Section 7.2 Trigonometric Integrals Ruipeng Shen November 18 1 Powers of Sine and Cosine Z Example 1. Evaluate Solution cos3 x dx. We can rewrite the integral into Z Z Z 3 2 cos x dx = cos x · cos x dx = (1 − sin2 x) cos x dx Apply the u-substitution u = sin x =⇒ du = cos x dx, we have Z Z sin3 x u3 + C = sin x − + C. cos3 x dx = (1 − u2 ) du = u − 3 3 Z Example 2. Evaluate sin5 x cos2 x dx. Solution Using the same idea as the previous example, we have Z Z sin5 x cos2 x dx = (sin2 x)2 cos2 x sin x dx Z = (1 − cos2 x)2 cos2 x sin x dx let u = cos x =⇒ du = − sin x dx Z = (1 − u2 )2 u2 · (−du) Z = −u2 + 2u4 − u6 du u5 u7 u3 +2· − +C 3 5 7 1 2 1 = − cos3 x + cos5 x − cos7 x + C. 3 5 7 Z Example 3. Evaluate cos2 x sin2 x dx. =− 1 Solution By the half-angle identities cos u sin u = sin 2u , 2 sin2 u = 1 − cos 2u , 2 we have cos2 x sin2 x = (cos x sin x)2 = cos2 u = 1 + cos 2u ; 2 (1) 1 − cos 4x sin2 2x = . 4 8 Thus we can integrate Z Z 1 − cos 4x 2 2 cos x sin x dx = dx 8 Z Z 1 1 dx − cos 4x dx = 8 8 Z x 1 du = − cos u · 8 8 4 x 1 = − sin u + C 8 32 x sin 4x + C. = − 8 32 Z Strategy for Evaluating sinm x cosn dx let u = 4x =⇒ du = 4 dx • If the power of cosine is odd (n = 2k + 1), save one cosine factor and use cos2 x = 1 − sin2 x to express the remaining factors in term of sine: Z Z Z sinm x cosn xdx = sinm x(cos2 x)k cos x dx = sinm x(1 − sin2 x)k cos x dx, then substitute u = sin x. • If the power of sine is odd (m = 2k + 1), save one sine factor and use sin2 x = 1 − cos2 x to express the remaining factors in term of cosine: Z Z Z m 2 n k n sin x cos xdx = (sin x) cos x sin x dx = (1 − cos2 x)k cosn x sin x dx, then substitute u = cos x. • If the powers of both sine and cosine are even, use the half-angle identities (1). 2 Powers of Tangent and Secant Z Example 4. Evaluate tan6 x sec4 x dx. 2 Solution By the identity sec2 x = 1 + tan2 x and the substitution u = tan x =⇒ du = sec2 x dx, we have Z Z tan6 x sec4 x dx = tan6 x(tan2 x + 1) sec2 x dx Z = u6 (1 + u2 ) du u7 u9 + +C 7 9 1 1 = tan7 x + tan9 x + C. 7 9 = Z Example 5. Calculate Solution tan5 θ sec7 θ dθ. By the identity sec2 θ = 1 + tan2 θ and the substitution u = sec θ =⇒ du = sec θ tan θ dθ, we have Z Z tan5 θ sec7 θ dθ = (tan2 θ)2 sec6 θ(sec θ tan θ)dθ Z = (sec2 θ − 1)2 sec6 θ(sec θ tan θ)dθ Z = (u2 − 1)2 u6 du Z = u10 − 2u8 + u6 du u9 u7 u11 −2· + +C 11 9 7 1 2 1 = sec11 θ − sec9 θ + sec7 θ + C. 11 9 7 = Z Strategy for Evaluating tanm x secn x dx • If the power of secant is even (n = 2k), save a factor of sec2 x and use sec2 x = 1 + tan2 x to express the remaining factors in term of tan x: Z Z Z tanm x secn xdx = (tanm x)(sec2 x)k−1 sec2 x dx = (tanm x)(1+tan2 x)k−1 sec2 x dx, then substitute u = tan x. • If the power of tangent is odd (m = 2k + 1), save one factor of sec x tan x and use tan2 x = sec2 x − 1 to express the remaining factors in term of sec x: Z Z m n tan x sec xdx = (tan2 x)k secn−1 x sec x tan x dx Z = (sec2 x − 1)k secn−1 x(sec x tan x) dx, then substitute u = sec x. 3 More Basic formulas on Trigonometric Integrals Z Z tan x dx = ln | sec x| + C sec x dx = ln | sec x + tan x| + C Z Z cot x dx = ln | sin x| + C csc x dx = ln | csc x − cot x| + C Z Example 6. Find Solution tan3 x dx By the identity tan2 x = sec2 x − 1 and basic formula above, we have Z Z tan3 x dx = (sec2 x − 1) tan x dx Z Z 2 = tan x sec x dx − tan x dx let u = tan x du = sec2 x dx Z = u du − ln | sec x| u2 − ln | sec x| + C 2 tan2 x − ln | sec x| + C = 2 = Z Example 7. Find Solution sec3 x dx By integration by parts, we have Z Z 3 sec x dx = sec x(tan x)0 dx Z = sec x tan x − (tan x)(sec x)0 dx Z = sec x tan x − sec x tan2 x dx Z = sec x tan x − sec x(sec2 x − 1) dx Z Z 3 = sec x tan x − sec x dx + sec x dx Thus we have an equation Z Z 2 sec3 x dx = sec x tan x + sec x dx = sec x tan x + ln | sec x + tan x| + C Z 1 1 =⇒ sec3 x dx = sec x tan x + ln | sec x + tan x| + C 2 2 4 More R Formulas (Optional) To evaluate the integrals of or sin mx sin nx dx, use the corresponding identity R sin mx cos nx dx, 1 sin A cos B = [sin(A − B) + sin(A + B)] 2 1 sin A sin B = [cos(A − B) − cos(A + B)] 2 1 cos A cos B = [cos(A − B) + cos(A + B)] 2 Z Example 8. Evaluate Solution sin 4x cos 5x dx. By the identity above, Z Z 1 sin 4x cos 5x dx = [sin(−x) + sin(9x)] dx 2 1 1 cos x − cos 9x + C = 2 9 1 1 = cos x − cos 9x + C. 2 18 5 R cos mx cos nx dx
© Copyright 2026 Paperzz