˆ’ 16
๐‘ฆ = ๐‘ฅ 2 + 2๐‘ฅ + 1 โˆ’ 16
๐’š = ๐’™๐Ÿ + ๐Ÿ๐’™ โˆ’ ๐Ÿ๐Ÿ“
+1 1๐‘ฅ
1
๐‘ฅ ๐‘ฅ2
1๐‘ฅ
๐‘ฅ
+1
2
8-81. Graph y = (x + 2) โˆ’ 3
a. How does this graph compare to the parent ๐‘ฆ = ๐‘ฅ 2 ?
Left 2, down 3
b. Find the roots: โˆ’๐Ÿ‘. ๐Ÿ• and โˆ’๐ŸŽ. ๐Ÿ‘
1
c. Find the y-intercept. ๐Ÿ
d. Find the vertex. (โˆ’๐Ÿ, โˆ’๐Ÿ‘)
e. Simplify this equation.
-3.7
+2 2๐‘ฅ
4
๐‘ฅ ๐‘ฅ2
2๐‘ฅ
๐‘ฅ
+2
๐‘ฆ = (๐‘ฅ + 2)2 โˆ’ 3
๐‘ฆ = ๐‘ฅ 2 + 4๐‘ฅ + 4 โˆ’ 3
๐’š = ๐’™๐Ÿ + ๐Ÿ’๐’™ + ๐Ÿ
-.3
(-2, -3)
8-83. Use the Zero Product Property to find the roots of the quadratics below.
โˆ’1 โˆ’3๐‘ฅ
a. 3x2 โˆ’ 7x + 4 = 0
๐’™=๐ŸŽ
๐‘ฅ+6= 0
๐’™ = โˆ’๐Ÿ”
4
๐‘ฅโˆ’1= 0
๐’™=๐Ÿ
๐‘ฅ 3๐‘ฅ 2 โˆ’4๐‘ฅ
3๐‘ฅ
b. x2 + 6x = 0
๐‘ฅ (๐‘ฅ + 6) = 0
c. (x + 5)(โˆ’2x + 3) = 0
๐‘ฅ+5= 0
๐’™ = โˆ’๐Ÿ“
3๐‘ฅ โˆ’ 4 = 0
3๐‘ฅ = 4
๐Ÿ’
๐’™=
๐Ÿ‘
โˆ’4
โˆ’2๐‘ฅ + 3 = 0
โˆ’2๐‘ฅ = โˆ’3
๐Ÿ‘
๐’™=
๐Ÿ
The following are ANSWERS ONLY. Show SUFFICIENT WORK for credit!
8-85. Solve the equations below for x. Check your solutions. (factor, set factors = 0, solve each)
๐’™=โˆ’
๐Ÿ
๐Ÿ‘
a. (6x โˆ’18)(3x + 2) = 0
๐’™=๐Ÿ‘
b. x2 โˆ’ 7x + 10 = 0
๐’™=๐Ÿ“
๐’™=๐Ÿ
c. 2x2 + 2x โˆ’12 = 0
๐’™ = โˆ’๐Ÿ‘
๐’™=๐Ÿ
d. 4x2 โˆ’ 1 = 0
๐’™=โˆ’
๐Ÿ
๐Ÿ
๐’™=
๐Ÿ
๐Ÿ
8-86. Sketch each parabola below with the given information.
a. A parabola with x-intercepts (2, 0) and (7, 0) and y-intercept (0, โˆ’8).
b. A parabola with exactly one x-intercept at (โˆ’1, 0) and y-intercept (0, 3).
c. The parabola represented by the equation y = (x + 5)(x โˆ’ 1).
a.
b.
c.