Interacting extension of the Aubry–André model Francesca Pietracaprina Statistical Physics PhD Course 14/03/2013 Francesca Pietracaprina Interacting AA model Summary ◦ Introduction: localization and Aubry–André model ◦ Interacting extension - the problem and the numerical approximation numerical results: behaviour of a few quantities detecting the MBL transition tentative phase diagram ◦ Conclusions Francesca Pietracaprina Interacting AA model Introduction Let’s consider systems with on site disorder. Localization: one particle: localized wavefunctions many particles: breaking of ergodicity (exponentially decaying envelope) (local quantities have localized correlators) representative model: Anderson model (fermions) X † X ξα cα† cα −t (cβ cα + cα† cβ ) H= |α {z {α,β} } on site random energies Francesca Pietracaprina | {z hopping Interacting AA model } Introduction Let’s consider systems with on site disorder. Localization: one particle: localized wavefunctions many particles: breaking of ergodicity (exponentially decaying envelope) (local quantities have localized correlators) representative model: Anderson model (fermions) X † X ξα cα† cα −t (cβ cα + cα† cβ ) H= |α {z {α,β} } on site random energies Francesca Pietracaprina | {z hopping Interacting AA model } Aubry–André model disorder is not necessary: 1D Aubry–André (AA) model H= L−1 Xh † ξi ci† ci − t(ci† ci+1 + ci+1 ci ) i i=0 ξi = W cos(2πki + δ), k : quasiperiodic potential Localized Delocalized t/W=1/2 peculiarity: no mobility edge; Francesca Pietracaprina transition point at Interacting AA model t W = 1 2 Many body localization 1 consider many particles Let’s now H= 2 turn on interaction. L−1 Xh † ξi ni + t(ci† ci+1 + ci+1 ci ) + ∆ni ni+1 i i=0 ξi = W cos(2πki + δ) (as in the AA model) What happens with regards to localization? Many-Body Localization in a Quasiperiodic System, arXiv:1212.4159v1 (2012) S. Iyer, G. Refael, V. Oganesyan, D. Huse Notation: g ≡ t/W , u ≡ ∆/W , transition for g = Francesca Pietracaprina Interacting AA model 1 2 (at ∆ = 0) Many body localization 1 consider many particles Let’s now H= 2 turn on interaction. L−1 Xh † ξi ni + t(ci† ci+1 + ci+1 ci ) + ∆ni ni+1 i i=0 ξi = W cos(2πki + δ) (as in the AA model) What happens with regards to localization? Many-Body Localization in a Quasiperiodic System, arXiv:1212.4159v1 (2012) S. Iyer, G. Refael, V. Oganesyan, D. Huse Notation: g ≡ t/W , u ≡ ∆/W , transition for g = Francesca Pietracaprina Interacting AA model 1 2 (at ∆ = 0) The approach: Take a random element of the configurations space and let it evolve. Does the system thermalize? End result: the interacting model has a MBL transition. Interactions favours the delocalized phase. Numerically simpler: sequentially hop on each bond † † Hm = Hon site + Hint + Lt(cm cm+1 + cm+1 cm ) U(∆t) = L−1 Y Um (∆t), m=0 ı Hm ∆t with Um (∆t) = exp − L It’s a different model: introduces new transitions; ∆t must be small, or else qualitatively altered dynamics! Francesca Pietracaprina Interacting AA model The approach: Take a random element of the configurations space and let it evolve. Does the system thermalize? End result: the interacting model has a MBL transition. Interactions favours the delocalized phase. Numerically simpler: sequentially hop on each bond † † Hm = Hon site + Hint + Lt(cm cm+1 + cm+1 cm ) U(∆t) = L−1 Y Um (∆t), m=0 ı Hm ∆t with Um (∆t) = exp − L It’s a different model: introduces new transitions; ∆t must be small, or else qualitatively altered dynamics! Francesca Pietracaprina Interacting AA model Notes on the numerics: ◦ Free boundary conditions: no hopping over the boundary ◦ Quasiperiodic potential W cos(2πki + δ) with k = φ−1 , δ RV ◦ Initial configuration: random in half filling configuration space Lattice sizes are (empirically) chosen to minimize finite size effects: L = 8 ÷ 20, even. Quantities to look at: - temporal autocorrelator and its average (over sites and samples) χj (t) = (2hnj i(t) − 1)(2hnj i(0) − 1) - participation ratio (V is the size of configuration space) η= 1 [IPR V ] , P IPR = h c |ψc |4 ismp - Rényi entanglement entropy 2 S2 (t, L) = h− log2 trA %A (t) ismp Francesca Pietracaprina Interacting AA model Notes on the numerics: ◦ Free boundary conditions: no hopping over the boundary ◦ Quasiperiodic potential W cos(2πki + δ) with k = φ−1 , δ RV ◦ Initial configuration: random in half filling configuration space Lattice sizes are (empirically) chosen to minimize finite size effects: L = 8 ÷ 20, even. Quantities to look at: - temporal autocorrelator and its average (over sites and samples) χj (t) = (2hnj i(t) − 1)(2hnj i(0) − 1) - participation ratio (V is the size of configuration space) η= 1 [IPR V ] , P IPR = h c |ψc |4 ismp - Rényi entanglement entropy 2 S2 (t, L) = h− log2 trA %A (t) ismp Francesca Pietracaprina Interacting AA model Temporal autocorrelator Different regimes: u = 0.32, g = 0.1 −0.08 u = 0.32, g = 0.5 u = 0.04, t = 9999 −1 0.4 0.3 2 8 10 12 14 16 18 20 0.2 −0.14 0.1 −0.16 3 4 0 5 0 6 2000 7 4000 8 ln(time) g 9 6000 −2 ln( ) −0.1 −0.12 S /L ln( ) 0.5 −3 −4 108000 10000 χ(t, L) constant −5 3 4 5 6 7 ln(time) 8 9 10 χ(t, L) power law, saturation Crossover between the two regimes: u = 0.04, tbin = 9980−9999 The transition happens when χ(tf , L) shows dependence on L. 1 0.8 0.6 This is a lower bound (due to finite 0.4 size of lattice). 0.2 0 0 0.2 0.4 0.6 g 0.8 1 1.2 1.4 Francesca Pietracaprina Interacting AA model Participation ratio IPR = h X |ψc (tf )|4 ismp c for many particles IPR always decays exponentially with L: - localized phase → slower than V −1 - delocalized phase → ∼ V −1 Normalized participation ratio u = 0.04, t bin η(tf , L) = 1 ∝ e −κL V IPR(tf , L) tbin = 9980−9999 = 9980−9999 0 0.6 0.4 0.55 <r > ln( ) −5 n −10 0.2 0.5 0 0.45 −0.2 −0.4 0.4 −15 0 0.2 0.4 0.6 g 0.8 1 0.35 1.2 0.1 1.4 0 0 0.04 0.16 0.32 0.64 200 400 0.2 600 0.3 0.4 800 0.5 g 0.6 1000 0.7 0.8 0.9 Note: the non-interacting AA model has an extended phase which isg not fully ergodic: NPR still depends on L. L: system size; V : size of the configurations space Francesca Pietracaprina Interacting AA model Entanglement Entropy Check if a subsystem is a good heath bath. Take Rényi entropy (simpler to compute numerically) A: sites 0, 1, . . . , L/2 − 1; S2 (t, L) = h− log2 B: sites L/2, . . . , L − 1 2 trA %A (t) ismp , %A (t) = trB [%(t)] Entanglement for - localized phase: interactions over the boundary AB independent of L in the non-interacting case extensive, but subthermal in the interacting case - extended phase: ∝ L, → thermal value (finite size: superextensive) u = 0.04, t = 9999 u = 0, t = 9999 u = 0.04, t = 9999 0.3 0.05 4000 0 g 60000 0.2 8000 0.4 u = 0.04, t = 9999 0.3 0 0 0.1 0.6 0.8 10000 g 0.2 g 1 0.3 0.1 0.4 1.2 0.2 2 1 S /L 0.1 2 0.15 0.4 u = 0, t = 9999 2 S /L S2/L 0.2 0.5 8 10 12 14 16 18 20 S2 0.25 1.4 Francesca Pietracaprina 0 0 0.2 0.1 0 0 0.2 0.4 0.6 Interacting AA model g 0.2 0.8 1 g 0.4 1.2 1.4 Entanglement Entropy t = 9999 0.8 0.6 0.55 0.4 m <rn> 0.5 0.45 0.2 0.4 0 0.04 0.16 0.32 0.64 m=0 0 0.35 0 m = 1/2 200 −0.2 400 0.1g 600 0.2 800 0.3 0.4 S2 (t∗ , L) = mL − Sd Francesca Pietracaprina 1000 0.5 g 0.6 0.7 0.8 Sd = 1.15 ÷ 1.3 Interacting AA model 0.9 at high g Detecting the transition To get an estimate of the transition point (without finite size scaling) ◦ autocorrelator: provides a lower bound (due to u = 0.04, t bin L finite, L < ξ) 0.8 transition point → g: size dependence begins. 0.6 0.4 ◦ region dominated by finite size effects has unphysical values (near transition) 0.2 0 0 0.2 0.4 0.6 exponent of normalized participation ratio: transition point → g: minimal value of κ entropy: transition point → g: maximum value of m tbin = 9980−9999 t = 9999 0.8 0.6 0.6 0.4 <rn> 0 0.45 −0.2 0.4 −0.4 0.35 0 0.1 200 400 m = 1/2 0.55 g 0 0.04 0.16 0.32 0.64 0.4 0.5 0 0.04 0.16 0.32 0.64 m 0.2 0.5 <rn> 0.55 = 9980−9999 1 0.45 0.2 0.4 0.2 600 0.3 0.4 0.5 g 0.6 0.7 0.8 0 0.9 η ∝ e−κL 800 1000 Francesca Pietracaprina m=0 0 0.35 200 −0.2 400 0.1g 600 0.2 800 0.3 0.4 1000 0.5 g 0.6 S2 = mL − Sd Interacting AA model 0.7 0.8 0.9 g 0.8 1 1.2 1.4 Phase diagram u Many%body)ergodic) Many%body)) localized) AA)localized) Francesca Pietracaprina AA)extended) Interacting AA model g Conclusion Interacting AA model: ◦ peculiar 1D model ◦ a MBL transition is spotted ◦ behaviour of some quantities in the MBL phase Thank you for your attention References: 1 S. Iyer, G. Refael, V. Oganesyan, D. Huse Many-Body Localization in a Quasiperiodic System arXiv: 1212.4159v1 (2012) 2 Thouless, Niu Wavefunction scaling in a quasiperiodic potential J. Phys. A 16, 1911-1919 (1983) 3 Tang, Kohmoto Global scaling properties of the spectrum for a quasiperiodic Schroedinger equation Physical Review B 34, 2041 (1986) Francesca Pietracaprina Interacting AA model
© Copyright 2025 Paperzz