K.Gottfried_Precise bulk silicon wet etching

Precise bulk silicon wet etching – a key process for
future wafer thinning technologies
LEVITRONIX ULTRAPURE USER CONFERENCE
29th CMP USERS MEETING
April, 11th to 12th
Zurich, Switzerland
Knut Gottfried, Manuela Zacher, Ines Hartwig, Ina Schubert,
Sven Zimmermann, Ronny Martinka
Fraunhofer Institute for Electronic Nanosystems
Technology Campus 3
Chemnitz, Germany
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
1
Fraunhofer ENAS – a part of the Fraunhofer Society
Berlin
Paderborn
Chemnitz
Fraunhofer-Gesellschaft
ƒ 60 Institutes
ƒ More than 20,000 employees
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
2
Research at Fraunhofer ENAS addresses …
… system integration using
micro and nano technologies
ƒ
MEMS/NEMS design
ƒ
Development of MEMS/NEMS
ƒ
MEMS/NEMS test
ƒ
System packaging / Waferbonding
ƒ
Back-end of Line technologies for micro and
nano electronics
International Offices of Fraunhofer ENAS:
ƒ
Process and equipment simulation
Since 2001/2005
ƒ
Micro and nano reliability
ƒ
Printed functionalities
ƒ
Advanced system engineering
(Since 2012
Project-Center in Sendai)
Since 2002
Shanghai, China
Since 2007
Manaus, Brazil
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
3
Tokyo/Sendai, Japan
Outline
• Background
• Spin etching
• Process / tool requirements
• Tool concept and technical details
• Experimental and Results
• Summary
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
4
Wafer thinning in IC and MEMS fabrication
Wafer thinning (back side grinding) is used in IC
and MEMS fabrication in order to:
•
Achieve a desired device thickness (ICs,
MEMS)
•
Ensure a specific thickness based on device
functionality (MEMS)
•
Reduce substrate series resistance in vertical
devices (Power devices)
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
5
Standard wafer thinning technology: grinding
•
Simple mechanical removal (grinding wheel & DI water)
•
Well developed / established (tools, wheels)
•
2 stages: coarse grinding and (ultra) fine grinding
•
Serious substrate damage (up to several microns)
result in high mechanical stress
Depending on the specific application, post treatments
required, such as:
•
Plasma etching
•
Spin etching
•
CMP
D Knut Gottfried
Dr.
M
Manuela Zacher
IInes Hartwig
IIna Schubert
Dr. Sven Zimmermann
D
Ronny Martinka
6
Vertical system integration - 3D-integration
3D-integration implies any stacking of integrated devices (ICs, MEMS) and
their vertical mechanical and electrical connection.
(Dec 2011)
In order to:
•
Raise integration density
•
Increase performance
•
Enhance functionality
•
Reduce power consumption
•
Minimize volume and weight
Picture source: CEA Leti “3D Activities and Roadmap”, presented at
EMC-3D European Technical Symposium Minatec June 29th, 2007
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
7
Wafer thinning within 3D-integration
Applications:
Achieve minimal device / system thickness
•
Ensure producible through silicon via (TSV)
aspect ratio
•
Blind TSV reveal
72 µm
15
µm
•
AR: 20 : 1
1,2 µm
Requirements:
© 2013 ENAS / ZFM
•
Low total thickness variation; (TTV < 1… 2 µm)
•
Good … excellent surface quality; (wafer bonding Ra < 1nm for a 10 µm x10 µm area)
•
Stress free substrates / ultra thin substrates / thin wafer handling
© 2013 PennWell Corporation / IMEC
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
8
Wafer thinning within 3D-integration - conclusion
• Wafer thinning is one of the main process modules within 3D-integration
(besides TSV-fabrication and stacking / joining)
• Grinding remains the technology of choice; however, due to the specific
requirements post grinding treatments mandatory for many applications
• Possible candidates are: Plasma etch, Wet etch, and CMP
Wet etch, executed as spin etch, is a promising candidate, because
• Comparatively simple process setup
• Reasonable effort (tool costs, consumable costs)
• High and tunable etch rate (much faster than CMP)
• Wet or dry in and dry out process (direct processing of grinded wafers, no
additional cleaning)
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
9
Outline
• Background
• Spin etching
• Process / tool requirements
• Tool concept and technical details
• Experimental and Results
• Summary
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
10
Spin etch process / tool: basic requirements
•
Process applicable to 100mm, 150mm, and 200mm wafers with minimum
conversion time (less than 15 minutes)
•
Chemicals
• KOH
• HNO3/HF/CH3COOH (HNA)
•
Wafer rotation
• Continuously rotation
• Puddle mode
•
Dispense positions and modes
• Fix position
• Oscillating movement over a specific distance (wafer diameter)
• Spray dispense
• Flush dispense
D Knut Gottfried
Dr.
M
Manuela Zacher
Ines Hartwig
In
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
11
SPS Europe B.V. Polos Spin Process Station
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
12
SPS Europe B.V. Polos Spin Process Station - overview
Tool combines a Polos spinner and a chemical delivery system in one unit
Polos spinner
Chemical delivery system
•
100 mm to 200 mm wafers using type
casted chucks
•
4 day tanks, 2 with automatic fill, 2 with
manual fill
•
2 dispense arms
•
Tank recirculation
•
PLC controlled (alphanumeric)
•
One heated tank for KOH
•
Easy configuration changes by
software (valve assignment, …)
•
Recirculation for KOH-processes
•
Special drain for HF-chemistry
•
Waste tank for special applications
•
PLC controlled (GUI)
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
13
Polos Spin Process Station - operating area
Funnels for HNO3 /
CH3COOH supply
Process reactor
(Spinner)
KOH & HF supply
Waste chemicals
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
14
Service / storage
Polos Spin Process Station - chemicals dispense
separate dispense arms for KOH and HNO3/HF/CH3COOH
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
15
•
¼ inch flush dispense line
•
ǩLQFKIOXVKGLVSHQVHOLQH
•
spray nozzle
Polos Spin Process Station – chemicals supply
CH3COOH
HNO3
HF
KOH
up to 95°C
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
16
Polos Spin Process Station – chemicals supply details
Levitronix BPS200 pump systems
and Leviflow™ flow meters *
•
Continuous recirculation
•
Process supply
•
DI water dilution
•
Perfect in-situ mixing
Needle valves to adjust
•
Recirculation flow
•
Chemical supply load balance
* IR1600 flow meter (TOKYO KEISO)
for CH3COOH) because pure acetic
acid cannot be measured using an
ultrasonic principle
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
17
Polos Spin Process Station – HNO3/HF/CH3COOH mixing
Serial and parallel operation
of 4 (5 if DI-water dilution)
BPS200 pumps
HF : HNO3 : CH3COOH ratio
may vary, typical ratios
•
1:5:1
•
1 : 5 : 0.3
Flow range up to 1liter for
each chemical
Dispense arm
Mixing
pump
CH3COOH
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
18
HF
HNO3
DI water
•
20 ml : 100 ml : 20 ml
•
200 ml : 1liter : 200 ml
•
20 ml : 100 ml : 7 ml
•
200 ml : 1 liter : 67 ml
Outline
• Background
• Spin etching
• Process / tool requirements
• Tool concept and technical details
• Experimental and Results
• Summary
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
19
Experimental and results – KOH process
Process parameters:
Applications
• KOH concentration 30%
• TSV reveal (no Cu attack)
• KOH temperature 80°C
• MEMS fabrication
• KOH recirculation mode
• Low rate etching for stress relief
• Flush dispense using ¼ inch line
680
• Oscillating dispense
675
Typical results:
(10 µm Si removal)
• Etch rate: 1,2 µm/min
670
665
660
• ıremoval < ± 5%
655
• TTV: < 2 µm
650
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
20
Thickness after spin etch
• Continuous rotation
10
20
30
40
50
60
70
80
90
100 110 120 130 140
Experimental and results – HNO3/HF/CH3COOH process
Process parameters:
Applications
• Continuous rotation
• High rate etching for stress relief
• Oscillating dispense mode
• MEMS fabrication
• TSV reveal approach (attacks Cu)
• Flush dispense using ¼ inch line
• Chemicals concentration:
• HNO3
69 %
• HF:
40 %
100 %
Typical results:
(10 µm Si removal)
465
460
455
450
• Etch rate: 10 µm/min
445
• ıremoval < ± 5%
440
• TTV: < 2 µm
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
21
Thickness after spin etch
• CH3COOH:
470
10
20
30
40
50
60
70
80
90
100 110 120 130 140
Process stability – HNO3/HF/CH3COOH process
Acid flow monitoring
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
22
Process stability – HNO3/HF/CH3COOH process
Wafer 1
Wafer 2
Wafer 3
Wafer 4
HNO3
HF
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
23
Experimental and results – damage removal / stress relief
• Preparation of 4 different wafers as given below
• Bow measurement using Dektak profiler
• Laser induced SAW measurements to determine damage depths
Coarse grind Fine grind
Spin etch
Wafer 1
100 µm *
30 µm ***
10 µm
Wafer 2
200 µm *
30 µm ***
10 µm
Wafer 3
300 µm *
30 µm ***
10 µm
Wafer 4
300 µm **
---
10 µm
*
feed rate 4 µm/s
** feed rate 6 µm/s
*** feed rate 0.6 µm/s
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
24
Results of wafer bow measurements after …
initial state coarse grind
fine grind
spin etch
Si removed
Wafer 1
4.2 µm
227 µm
36.1 µm
4.7 µm
140 µm
Wafer 2
4.5 µm
299 µm
52.4 µm
8.8 µm
240 µm
Wafer 3
4.3 µm
376 µm
84.1 µm
13.7 µm
340 µm
Wafer 4
3.7 µm
370 µm
---
11.1 µm
310 µm
• Wafer bow clearly correlates to the surface treatment
• For wafer 2 to 4 the bow after spin etch remains higher – thickness!
• No difference in final bow with /without fine grind
• Wafer 4 rougher than wafer 1 to 3
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
25
Coarse
grind
Fine
grind
Spin
etch
Wafer 1
100 µm
30 µm
10 µm
Wafer 2
200 µm
30 µm
10 µm
Wafer 3
300 µm
30 µm
10 µm
Wafer 4
300 µm
---
10 µm
Acoustic surface waves (SAW) measurements
… to determine mechanical properties of films on substrates
Penetration depth ~O Ÿ higher
frequency o increasing film impact
Phase velocity depends on
frequency
p
Dispersion
= ( ,, ; , , , ;)
c
E
N
…
…
…
…
Phase velocity
Elastic modulus
Density
Poisson's ratio
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
26
f … frequency
S … substrate
F … film
50 … 250 MHz
“LAwave” – measurement system (by Fraunhofer IWS)
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
27
LSAW results wafer 1
Wafer 1
Coarse
grind
Fine
grind
Spin
etch
100 µm
30 µm
10 µm
Calculated damage
depth ࢉ 1.2 µm
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
28
LSAW results wafer 4
Wafer 4
Coarse
grind
Fine
grind
300 µm
---
Calculated damage
depth ࢉ 1.2 µm
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
29
Spin
etch
10 µm
Coarse
grind
Fine
grind
Spin
etch
Wafer 1
100 µm
30 µm
10 µm
Wafer 2
200 µm
30 µm
10 µm
Wafer 3
300 µm
30 µm
10 µm
Wafer 4
300 µm
LSAW results - comparison wafer 1 and 4
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
30
---
10 µm
Experimental and results – conclusion
• Bow and laser induced SAW measurements are suitable candidates to
analyze thinning process related substrate damages
• LSAW measurements allow a more precise qualitative analysis as well
as a rough quantitative predication
• A removal of 10 µm silicon using a HF/HNO3/CH3COOH spin etch
process is suitable to remove grinding induced substrate damages
almost completely
¾ However, a fine grinding step seems to be mandatory to achieve
that
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
31
Outline
• Background
• Spin etching
• Process / tool requirements
• Tool concept and technical details
• Experimental and Results
• Summary
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
32
Summary
•
3D-integration is a challenging playground for wafer thinning technologies
• Specific requirements to TTV, surface quality, and allowable stress
• Customized / application specific technologies (process setups)
•
Spin etching could be a well suitable process to meet the 3D specifics
• Simple, fast, flexible, and tunable
• Reasonable effort
•
SPS Polos Spin Process Station @ Fraunhofer ENAS offers unique
capabilities for research and process development
•
Fraunhofer ENAS is able to drive this technology into your application
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
33
Acknowledgement
I would like to thank my colleagues Manuela, Ina, and Ronny for their very
active contribution to work. Especially, I would like to thank Ines for LSAW
measurements and Sven for wafer bow and roughness measurements.
I would like to thank SPS Europe B.V. (Rein de Groot, Alessandro
Barilaro, Raymond de Munnik, and many others) for a great collaboration,
starting from the first ideas for such a tool till its final installation and
setup.
I would like to thank Levitronix (Wolfgang Dornfeld, Marco Brunner,
Simon Stöckli) for their outstanding support in setting up pump systems
and flow control systems.
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
34
Thank you for your
kind attention!
Dr. Knut Gottfried
Manuela Zacher
Ines Hartwig
Ina Schubert
Dr. Sven Zimmermann
Ronny Martinka
35