Answer on Question #57670 - Math - Analytic Geometry 1. Find the

Answer on Question #57670 - Math - Analytic Geometry
1. Find the general equation of the line passing through the given point and parallel to the indicated
equation of the line:
a. (4, 1); 3X + 4Y - 10 = 0
b. (-1/2, -4); 7x - 8y - 5 = 0
Solution:
a. (4, 1); 3X + 4Y - 10 = 0
The general equation is Ax+By+C=0. If lines are parallel we can use A=3, B=4.
3π‘₯ + 4𝑦 + 𝐢 = 0
If line passes through the given point that the coordinates of point correlate with general equation:
3 βˆ™ 4 + 4 βˆ™ 1 + 𝐢 = 0 β†’ 𝐢 = βˆ’16.
The general equation is 3x+4y-16=0.
b. (-1/2, -4); 7x - 8y - 5 = 0
We solve in the same way.
1
7π‘₯ βˆ’ 8𝑦 + 𝐢 = 0 β†’ 7 βˆ™ (βˆ’ ) βˆ’ 8 βˆ™ (βˆ’4) + 𝐢 = 0 β†’ 𝐢 = βˆ’28.5
2
The general equation is πŸ•π’™ βˆ’ πŸ–π’š βˆ’ πŸπŸ–. πŸ“ = 𝟎
2. Find the general equation of the line passing through the given point and perpendicular to the
indicated equation of the line
a. (, 4); 4x + 4y - 11 = 0
b. (-4, -1/3); 7x - 8y -5 = 0
Solution:
The Slope-Intercept Form of the equation of a straight line is y=mx+b.
If line1 and line2 are perpendicular then π‘š1 βˆ™ π‘š2 = βˆ’1
a. (, 4); 4x + 4y - 11 = 0
11
Line1: 4π‘₯ + 4𝑦 βˆ’ 11 = 0 β†’ 4𝑦 = 11 βˆ’ 4π‘₯ β†’ 𝑦 = βˆ’π‘₯ + 4
π‘š1 = βˆ’1 β†’ π‘š2 = 1
Line 2: 𝑦 = π‘₯ + 𝑏.
We have a point of line2 (0,4): 4 = 0 + 𝑏, 𝑏 = 4
𝑦 =π‘₯+4
The general equation is 𝒙 βˆ’ π’š + πŸ’ = 𝟎
b. (-4, -1/3); 7x - 8y -5 = 0
7
5
Line1: 7π‘₯ βˆ’ 8𝑦 βˆ’ 5 = 0 β†’ 8𝑦 = 7π‘₯ βˆ’ 5 β†’ 𝑦 = 8 π‘₯ βˆ’ 8
7
8
π‘š1 = β†’ π‘š2 = βˆ’
8
7
8
Line 2: 𝑦 = βˆ’ 7 + 𝑏.
1
8
89
We have a point of line2 (-4, -1/3): βˆ’ 3 = βˆ’ 7 βˆ™ (βˆ’4) + 𝑏, 𝑏 = 21
8
89
8
89
𝑦=βˆ’ π‘₯+
→𝑦+ π‘₯βˆ’
= 0 β†’ 24π‘₯ + 21𝑦 βˆ’ 89 = 0
7
21
7
21
The general equation is πŸπŸ’π’™ + πŸπŸπ’š βˆ’ πŸ–πŸ— = 𝟎
Find the angle of inclination of a line whose equation is
a. 6x - 5y + 30 = 0
b. 3x - 5y + 6 = 0
c. 12x - 9y = 32
Solution:
The Slope-Intercept Form of the equation of a straight line is y=mx+b.
π‘š = π‘‘π‘Žπ‘›πœƒ
a. 6x - 5y + 30 = 0
6
6π‘₯ βˆ’ 5𝑦 + 30 = 0 β†’ 𝑦 = π‘₯ + 6 β†’ 𝑦 = 1.2π‘₯ + 6
5
π‘‘π‘Žπ‘›πœƒ = 1.2
𝜽 β‰ˆ πŸ“πŸŽ°
b. 3x - 5y + 6 = 0
3
6
6
3π‘₯ βˆ’ 5𝑦 + 6 = 0 β†’ 𝑦 = π‘₯ + β†’ 𝑦 = 0.6π‘₯ +
5
5
5
π‘‘π‘Žπ‘›πœƒ = 0.6
𝜽 β‰ˆ πŸ‘πŸ°
c. 12x - 9y = 32
12
32
4
32
12π‘₯ βˆ’ 9𝑦 = 32 β†’ 𝑦 =
π‘₯βˆ’
→𝑦= π‘₯βˆ’
9
9
3
9
π‘‘π‘Žπ‘›πœƒ β‰ˆ 1.3333
𝜽 β‰ˆ πŸ“πŸ‘. 𝟏°
http://www.AssignmentExpert.com/