Calculus and Vectors – How to get an A+ 1.1 Radical Expressions: Rationalizing Denominators Ex 1. Simplify: A Radicals a a =a n a) ( a) = a n m ( a )= m an 3 3 =3 b) ( 5 ) 3 = ( 5 ) 2 5 = 5 5 n c) (3 7 ) 5 = (3 7 ) 3 (3 7 ) 2 = 7(3 7 ) 2 = 7 3 7 2 = 7 3 49 = (n a ) m Note: If n is even, then a ≥ 0 for n a. B Rationalizing Denominators (I) a a c a c = = bc b c b c c Ex 2. Rationalize: 2 2 5 2 5 2 5 = = = 3 5 3 5 5 3 × 5 15 C Conjugate Radicals a+ b ⇔a− b Ex 3. For each expression, find the conjugate radical. a) 2 + 3 ⇒ 2− 3 a+ b⇔ a− b b) 2− 3 a +b c ⇔ a −b c c) 3+2 5 a b +c d ⇔a b −c d ⇒ 2+ 3 ⇒ d) 2 5 + 3 7 3−2 5 ⇒ 2 5 −3 7 Ex 4. Use the difference of squares identity to simplify: D Difference of squares identity (a + b)(a − b) = a 2 − b 2 a) (a + b )(a − b ) = a 2 − ( b ) 2 = a 2 − b b) ( a + b )( a − b ) = ( a ) 2 − ( b ) 2 = a − b c) ( a + b c )( a − b c ) = ( a ) 2 − (b c ) 2 = a − b 2 c E Rationalizing Denominators (II) Hint: Multiply and divide by the conjugate radical e of the denominator. Ex 5. Rationalize the denominator: 3(1 + 2 ) 3(1 + 2 ) 3 3 1+ 2 = = 2 = = −3(1 + 2 ) a) 2 1− 2 1 − 2 1− 2 1 + 2 1 − ( 2) b) 4 2+3 5 = 4 2−3 5 2+3 5 2−3 5 = 4(2 − 3 5 ) 2 2 − (3 5 ) 2 = 4(2 − 3 5 ) 4(2 − 3 5 ) =− 4 − 9×5 41 c) 2 3− 6 = 3+ 6 2 3− 6 3+ 6 = 2( 3 + 6 ) 2 ( 3) − ( 6 ) 2 = 2( 3 + 6 ) 2( 3 + 6 ) =− 3−6 3 F Rationalizing Numerators Hint: Multiply and divide by the conjugate radical of the numerator. Ex 6. Rationalize the numerator: ( 5)2 − ( 3)2 5− 3 5− 3 5+ 3 2 = = = 2 −1 2 − 1 5 + 3 ( 2 − 1)( 5 + 3 ) ( 2 − 1)( 5 + 3 ) G Equivalent Expressions Hint: You may get equivalent expressions by rationalizing the numerator or denominator. Note: State restrictions. Ex 7. Find equivalent expressions by rationalizing. State restrictions. x −1 x − 1 x + 1 ( x − 1)( x + 1) a) = = = x + 1, x ≥ 0, x ≠ 1 x −1 x −1 x −1 x +1 b) x+9 −3 = x x+9 −3 x x+9 +3 x+9 +3 = x ≥ −9, x ≠ 0 1.1 Radical Expressions: Rationalizing Denominators © 2010 Iulia & Teodoru Gugoiu - Page 1 of 2 x x( x + 9 + 3) = 1 x+9 +3 , Calculus and Vectors – How to get an A+ 1 1 1 1 − x+h x x+h x = h ⎛ 1 c) 1 h⎜⎜ + x ⎝ x+h x + h > 0, x > 0, h ≠ 0 H More algebraic identities a 3 − b 3 = (a − b)(a 2 + ab + b 2 ) a 3 + b 3 = (a + b)(a 2 − ab + b 2 ) a 4 − b 4 = (a − b)(a + b)(a 2 + b 2 ) − ⎞ ⎟ ⎟ ⎠ =− 1 ⎛ 1 1 ⎞ ⎟ x( x + h)⎜⎜ + x ⎟⎠ ⎝ x+h , Ex 8. For each case, the numerator and denominator have a common zero. Use algebraic identities to eliminate the common zero. State restrictions. x − 1 (3 x ) 3 − 1 (3 x − 1)((3 x ) 2 + 3 x + 1) 3 2 3 a) = = = x + x + 1, x ≠ 1 3 3 3 x −1 x −1 x −1 b) x4 −1 x3 − 1 = ( x − 1)( x + 1)( x 2 + 1) ( x − 1)( x 2 + x + 1) = ( x + 1)( x 2 + 1) x2 + x +1 Reading: Nelson Textbook, Pages 6-8 Homework: Nelson Textbook: Page 9, #1a, 2a, 3a, 4a, 5, 6a, 7ac 1.1 Radical Expressions: Rationalizing Denominators © 2010 Iulia & Teodoru Gugoiu - Page 2 of 2 , x ≠1
© Copyright 2026 Paperzz