5-2 Standard Form of a Quadratic Function TEKS FOCUS VOCABULARY ĚStandard form of a quadratic function – TEKS (4)(D) Transform a quadratic function f(x) = ax2 + bx + c to the form f(x) = a(x - h)2 + k to identify the different attributes of f(x). The standard form of a quadratic function is f(x) = ax2 + bx + c with a ≠ 0. TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. ĚNumber sense – the understanding of what numbers mean and how they are related Additional TEKS (1)(A), (1)(F), (4)(B) ESSENTIAL UNDERSTANDING 'PSBOZRVBESBUJDGVODUJPO f(x) = ax2 + bx + c,UIFWBMVFTPGabBOEcQSPWJEFLFZ JOGPSNBUJPOBCPVUJUTHSBQI Properties Quadratic Function in Standard Form r 5IFHSBQIPG f(x) = ax2 + bx + c,a ≠ 0,JTBQBSBCPMB r *Ga 7 0,UIFQBSBCPMBPQFOTVQXBSE*Ga 6 0,UIFQBSBCPMBPQFOTEPXOXBSE b r 5IFBYJTPGTZNNFUSZJTUIFMJOFx = -2a b r 5IFxDPPSEJOBUFPGUIFWFSUFYJT - 2a 5IFyDPPSEJOBUFPGUIFWFSUFYJTUIFyWBMVF b ( b) PGUIFGVODUJPOGPSx = -2a ,PSy = f -2a r 5IFyJOUFSDFQUJT(0,c) y ax 2 bx c, a 0 y xb 2a y ax 2 bx c,, a 0 y b ,f b ( 2a ( 2a )) (0, c) (0, c) O (2ab , f (2ab )) x O x xb 2a PearsonTEXAS.com 159 Problem 1 P TEKS Process Standard (1)(C) Finding the Features of a Quadratic Function Graphing Calculator What are the vertex, the axis of symmetry, the maximum or minimum value, and the range of y = 2x2 + 8x − 2? How can you use a calculator to find the features of a quadratic function in standard form? Graph the function. Then use the CALC and TABLE features. The vertex is (2, 10). Range: y 10. Minimum x 2 y 10 X Y1 5 4 3 2 1 0 1 8 22 88 100 88 22 8 Notice the symmetry of yvalues. 10 is the minimum value. Axis of symmetry is x 2. Problem P bl 2 TEKS Process Standard (1)(F) Graphing a Function of the Form y = ax 2 + bx + c What is the graph of y = x2 + 2x + 3? Step 1 *EFOUJGZabBOEca = 1,b = 2,c = 3 b Step 2 y Step 2 5IFBYJTPGTZNNFUSZJTx = - 2a How can you use the axis of symmetry? The entire curve on one side of the axis is the mirror image of the curve on the other side. 6 x = - 2 2(1) -JHIUMZTLFUDIUIFMJOFx = -1 Step 3 5IFxDPPSEJOBUFPGUIFWFSUFYJT S b BMTP - 2a ,PS -1 5IFyDPPSEJOBUFJTy = 1MPUUIFWFSUFY( -1,2) ( -1)2 Step 4 4 2 O + 2( -1) + 3 = 2 Step 4 4 JODFc = 3,UIFyJOUFSDFQUJT(0,3)5IFSFGMFDUJPOPG(0,3)BDSPTT x = -1JT( -2,3)1MPUCPUIQPJOUT Step 5 a 7 0DPOGJSNTUIBUUIFHSBQIPQFOTVQXBSE%SBXBTNPPUIDVSWF UISPVHIUIFQPJOUTZPVGPVOEJO4UFQTBOE 160 Lesson 5-2 Step 5 4 Standard Form of a Quadratic Function x 2 4 Step 3 Problem 3 P Converting Standard Form to Vertex Form How do you find h, k, and a? Find the vertex. This gives you h and k. The value for a is the same in both forms. What is the vertex form of y = 2x2 + 10x + 7? Use the vertex form to find the vertex, the axis of symmetry, the maximum or minimum value, and the range. v y = 2x2 + 10x + 7 Identify a and b. b x = - 2a = - Find the x-coordinate of the vertex. 10 2(2) = -25 y = 2( -25)2 + 10( -25) + 7 Substitute x = -2.5 into the equation. = -55 5IFWFSUFYJT( -25,-55) y = a(x - h)2 + k Write the vertex form. y = 2[x - ( -25)]2 + ( -55) Substitute a = 2, h = -2.5, k = -5.5. y = 2(x + 25)2 - 55 Simplify. 5IFWFSUFYGPSNJTy = 2(x + 25)2 - 55 *OUIFQSPDFTTPGGJOEJOHUIFWFSUFYGPSNZPVBMSFBEZGPVOEUIFWFSUFY( -25,-55) #FDBVTFUIFWFSUFYPGBQBSBCPMBJTPOUIFBYJTPGTZNNFUSZZPVDBOVTFUIF xDPPSEJOBUFűPGUIFWFSUFYUPGJOEUIFBYJTPGTZNNFUSZx = -25 4JODFUIFWBMVFPGaJTQPTJUJWFZPVLOPXUIFQBSBCPMBPQFOTVQXBSE5IJTNFBOT UIBUűUIFűQBSBCPMBűIBTBNJOJNVNWBMVFFRVBMUPUIFyWBMVFPGUIFWFSUFY -55 3FNFNCFSUIBUUIFSBOHFJTUIFTFUPGBMMyWBMVFTPGUIFGVODUJPO4JODFUIFGVODUJPO IBTűBűNJOJNVNBU -55UIFSBOHFDPOTJTUTPGBMMSFBMOVNCFSTHSFBUFSUIBOPSFRVBM UPű -55*OJOUFSWBMOPUBUJPOUIFSBOHFJT[ -55,∞) PearsonTEXAS.com 161 Problem 4 P Interpreting a Quadratic Graph Length of bridge above arch STEM Bridges The New River Gorge Bridge in West Virginia is the longest steel singlearch bridge in the United States. You can model the arch with the function y = −0.000498x2 + 0.847x, where x and y are in feet. How high above the river is the arch? How long is the section of bridge above the arch? How can you tell that the quadratic function has a maximum value? Since a 6 0, the graph of the function opens down. The function has a maximum value. 516 ft The height of the arch above the support base and the length of the bridge above the arch Step 1 'JOEUIFWFSUFYPGUIFBSDI S b 087 x = - 2a = - ≈ 850 2( - 000098) y = -000098(850)2 + 087(850) ≈ 360 5IFWFSUFYJTBCPVU(850,360) Step 2 'JOEUIFIFJHIUPGUIFBSDI BCPWFJUTTVQQPSUT 400 Find the vertex. The y-coordinate is the height of the arch above the support base. The x-coordinate is half the distance between the supports. y (850, 360) 300 200 100 O x = 850 400 The height is 360 ft. 5 A function that models the arch and the vertical distance from the base of the supports to the water Height of arch 800 1200 5IFyDPPSEJOBUFPGUIFWFSUFYJTUIFIFJHIU PGUIFBSDIBCPWFJUT TVQQPSUT5IFBSDIJTBCPVUGUBCPWFJUTTVQQPSUT Step 3 'JOEUIFIFJHIUPGUIFBSDIBCPWFUIFSJWFS 5IFBSDIJTBCPVU360GU + 516GU = 876GUBCPWFUIFSJWFS Step 4 'JOEUIFMFOHUIPGUIFCSJEHFBCPWFUIFBSDI 162 Lesson 5-2 IFxDPPSEJOBUFPGUIFWFSUFYJTIBMGUIFMFOHUIPGUIFCSJEHFBCPWFUIFBSDI 5 5IFűMFOHUIPGUIBUQBSUPGUIFCSJEHFJTBCPVU850GU + 850GU = 1700GU Standard Form of a Quadratic Function x 1600 HO ME RK O NLINE WO PRACTICE and APPLICATION EXERCISES Scan page for a Virtual Nerd™ tutorial video. Identify the vertex, the axis of symmetry, the maximum or minimum value, and the range of each parabola. For additional support when completing your homework, go to PearsonTEXAS.com. 1. y = x2 + 2x + 1 2. y = -x2 + 2x + 1 3. y = x2 + 4x + 1 4. y = -x2 + 2x + 5 5. y = 3x2 - 4x - 2 6. y = -2x2 - 3x + 4 7. y = 2x2 - 6x + 3 8. y = -x2 - x 9. y = 2x2 + 5 Graph each function. 10. y = x2 + 6x + 9 11. y = -x2 - 3x + 6 12. y = 2x2 + 4x Write each function in vertex form and identify the different attributes of f (x). 13. f (x) = x2 - 4x + 6 14. f (x) = x2 + 2x + 5 15. f (x) = 4x2 + 7x 16. f (x) = 2x2 - 5x + 12 17. f (x) = -2x2 + 8x + 3 18. f (x) = 4x2 + 3x - 1 9 19. Apply Mathematics (1)(A) A model for a company’s revenue from selling a software package is R = -2.5p2 + 500p, where p is the price in dollars of the software. What price will maximize revenue? Find the maximum revenue. Sketch each parabola using the given information. 20. vertex (3, 6), y-intercept 2 21. vertex ( -1, -4), y-intercept 3 22. vertex (0, 5), point (1, -2) 23. vertex (2, 3), point (6, 9) 24. Apply Mathematics (1)(A) A town is planning a playground. It wants to fence in a rectangular space using an existing wall. What is the greatest area it can fence in using 100 ft of donated fencing? ℓ 100 – 2ℓ 25. Apply Mathematics (1)(A) Suppose you work for a packaging company and are designing a box that has a rectangular bottom with a perimeter of 36 cm. The box must be 4 cm high. What dimensions give the maximum volume? ℓ For each function, the vertex of the function’s graph is given. Find the unknown coefficients. 26. y = x2 + bx + c; (3, -4) 27. y = -3x2 + bx + c; (1, 0) 28. y = ax2 + 10x + c; ( -5, -27) 29. y = c - ax2 - 2x; ( -1, 3) PearsonTEXAS.com 163 30. Apply Mathematics (1)(A) 5IFIFJHIUPGBQSPKFDUJMFGJSFETUSBJHIUVQ JOUIFBJSXJUIBOJOJUJBMWFMPDJUZPGGUTJTh = 6t - 16t 2 XIFSFhJT IFJHIUJOGFFUBOEtJTUJNFJOTFDPOET5IFUBCMFSFQSFTFOUTUIFEBUB GPSBOPUIFSQSPKFDUJMF8IJDIQSPKFDUJMFHPFTIJHIFS )PXNVDI IJHIFS 31. "TUVEFOUTBZTUIBUUIFHSBQIPGy = ax2 + bx + cHFUTXJEFSBTa JODSFBTFT Time (t) Height (h) 0.5 20 1 32 1.5 36 2 32 a. Evaluate Reasonableness (1)(B) 6TFFYBNQMFTUPTIPXUIBUUIF TUVEFOUJTXSPOH b. Connect Mathematical Ideas (1)(F) 4VNNBSJ[FUIFSFMBUJPOTIJQCFUXFFO 0 a 0 BOEUIFXJEUIPGUIFHSBQIPGy = ax2 + bx + c For each function, find the y-intercept. 32. y = (x - 1)2 + 2 33. y = -3(x + 2)2 - 34. y = - 23(x - 9)2 35. 6TF UIF GVODUJPOT f (x) = x + 3 BOE g(x) = 12x2 + 2UPBOTXFSQBSUT(B) -(c) a. 8IJDI GVODUJPO IBT B HSFBUFS SBUF PG DIBOHF GSPN x = 0 UP x = 1 b. 8IJDI GVODUJPO IBT B HSFBUFS SBUF PG DIBOHF GSPN x = 2 BOE x = 3 c. %PFT g(x) FWFS IBWF B HSFBUFS SBUF PG DIBOHF UIBO f (x) &YQMBJO For each function, the vertex of the function’s graph is given. Find a and b. 36. y = ax2 + bx - 27; (2, -3) 37. y = ax2 + bx + 5; ( -1,) 38. y = ax2 + bx + 8; (2, -) 39. y = ax2 + bx; ( -3, 2) 40. 4LFUDI UIF QBSBCPMB XJUI BO BYJT PG TZNNFUSZ x = 2, yJOUFSDFQU BOE QPJOU TEXAS Test Practice T 41. 5IFUJNFJUUBLFT UPDIBMLBCBTFCBMMEJBNPOEWBSJFTEJSFDUMZXJUIUIFMFOHUIPG UIFTJEFPGUIFEJBNPOE*GJUUBLFTNJOVUFTUPDIBMLBMJUUMFMFBHVFEJBNPOEXJUI GUTJEFTIPXMPOHXJMMJUUBLFUPDIBMLBNBKPSMFBHVFCBTFCBMMEJBNPOEXJUI GUűTJEFT 42. 8IBUJTUIFxWBMVFPGUIFWFSUFYPGUIFRVBESBUJDGVODUJPOy = -5x2 + 7 43. 4BSBIXPSLTBTBOBOOZBOEDIBSHFTEJGGFSFOUSBUFTGPSXPSLJOHEVSJOHUIFXFFLBOE UIFXFFLFOE0OFXFFLTIFFBSOFEXPSLJOHIPVSTPGXIJDIIPVST XFSFEVSJOHUIFXFFLFOE5IFGPMMPXJOHXFFLTIFFBSOFEXPSLJOHIPVST PGXIJDIIPVSTXFSFEVSJOHUIFXFFLFOE8IBUEPFT4BSBIDIBSHFQFSIPVSJO EPMMBSTGPSXPSLJOHEVSJOHUIFXFFL 164 Lesson 5-2 Standard Form of a Quadratic Function
© Copyright 2026 Paperzz