United Arab Emirates University Scholarworks@UAEU Theses Electronic Theses and Dissertations 8-2014 Y-Chromosome Polymorphism in United Arab Emirates Safa Yaqoub Yousif Alkhayyat AL Hammadi Follow this and additional works at: http://scholarworks.uaeu.ac.ae/all_theses Part of the Environmental Sciences Commons Recommended Citation Alkhayyat AL Hammadi, Safa Yaqoub Yousif, "Y-Chromosome Polymorphism in United Arab Emirates" (2014). Theses. Paper 134. This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact [email protected]. United Arab Emirates University College of Scienct: Biology Department Y-CHROMOSOlV OL YMORPI-IISM IN UNITED ARAB EMIRATES Safa Yaqoub Yousif Alkha:yat Alhammadi This thesis is submitted in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Sciences '- Under the direction of Dr. Khaled Amiri, Dr. Ahmed AI Marzouqi and Dr. Abdulmaj eed Al Khajch. August 2014 DECLARATION OF ORIGINAL WORK L afa Yaqou b at the n iled ou i f I k ha))at rab E m i rate I ham madi. the unders igned, a graduate stu dent niversit) ( A E a " Y -ch romosome pol) m orphi m in thi n i ted ), and the author o f the thesis t i t led rab E mirates" , hereby I declare that thes i s i a n orig i nal \\ ork done a n d prepared b y me under t h e guidance o f D r . Khaled Dr. m i ri, D r . Abdulmajeed hilled I Marzoll qi in I K haj eh, in t h e Col lege of c ience a t E U and bu Dhabi general head q uarter. T h i s work has not pre jOll I) formed as the ba is for the award of any degree, d i ploma or sim i lar tit le at th i or an) other u n i \ ersit) in the oure A E . The materi a l s borrowed from the other and i n luded in 111) the i ha\ e been properl ac know ledged . :;ifrr Student's Signature '-:,-2...... . . Date II .....:...!.!� �(?!.?!.':f. . . .. Copyright ©20 1 4 by Safa Alhammadi All Rights Reserved III Approved by Thesis Examining Committee: 1) Advisor (Committee Chair): Dr. Khaled Amiri Department of : Biology College of : Science Signature : 2) _ _ -=--"==:...=-==--___ Member: Date: 1- 1 \« JuIY Dr. Sofyan Alyan Biology Science Date: 3) Member (External Examiner): ' Division of : �� : ---z.c,,� -" �"""=:;...- Institution: Signature ... ... /...."-...., "'---- Dr. Mohsin Sulaiman Alaamri DNA fingerprinting & forensic Advanced Biotechnology Centre Accepted b. J1h� 1a ter's Program Coord inator: ignature lo Oate . . I �.! ;);,.1':1 ............. . Dean of the Col lege: . -1� . �� � J gnatur ··· · ······· · · · . · . . · . . . . · .. .. · · . . · · O Date Cop . . . . . of . . . . . . v v' . . . . . . . . . (et/ ,... ('t . . . . . . . . . . . . . . . . . . . . . . . . . . .. A B STRACT Human Y c hromosome is a pec ific male marker and it con ists of the largest non-reco m b i n i n g egment in human genome that is the ha l lmark of Y chromosome populat i on-ba ed stud ies. Th is tud ) estab l i he an extensive Y pol)-morp h i sm pro fi l e o f the population and t o our knowledge, t h i AE is the largest study carried out in the U A E . o A samples were genotyped for 1 7 polymorph ic STR from 3 4 5 unrelated E m irati male. I n UAE popu l ation, the analysi o f the al lele freque ncy c learly shows that each 10 u ha a p red o m i nant al le le . It i s also apparent t hat a l l e les for most loci are clustered over a narrow range \ here approxi mate l y 60% - 80% of the population is sharing a spec i fi c a l le le for the locus. M o reover, the h ighest di ers ity were observed at locus D Y S 4 5 8 A = 0.9 a n d D Y 3 8 5 -B = 0.9. = 0.9, DYS3 8 5 - Therefore they should be consi dered a s t h e most variable and most i n formative m arkers for foren s i c test i ng. W h i le, loc i w i th the lo\\er d ivers it are the least i n formative loci ( i .e . DYS392 which equal 0 . 4 3 7 ) . T h e U A E population i s largely heterogeneous a n d a tota l o f 3 0 1 d i fferent haplotypes were ident i fied . There are 271 un ique haplotypes and 22 haplotypes were shared between 1:\\ 0 i n d ividua ls . There are t h ree cases \ here four. five and six ind ividua l s are sharing identical hap lotype. hapl otypes shared by five i nd ividuals. M o reover, th ere are th ree d i fferent Th is is l i ke l y due to the sharing o f mo t common recent ancestors. This brings the d i sc r i m i nation capac ity to approxi mate ly 90% and hap lotype d ivers ity 99. 8 85%. This is fundamental to understand i ng the VI degree o f heterogeneity in E popu lation and can refl ect the pattern of the m i grat ion, geograph ic i nfl uen e, and cu ltural i nfluen e . an array of haplot) pe that can rab E mirate cOlll1trie . p p u l ation i na l ) i d l fferen e \\ ith in econd l ) . the tud) pro\ ide ne a databa e for forensic u e . To thi end. n ited d iver e and are genet ical l ) clo e to neigh boring o f molecular variance ( M V A ) how no igni ficant genetic A E population or popu lat ion res i d i ng the A rabian Gulf region. VII Ded icat ion I lov i ng ded icate 111) the i to m} beloved parent, i ter and brothers \\ ho ha\e never faded to g i \e me a moral upport and for g l \ ing me a l l I need and encouraging me to cont i nue m) h i gher education. loreo\ er, J dedicate thi thesis to the person \\ ho i s m y manager, fr iend and brother I brah i m 1-110 a n i \\ ho ha real l ) been there through the hard t i mes. IX 1.10 Y - T R Markers: 1.11 Bac kground of 1.12 Objecti ves: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n i ted Arab E m i rates: . . 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A D MATE R I A L. H PTER I I : M ET H O D am ple Co l lection: 2. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 19 2. 2 Consent Fonn: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 19 2.3 Bucc al 2 .4 Preparat ions and 2.5 Storage Condit ion: 2.6 General 2.7 2.10 . . . . . . . . . . . . . . . . . . . . . . . ample Batc h i ng: . . . . . . . . . . . . . . . . . . . 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 D A Extract ion Process: 2.6. 2 Quanti fication Process: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6. 3 A m p l i ficat ion Process: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detection o f A m p F LS T R tatist ical A nalysis: . . . . . . . . Y fi ler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k i t PC R Product: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Profi l ing 3.2 Y STR a l le les Freq uenc ies: 3.3 Y . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . 24 28 33 . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 .38 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 T R hap lotype o f U A E popu lation: 3.3 . 1 Hap lotype Freq uency: 3.3 .2 Hap lotype D i versity: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D i scri m i nation Capac i ty: . 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1easure o f d i vers ity between and w it hin populat ion: 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 . . . . . . . . . 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shared haplotype in UAE popu lation : 3 . 5 .0 . . . . . . . . . . . . . . . . . . . . Ana ly s is o f Popu lation genet ic parameters: . amp les: . . . . . . . . . . . . . . . . . . . . . . . 3. 1 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C H A PT E R I I I: R E S U LTS A N D D I S C U S S ION 3.4 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a m p l e Procedures: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 2.6. I 2.8 2.9 \\ abs Packagi ng: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shared haplotype compared w ith other popu l ations: 3 .6 Gene d i versity i n U A E popu lat ion and i n sub-popu lation: 3.7 AMOVA resu l ts in U A E popu lation: . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xl 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 77 78 C HA PTER I V : CO C L U 10 Con clusio n: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bibl iograp h ) : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII 79 81 84 L I ST OF TAB L E Tab le 1 : D i fferent types of T R loc i . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 2: T total vol u m e for m u lti-mix 0[96 react ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tab le 3 : Demon trate the Polymerase Chain React ion cyc l ing parameters Tab le 4 : AmpFL TR Y fi ler k it loc i and al leles 13 25 . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 Tab le 5: Total o l u mes of D A am p l i fied plate in a C E step . Tab le 6: Total n u m ber of a l leles for each loc i in UAE pop u l at ion . . . . . . . . . . . . . . . . . . . . . . . . 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . Tab le 7: Predom i nant a l le l e i n UAE popu lat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Tab l e 8: A l l Ie frequenc of d i fferent l oc i" itb pie charts for U A E popu lat ion : Tab le 9: . . . . . . 44 l le l e F req uencies for tbe su b-popu lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Tab l e 1 0: oc i . . . . . . 61 Tab l e 1 1 : A l le l e frequency of U A E popu lat ion compared w it h other populat ions . . . . . 66 . . . . . . . . . . 68 \ it h a l leles that are not shared between all regions . . . . . . . . . . . . . . . . . . . . . . . . Tab l e 1 2 : H ap lotype freq uency for shared hap lotype in the U A E popu lation . . Table 1 3: Pairw i se Popu lat ion Matrix of Nei Genetic D istance for sub -popu lat ion Tab le 1 4 : D iscr i m i nation Capac ity and H aplotype D ivers i ty in U A E popu lat ion Tab le 1 5(A-E): Hap lotypes that are shared i n the population 71 73 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . . . . . . . . . . 70 . . . . . . . . . . . Tab l e 1 7: A M OVA design a nd resu lts (average over 1 7 loc i ): XI I I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tab le 1 6 : Genetic diversity i n U A E population and i n su b-popU lat ion Tab le 1 8: AMOVA res u l ts i n other popu lation: . . . LIST OF FIGURES Figure I : Com ponent of the 0 Figure 2 : c hemat i c o f structure ............................................................................... a nd Y sex chromosomes . ................................................................ Figure 3: Relat ive po it ions of 1 7 markers TRs loc i Figure 4 : t\1ap o f the U n ited . ............................................ ............ 6 8 14 rab E m i rates . ....... .......................... . . . . . . . . . ............................... 1 5 Figure 5 : Analy i s wo rkflow for a l l sample . ..... ...... ........... ................. ................ ...... ............ 2 0 Figure 6 : 1 7 loc i of Am p F L S T R Y file PC R w i th ladder and internal control . .... Figure 7 : Gen Mapper l O-X soth are plot the A m p FIST R Y fi ler A l le l ic Ladder. Figure 8 : Y T R p ro fi l generated us ing A m p FI S T R Y filer™ 31 .... 32 . ....................... ......... 39 . Figure 9 : A llele frequency for the predom inant a l leles i n t he U A E population ........... 43 F igure 1 0( A-Q) : A l lele frequency of d i fferent loc i i n sub-populations . . 58 Figure 1 1 : Variance d i stribut ion of the UAE population .. 63 . F i gure 1 2: Variance d i stribut ion o f the three reg ions ...................... . . ................................................. . . . . ............ ........ . . . . .. ............................ Figure 1 3 : Total num ber o f U n ique and Shared H aplotype .............................. .. .... ........ 72 Figure 1 4 : Matc h ing versus U n ique Haplotypes by Locus . ............................................... 76 XI V . . . 64 C H A PTER I : INTRODUCTION 1 1.1 L i t e r a t u res review : A the 1 920s began. the existence of the Y chromosome was debated and Theop h i l us Painter pub l i hed a very short art i c l e c la i m ing the presence of Y chromosome in hu mans and other pri mate . Y c h romosome unl ike m i tochondrial genome. i inherited patern a l l y and approximatel 95% percent of Y chromosome is inherited as one hap lotype (Rosa et aI., 2007). Therefore Y c h romosome represents an invaluable record of a l l mutations that have taken p lace along male l ineages throughout the e olut ion. The i m portance of Y c h romosome is not l i m ited to determ ining the ex of a spec ies, but invol ves the d i fferent i a l gene dosage, and shows a characteristic pattern of inheritance in males and fem a les. Y chromosome consti tutes approx imately 2% of the human genome and cons ists of h ighly polymorp h i c loc i . Therefore, Y chromosome analys is i s used in many app l i cat ions panning d i fferent fields and inc l udes patern ity determ ination, human m igrat ion, archeogenet ics, and pa leontology (Rosa et a I . , 2007). Another i m portant app l ication of Y c hromosome analysis i s in forens ic science it i s used to solve murder case, rape, and e en exonerat ion of convicted felons (Carva l ho-S i lva et a I . , 2001). There are a flu rr of stud ies involv ing Y c h romosome and human popu lat ion such as stud ies in human m i gration, influence of geographical location, and shap ing of h u man c u lture (Gaetano et a l . 2009). The beauty of Y c h romosome studies lends itse l f to several s lowly m utating a l leles on non-recombin ing Y chromosome (N RY ) that c a n be used to group human Y chromosomes into veliical paternal l ineages cal led Y c h romosome haplotype. Many more stud ies are ava i l ab l e t hat address the 2 i m pol1ance of Y c h romosome stud ies (Jobl ing et a I ., 200 3 ) . The Y chromosome tudy is a lso u ed to determ ine d i sea e assoc iat ion in a population ( ezgin et a l . , 20 1 0). The e stud ie provide i m portant ind icators of human uscept i b i l i ty to d i seases and response to d rugs ( K rausz et aI., 2004 ). Despite the i m portance of Y chromosome stud ies. there is a dearth of informat ion on the popu lat ion of Arabian Gu l f regions. The a i m of this study is to characterize Y chromosome spec i fic loc i that can dec ipher d i vers it o r uniqueness o f the U A E populat ion structure. For a comprehensi ve su rvey of Y c hromosome polymorph ism, it is i m portant to study a larger populat ion ac ross the U A E . Th i s the UAE popu lation \ \ h ic h \ i l l dec i pher patri l ineage geneti c d i ersity in is one of the i mportant elements to e l uc idate cu ltura l infl uence, t h e origin of surnames. d ialect, d i sease assoc iat ion, popu lat ion structure, and esta b l i shment of forens ic databases. 1.2 Hu m an G e n om e : H u man genome i s d i ploid and contains two copies o f chromosomes, each inherited from a parent. Du ring gametogenes is, the genome is red uced, to haploid 9 state that com prises of 3 x 10 bp ( K rawczak et a I . , 1994) . Genet ic informat ion (except for m i tochond rial genome) res ides in the nuc leus of the cel l and is organized into physical structures cal led c hromosomes cel l d i v is ion. v, hose structural state c hanges du ring In general , Chromosomes contain the genetic informat ion of cel ls cal led Deoxyri bonuc leic Ac id ( DN A ), and it controls many cel lu lar funct ions ( Daniel, 2008). C h romosomes are norm a l l y transm itted as an intact unit from parent to c h i ld ren. A ccord ing to the random assortment princ i p l e, these markers res id ing on one ch romosome are inheri ted together and they exh i b it geneti c l inkage. In contrast, 3 markers on d i fferent chromosomes are general ly inherited independent ly of one another and they do not demonstrate l inkage ( Stryer, 1999). Con ersel y, markers that ho\', genet ic chromoso me. l inkage, L inked imply ing that these are c lose together on the same loc i are transm itted in c l usters or haplotypes unless recomb inat ion proces es changes their pha ing ( Bac ker et a I . , 199 5 ) . That is, the) are associated together more often than chance wou ld pred ict. H u m an genome i s d i stributed over 46 chromosome and 23 homologous pai rs (Daniel, 2008). Tv. enty-two pa i rs of these chromosomes are cal led autosomes and labeled accord ing to length, longest to shortest, and one pa i r is c a l l ed sex chromosomes, X and Y . A norm a l person receives two copies of chromosomes, one set i s derived paternal l y and one set maternal ly. The d iploid cel l s results from the fusion of 2 haploid cel ls sperm (23 c h romosomes) and egg (23 c h romo omes) to have an em bryo or gametes of 46 c h romosomes. Y chromosome determ ines the sex of the em bryo. Ma les have one X and one Y chromosome ( X Y ), w h i le females have two X chromosomes ( X X ). Therefore, the gender of the embryo is determ ined by the paterna l contribution and 0 A test ing in the l aboratory can determ ine th i s . H u man genome are very s i m i lar to one another and on average two ind i v idual share 99.7% of the sequence of their DN A . The remaining 0.3% (�10 m i l l ion nuc leotides) bears the variation that exi sts among ind i v iduals (Tishkoff et a I . , 2004 ) . Some extranuc lear DNA is a lso present in the m i tochondria that are located in the c ytoplasm of the cel ls, and can be used for human ident i ficat ion. A lthough the majority of these nuc leotide d i fferences are neutra l . 4 1 .3 Th e t r u ct u re an d com p o it ion of h u m an ge n om e : I n 1869, Frederich 1ie c her a German b ioc hem ist \\ a the fir t to obsene D and unfortun ate l ) , re earchers d i d not rea l ize the i m portance of t h i long t l lne In 195 3 James Wat on, an mer ican b iologi t. and Fran c i Briti h ph) SI ist. propo ed a model ror the tructure of t he D model \\ a molecule for a Crick, a molecu le. This ba ed on re earch by Rosa l i nd Fran k l in, Maurice W i l k ins, and other c ienti t ( Daniel, 2008). Thei r \"or"-s opened the doors to a ne\\ field of re earch and one of the e fields i kno" n as molecu lar genet ics, w h i c h i s the tud; of the fu nct i on-structure relat ionsh ip and the tudy of in heritance and variat i on at molecu lar le\ e l . t t h e mo t b a ic le\ el, D "ru e . D i found i n nearly a l l - l i v i ng cel l except R A i s a molec u l e that is sh aped l ike a 1:\\ i ted ladder and i t cons ists of t\\ O eparate trands that i ntert\\ ine to form a dou b le hel ix, a stru ture that resemb les a p i ra l taircase a shown in figure I . Each strand of D A is com posed of a eries of smal ler molecu les c a l led nucleotides. [n turn, each nuc leot ide i s itse l f made up of three smal ler molec u les or cal led prl mar) components: monosaccharide deox) ri bose, and a pho phate group. a n itrogenou ba e, The nuc leotide are jOllled together b) co a l ent bonds to form polynuc leotide c h a i ns. There are four different D A nuc leotide , each defined by a spec ific n itrogenous ba e: den i ne ab bre lated as ( A ), Thy m i ne abbre iated as (T), Guan ine abbrev i ated as (G), and C ) 10 i ne abbreviated as ( C) . D A contains t\\ O types of n itrogen-contai n i ng bases. Aden ine and Guan i ne, \\ hose ring-sh aped molec u les h ave i:\. mem ber , are c a l l ed purine; \,h i le C ) 10sine and Th) m i ne with fused fi ve- and six-mem ber ri ngs are cal led p) r i m i d i nes. A ccord i n g to complementary base pairing concept, A denine and 5 Th�l1linc ah\a� C) to 111C bd e pair \\ ith each oth r h) t\\O h)drogen boneL \\hil'. guaninc an I art! attache I togcth·r b:- three h)drogen hond: :ee figurc I (Dani -I. 200R). r I'igure I: Component of th J a ckbOfl Dl IA ::,tructurc '.ltLlrall�. compkmentar:- base-p<liring is responsibk for the abilit) to accuratel) replicate D, '1\ n1()ICCllk�. \\ith its genctic inlormation and pas: it on to the next gcneration (I),lI1iel, IA 200X). Human V-Chromosome: The human Y chroll10::'OlllC is onc or the 1:1. test c\oh ing part::. of til !.!enome. ..... human In the In t decade. Y chrolllosome ha. been increasil1!.!h ...... .. used to ill\ c. ti!.!atc '- the migration . e\ lliution. and range c, 'pansions of modern human' <tIld it al. 0 ha dttrdctcd a great ckal of attention 0\\ ing to it. supremac:- in mak ,md unique haplot) pc statu� in the genome. mcahHlrm.1 mchrio molitor at Br� n �1a\\r College. 6 1905 [n , . c . dckn11lnation during cI ::,tuJ) 'etlie StC\ cn. ha or the id -ntili -d Y hromosome as a sex-determ ining chromo orne. and named it Y becau e it ah\ays c. I ted 111 paIrs \\ ith X hromo orne. Whi h \\a d i sco\ered in 1890 by H ermann Hcnk ing ( Ha ley et a l . . 20 I 0). There are eyeral interesting attributes and b iological feature of the human Y chromosome: one of the e features i s carrying a l im i ted number of fun t ional gene \\ ith a high proport ion of repeat element ( I i et aI., 2003 ) . Add it iona l l y , it ha i m portant b iological male- pec i fi c funct ion \.\ ith d i rect con equence on male fitne s inc lud ing male fert i l ity and test is determ ination . Feat ure . l ike pattern of i nheri tance among other . make the study o f Y chromo ome poly morphi m \ery usefu l for inference of population hi tor ies. foren ic app l icat ions and patern ity analysi ( I i et a l . . 2003 ). 1 .5 t r u c t u re of t h e Y -Ch ro m osom e : Y Chromo ome i ( H rrie et a l . . 1986). one o f the sma l le t chromo omes In the human genome It repre ents on l) 2�'0 of the human genome in male and it contains about 60 m i l l ion base pairs ( her et al.. 2002 ) . d i\.ided into two sma l l tips kno\ n a Y Chromo ome can be pseudoautosomal region ( PAR) and non p eudoauto omal region (male-spec ifi c ) that are man) t imes larger than PAR. There are 1\\0 region in the pseudoautosom a l region cal led PAR I \\ hich is located at the tIP of the short arm (Yp) w i th approximatel} 2.5 m i l l ion ba e pairs in length and PA R2 \\ h ich i s less than I m i l l ion base pairs in length and it i s located at the long arm (Yq) of the Y chromo ome ( A l i et aI., 2003; see figure 2). On the other hand, the rest of the Y chromosome (about 95°/0) \.\ hich is termed the non-recombining portion ( RY ) or ma le-spec i fic region ( M Y ) does not undergo sexual recom b inat ion during meiosis. [t is ah a} in a haploid state, and therefore. is 7 transm itted intact through paternal l ineages. The RY remains the same from the father to on unless a m utat ion occurs (Butler, 201 1 ). (a) x Non-recombining Pseudoaulosomal 1 (PAR1) portion of Y-chromosome region 2 (PAR2) (NRY) Pseudoaulosomal region Male-specific region of the Y (MSY) (b) Yp r-L- Centromere Yq :cx= ___ __ HeterochromallC region Euchromatic region (not sequenced) (23 Mb) -30 Mb F i gure 2: Sc hemat ic of X and Y sex chromosomes. The Y c h romosome is com posed of both euc hromat ic and heterochromatic regions of \\ hich onl y the 23 Mb of euchromat in has been sequenced (But ler. 2011). The Y chromosome sequence composit ion. l i ke any other c h romosome, consists of unique sequence (norm a l l y represent cod ing sequence), and repet it ive. The repetition are either repeated randem ly or interspersed and general ly they are referred to as sate l l i te and its subset depend ing on the length of unit repeat. The fol low ing sections a im at introd uc ing satel l i tes 0 A characteristics and its su bset (for revie\ Job l ing et a!., 2003 ). 8 see a t eJl i t e 1.6 DNA: There are four major c lasses o f tandem D \\ repeats that have been cia sified ith in the human genome: satel l i te 1, sate l l ite 2, satel l ite 3 and sate l l ite 4 ( 1 i l kos et aI., 1997). Around 2 0% of the human genome is composed of \ arious sate l l ite D A fam i l ies ( Ba l lantyne et a I . , 1 989). ate l l ite D As were origina l l y ident i fied by the eparate band ing of part of the genom ic D A in eq u i l ibrium dens ity grad ient centrifugatio n. Sate l l ite DNA is c lass i fied accord ing to their genom ic local izat ion, such a centromeric, telomeric or d i sper ed along the chromosome. Satel l ite D A is pri m ly located near the centromeric regions of the c h romosomes and the repeat unit length can extend for se eral t housand base pa i rs ( W i lJared et aI., 198 7 ) . A lphoid c lass is another major tandem repeat DNA spec ies, 'Wh ich approx i matel is composed of 2% of the whole genome (M anue l i d i s. 19 8 7 ) . The A l phoid satel l ite cons ists of tandem arrays of approximately 17 1 bp monomers ( Yang et a I . , 1982), and it i local ized to the pericentromeric region of each human chromo ome (Job l ing et a I. , 1998). 1.7 M i n i s a t e llite DNA : M inisatel l ite term refers to the Variable a c las of h ighly repet i t ive satel l ite DNA. umber Tandem Repeat ( VNTR) that is By definition. m inisatel l ite means the section of DNA that cons ists of a short series (10-60 base pa i rs) of nuc leotide. These occur at more t han 1,000 locat ions in the human genome. There are two types of m inisatel l ite; the fi rst is cal led "H ypervariable M in isate l l i te' that have a core unit 924bp long and are found mainly at the centromeric regions, and the second is cal led 'Telol l1eric M inisatel l ite" that have core units 6 bp long, and have t housands of 9 repeated sequences at the telomeres. During the last two decades. a number of h igh ly variable regions in the human genome ha e been detected and character ized. The use TR polymorph isms, subsequent l), ha of become one of the most succes ful changes in the fie l d of forensic medicine for persona l identification and paternity testing. In Y chromosome two m i nisate l l ites have been described. The first \\ as M Y l ( D Y FI 5 5 I ) and which has a 1% mutation rate per generat ion. Accord ing to Jobling, this marker was reported as the most variable 10cLls in Y chromosome ( Jobl i ng et aI., 1 996). W h i le the other m i n isatel lite described is M Y 2 ( DY S440) conta in on ly two units of three or four cop ies of 99- 1 1 0bp repeating unit (Gi l l et aI., 1 995). One of the m a ll1 advantages of these markers is that they are h igh ly pol morph ic in som e lineages. 1.8 Microsa t e l l ites DNA : Microsate l l ite is defined as S i m p l e Sequence Repeats ( SRs) or also Tandem Repeats ( S TRs). hort It is another source of polymorph isms of the human genome, which be long to the family of repetitive non-coding DNA sequence. They can be found in coding and non-coding regions. Microsate l lite is characterized by the length variation in tandem arrays of simple repeat sequences of 2-6 base pair. STRs provide a rich source of polymorphic markers resulting from variations in the number of cop ies of the repeated pattern. They are simi lar to V NTR loci and m i nisate l lite loci but the latter contain longer repeat units. STR loci display several ad vantages that m ake them attractive as genetic markers. They are very plentiful , averaging one trinuc leotide tandem repeat locus for every 1 5 kb in the human genome, and they are amenable to peR amp lificat ion by using flanking sequence primers. The resulting 10 ampli fication by fragment of the indi idual TR loci ranges from 1 00 to -.fOObp. The characterization of a l arge number of highl I polymorphic TR loc i along w ith the construction of \ \-e l l -defined a l lelic ladders for several of the m ost eas i l y interpreted loci, al lo\\ s for an increased use of these system determina tion. The Y c hromosome is seque nce. in forensic anal}sis and paternity ery rich in several c lasses of repeated D A Using these microsate l l i te loci is a very useful tool in the forensic ident ification of male D A in rape cases \ ith male and female fractions (see sect ions be lo\\ : Butler, 20 1 1 ). 1 .9 S h ort Ta n de m R e p e a ts ( STRs): The human genome is ful l of repeated DNA sequences. STR is one example of these short repeated sequences. The nature of STR give rise to high ly polymorph ism region . These tandem repeats c lusters are characterized by b locks of DNA of some common sequence \ hic h is repeated over and over in tandem. These repeated sequences come in various sizes and are c lassified according to the length of t he core repeat units. Short tandem repeats are found around the chromosoma l centromere and consist of a short repeat un it ranging approximately 2 to 6 base pairs in length (Butler. 20 I I ) . The number of repeats in individuals, \ TR markers can be highly variable among h ic h make these STRs effective tools for studying polymorph i sm and genet i c variation between individuals and populations. A t the beg i n n i n g of 1 996, the FBI Laboratory launched a nationwide forensic science effort to establish core STR loci for inclusion within the national database known as CO DTS (Comb i ned DNA fndex System). The 1 3 CO DIS loci are: C S F I PO, FGA, T H O I, TPOX, V WA, D3 S 1 3 5 8, D 5 S 8 1 8 D7S820, D8 S 1 1 79, D 1 3 S3 1 7, D 1 6 S 5 3 9, DI 8 S 5 1 and D2 1 1 1 . 11 These loc i are nat ionally and internationa l l y recognized as the standard for human ident i fication (Co l l i n et a!. . 2004). Ho\\ e \ er. the number of loc i that are u ed for genet ic \ariation a the kno\\ ledge of the poly morph ic loc i is increasing. 1 .9.1 Types of STR loc i : M icrosate l l ites c a n b e c lass i fied based o n s ize, t h e nature of the repeated un it or their pos it ion w ithin the genome. The m i crosate l l i te, based on its repeat un iform ity. can be c lustered i nto four categories as shown in tab le I ( U rquhart et a!., 1 994). Often the repeats are inte rrupted with fe\ base pairs. 1.9.2 S i m p l e STR loc i : Genera l ly it contains one repeat ing unit with equa l length and sequence and they are not i nterrupted by ot her sequences. Exam p les of t his type are D 5 S 8 1 8, D l 3 S3 1 7, D7S820, 0 1 6 539. TPOX and C SFIPO loc i . The s i m p le STR can be further subd iv ided into s i m p le one repeat i ng sequences such as H U M F E IFPS and simple with non-consensus a l le les l i ke H U M T H O 1 . 1.9.3 Compou n d STR loc i : T h i s type of STR loc i consi sts of two o r more adjacent s i m p l e repeat sequences ( H U MG ABRB 1 5 ) or consists of a compound with on-consensus a l le les. such as ( H U M v W FA3 1 /.A) . 1 . 9.4 Complex STR loci: This type of STR loc i al lele com mon ly consi sts of regular tetra nuc leot ide repeat units \ ith i nterspersion of d i mer, trimer and hexamer i nvariants. 12 H y p erva riable 1 . 9.5 TR lo c i : T h i s locus is h ighly polymorphic and contains com plex compound regions that can sho\\ many a l leles that d iffer by one base pair. HU 1ACTBP2 or Examples of this ty pe are E 3 3 and 0 1 1 554 loc i . Tab le 1 : D ifferent type o f T R loci Loci Type No Repeat E x a m p les 1 S i m p le D5S8 1 8 ( AGATh-16 2 Com pound H U M v WA (ATCT)2 (G TCTh-.J(ATCTk 1 3 3 Complex 02 1 (TCTA )-I-6(TCTG )S_6[(TCTA)3 TA(TCTA )3 1 1 TCA(TCTA)2TCCA] (TCTA )s_16(TATCTA)o_l TC A common repeat structure (AAAG) with ACTBP2 Hypervariable 4 d if ferent mono, d i , tri, tetra and hexamer invariants that are scattered throughout the locus. 1 .10 Y-STR Ma rkers : There are two categories of DNA markers, which are used to exam1l1e Y chromosome d i ve rs ity. The fir t marker is cal led b i -a l l e l ic loci, \ h ich exhibits two poss ib le B i-al lelic a l l e les. markers are also referred (0 as un ique event polymorp h i ms ( U E Ps ) and that is due to their low m utat ion rates, which is est imated from 1 0- to 1 0 -9 per generation. The exam ple of t h i s marker i nc ludes single nucleot ide polymorph isms ( Y-S P) and A lu e lement insert ion ( Y A P ). The second marker cal l ed multi-a l l e l ic loci, wh ich includes two m i n i sate l l ites, and several hund red STR markers. The ir results are characterized as haplotypes and it can be used to d ifferentiate Y chromosome hap lotypes w i t h h igh resolut ion d ue to the ir h igher mutat ion rates (But ler, 20 1 1 ). 13 Y chromo ome 0 A analysis can be performed defines hap lot) pe or Y - \\ ith either Y -STRs \�hich Ps \ \-hich def ine hap logroup. Y -STRs re ults exhibit more 3 \ ariabI l it) due to the rapid change in mutation of Y - TRs (mutation rate ::::: 1 in 1 0 compared to Y- Ps (mutation rate::::: 1 in 1 09 ) (But ler, 20 1 1 ) . Thus, Y - TRs ha\ e a greater use in forens ic identification of male 0 A such as in rape cases and patern it) determ ination in deficiency cases where the al leged father is m i ssing. The majority of Y- TRs result in a single polymorphic fragment upon peR amplification, but there are some Y - TRs \\ h ich originate from regions that are dup l icated on the Y chromosome, result ing in the presence of h 0 ampl icons of variable s ize (i.e.DY 3 8 5 , DY 459 and recently DYS464 (Butler 20 1 1 ) . The fol lowing figure 3 i l lustrates the relative pos itions of 1 7 markers TRs loci commonly used in human identification setting. PAR1 - 5 DYS393 DYS456 �AMELY - DYS458 cenlror;le'8 10 DYS19 DYS391 15 20 '2 5 DYS635 DYS437 DYS439 DYS3891111 -- DYS390 GATA-H4 DYS438 - DYS385a DYS385b DYS392 DYS448 PAR2 Figure 3: Relative positions of 1 7 markers STRs loci 14 1.1 1 Bacl-(Jrollnd of United Arab Emirate (UAE): 0 , 0 N tt W E 5 R BIA GULF • ABU OHA I" • Uw....s UNI ARAB INA A 'lAY 0 IRA I A Figure -.f: l\lap of the United Arab Emirates. The United Arab Emirates (UAE) is one part of the Gulf Cooperation Council (GCC ) \\hich consists of si-..;: gulf countries including Bahrain, KLl\\ait. Qatar. Saudi Arabia. and Ol11an. In addition. the United Arab Emirate is located in the eastem part of the Arabian Peninsula. extends along part of the Gulf of Oman and the southern coast of th' Arabian Gulf. The United Arab Emirates i. a constitutional federation of Se\ en emirates: Abu Dhabi. Dubai. Sharjah. Ajman. l mill al-Qai\\ain. . , Ras al-Khail11ah and Fujairah. The federation \\(1-' formally established on the 2 of December 1971. The ll:\E occupies an area of 71023.6 Sq. km along the southeastern tip of the Arabian Peninsula. As 5ho\\n in figure -.f. Qatar lies to the v,est. , audi Arabia to the south and west. and Oman to the north and east. The CAE lies bet\\e " en ea.·t (lfAE statistical center. 20 10). Furthermore. the capital and the largest cily of the federation l� in the U E is J Iov. ever, bu Dhabi. \\ hich accounts for 8 7 percent of the Els total area. jman is the smal lest em irate, encompassing onl; 2 5 9 square kilometers. Accord ing to se era l studies, researchers discovered that the nited Arab Emirates has a long history, recent fi nd ings on the eastern side of the Hajar 10untains and in the , \-'estern region of Abu Dhab i having pushed the earliest evidence of Man in the Emirates back by hundreds of thousands of years. The arrival of envoys from the Prophet Muha mmad ( PBU H ) in 630 AD hera lded the conversion of the region to Islam. By 6 3 7 AD Islamic armies were using Julfar (Ras al-Khaimah Em irate) as a staging post for the conquest of Iran. Over man centuries, Julfar became a ,,,, e althy port and pearling center from which great wooden dhows ranged far and \ ide across the Ind ian Ocean. The U A E population can be d i vided into three sectors Urban (had har), nomadic ( bedu) and rura l . Bedouin people are traditiona l l y inhabitants of the Arabian Gulf who claim descent from t\ 0 male lineage: A dnani and Qahtani (N ature, 20 1 0) . In addition, these nomadic peop le are cal led people of the desert, w ho are animal owners and move about with their came ls, sheep and goats in search of graz ing and concentrate around t heir we l ls. Some of them used to gather firewood from the scrub and bring it into the coasta l tow ns. H owever, H adhar peop le made their l i ving from the sea. M oreover, they lived by fish ing and pearl industry. In contrast, rural people used agriculture as a main way of life in the eastern mountain area and oases. However, what was overwhe l m ingly rural and bedu a generat ion ago is now preponderantly urban ( AI-Sayegh, 1 998). Therefore, in this study the UAE population was divided into three regions Northern, Eastern and Western based on the prox i mit ies. Ib l n thi stud \ e are address ing the heterogeneity of the regard to paternal linage inher itance. The E popu lation \\ ith A E population as per our know ledge has not been genetica l l) characterized on a large scale. This stud) is one step in a series of studies of the U E population. The specific aim of this study is to define the U A E population structure a n d hie rarchy th rough anal ysis o f 1 7 STR of Y chromosome. 1.12 O bj ec t ives : Se eral objectives of this study can be defined as the fol low ing: J - To establish a thorough profi le of Y polymorphism in the U A E . 2- T o stud y t h e pattern o f migrat ion a n d geograph ic in fluence . 3 - To eva luate the anal ysis of paternal lineages for forensic purpose. 4- To investigate the variance of 1 7 short tandem repeat (STR) loci in the U A E population. 5- To study hap lotype and hap lotype frequency in the UAE population th rough the anal ysis of 1 7 polymorphic short tandem repeat (STR) loci. 17 CH A PTER II: M ETHODS AND M ATERIAL 18 a m ple Colle c t io n : 2.1 Buccal s\\ ap samples were col lected from 723 nati e males from the U nited Arab Emirates population of \\ hich 345 were analyzed for this study. This is the largest tud) in the region . The samples \\ ere obtained randomI) from unrelated individua ls encompassing the U A E population (A bu- Dhabi, DubaL Ra harjah, FUJurah, AI kaimah, Aj man, Um A lqawaen, Khalba and K horfakkan). The random sample col lection complies with the regulations of many scie ntific communities such as the I nternational ociety for Foren sic Genetics ( ISF G ) and the ational Research Council (NRC). According to these bodies a l l sam p les deposited in the international databases should be col l ected randomly in order to eliminate biases. 2.2 C o n s e n t Form : The buccal samp les were col lected \ ith written consent from the subjects. The consent Form was approved by AI-Ain Medica l District Human Research Ethical Committee which is an accredited organization of Federal Wide Assurance ( F WA) and comp liant with IC H/GC P Standards. The consent form \ as written in Eng lish and transl ated into Arabic. The subjects were informed of the nature of study before the relevant information, such as name, family name, place of origin, was obtained . 2.3 B u ccal Swa bs Packa g i n g : Samp les col lected from outside of AI-Ain city were trans ferred i n a n icebox to the National DNA Database (NDNAD) Laboratory. On arrival, consent forms w ere separated from the samp l e and the sam p les were stored at -20°C for further use. 19 2.4 P r e p a r a t i o n a n d Sa m p le B a t c h i n g : Once the amples were received i n the lab, a unique barcode \v a ass igned to ubsequent ly. the samp les were batched together b) robot ic pro ess each sam pl e. cal led Tube tar.:R' ( manufactured by Peak Analysis & Automation, U K ) and placed in an extraction rack for processing. Briefl y, TubeStar that al lo\\ is a pos i tional logging station batch D A extraction simultaneously. The samples are distri buted in an extraction rack that consist of 96 \ve l l s of wh ich 86 \\ e l l s are for D A samples and 1 0 w e l l are for controls (positive and negative extraction controls, blank tubes for Ile l ic Ladders and PCR controls). 2 .5 S t o rage C o n d i t i o n : DNA sam ples were analyzed b y AmpFISTR Y filer kit (Life Tech nology) . The ° kit is stored at -20 C and inc ludes AmpFl STR Y fi ler Primer set, Amp liTaq Gold D A pol) merase. A m p FISTR Y filer PCR Reaction Mix, A m p FISTR Control DNA 007 and AmpFISTR Y fi ler A l le lic Ladder. On d e l i very to the lab, AmpFISTR Y fi ler lIelic Ladder was isolated and stored at 4°C for post amplification as to prevent cross contamin ation . A l l other reagents \ ere stored at 2-8 °C . Chemicals that contain fluorescent (i.e. A m p FISTR Y fi ler A l le lic Ladder and Pico Green etc. ) are sensitive to l ight and were stored in a dark area. 2.6 G e n e ra l S a m p l e P roced u re s : B Batch i g n E x t rac t i O n Q u a n t i fil c a h· A m p l i fil c a t i o C a p i l la ry n".... .. o,n."-.... _ _____ __________ ________ ,. '--__________ Figure 5 : A nal ysis workflow for a l l samples. 20 E l e c t ro p h o resi The workflow in figure 5 sho\ s the general sample processing. The D A for each ith si lica mem brane method in batch \ a extracted Biorobet nive rsa l r nstrument; then the batch is mO\led for quantification \\ ith Pico \ D A D Laboratory \ \ ith Green fluores cence on I nfi nite pre 200 Inst rument platform . A fter quant ification of D A, the D A (96-we l l Quant D A ) is amp lified on Tetrad peR machine. Final ly, the amplifie d D p late was loaded on 3 5 00 X L Genetic Analyzer \\ h ich (24 capi l lary capac ity) for fragment resolution. 2.6. 1 D N A E x t ra c t i o n P roce s: A l l the D A extracted processes were performed according to the manufacture' s protocol . The first step o f analyzing t h e genomic D A is to isolate D A from t i ssues or ce l l using a comb i nat ion of physical and chemica l methods. platforms and technologies are availab le. One of the p latforms is cal led Membrane Matrix. Biorobet Universa l System from Qiagen u es sil ica mem brane m atrix method. Many different ilica is an instrument that It is designed to perform ful ly automated medium for high throughput app licat ions in 96-we l l format. from swabs, b l ood, and forensic sam p les etc. DNA can be purified Moreover, it provides a rapid and efficient method for D A extraction from nuc leated cells. The basic princIple of si lica m atrix can be described in four stages. The first stage is to lyse the tissue by breaking up the ce l l s \ ith reagents l i ke A TL presence of proteinase K. ATL buffer, physica l agitation in the buffer contains sodium dodecyl sulfate (SDS) detergent that disrupts ce l l mem brane and dissociates protein D A comp lex. Proteinase K solution, meanwh i le, degrades prote ins includ i ng DNA scaffolding proteins and other p rote in debris. The second stage is to isolate D A from the ce l l by 21 adding A L'& l ysis buffer and Ethanol . inactivates nuc l eases. A L:& buffer is u ed to l yse the ce l l and It contains guanidinium hydroch loride chaotropic salt \\ h ich removes \\ ater from hydrates molecules in a solution and renders D A susceptible to bindin g to ilica matrix in the spin plate. As D A is insoluble in alcohol, ethanol is used to prec ip itate DNA out of fluid suspension. Therefore, it increa es D A affinity to bind to i l ica spin column for further e lution of D A through the spin plate. The third stage is D A Puri fication . The purification step uses wash buffer (A W l and A W2). Each of the buffers has a different ethanol concentration. A W l being the more concentrated buffer fol lowed by A W2. This ensures the DNA rema ins bound to the silica matrix on the column. The buffers act to disso l ve and remove ce l lular debris and contam inants that are not bound to the s i l ica matr ix. The vacuum d raws these th rough the spin column. The result of this stage is to leave c lean and purified D A bound to a si lica matrix. AW aminomethane,(HOC H 2)3CN H2] and buffer conta ins Tris[tris(hydroxymethyl) Ethylenediaminetetraacetic acid (EDTA ) . EDTA removes debris b y chelation metal ions (attaching molecules t o itse lf using the ionic charge) . The final stage of DNA extract ion is e lut ion . In t his step uclease free water (N F W ) is used . Water was added to change the bind ing cond itions th rough re hydrating the D A and removing hydrogen bonds, and subsequently eluting the D A from the column. The last step ' as performed at 60° C and p H 8 . 3 for a maximum efficiency. 22 2.6. 2 Q u a n t ific a t i o n P roce : D A quanti fication is critica l for mol ecular analy is" h ich il1\oh es TR ampli ficatIOn. There are se eral methods used to establish the concentration of the D A in solut ion . The most common spectrophoto metric quantification. method of D A quantification IS Howe er, there are several other methods to spectro photome tric quant ificat ion including F l uorometry, A luQuant, Quantitative PCR (qPCR) and U V fluorescence in presence of a D A dye. In this stud , DNA \\ as quantified by usi ng DNA-bind ing dye, name ly, PicoGreen ( Life Technolog ) . One of the advantages of this method is its abi l ity t o quantify a small amount of doubl stranded DNA as l ittle as 2 5 pg/m l of dsDNA i n the presence of ssDNA. The a say is linear 0 er three ord ers of magnitude and has litt le sequence-dependence, which al lo\\ s it to accurately measure 0 A from many sources, inc lud ing genomic DNA, v iral DNA, m i n i prep DNA, or peR amplification products. DNA -dye complex is then subjected to l ight at 480nm D A/PicoG reen \\ hich emits light at 520nm. The light emitted correlates w i th the concentration of the D A . tandard D A concentration curve is generated with Sonicated Human p l acenta DNA (SH P). Fluorescence p late reader software. PicoGreen® registers em ission of the light . Fluorescence material are l ight sensitive and work ing solutions were prepared fresh ly each t i m e b y add i ng 5 0).l1 of P ico G reen immed iately w rapped in aluminum foi l . 23 and 1 0 m l of uc lease-free water and A m p l ifi c a t i o n P roce 2.6. 3 2.6.3 . 1 : DNA A m p l i fi c a t io n us i n g A m p F LSTR This AmpF L TR amplif) 1 7 tep involve Yfile Y fi l e P C R ki t : specific amp lification of fluorescentl), tagged D A . PCR Amplification Kit ( Life Technologies) ,\. as used to co hOl1 tandem repeat ( TR) loci plus a sex determining (Ame logenin) locus. These loci are: DYS456, DYS389 1 DY 390, DYS389 1 f , DYS4 5 8, DY 1 9. DYS3 8 5 aJb, DYS393 DY 39 1 , DY 439, DYS63 5, D Y S392, GATA-H4. DYS437, DYS43 8 and D Y 448. The AmpFL TR® Yfiler® includes AmpFI TR Y filer Primer sets ( 1 5 -30bp) that are locus-specific, and A m p l iTaq Gold (an DNA Polymerase nz) me responsib le for D A rep lication which is obtained from exp ression of Thermos Aquatics DNA polymerase gene cloned in E . coli). The other components of the D A amplification assay is A mpFISTR Y filer PCR Reaction Mix which contains magnesium ch loride as a cofactor for polymerase, deoxyribonucleotide triphosphates (dNTPs). bovine serum a lbumin to stabilize the polymerase, sodium azide as preservati\ e, TE buffer to maintain optimum buffe ring capacity, A m p FISTR Control DNA 007, and A m p FISTR Y filer a l le lic ladder. 2 .6.3.2 M u l t i plex PCR Protocol: A l l of the DNA amplification reactions were performed in multiplex fashion. The Multip lex PCR technology was introduced in 1 98 8 (C ham berlain, 1 988). Multip lexing PCR reaction a l lows simultaneous amplification of more than one locus in a single tube unde r the same conditions. In this study amplification of the 1 7 loci and amelogenin locus were performed accord ing to manufacturer ' s protocol with 24 minor modi fication to adapt for automation. Multi-m ix solution \\ as prepared for a \\ hole batch that contained the fol low ing volume a sho\\ n in tab le 2 . Tab le 2 : Represent tota l volume for multi -mix of 96 reactions. Plate Size React ion Mix ( )..d ) Primer ( �L l ) TaqGold (�d ) 96 984 ( ng/ j..l l ) 5 1 5 ( ng/ j..l l ) 46 ( ngl �t1 ) Mult i-Mix reaction tubes were vortexed for a mini mum of 1 0 seconds and briefly spun to 5 000rpm to ensure homogeneity of the components. The num ber of reactions per batch was 96 including positive and negative controls. Fifteen m icrol iters of I\ l ulti-mix \\ as added to each "v e i l, fol lowed by the addition of 1 0 �d of 0 A ( 1 . 5 ng/ l Oj.. l I ) to a total olume of (25 j..l 1). The p late then was sealed by alum inum foi l and centrifuged for 1 0 seconds and placed in the Bio-Rad Tetrad for h igh -throughput PC R app lications. 2 .6.3.3 T h e r m a l Cy c l i n g P a r a m e t e rs fo r A m p F L STR® Y fi l e r® PC R k i t : All PC R react ions consisted of hot-start cycle at 95° C for I I m i nutes fol lowed b) 29 c cles of denaturation at 94°C, anneal ing at 59° C for 1 minute, and extension at n° C for I minute per cycle. The PCR reactions were comp leted by post- extension for 45 minutes at 60° C as shown in table 3 . 25 Tab le 3 : Demonstrate the Polymerase Chain Reaction cyc l i n g parameters. Cy c le S t age Tempera t u re D u ra t i on Des c r i pt i o n Once Hot Start 95°C I I min. Reconftguration of enz} me Denaturation 94°C 1 min. ds6NA strands split to ssDNA P . An nealing 59°C I min. P. Extension nOc Primers anneal t o binding site 1 min. Prim ers extended b y enzyme Once Post- e tension 60°C 45 min. Once Hold 4°C 00 28 2 .6.3.4 A l l strands extended to inc lude extra Adenine base Temperature decrease to denote end of process Lo c i a m p l i fied by A m p F L STR® Y fi l e r® k i t : The fol lowing tab l e shows the loc i ampl ified o n Y chromosome, and the corresponding f luorescent marker dyes. The A m p F I STR® Y fi l er A l le lic Ladder is used to genotype and score the sam ples. The al lele sizes represented in the al lelic ladder and the genotype of the AmpFISTR® Control DNA 007 are also l i sted in table 4. 26 Tab le 4: A m p F L R 'E. Yfi le manufacture protoco I). kit loci and al leles (The tab le is adopted from Locus Alleles included in AmpFLSTR® Yfiler® Dye designation Allelic Ladder la bel DYS456 DYS389 I DYS390 6- FA 1 3, 1 4, 1 5, 1 6, 1 7, 1 8 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5 1 8, 1 9, 20, 2 1 , 22, 23, 24, 25, 26, 27 DYS389 II 24, 25, 26, 27, 28, 29, 30, 3 1 , 32, 33, 34 DYS 1 9 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9 DYS458 DYS385 alb DYS393 DYS391 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 20 21 , 22, 23, 24, 2 5 8, 9, l a, 1 1 , 1 2, 1 3, 1 4, 1 5, 1 6 7, 8, 9, 1 0, 1 1 , 1 2, 1 3 DYS392 7, 8, 9, 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8 DYS437 DYS438 DYS448 15 13 VIC® 29 17 15 1 1,14 NEO™ 13 11 12 8, 9, 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5 Y GA A H4 007 24 7, 8, 9, 1 0, 1 1 , 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 20, DYS439 DYS635 M TM Con trol D NA 24 20, 2 1 , 22, 23, 24, 25, 26 8, 9, 1 0, 1 1 , 1 2, 1 3 1 3, 1 4, 1 5, 1 6, 1 7 8, 9, l a, 1 1 , 1 2, 1 3 1 7, 1 8, 1 9, 20, 2 1 , 22, 23, 24 27 PET® 13 13 15 12 19 D e t ec t i o n o f A m p FLSTR 2.7 Y fi le r k i t p e R P rod u c t : The m U l t i p lex ampl i fied D A fragments are resolved o n a pol) mer-based electro phore i as oc iated \\ techn ique in \\ h ich the la er beam act i vates d ifferent fluorophase ith each D A fragments. P r i n c i p l e of electro p h o re i 2 . 7.1 E lectrop horetic separat ion is based on the princ i p l e t hat a charged pal1icle in a solution \\ i l l m i grate towards one of the electrodes when placed in an electrical field. In our experi ments, the DNA fragments (CE). \ ere resolved by cap i l lary e lectrophoreses The fundamental pri nciple of CE is identical to the concept of gel electrophoreses. Br iefly, the speed and d irect ion a charged part icle mo es is determ i ned by its net charge. size, shape and molecular weight as we l l as external factors such as the composit ion of the buffer, the voltage used among other variables. The fragments m igrates across CE, where at a specific poi nt a long the cap i l lary length the argon ion laser passes t hrough clear sect ions in the array and excites the fluorescent dyes attached to the DNA fragments wh ich result in em ission of l ight at d ifferent detectable \ ave lengths. d ifferent for each dye. The specific wavelength of the e m i tted l ight is The l ight is col lected and separated accord ing to its \� avelength b) a spectrograph onto a charge coupled dev i ce (C C D ) camera, and a l l types of fluorescent e m i ssions can b e detected w ith one burst of the laser. The data col lect ion software col lects the l ight i ntensities from specific areas on the CCD camera, correspon d i ng to the d iffere nt wavelengths of l ight. T h i s i s i m i lar to Llsing a phys ical f i l ter to separate the l ight wave lengths, referred to as v i liual filter. 28 2.7.2 G e n e t i c A n a lyze r: The separation and detection of u ing the 3 - 00 L Genetic mpFL TR Y fi ler nalyzer ( Life Tech nologies). PCR kit \\ as performed It is highly automated system and ea y-to-use format a l lows for its , ide usage in the laboratory. It Includes a 24 capi l lar) 3 6cm in length, it ana l ) es 24 samples e ery 2 5 -3 0 minutes. addition. it proces es one ample per run a to reduce cross contamination. In The fragment re olution are rather quick due to the high voltages. Previous ly this \\ as not po ible main l ) due to heat generated at higher vol tages w hich ultimate l the D A fragment migration . Capi l l ar a l lo\\ hampered has a large surface area (volume ratio) that efficient heat di sipation that reduces the time required for DNA fragment re olution. Moreo er, t here is 3 5 00 X L Data Col l ection Software, hich is a Del l b a e d workstation and monitors a s the parameter of the C E o 2.7.3 Capi l l a ry E lectropho res i s Reage n t s : 1 . Pe rfo r m a n c e O p t i m i zed polymer ( PO P- 4 ) : Capil lar electrophoresis ( C E ) uses the same principles m entioned above. The samples are separated as they pass th rough a f i n e bore silica tube or (capi l l ary) containing a liquid separation medium ca l led Perform ance Optimized Polymer ( PO P 4). POP-4 reagent i s a separation medium a n d i t used b y capi l lary e lectrophoresis POP-4 is th e most suitab l e medium for D A fragment resolution as it is non -cross lin ked liquid polymer. POP-4 contains denaturant, such as urea and Pyrrolidone that keeps D N A single stranded during resolution . The pol mer is made of a non -cross linked / Acry l amide ( N , N -dimethy lacrylamide ). Other reagents that are essential for capil l ary e lectrophoresis circuit are Anode ( positive charge) and Cathode ( negative 29 charge) b uffer. Both E DT node Buffer and part of the Cathode Buffer contain Tris-based and Boric acid buffer. It i req u i red mai nl) for pH 8. , \\ hich allo\ h\ 0 reasons: first, it has a high D A to ex hibit a net negati e ch arg . econd, it creates a com plete e l ectrical circuit a llow ing e lectrophoresis to take place. 2 . 7 . .t a m p l e p re p a ra t i o n befo re Ca p i l l a ry E lec t ro p h o re a m ple preprarat ion in olves a couple of steps: the first is denaturation of double tranded a m p lified D A to single trands and the second is the preparation of appropriate references for fragment scoring. They are: 1- H iD i- F o nn a m id e : H i - D i Formamide i s a highly de-ion ized form o f t h e denaturing agent formamide. Formamide is a n ucle ic denaturant and changes, in t h i s case. the DNA or R A conformation to single stranded molec u l es D N A denaturat ion i s an i m portant com ponent of analysi because s i ngle stranded D N A red uces the b i ases mobi lity sh i ft d u e t o D A conformation and enhance analytical resol ution . 2- G e n eSca n T M 600 L I Z ® Size Sta n d a rd : D A fragment scor i ng is based on reference standard fragment. It is a sol ution of d ye \\ ith labeled D A fragm ents of known and varying lengt h s that is produced from bacter i al p l asmid restriction enzyme d igestion. T h i s results in a generation of fragments for size references that in conju nction with the a l lelic ladder allows verification of unknown STR lengths. In other words it acts as an internal ru ler for each samp l e allo\ ing the size of the unknown fragments in the samp le to be calcu l ated. Figure 6 i l l ustrates the fl uorescent dye label color and rel ative PCR prod uct size ranges for the various STR loci present in this partic u l ar kit. 30 Am p FtSTR® Yfi l e r ™ I I I 200 bp 1 00 bp I 300 bp 400 bp 6- Fam r" DYS 393 DYS 3 9 1 DYS439 , - : DYS635 ' VIC ' ./ 1 , DYS 392 PET I G S500-internal lane sta ndard I rigure 6: 1 7 loc i of AmpFLS TR R Yfi l er R p e R \\ ith ladder and i nternal contro l . 2.7.5 A m p FlSTR Y fi l e r A l l e l i c L a d d e r : Fragment cal l i ng accuracy L rei n forced by AmpFLSTR:R' Y fi ler a l l e l i c ladder and i nternal contro l . [he ladder con�ist of D N A rra�ment of \\ ith kno\\ n designation � � the 1l10,'t commonly fonnd al lele,' per loc Lls as sho\\ /1 i n Figure 7, These .'tandard allele :sizing are obtai ned from large population base stud) , 31 _ ,.-..?Wtr' il " ___ III j lIS IG j ____--=---_ -.�_=r I�� l l ,, " F i gure 7 : GeneMapper I O- X software p lot the AmpFISTR Y fi ler A l l e l i c Ladder. fable 5: Total \ ol umes requ i red for 0 A amp l i fied plate i n a CE step. Cockta i l Plate S i7e H i O i ( �L l ) S ize Standard ( �d ) A l le l i c Ladcler( p l ) 96 1 40-+ 36 1 .S B i O i and i ze standard reagcnts (cocktai l ) were m i xed. \'ortexed. and spun i n steri le m i cro fugc tube for 1 0 second .. Each sam p l e consist o f 1 3 . S u l from the cocktail and I . S u l from A l l e l i c Lad(kr as shown in table 5 . Thc plate was then pulse-spunned and 32 firm l} seated w ith a co er s l i p Then the p late \\ as subj ected to heat ( for ) for 2 m i n ute at 9 - oC in thermo-cyc ler \\ ithout c losing the l i d denaturat ion of D and then epta . naps cooled b y p lac ing t h e p late on a i c e b l ock. p laced in a F i nal ly, t h e plate was pec i a l p late holder and p l ate reta iner p l aced on top, and the assembly p laced onto the equencer and started the run. The 3 5 00 Data Col lect io n software \\ orh.s alongside other o ftware to control the mechanical operat ion of the instrument, u h as mo\ ing the auto ampler and s\ itc h i ng on the oven for D A denaturat ion. I t c ol lect the n uorescence em i ssion data from the CCD camera and processes it before storage a both tables ( i n the m ac h i nes own database) and as sample fi les on the hard driv e . W i t h i n the c o l lection software, there are numerous modules conta i n i ng pre -set i nstructions to the seq uencer, go e rn ing parameters such as vol tage, te mperature of the oven, and the l aser power. From the run w i n dow, the appropr iate module can be se lected for the p late check, pre-run and the run step. The co l lection software also mon itors and d i sp l ays the status of the instrument and saves it to the i nstrument database as E PT data. 2.8 S t a t i s t i c a l A n a lysis : For statistical analys i s, U A E popu lation ,: as fi rst d i v i ded into three regions, orthern that inc l ude · ( Dubai, Sharjah, Aj man, Ras A l k h a i m a and Um A l qaw i n), Eastern \\ h ic h i n c l ude ( F uj u rah, K a l baa and Khorfakkan) and Western region inc l ude (Abu Dhab i and A l A i n c i ty) and interchangeab l y they are cal led population 1 , 2, and 3 respec t i e l y . The popu lation was grouped based on the h i story, geograph ic prox i m i t i es, and probab le m i gration ro utes. hapl otype were performed w ith statistical 33 The analysis o f a l l e l e frequency and and popu lation genetic software. Gene apper !\, 1 0-X er ion 1 .2 analysi o ftware carried out data analysis. It ana lJZc data generated on human ident i fication cap i l lary e l ectrophoresis platform such a 3 500 L Genetic Anal zer. I n this project, the u age o f th i s o fu\ are \\ as to anal yze the r su Its and to generate ra\ data for a l l samples and the parameter was set to I SO Relat i \ e F l uore cent U n i t (rfu). The raw data fi le that generated from the was analyzed using macro progra m m ing i n M i c rosoft Excel and Gene r-.. l appe · 1 0- an i n tegrated o ft\\ are package for popu lat ion genet ics data anal sis ver i o n 3 . 5 . 1 . 3 . ( Excoffi er. 2005). Pad .age for oc i a l c iences) A LEQ U f N Moreover, statistical program S P S ( Statistical w a s used t o generate t h e descriptive parameter o f popu lation su h a Me a n, Standard de ialion, a l lele frequency charts and tables for eac h 10 i . 2.9 A n a lysis o f P o p u l a t i o n g e n e t i c pa ra m ete rs : The fie l d o f popu lat ion genet ics has come a long way s i nce the early part o f the 2 0th century. The c o m b i nation o f Mende l ian genet ics and b i ometric studies led to the b i rth of population genet ics "vhose father i s R. F isher ( H a l d , 1 99 8 ) . popu lation genet ic I n itial ly, stud ie s concentrated on study i n g the a l lele freq uenc ies in populations, subpopu lation, a nd gro ups ( Prov i ne, 1 9 7 8 ) . There fore, it is i m portant to de e lop the not io n of al l e l e freq uenc ies computat ion even though our current study i n v o l ves a haploid system man i fested in Y c hromoso m a l STR analysis. It is i m portant to desc r i be H ardy and W e i n berg E q u i l i b r i u m ( H W E) as many of the m athematical treatments in population genet ics stems from H WE . The H W E m ethod i s used to calcu late the ex pected proport ion o f d i fferent genotypes in a g i ve n popu lat io n. A populat ion to w h i c h the H W E i s app l icable 34 con i t o f d i p lo id assumption ystems. sexua l l } reprod uc ing i n d i iduals. and a score of other such as independence of a l le l e freq uenc ies transm i slon from one generat ion to the next from the common geneti c poo l who has not been under any se lection force. In the I I W E , the probabi l ities o f the genot pes can be g iven by the equat i o n : p 2 2pq + Y here: p q :! = 2pq :! q = � = 1, percentage of hom ozygous dom i nant i nd i v i d ua l s percentage o f homozygo us recess i ve ind i v iduals = And p percentage of heterozygous i n d i v iduals; + q = I W here: p = frequenc) 0 f the dom i nant a l l e l e in the popu lation and q = tl'equen )- of the recess i ve al le le in the population. The total frequency o f a l le les in a populat i on is equal to one. I n add i t i on, H W E depends m a i n l y o n the ex istence o f a very large s i ze and random ly mating populations ( H am mond et aI., 1 994). There are tv 0 i m portant facets to Hardy- W e i n berg mode l . F i rst and the most i m p oltant fac et, i s that i t sho\\ s that the M end e l ian mechan ism preserves genet ic variabi l ity. Second, i t pro v i des a usefu l fu nctional re lat i o n s h i p between genotype frequencies and gene (al le le ) frequenc ies where p 2 + 2pq + q 2 = (p+q) 2 = I. It shows that, everyt h i ng e lse being equal, the population w i l l q u i c k l y reach equ i l i brium and stay there. Ho wever, H W E works i n an ideal s i tuation, t hat does no t usua l ly occur natura l l y and thus H W E i s used as a n u l l model to test various population structure ass u mpt ions such genet ic forces and populat io n constra i nts. 35 The econd point \\ hich is mo tl) im portant to population genet ic ists is the a b i l ity to d e ri be the state o f a popu lation entire l y i n terms of a l l e l e freq uencies rather than genotype freq uenc ies. A l le l e (". h ich are much fe\\ er than genotypes) freq uencies o f the popu lation can derive the expected heterogeneity o f popu lation. 2. 1 0 M e a u re o f d iv e rs i ty betw e e n a n d w i t h i n p o p u l a t io n : 0 \ e r the past few decades. m ic ro ate l l. ites h a e been the cho ice fo r popu lation tud ies. due to the i r h igh level o f variab i l ity and the re lat i ve ease o f devel opment and coring i n non-mod e l system . everal methods have been used to score the \ ariation and d i \ er ity of m i c ro sate l l ite in popu lations. Fsl or fi xation index is one of the mo t u ed b iometric method . Fsl simply measu res the level o f hetrozygosity or d i fferent iation ben een population and its subpopu lat io n. It was origina l ly devel oped to mea ure genetic d i stance using b i a l l e l ic markers ( Wright, 1 969), but the equation \Va su bseq uent l y genera l ized for m u l t i p le al le les (Nei, 1 97 3 ) . FSI ranges from 0.0 to 1 .0, a expected . w i th 0 ind icating no d i fferences i n a l l e l e freq uenc ies between two populations and 1 .0 ind icati ng that the two populations are fi xed for alternate al le les. 2 FSI is often 0. 1 -0 . 2 . For m i c rosatel l ites w i th high m utation rate ( i n the range o f 1 0. _ 6 1 0. ) other measures of hetrozygosity or d i versity has been int roduced to study popu lation structure . S u bsequent mathemat ical derivation, namely, RST, is used to account for m utat ion u n der the assumption o f step-wise mutations, that is, single m utation at a time and that each su bseq uent mutat ion is dependent on the prev ious one -that is the s ize o f m ic rosate l l ite d ictates the future m utat ion ( S latkin, 1 997). The previous popu lation mode l i ng eventua l l y d i ve rted from mere a l l e l i c frequency stud ies to genet i c d i stance among and between populations wh ich is m a i n l y derived from 36 a l l e l ic varIance bet\'v een subpopu lations. I n the c u rrent tudy, we ha e est imated haplot) pe freq uenc ies, varian es, and used ana l ) sis of molecular variance (AMOV A ) t o tud) the E popu lation and its subgroups. Furthermore, ' e have compared the AE popu lation \\ ith other popu lation i n d i fferent parts o f the , orld . Our analysis \\a conducted on A L E Q j (vers ion 3 . 5 . 1 . 3 . ) \Vh ic h is an integrated soft\\ are pad.age for population genet ics data analysis ( Excoffi er, 2005) and SPS package. 37 stat istical C H A PT E R III: R E SULTS AND DISCUS SION 38 I his t:hapt�r descri h�: the \\.!su l ts o f the 00:A pro fi l i ng o f 345 samplec obtai ned from unre lated mal es i n the l IA E . ,\ 1 1 Y ii i rT\I the sampl e: \\ ere genotyped \\ i th Amp!' ! S T R f{ of k i t ( L i fe Technol og� ) ror 1 7 h igh l � polymorph i c l oc i . This i s ont: o f the l argest : i ngle populatil'1l studied tim. 1�tr. 3. I P r o fi l i n g Sa 111 p i e s : A l l the 3 -\. 5 samples \\ e re STP R Y k i t . Fi gure 8 fi l e rl\( success fu l l y p resents The same reaction \\ as perfo rmed for flOCtl • • ., • �I .I �I . CU:O'Z ,tD;'Z ,. • • ... . " • II • • " .1 . " j .! • • U '" �. .I 1!21 • '30 '" ,� u • @ � n. ! subj ect. '" J 0 I!!. a samples . N ..I .! Ctn!Z 345 .� '" an example of Y STR p ro fi le for • E .. pro fi led for al l 1 7 loc i w i th the AmpFI � [£ [iiJ ." .! " >I, ! C> ....'.. � fjj ! F igure R : Y STR p ro fi l e generated using . mprl STR R Y fi l e rT:\( at optimal n�action conditions. The figure sho\\ s l abd lcd i nd i ,i dual S I"R and the peak height. 39 3.2 Y S TR a l l e l e Freq uencie : I n genera l . al le le freq uenc ies are u ed to study the popu lat ion structure and its \ ariance is a key i n d icator o f gcnet ic d i ver it)' at the i n d i v idual, population, and peC le I vel and dcmonstrate the ric hness o f the popu lation gene poo l ( H euertz et a l . . 2004). The popu lation genet ic parameters are com puted \ ith stat istical package for the c ia l sc ience ( PS ) and po pu lation genet ics o ft\\ are Arleq u i n ( Excoffier, 2005) for a l l 1 7 a m p l i fiable loc i . The computations are carried out for the whole popu lation a we l l as eac h ubpopulation (sect ions 3 . 2 . 1 and 3 . 2 . 2 respec t i ve ly). I t is i m portant to note that i n t h i s study, the state o f hetroz) gos ity o f a l lele freq uenc ies o f 345 E m i rati amples were estimated by count i n g the n u m ber o f i n d i v idual al lele observed and d i v i d ing it by the total number o f samples fo r the respect ive popu lation. W e have observed a tota l number of 1 24 al leles d i stri buted across the 1 7 loc i i n the UAE popu lation ( see table 6). 3. 2 . 1 A l l e l e Freq u e n cy o f Y H a p lotype i n t h e U A E p o p u l a t i o n : The analysis o f the a l le le frequency in the U A E popu lation c l early shows that eac h loc u s has a p red o m i nant al lele ( see table 7 and fi g ure 9 ) . I t is also apparent that the a l l e les o f m ost loc i are c l ustered over a narrow range where appro x i mate ly 60% 8 0°'0 of the population i s sharing a spec i fi c a l lele for the locus. - For example, a l l ele 1 4 of D YS43 7 is shared a m o ng 7 9 % o f the po pulation; s i m i larly al lele 1 1 o f D Y S392 i s shared among 79% o f the UAE population, al l e l e 1 3 o f D Y S 3 8 9 1 locus i s shared in 72% of the population, and a l le le 1 0 of D Y S3 9 1 is shared bet\ een 72% of the popu lat ion. A lthough to a lesser degree, other loc i a l so have predom i nant al leles. 40 These loci are DY 4 3 8 (allele l O is shared among 59% of popu lation), DY 448 (al lele 20 i hared among 56% of popu lat ion), DY 1 9 (al lele 1 4 is sh ared among - - % of popu lation), GA TA_H4 (al lele I I is shared among 54% of popu lation), DY 393 ( a l lele I I i hared in 48% of popu lation), and D Y 4 5 6 ( a l lele 1 5 is shared in 4 7°/0 of population). I n other ca es, there i a b i moda l or even rn u l t i modal d i str i bution of a l leles (see table 8 : i .e. D Y 4 5 8 locu ) ; that is al le les that are not c l ustered and their d i stribution appears d i sconti nuou and c hunky. For i nstance, D Y S 4 5 8 locus shows two pre dom i nant a l le les ( 1 6 and 1 7) w ith freq uencies of 68 and 72 respectively (where 34 - ) . W h i l e the most common al le les at D Y S439 locus are I J and 1 2 freq uenc ie of 1 5 1 and 1 1 8 respec tive l y. \ ith Moreover, fo r DY 4 5 8 locus the two common a l leles are 1 7 w ith the freq uency of 72 and a l lele 1 6 w ith the frequency of 68 and for the D Y S 3 8 5 - B locus the pred o m i nant a l leles are 1 8 and 1 7 w i th freq uencie of 8 8 and 68 respec tive l y. The bimodal a l lele predom i nance d i stribution is characteristic o f gene flow from other popu lations. That is there are groups of the popu lation. arguably. t hat m igrated i nto the UAE fro m d i fferent region and fLlli h er stu d ies are req u i red to ident i fy the most l i ke l y a l le les that are associated w ith each a l l e l ic mod a l . Tab l e 8 (A-Q) p resents a detai led description of a l l e l ic d i stribution for each loci and the co rrespon d i ng pie c harts. 41 rable 6: Total num ber of a l le les for each loc i i n U A E popu lation Lo c us # # of a l l e l e D YS456 5 DYS3891 4 D Y S390 6 D Y S389 I I 8 D Y S 45 8 13 D YS 1 9 6 D Y S385-A 1 1 D Y S385- B II D Y S393 8 DYS39 1 7 D YS439 7 D Y S635 9 D Y S392 7 GATA H 4 5 D Y S4 3 7 -l D Y S438 5 D Y S448 8 Mean 7.294 S.D. 2.568 42 'I able 7 : Prt.!dom i nanl allele i n U Locus OYS456 D YS389 1 E populalion. V rc <l o rn i n a n t F req u e n cy 15 0.475 13 0 . 7 '22 '") " - -' 0.-+4 1 30 0 . -+ 3 2 1 7 . 1 6* 0 . 2 09. 0 . 1 97 * DYS1 9 14 0.554 D \'S.38':--.\ 13 0.3 7 7 D YS385-R 18 0.255 D YS393 12 0.4 75 O YS39 1 10 0 . 6- U D YS-B9 II 0 .-+3 8 O YS635 21 004 1 7 DYS392 I I 0.783 1 1 0.539 DYS-B7 14 0 . 7 86 DYS43 8 10 0 . 5 86 O YS448 20 0 . 5 65 D YS390 OYS389 1 1 DYS458 GATA H4 F re q u e n cy of P re d o m i n a te A l l e l e i n U A E P o p u l a t i o n 0.8 >u c (l) :::J u � u.. 0.6 0.4 0.2 0 Locus Figurt.! C): A l lele frequency for the predom inant al l el es in the UAE pupu latiun 43 I abl , X : \ l i c k Ih�q u 'ne) o f o i fkrcn t l oe i w i t h p i c c harb fur l), E po p u l a t i o n : \11 k I rcqu':l L) l '':I\.Cl1t I� I I X� ::! � . J f---. I " (l 1 6� I� 5 1 6 () (J:\ 1 <) 7 15 .t 3 .H 5 1 00.(1 - Ij 0 �. I 1 0 - f--- 1 � () l ot ti l B. L o c u s DYS389 J \ I k l .: I n:qucI1L) I'CIC.:1ll I ::! () � ::! I ::! . ::! I ., 0 ::!�l) 1 -1 0 :1 IH I :) () 2 6 3 15 1 00.0 I ut,1i -, , - - C. L o c u s D Y S 3 9 0 I \Ikle ! I cquenL) 1'':lccnt ::! I 6 I 26 - 5 1 52 -I I I ::!-I 101 29 3 2� 41 1 1 9 :!6 I J 3-15 1 00 (I ::! ! " ') ' _.1 i I i T ol,tI I 44 D. Loc u s D YS3R9 J J \ ! I.:lc I l eqll-:n<.:� l 'el L 'nt ), 0 2 (, 2 h 2� - 0 _ -0 .. 2S ( l 1 -1 I - --- 2() () S < '' 2I I � (l () I -It) -l � ) ;1 0 55 I � <) � 2 [) 20 :5 R l ' ,n -I I 2 I ,'t.ll 3 -1 5 l oo n E . L o c u s DYS.tS8 I I \ I k l <: rrcqll-:ne� I\:recnt I l,O I , -' 1 -1 0 " , ,9 1 5 1l 51 1 -1 X I (, ( ) ('S I <J,7 1 6, � I ,, 1 - I) 72 20 'J 1 -,2 36 104 �5 7 2 IS 2 -18 1 3 <J 1 'J,n (, 1 7 1 9, 2 ") '' -. 6 7 20,0 -I 1 .2 20 2 h I - l ot II 34 5 I ()(),fl IS 0 I 45 F. L O C LJ \IU� DYS 1 9 I r 'qllt:IlL \ I \:r..:.:nl - ' II 2 () l , tl iI ') !l I t (I 19l �5 l 1 - () ,'.,2 21 X l 6 () lU X - 1 - () - 2 0 ,45 l OO.O l 1 Illal ." 0 a. D• • • • -a _ . .- a. G. Locu.' DYS385 1 I I \ 1 1..: 1 .: rr.:qu':I1':� f\:r.:.:nt X () I , -' 100 .2 .6 l i n 52 15 I 1 2 .0 25 .2 11 U U ti ....' .... ...,. I .J () 39 I I -' I: 0 20 I f> 0 ,, 1 () 7 1 - [) 35 1 (1. 1 I S [) , - (, IYO I 3 3l � I IH ) (I I lll i l I __ x 46 • • I I . L o c lI. D) S3S:- 2 r- f--I I () Per, ' nt I rnlUenn \11 -1 ' -... ., (, -- 1 2 () � I ) () - �'r - 1 ! (, .1 \ , .\ IX I , l) +- -� 20 :; X _, t) I I .' 6X 1 <) _. () XX �5 :> I li n �X 13 9 21l 0 IX 5 .., 21 0 ., - ,(, H) 1 00 0 1 .", , 0 I ()O _ 1 7 (l IX I lltdl I. ,.'- --- --,-=. I I t -�- - - L o c u s D Y 393 \ I kk: rrC'lllCl1t:� I 'crc:cl1t l) () 2 (, 10U 2 (, 1 1 0 12 3 :> 1 2 () 1 6..j ..j 7 .:i 1 3 () 1 26 36 :> l HI 30 I - (I I II () I (11 ..11 - I • • • •• OlIO ., . � . • 11 0 , . OI�O X - 2 0 I 1 '15 1 (I( I ( ) 47 .J. ,..--- L O C H . D YS39 1 r-- - � \Ikl I n:qll ':I'�) 1 '':: 1 <:1':111 (, ( ) I \ 7 0 I , � o I i \) (J I , 3 X I I I () 222 (, � 3 1 1 0 96 2- N 12 0 10 2 l) 1 01,11 315 1 (10 0 -- - � t-- f--. K L o cu� D YS ..B 9 \ l I d .: F t CL]lI 'IlL) Pt:ILCllt l) 0 I .J 1 0 (I 39 I I 3 1 1 .0 151 .+3 � 1 2 (l I IX 34 2 13 0 2� I' (I I � () 7 2 0 150 2 (, 3�5 1 00 I I l otal L. LOCH D Y 392 \Ikk I l cqll 'nt:� <) 0 2 I I '..:r.:.:nt I 2 <) I I CJ 2 70 7X :; 12 0 .+ I :: 1 3 () 3U X,I " - 1 1 0 1 5 0 I Ol.1I I • • o • • o • • ... b 10 100 • • "'. OIl) .' . ou ." ,. , (, 7 , - (, 3�5 1 0( 1 [) 48 1 . L o c lI D YS635 I '1 .rI.:411.:nL� l'aLcilI 1 <) 0 I , 20 II "1 I - 1 21 0 1�4 II � 22 ( ) �� 11 9 21 () 66 1 <) , -" ' , I ,, 2 1 0 19 - 'i 2 ') () 6 I � 2 () 0 I 3 3 -1 5 I OO ll \11 I-- '- \ "1"1\ I Locu. DYS-t-t8 \ 1 1 .: 1 .: l'n:ljllcIlC) Paceill 160 2 (, \- 0 -' l) I S () -1 1 2 1 9 () 89 2: X 20 0 1 95 56 5 2 1 (J 32 q 3 22 0 5 I I 2, 0 (, I - 3�5 1 (10 0 I (11,11 � I 49 O. L O C H Y G \T 1 14 --------, I I (ljlleIlL) liel - I '�rc�nl 20 100 - X 1 11(, 1 1 0 � P. � - r- .5 , lJ � � 120 l Oll 2 () () H O 16 10 � I I () .1 l) I Ol . 1 H- 1 00 (l L o c u .· D YS43 7 \ I kk. I n:Lju':Il<':� J \:r<.:.:nl 1 )( 1 I , -' I � (l 2�1 - 1' . 6 1 5 I) 50 I �. S 1 6. 0 21 6 1 315 I OU (l r,'l.11 Q. L o c u · DYS438 \ I kle I r 'qLI 'nc� I'cn:cnl X U .2 (, 39 I I :> 20� 5 1' . 6 90 I 100 I 1 1 0 R .2 1 2 () 1 1' 1 0[ ,11 3 -1 S I I • • • • C' •• • o. o • .2JR - � J _ 1 (1) 0 50 It is evident from the predo m i nant al lele freq uencies and bi modal it) d i stribution of e \ eral al le les at s pec i fic locus that (here are at least m i n i ma l common hap lot) pes compn I Ilg A E pop u l ati o n. I n fact, our analysi ho\\ the popu lation hare at l ea t 5 -7 a l l e les acro s the 1 7 further d i cu structur that approx imate ly half of TR loci ( see section 3 . 2 . 2 for ion). Based on this ev idence, t\\ O scenarios are v iable to explain the of the U A E popu lation. F i r t, a teady popu lation i nc rease in the past sev eral thousand years w i t h i n the boundaries of what const itutes the U A E . The i n itial popu lation shared common hap lot) pe that eventual ly m utated to estab l ish the genetic d i \ r it) of today ' s population. The second scenario i n v o l ves recent ad m i xture and gene flo\\ for m u l t i ple neighboring reg ions \\ ith in the past century. second cenario i s the most p lausible, it is i m po rtant (0 A l though the stress the im portance of co ering a larger popu lation at h igher popu lation h ierarc hy w i t h i n the reg ion at higher molecular reso l ut ion (0 dec ipher the population structure and estab l ish deep ancestry ( U nderh i l l , 2007). A l ternat i vely, both scenarios at \ ork a l though the fi rst scenario prov ided the d i versity o f a l l e les, contributed to a l esser degree to the hap lotypes d i vers i ty. T h i s latter assettion stems from an observat ion of a narrow range of a l le les c l ustering \\ ith i n each locus (see table 8). The a l lele c l ustering and narrow range d i stribution assumes a step" i se m utation as opposed to i nfi n ite a l ie Ie model ( V aldes et . a l . 1 993 ; J arne, et. a l . 1 996). 1or·eover, the UAE popU lation, as is the case i n any other population, demonstrates a l l e le frequencies and genetic variance that is d i stinct from other popU l at i o ns in d i fferent cont inents. The resu lt reflec ts the genet ic d i stance between these popU l at ions, which i m p l ies the separat ion of popu lation i n habiting the U A E 51 regions and the urround ing area at least in the past several thou and years ( Eckert and l I i le 2009; re lativel) adenas, 2008; Bosc h, 2000). hort period (se eral thou and Di ver ity of this magn itude in a ears) is in agreement w it h h i gher mutat ion 4 2 rate or m i c ro ate l l ite ( 1 0. _ 1 0. per gen rat io n) as opposed to single nuc leotide mutat ion ( B ri n kmann et al., 1 998; Dupu) et a I . , 2004). A l lele Freq u e n cy fo r u b pop u l a t i o D s i n t h e U A E : 3.2.2 The a l le l ic p ro fi le, freq uency, and d i stribution for each locu ubpopulation of the U I n the three E fo l lo\\ s s i m i lar patterns ( see tab l e 9 and fi gure 1 0. A -Q). The a l le le frequency among the three subpo pulat ions, however, shows smal l fl uctuat ions espec i a l l y for spec i fi c loc i . A l though, our study demonstrates that there are u n i q ue a l leles to a subpopu lation or a l le les not shared by a l l regions, the profi le of the a l le le frequency and d i stribution are s i m i lar. I t is im portant to note that the ample ize of Eastern subpopu lat ion ( n=2 5 ) is smal ler com pared to Western ( n= 1 89) and orthern (n= 1 3 9 ) reg ions; therefore, we attempt to d i scuss the results of Eastern region w i th caution e ven though it is not uncommon to see a popu lation of s i m i lar size d i sc ussed for i n ferences i n the l i terature. Table 1 0 demonst rates the al leles that are u n ique or not shared betvveen a l l the reg ions in the U A E population. For examp le, a l lele 1 5 of D Y S 3 8 9 I , i s p resent o n l y in Western reg ion, wh i le a l leles 26 of DYS390 is p resent i n orthern reg ion on ly. I nteresti n g ly, a l l e les 1 3 and 1 6 .2 o f DYS45 8 locus a n d a l le les 9 and 1 6 of D Y S393 locus are present o n l y i n Western region. M oreover, a l l e l es ( 1 0 and 1 9) of DYS3 8 5 -A locus are un ique to region o n l y \\ h i l e a l le les 8 and 1 8 are o n l y present in W estern region. orthern We have exc l uded the Eastern region i n t h i s comparison as the popu lation size is smaller 52 (n=2 5 ) than o lihern and We tern regions. H o\ ever, the absence o f an al lele frOI11 a region \\ ith h i gh populatio n does \ arrant its ab ence i n the Eastern region popu lation (Tab le 1 0) that th re are al l e l e only spec i fic to Eastern region. A l arger pop u lation ize \\ i l l u l t i mate ly identi Cy the uniquenes subpopu lation . 53 of these al l el es in t he respective Tab le 9 : A l lele Freq uenc ies for the ub-popu lations. N o rt h e rn ( n= 1 3 1 ) E a s t e r n ( n= 2 S ) W e s t e rn ( n = 1 89 ) A l l eles for t h e locus 1 : D YS�5 6 : Fl'e q . s.d. A l lele: N o. F l'eq. s.d. A l le l e : No. F re q . s.d. A llele: I 0.06 1 0 . 02 1 1 3 .0 I 0.000 0.000 1 3 .0 I 0.032 0.007 1 3 .0 2 0 214 0.036 1 4 .0 '2 0.320 0.067 1 4 .0 2 0.254 0.0 1 8 1 4 .0 3 0 . 466 0. 044 1 5 .0 3 0.480 0.07 1 1 5 .0 3 0.4 8 1 0.02 1 1 5 .0 N o. 4 0.206 0.03 5 1 6.0 4 0. 1 60 0.052 1 6. 0 4 0 . 1 96 0.0 1 7 1 6 .0 5 0.053 0 . 020 1 7.0 5 0.040 0.028 1 7 .0 5 0.037 0.008 1 7.0 A l leles fo r t h e locus 2: D YS389 1 : No. F req. s.d. A l le l e : N o. F req. s.d. A l lele: N o. F re q . s.d. A l lele: I 0. 1 2 2 0.029 1 2 .0 1 0.040 0.028 1 2 .0 I 0. 1 3 2 0.0 1 4 1 2 .0 2 0. 763 0.037 1 3 .0 2 0.680 0.067 1 3 .0 2 0 . 698 0.0 1 9 1 3 .0 3 0. 1 07 0.027 1 4 .0 3 0.280 0.064 1 4 .0 3 0. 1 5 9 0. 0 1 5 1 4 .0 4 0. 000 0.000 1 5 .0 4 0.000 0.000 1 5 .0 4 0. 0 1 1 0.004 1 5 .0 A l leles fo r t h e l o c u s 3: D Y S3890 : No. F re q . s.d. A llele: N o. F req. s.d. A l le l e : No. F re q . s.d. A l lele: 1 0.06 1 0.02 1 2 1 .0 1 0.080 0.039 2 1 .0 I 0.058 0.0 1 0 2 1 .0 2 0.053 0.020 22.0 '2 0.040 0.028 22.0 2 0.095 0.0 1 2 22.0 3 00420 0.043 23.0 3 0.520 0 . 07 1 23.0 3 0.444 0.02 1 2 3 .0 4 0.282 0.039 24.0 4 0.280 0.064 24.0 4 0 . 3 02 0.0 1 9 24 .0 5 0. 1 68 0.033 25.0 5 0.040 0.028 25.0 5 0. 095 0. 0 1 2 2 5 .0 6 0.008 0 . 008 26.0 6 0.000 0.000 26.0 6 0 . 000 0.000 26.0 No. F r·eq . s.d. A l lele: A l leles for t h e l o c u s 4: D YS389 I 1 No. F req. 1 0. 0 1 5 0. 0 1 1 0.000 0.000 3 0.084 0.024 4 0.252 5 0.405 6 s.d. No. F req. s.d. A llele: 2 5 .0 1 0.000 0.000 25.0 I 0 . 000 0 . 000 25.0 27.0 2 0.000 0.000 27.0 2 0. 0 1 1 0 . 004 27.0 28.0 3 0.000 0.000 28.0 J 0.069 0. 0 1 1 2 8 .0 0 . 03 8 29.0 4 0.280 0.064 29.0 4 0.228 0.0 1 8 29.0 0 . 043 30.0 5 00 400 0.070 30.0 5 0.455 0.02 1 30.0 0. 1 5 3 0.032 3 1 .0 6 0.240 0 . 06 1 3 1 .0 6 0. 1 53 0 .0 1 5 3 1 .0 7 0.069 0.022 32.0 7 0.000 0.000 32.0 7 0.058 0.0 1 0 32.0 8 0.008 0 . 00 8 33.0 8 0.040 0.028 3 3 .0 8 0. 0 1 1 0.004 33.0 :2 A l lele: " A l le les fo r the locus 5 : D YS458 No. F re q . s.d. Allele: No. F req. s.d. A l le l e : No. F re q . s.d. A l lele: I 0 . 000 0.000 1 3 .0 I 0.000 0.000 1 3 .0 1 0 . 005 0.003 1 3 .0 '2 0.008 0.008 1 4 .0 2 0.000 0.000 1 4 .0 2 0 .0 1 1 0.004 1 4 .0 3 0 . 1 76 0.033 1 5 .0 3 0. 1 20 0.046 1 5 .0 3 0. 1 3 2 0.0 1 4 1 5 .0 54 � 0.�29 0.037 1 6 .0 � 0. 1 60 0.05� 1 6.0 4 0 . 1 80 0.0 1 6 1 6 .0 5 0 . 000 0 . 000 1 6. 2 5 0.000 0.000 1 6.2 5 0.005 0.003 1 6 .2 6 0.229 0.037 1 7. 0 6 0. 1 60 0.052 1 7.0 6 0.20 1 0. 0 1 7 1 7 .0 7 0.092 0.025 1 7.2 7 0.080 0.039 1 7 .2 7 0. 1 1 6 0. 0 1 3 1 7. 2 8 0.069 0 . 022 1 8.0 8 0.040 0.028 1 8.0 8 0 . 079 0. 0 1 1 1 8.0 9 0. 099 0.0�6 1 8.2 9 0.032 0.067 1 8 .2 9 0. 1 43 0. 0 1 5 1 8 .2 1 9 .0 10 0 . 008 0.008 1 9. 0 10 O.O�O 0.028 1 9.0 10 0.02 1 0.006 I I 0 . 069 0 022 1 9.2 I I 0.040 0 02 8 1 9 .2 I I 0 . 069 0 .0 1 1 1 9 .2 12 0.008 0.008 20.0 12 0.040 0.028 20.0 12 0.0 1 1 O.OO� 20.0 13 0.0 1 5 0.0 1 1 20.2 13 0.000 0.000 20.2 13 0.02 1 0.006 20.2 A l le les fo r t h e loc u s 6 : D Y S 1 9 N o. F req. s.d. A llele: No. F req. s.d. A l lele: N o. F re q . s.d. A llele: I 0.000 0.000 1 2 .0 I 0.000 0.000 1 2 .0 I 0.0 1 1 0.004 1 2 .0 2 0. 1 07 0.027 1 3 .0 2 0. 1 2 0 0.046 1 3 .0 2 0.074 0. 0 1 1 1 3 .0 3 0.5-+2 0.04� 1 4.0 3 0. 560 0.07 1 1 4 .0 3 0.56 1 0.02 1 1 4 .0 -+ 0.200 0 . 060 1 5 .0 � 0.280 0.064 1 5 .0 4 0.228 0. 0 1 8 1 5 .0 5 O. 084 0.024 1 6. 0 5 0.040 0.028 1 6 .0 5 0.095 0 .0 1 2 1 6 .0 6 0 .0 1 5 0. 0 1 1 1 7. 0 6 0.000 0.000 1 7. 0 6 0.026 0.007 1 7 .0 F re q . s.d. A l lele: A l leles fo r t h e l o c u s : 7 D YS385-A F req. A l lele: No. 0 . 000 8.0 I 0.000 0. 0 1 1 1 0 .0 2 0.000 I 1 .0 3 0. 1 2 0 N o. F req. s.d. I 0.000 2 0. 0 1 5 3 0. 1 98 0.035 A llele: No. 0.000 8 .0 I 0.005 0 . 003 8 .0 0.000 1 0. 0 2 0.000 0.000 1 0 .0 0.046 1 1 .0 3 0 . 1 22 0. 0 1 4 1 1 .0 s.d. 4 0.076 0.023 1 2 .0 4 0.200 0.057 1 2 .0 4 0.053 0.009 1 2 .0 5 0.3 5 1 0 . 042 1 3 .0 5 0.360 0.069 1 3 .0 5 0.397 0.02 1 1 3 .0 6 0.084 0 . 024 1 4 .0 6 0.080 0 . 039 1 4 .0 6 0. 1 3 8 0. 0 1 4 1 4 .0 7 0.03 8 0.0 1 7 1 5 .0 7 0. 1 20 0 . 046 1 5 .0 7 0 . 063 0.0 1 0 1 5 .0 8 0.099 0.026 1 6 .0 8 0 . 1 20 0.046 1 6 .0 8 0. 1 1 1 0.0 1 3 1 6 .0 9 0. 1 2 2 0 . 029 1 7. 0 9 0.000 0.000 1 7 .0 9 0. 1 0 1 0.0 1 3 1 7.0 10 0 . 000 0 . 000 1 8 .0 10 0.000 0 . 000 1 8 .0 10 0.0 1 1 0.004 1 8 .0 I I 0 . 00 8 0.008 1 9 .0 II 0.000 0.000 1 9.0 1 1 0.000 0.000 1 9.0 N o. F req. N o. F re q . s.d. A llele: A l l e l es for t h e l o c u s 8: D YS385- B No. F req. s.d. A l lele: s.d. A l lele: 1 0.008 0.008 1 1 .0 1 0.000 0.000 1 1 .0 I 0 . 005 0.003 1 1 .0 2 0 . 023 0.0 1 3 1 2 .0 2 0.000 0.000 1 2.0 2 0.0 1 6 0.005 1 2 .0 3 0.008 0.008 ] 3.0 3 0.000 0 . 000 1 3 .0 3 0.02 1 0.006 1 3 .0 4 0. 1 60 0.032 1 4 .0 4 0.200 0.057 1 4.0 4 0. 1 1 6 0.0 1 3 1 4 .0 5 0.084 0.024 1 5 .0 5 0.000 0.000 1 5 .0 5 0.048 0.009 1 5 .0 6 0.099 0.026 1 6 .0 6 0.080 0.039 1 6 .0 6 0. 1 2 7 0.0 1 4 1 6.0 7 0. 1 83 0.034 1 7 .0 7 0 . 1 60 0.052 1 7 .0 7 0.2 1 2 0.0 1 7 1 7.0 8 0.267 0.280 0 . 064 8 0.243 0.0 1 8 1 8 .0 0.039 1 8 .0 8 55 1 8 .0 9 0. 1 3 0 0.029 1 9.0 9 0. 200 0.057 1 9.0 9 0. 1 3 8 0.0 1 4 1 9.0 10 0.03 1 0 .0 1 5 20.0 10 0.080 0.039 20.0 10 0.063 0.0 1 0 20.0 1 1 0.000 0.000 2 1 .0 j 1 0.000 0.000 2 1 .0 11 0.0 1 1 0.004 2 1 .0 Al le les for t h e locus 9 : D YS393 N o. F req. s.d. A l lele: N o. F req. s.d. A l lele: No. F req. s.d. A l lele: 1 0.000 0.000 9.0 1 0.000 0.000 9.0 1 0 .0 1 1 0 . 004 9.0 0.005 0.003 1 0.0 2 0 . 008 0.008 1 0.0 2 0.000 0.000 1 0 .0 2 3 0.03 8 0 .0 1 7 1 1 .0 3 0.Q40 0.028 1 1 .0 3 0.032 0.007 I 1 .0 4 0.435 0.043 1 2 .0 4 0.520 0.07 1 1 2 .0 4 0. 497 0.02 1 1 2.0 1 3 .0 5 0.405 0.043 1 3 .0 5 0.280 0.064 1 3 .0 5 0.349 0.020 6 0 . 084 0.024 1 4 .0 6 0. 1 20 0.046 1 4 .0 6 0.085 0.0 1 2 1 4 .0 7 0.023 0 .0 1 3 1 5 .0 7 0.040 0.028 1 5 .0 7 0.0 1 6 0.005 1 5 .0 8 0.000 0 . 000 1 6. 0 8 0.000 0.000 1 6. 0 8 0.005 0.003 1 6 .0 No. F re q . s.d. A l lele: A l leles fo r t h e locus 1 0 : D Y S39 1 N o. F req. s.d. A l lele: No. F req. s.d. A l lele: 1 0.000 0 . 000 6.0 1 0.000 0.000 6.0 I 0.005 0.003 6.0 2 0 . 000 0.000 7.0 2 0.000 0.000 7.0 2 0.005 0 . 003 7.0 8.0 3 0.000 0 . 000 8.0 3 0.000 0.000 8.0 3 0.005 0.003 4 0 . 03 1 0.0 1 5 9.0 4 0.040 0.028 9.0 4 0.042 0.008 9.0 5 0.679 0.04 1 1 0.0 5 0.640 0.069 1 0 .0 5 0 .6 1 9 0.020 1 0 .0 6 0 . 260 0 . 03 8 1 1 .0 6 0 . 2 80 0.064 1 1 .0 6 0.29 1 0. 0 1 9 1 1 .0 7 0.023 0 .0 1 3 1 2.0 7 0.040 0.028 1 2 .0 7 0.032 0 . 007 1 2 .0 A l lele: A l l e l es fo r t h e l o c u s 1 1 : D Y S439 No. F re q . s.d. Allele: No. F req. s.d. A l lele: N o. F re q . s.d. I 0.000 0.000 9.0 I 0.000 0.000 9.0 I 0.005 0 . 003 9.0 2 0. 1 22 0.029 1 0 .0 2 0.080 0.039 1 0.0 2 0. 1 1 1 0.0 1 3 1 0 .0 3 0.420 O.O ..B 1 1 .0 .J� 0.520 0.07 1 1 1 .0 3 0.439 0.02 1 1 1 .0 4 0.336 0.04 1 1 2 .0 4 0.240 0.06 1 1 2.0 4 0 . 3 60 0.020 1 2 .0 5 0.092 0.025 1 3 .0 5 0.080 0.039 1 3 .0 5 0.053 0.009 1 3 .0 6 0.023 0.0 1 3 1 4 .0 6 0.040 0.028 1 4 .0 6 0. 0 1 6 0 . 005 1 4 .0 7 0 . 000 0.000 1 5 .0 7 0.000 0.000 1 5 .0 7 0.0 1 1 0.004 1 5.0 No. F re q . s.d. A l lele: A l leles fo r t h e locus 1 2 : D Y S635 No. F re q . s.d. A l le l e : N o. F req. s.d. A llele: 1 0.008 0.008 1 9 .0 1 0.000 0. 000 1 9 .0 I 0 . 000 0.000 1 9 .0 2 0. 1 76 0.033 20.0 2 0.080 0.039 20.0 2 0. 1 4 8 0. 0 1 5 20.0 3 0.374 0.042 2 1 .0 3 0. 440 0.07 1 2 1 .0 3 0.444 0.02 1 2 1 .0 4 0. 1 3 7 0.030 22.0 4 0. 1 20 0.046 22.0 4 0. 1 4 3 0.0 1 5 22.0 5 0.2 1 4 0.036 23.0 5 0.240 0.06 1 23.0 5 0. 1 69 0. 0 1 6 2 3 .0 6 0.000 0. 000 24.0 6 0.040 0.028 24.0 6 0.05 8 0. 0 1 0 24.0 7 0.023 0.0 1 3 25.0 7 0.000 0.000 25.0 7 0.0 1 6 0.005 2 5 .0 56 8 0 000 0 . 000 26.0 8 0.040 0.028 26.0 8 0 . 000 0.000 26.0 Allele: A l l e l es fo r t h e locus 1 3 : D Y S392 N o. F req. s.d. A l lele: N o. F req. s.d. A l lele: No. Freq. s.d. I 0 . 000 0.000 9.0 I 0.000 0.000 9.0 I 0. 0 1 1 0.004 9.0 2 0.023 0.0 1 3 1 0.0 2 0.080 0.039 1 0 .0 2 0.026 0.007 1 0.0 1 1 .0 3 0.779 0.036 1 1 .0 3 0.720 0.064 1 1 .0 3 0. 794 0. 0 1 7 4 0.008 0 . 00 8 1 2 .0 4 0.040 0.028 1 2.0 4 0. 0 1 1 0.004 1 2 .0 5 0 . 099 0.026 1 3 .0 5 0.080 0.039 1 3 .0 5 0 . 079 0. 0 1 1 1 3 .0 6 0.084 0.024 1 4 .0 6 0.000 0.000 1 4 .0 6 0 . 063 0.0 1 0 1 4 .0 7 0.000 0 . 000 1 5 .0 7 0.040 0.028 1 5 .0 7 0 . 00 5 0 . 003 1 5 .0 No. F re q . s.d. A l le l e : No. F req. s.d. A l lele: No. F re q . s.d. A l lele: 1 0.092 0.025 1 0.0 1 0.040 0.028 1 0 .0 I 0.037 0.008 1 0 .0 A l l e les fo r t h e locus 1 4 : G H TA - H 4 2 0.48 1 0.044 1 1 .0 2 0.680 0.067 1 1 .0 2 0.56 1 0.02 1 1 1 .0 J� 0 . 290 0 . 040 1 2 .0 3 0 .080 0.039 1 2 .0 3 0.3 1 7 0.020 1 2 .0 4 0. 1 3 7 0.030 1 3 .0 4 0. 1 _0 0.046 1 3 .0 4 0.079 0. 0 1 1 1 3 .0 O. 00 0.000 1 4 .0 5 0.080 0.039 1 4 .0 5 0.005 0.003 1 4 .0 No. F re q . s.d. A l le l e : - A l l e les fo r t h e locus 1 5 : D Y S437 No. F re q . s.d. A l lele: N o. F req. s.d. Allele: I 0.000 0.000 1 3 .0 I 0 . 000 0.000 1 3 .0 I 0.005 0 . 003 1 3 .0 2 0. 763 0.037 1 4 .0 2 0 . 800 0.057 1 4 .0 2 0.799 0.0 1 7 1 4 .0 3 0. 1 68 0.033 1 5 .0 3 0.080 0.039 1 5.0 3 0. 1 3 8 0.0 1 4 1 5 .0 4 0.06 1 0 . 02 1 1 6 .0 4 0.080 0.039 1 6. 0 4 0.058 0 .0 1 0 1 6.0 F re q . s.d. A llele: A l leles fo r t h e locus 1 6 : D Y S438 No. 1 F req. s.d. A llele: N o. F req. s.d. A l lele: N o. 0 . 000 0.000 8.0 1 0.040 0.028 8.0 I 0 . 00 5 0.003 8 .0 0 . 1 07 0.027 9.0 2 0.040 0.028 9.0 2 0. 1 27 0.0 1 4 9.0 0.550 0 . 044 1 0.0 3 0,480 0.07 1 1 0 .0 3 0.624 0.020 1 0 .0 -l 0.260 0 . D3 8 1 1 .0 4 0 . 3 60 0 . 069 I 1 .0 4 0.206 0 .0 1 7 1 1 .0 5 0.076 0.023 1 2 .0 5 0.080 0.039 1 2 .0 5 0.032 0.007 1 2 .0 2 3 A l l e les fo r t h e locus 1 7 : D Y S448 No. Freq. s.d. A llele: No. F req. s.d. A l le l e : No. F req. s.d. A l le l e : I 0 . 008 0 . 008 1 6 .0 I 0.000 0.000 1 6 .0 I 0.005 0 . 003 1 6 .0 2 0.0 1 5 0 .0 1 1 1 7 .0 2 0.000 0 . 000 1 7 .0 2 0.005 0 . 003 1 7 .0 1 8 .0 3 0 . 00 8 0.008 1 8 .0 3 0 . 040 0.028 1 8 .0 3 0. 0 1 1 0.004 4 0.275 0.039 1 9.0 4 0. 1 60 0.052 1 9.0 4 0.259 0. 0 1 8 1 9.0 5 0 . 5 80 0.043 20.0 5 0.640 0.069 20.0 5 0.545 0.02 1 20.0 6 0.053 0.020 2 1 .0 6 0.080 0.039 2 1 .0 6 0. 1 2 2 0.0 1 4 2 1 .0 7 0.000 0.000 22.0 7 0.040 0.028 2 2 .0 7 0 . 005 0 . 003 22.0 8 0. 0 1 5 0. 0 1 1 2 3 .0 8 0.000 0.000 2 3 .0 8 0 . 02 1 0.006 2 3 .0 57 Allele Frequency for 3 regions at locus DYS456 .9 Allele Frequency for 3 regions at lOCUS DYS3890 Allele Frequency for 3 regions at locus DYS3891 �,c; J � .,. n c 5 � . �!I III �II ... < �. n ,.) 14 " � 04 .:: 03 � O� 1.1 11 �:iele Nu:nber •• '!h/r� N 8 � " �le l.',rn�' (8) Allele Frequency for 3 regions at locus DYS38911 (C) Allele Frequency for 3 regions at locus DYS458 025 0.60 Allele Frequency for 3 regions a t locus DYS19 050 0.2 ). 035 v � 03 � O.i� � .: 02 � 0.15 >- 0.1 0.05 o n • ':1It.�e- • E.iSln U 'ellem • Eas!efn • NIIt 0.1 « .:1 n IS :3 :: ili I I tl .11 A1lele 'l,mbtr I [allO:' I W£;1e (A) 05 O .!5 .1. 1.1 .7 16 c.! • 25 26 27 I I III1 [ I I I 2B 19 lC Allele Number I Norther� I Ealtern ( 0) I Western 31 32 >- o �o g 0.15 " c � � 0.1 u. � /j � � O.30 � � 0.05 ! IJ .I IL � c B • • I II 13 14 15 16 16.2 17 17 2 18 IB.2 19 19.2 20 20.2 Allele Number ! ! < 020 0.10 _ 000 12 III I�I I�I 1.1 13 14 15 Allele Number I Norther� I Ea>tern 58 I Western (b) I Northern I Ealtern I We�wn (F) 16 . • II 0.4 c,o 03 � lS � OJ § '�25 f VI .. ). u OS 0,], � 004 � 0.2 c � � � 0.15 , 5 :§� v.l 1 1\1 \;I II I�I I] II .. < 0.1 � O� - I 10 11 12 13 14 IS 16 17 '" UI � l id 01 ;( 0,05 . . I I 11 II 18 . I n 14 � � :; � � Allele Frequency for 3 regions at locus DYS391 0.6 19 20 11 10 1l • Northern Allele Frequency for 3 regions at locus DYS439 Z 0.4 0.2 lui 10 I Northern l [a�lrn II/estern m 11 I fallern 16 15 I Weswn 0.5 Allele Frequency for 3 regions at locus DYS635 04 ). � � � c � � OJ 14 13 Allele Number I •• ( I) ). 0 4 Allele N um btl II I o 21 05 05 c 18 0,45 0.6 0,1 17 0.1 (II) 0.7 � � I: 16 Iii I Notr?rn I EaSVln I We�e" ((i) ). 15 O..l Allele Nu mber Allele N um4er I N')ll�e'n IHastern I Mstern 08 � 03 tI � UI � .:. 0.1 � � OJ5 0.2 OJ 12 OJ � :r 0.25 OJ < .L I 035 I�I I�I lUI 10 11 13 Allele Number I �)rl.ner� • Eastern I We�ern (.I ) ( K) 59 <: OJ 0.05 ••• \4 15 19 M III III 20 21 22 I 13 Allele Number. I �ortl:ern I rmr� I'\\eltern (L) 24 II. 25 ..� ..) u.s .4 -; �3 03 < 01 ..,. I�I I I •L. " 14 13 Ilil . 1 1. II 15 • 10 ALele �'Jmbt I \;::iel I taS!m I\\' �ll ern I: I K,rtho>r I.I b 11 � cd) I �1 13 14 !4 13 0.7 Allele Frequency for 3 regions at locus DYS448 0.6 > u c: 04 .:c OJ . 8 _ 1.1 9 • Northern 111 111 10 11 0.4 � 0.3 « 0.2 ill � 0.1 •• . o • 16 12 Allele Number I Weslern _ __ 17 18 • Northern I Eastern ( P) 05 � c� 60 I I m .01 19 20 Allele Number Eastern I Western • (0) 21 • 22 . ••• .Ii 15 ele llum� I NG,�r� I [alt�rn • N""..n ( 0) Allele Frequency for 3 regions at locus DYS438 05 � :: ,2 A!lele Numbe • [aster� 'I \\'elte� 0.6 > u c: 03 (N) ( f\ I ) 07 ILl C.4 • 23 Table 1 0: Pre nts a U l11 l11ar) of loc i \\ ith a l le les that are not hared bet\\ een a l l regIOns. Loc u s Allele N orthern N= 1 3 1 Eastern N = 25 W e s t e rn N = 1 3 9 O Y S456 13 0 .06 1 0 0.032 O Y S3 89 1 15 0 0 0 .0 1 1 O Y S390 26 0.008 0 0 25 0.0 1 1 0 0 27 0 0 0 .0 1 1 28 0 .084 0 0.069 32 0.069 0 0.058 13 0 0 0.005 OY 3 89 1 1 D OY 458 19 D Y 3 85-A D Y 385- B D Y S393 OY 3 9 1 DY 439 O Y S635 14 0 .008 0 0 .0 1 1 1 6. 2 0 0 0.005 20.2 0.0 1 5 0 0.02 1 12 0 0 0.0 1 1 17 0 .0 1 5 0 0.026 0 .0053 8 0 0 10 0 .0 1 5 0 0 17 0 . 1 22 0 0. 1 0 1 0 .0 1 1 18 0 0 19 0 .008 0 0 1 1 0 .008 0 0 .005 12 0.023 0 0 .0 1 6 13 0.008 0 0.02 1 15 0.084 0 0 .048 21 0 0 0 .0 1 1 9 0 0 0 .0 1 06 10 0 0.008 0 .005 16 0 0 0 .005 6 0 0 0 .005 7 0 0 0 .005 8 0 0 0 .005 9 0 0 0.005 15 0 0 0.0 1 1 24 0 0 .040 0.058 19 0.008 0 0 25 0 .023 0 0 .0 1 6 9 0 0 0.0 1 06 14 0.024 0 0.63 15 0 0 .040 0 .005 G ATA H 4 14 0 0.080 0.005 D Y S437 13 0 0 0.005 D Y S·t38 8 0 0.040 0.005 16 0.008 0 0 .005 17 0. 0 1 1 0 0 .005 22 0 0.040 0 .005 O Y 392 DY 448 61 The ariation in a l l e le di tri bution, or a lternat ively uniq ueness, can stem from e\ eral factor . There are more common rare al le les that are orthern and Eastern region rather than Western region (see table 1 0). hared between Iternati ely, there are man) rare a l l e les that are o nl . pre ent i n We tern region and absence from other t\\ O region de pite the fact that orthern popu lation s i ze is re latively large. 1 10\\ e e r, one m i ght sti I I argue that these a l ie les are rare and the popu lation size i not repr sentative of the ubpopulation. Tn fact, most of the ' u n i que a l lele freq uenc ies are <I 0 0. H owever, a l l e les frequenc ies that are mai ler Ea tern subpop u l ation ( n=2 5 ) . a l lele <I % also do show u p only in the A l ternatively, it c a n be argued that those that are not shared between the regions are the resu lt of new m u tations ( K u ri hara, 2 004; G usmao et a I . , 2005; for re v i ew see E l legren, 2000). Other explanations for the p resence or absence of a l l e les in any of the subpopu lations can I t can re nect a recent gene fl ow from tem m a i n l y from popu lation structure. neighboring regions that contri butes m i n i m a l ly to tota l hap lotype freq uenc ies. F u rthemlOre, the gene flow to spec i fic regions are fro m spec i fic neighboring areas . For exam p le. the Eastern and olthern are coasta l areas and it is ex pected that ad m i xture rate i s h i gher i n those regions. Further analysis and experiments at h igher molecular levels i s requ i red to e l uc idate the structure of the popu lation w ith respect to rare a l le les. 3.2.3 V a r i a n ce of a l le l e freq u e n cy i n U A E p o p u l a t i o n and i n s u b po p U l a t i o n : A l le le variance i s a parameter that desc ribes the d istribution o f a n observed population and its mathemat ical treatment can deci pher genetic distance bet\-\ een pop U lat ion and groups w i t h i n a population. 62 I n the recent years, genet ic d i stance m an i fested i n a l l ek \ari ance rather than a l l e l e frequenc) i s i nc reas i n g l y u t i l i7cd i n p() p U l al i o n genetic stud i es ( S latk i n , 1 9 9 5 : 1\ k i rmans, .2006: Exco 11i er, 2005 ). We han: c u m p u kd \ ariance of a l l d cs ('or each l oc us for the 3 4 5 sam p l es . S PS S so ftware was u ed to c a l c u l at e the \ ariance for each l oc u s : variance is s i m p l y the square root o f t h e standard variat i o n , 'I he \ ariance i s o b ta i n e u fu r t h e U A E pop u l at i o n as a whole as we l l as tor t h e th ree reg i o ns (I orthe rn , E astern and Weste rn ) ( F i gure 1 1 and 1 2) . [ t i s c l ear t h a t the variances fo r e a c h l o c u s i s d i fTe rent a n d re flects t h e n u m be r o f a l l c ks and d i s t r i b u t i o n () f a l l e l es for t h e respe c t i ve loc us. H owc\'Cr. t h e c o m parison or t h e \ a r i a n ce bet\\ ecn subpo p u l a t i o n s d e m onstrates c l ustering fo r a l1lunber of loc i \\ h i l e the) a re s p read fo r other loc i ( F i g ure 1 2 ) . Va r i a n ce of U A E P o p u l a t i o n 8 • Q) u C ttl . ;:: ro 1 > • • • • • • • • • • • • • • • 0.125 Locus N a m e F i g u re 1 1: Variance d i s t r i b u t i o n o r t h e U A E popu l a t i o n . 63 • Va r i a n ce of t h e t h ree Reg i o n s • Northern Va riance 8 • Eastern Va riance Western Variance • <lJ u C III ·c � • • • • > • • • • • • • 0.125 1.0 lJ"I <;t VI >a 0; CXl (Y') V'! >a 0 <:1' (Y') V'! >a 0; CXl f') VI >a CXl lJ"I <;t VI >a ..... Ci' VI >a ..... If'I CXl (Y') lI'l >a I N If'I CXl (Y') VI >a I (Y') Ci' (Y') V) >a ..... 0'1 (Y') VI >a Ci' (Y') <;t VI >a Locus N a m e lJ"I (Y') 1.0 V) >a N 0'1 (Y') lI'l >a <;t :r: <r f<r \.9 " I ..,. (Y') VI >a CXl (Y') <;t VI >a CXl <;t <;t lI'l >a Figu re 1 2 : Variance d istribution o f the llm:: e regions. S i nce the non-recombi n i ng part o f Y chromosome is i n herited as a unit haplotype and provided that se\eral o f the loc i ' s variance are clustered (sim i l ar) bet\\"een sUbpopu iali ons w ith no sign i fi cant di fference. then it fo l l o\\'s that the varIance observed for other loc i i s probably due to h i gher suscept i b i l i ty of those loci to mutation ( Gusmao et a l . . '200.5 ) . Normal l y . STR has a h igher rate of mutation than 2 I single nucl eot i dcs: it is esti mated from I x l O- - l X I O-- . These variations depend on the allele i tsel [ position. moti f size. sequence composition, and stab i l ity oC STR ( Eckert and H i l e 2009: G usmao et aL 200.5 ) . Founder e ffect and geneti c drift are not p lausible explanations in the UAE popui ation as the genetic d i \"ersity of the 1 7 STR is high and relati vely smal l members o f populations are sharing identical haplotypes (see below). Loci \\ ith greater a l l e l e \·ariance bet\\ cen the subpopulatioll arc DY , 4 3 8 . DYS...J. 3 7 . GATA 1 1 1 4. DYS I 9. However. it should be noted that the \\'estern ' s population a l l e l e \ ariance for DYS43 8 . DYS...J. 3 7 . GATA_I I I 4. DYS 1 9 luci show departure from Eastern and Northern regions. A l though. these results are sti l l I nconcl usive it warrants further i nvesti gat ion at a higher m o l ecular resol ution ( S N P ) . The S'\JP studies w i l l e l uc idate \\·hether the vari ance departure ror 64 <l spec i li c regIOn due to ne\\ m utation ba ed on one- tep mutat ion model or to recent gene flo\\ . 3 . 2 0 4 A l le l e F req u e n c population : of U A E p o p u l a t i o n co m p a red w i t h o t h e r P redom inant a l le les ob er ed in the U A E populat ion sam p l e were com pared to other predom i nant a l leles in the rab ian Pen insula popu lat ions and to surround ing areas u ing data from other tudie performed o n the ame loci in V -Chromosome. o m pari on of a l l e le freq uenc ies \ ith other popu lations in the region of the A rabian Pen i n Li la and its neighboring countries ( oares et a L 2008; H ed man et a I . , 2004; Fad h laou i t a l . , 2 0 1 2 ; A m brosio e t a l . . 2 0 1 2 ; I m ad e t a I . , 20 1 3 ; Y u n i s et a I . , 20 1 3 ; H a l lenberg et a I . , 2005; Rosa et a I . , 2006; Rahman el a I . , 2 0 1 2 ; Donbak et a I . , 2006; Turrina et a l . . 2006; Chang et al. 2007; Abd in et a I . , 2003 ) show s i m i lar preva lence of predom i nate al le les across the loc i . I t can b e seen that the U A E po pu lation share most of its predom i nant a l le les w ith Tu rkey ( shares 1 3 loc i), Tunisia (s hares 1 0 loc i), yria (shares 9 loc i), I raq and I nd i a (they hare 9 loc i ) . I n general, they share more than 5 0% o f their p red o m i nant a l le les " ith the U A E popu lation ( see tab le 1 1 ). Howe\ er. it shou l d be noted that each po pu lation reta in their part i c u larit ies of al lele v ariance and freq uencies that can p lace them at part icu lar genetic d i stance. 65 Ta b k 1 1 : l TAE ro p u i a l i o l l a l k k rn.: q w':I1l: Y C l l l l 1 p a n.:d \" i t h o t h e r po p u l a t i on s . A l l e l es shared between t TA E and o t h e r p o P U ia t i llllS �II\.' h ighl ighkd. Popu lation G ni nc;! lJA I,: Bissa u N=3 .t 5 . -- 1 .5 D Y S�56 D YS390 D Y S3 S 9 1 I f---- D Y S�58 i--- D YS 1 9 D YS385 - A D Y S385-B - - D YS3 8 9 1 N .-- 2 1 5 - . � -- , T n l'l((�y Syria Somalia Spain T u n is i a Brafil Finland P a ki s t a n Colom b i a I ta ly I l i d ia N= S6 N= 1 1 3 N= 2(J 1 N�3.t7 N=2 1 8 N - ..t 1 2 'i .=o..t O O "" 7 1 1'\ = 1 73 N � 1 55 'i � 1 0 6 15 - - 13 13 - I raq N=.ttlO - ) - - �o 30 -� - 1 7. 1 6* 14 I ") . 1S 14 ---- -- -- 21 " 23 29 - 15 14 14 - 13 - 14 f-- - 15 - - - 13 13 13 ") -" j ," 29 30 25 31 16 - 14 10 - .) 15 13 24 25 24 24 17 14 11 14 13 16 27 15 18 30 - - 15 14 15 15 - 11 II 18 - 13 14 14 10 10 10 10 10 10 11 9 D YS�39 I I 13 10 11 12 11 12 10 D Y S635 21 - 24 21 - D Y S392 II I1 II 11 1I 13 14 1 1 - 12 II - - 12 1 1 - II D Y S39 1 G ATA H � 1 1 12 12 13 - 13 22 13 21 13 10 - - 13 14 14 14 13 14 14 15 14 D Y S�38 10 II 10 10 9 11 12 10 - D Y S -U8 20 - 19 20 - - 19 20 - N u m b er of S h a red loci 6 17 --- �- -- S 13 9 >" Two predo m i na n t a l l e l e i n the U A E pop u l a t i o n . -- - - � - - 30 13 24 20 - - -- -- 15 IJ ---- 13 - - - 14 - 24 22 :-;0 - 16 14 15 12 11 29 - - - 14 ------- - D YS437 24 29 13 14 13 -- 12 D Y S393 15 -- 14 16 28 - 13 - - -- - 13 31 18 -- - 16 - I1 14 - -4 10 14 13 13 II II 11 10 10 14 - 21 24 11 13 10 13 10 -- -- 12 11 -- - - II II 20 - 14 12 13 14 15 15 12 14 10 11 13 - II - 20 - - 19 14 - - - 3 5 7 2 -t I 'V . . .. 8;-. �' - , ' . I- � I� " 1 - ··_ ,_ > -- 66 I 3.3 Y TR h a p l o t y p e o f U A E p o p u l a t i o n : B rie fl) , the word "hap loty pe" desc ribes a genetic u n i t or com b i nation of al le les at adja ent locat ion single parent. or loci on the chromo ome that are in herited together from a uto omal haploty pe are prone to recom b i nation and therefore the ero ion of its gamet ic pha ing ( H art l , 1 997). On the other hand, an organ ism \V ith heterogamete , one of the hromo omes that is most ly non -reco mbin ing is inherited a one hap lotype ( K ayser et a I . , 1 997). Haplotype can appear in many d i fferent ways uch a , one locus, se era l loc i or an entire c hromosome depend i ng on recombi nation numb r i n a set of loc i . There are three primary reasons for considering the hap lotype organ izat ion of a variat i o n . F i rst is that, the u n it of b io logical fu nction, the prote ln cod i ng gene, p roduce p rote i ns whose seq uences correspond to matern al and paternal hap lotypes. Second, the variation i n a pop u l at ion is i n fact, structured into hap lotypes that are l i ke l y transmitted as a uni t. Last ly, regard less of the po pulat i on genetic reason , haplotypes serve to red uce the d i mensional ity of the prob lem of test ing assoc iation, and so they may i nc rea e the power of those tests (C lark, 2004) . I n t h i s study, 3 4 5 haplotypes each wit h 1 7 a l leles were analyzed u s i n g A rleq u i n soth\ are ( Ex.coffi er, 2005). The analysis measures t h e freq uency of a l l eles and genetic variations between popu lations, w i t h i n a pop u lation, and among groups. 3.3. 1 H a p loty p e Fre q uency: H a p l otypes o n non- psuedoautosomal region of Y c h romosome passes from one - generation to another i ntact except where m utat ion events have taken p lace. This study measures s i m i l arities or d i ssim i larities between haplotypes to describe the 67 geneti tructure of U A E popu lat ion. A lthough in our study, the popu lation shO\\ s re lativel) d i ver e hap lotype, there are a number o f hap lot pe shared at lea t bet\ een t\\ O i n d i v idu a l \\ ho are not related (see table 1 2 ) . Table 1 2 . H ap lot p e freq uen y fo r hared hap lotype I n the U A E po pu lat ion. (fi repre ent nu m ber o f count am p Ies ti mes quared freq uency). H a p lo t y pe S h a red 1 H ap lo t \ pc F req. 2 (Freq.) 4 5 6 Tota l 0.005 797 0.008696 0 .0 1 1 5 94 0.0 1 4493 0.0 1 73 9 1 - -06 .05 05 7 . 5 6 1 0. 0 .000 1 3 4 0.0002 1 0.000302 - 8.4* 1 0 fi 3 0 .002899 3 . 36* 1 0 27 1 22 5 1 1 I 301 0 . 002277 0.00073 9 0.000378 0.000 1 3 4 0.0002 1 0.000302 0 .00404 1 27 1 44 15 4 5 6 345 co u n t N 3.3. 2 2 F req u e n cies H a p loty p e D iv e rs i ty : The presence o f identica l hap lotypes warrant the i n est igat ion of hap lotype d i ve rs ity. H ap lot 'pe d iversit i s a measure of the u n i q ueness o f a part i c u lar hap lotype in a g iven population. This measure of gene d i vers i ty is ana logous to hetrozygosity at a single locus. The hap lotype d i versity ( H ) in o ur population was c a l c u lated us i ng the fo l lo\\ ing fo rm u la : H = Y - -Y _ 1 (1 - � L.., I T;'J ) W here .2\ is the re lative hap lotype freq uency of each haplotype i n the sam ple { and ." is the n um ber of sam p le (Nei et aI., 1 98 7 ) . Hap lotype d i vers ity i n t h e U A E population is e q ua l to 9 9 . 8 8 5 % (see tab le 1 4 i n section 3 . 4), is a large geneti c d i vers ity in U A E popu lat io n. 68 " h i ch means that there However, we have also compared genet ic d i tance bet\\ een the subpopu lation in the three regIOns. ( I icro o ft �) o ft\\ are G E A L matrix ( Peakal l and di tance anal) i Excel - based 6 was used t o compute N i e ' s pairw i se genetic mou e, 2006). The re u l ts of pairw ise population e i ' s genetic sho\\ a re latively sm a l l d i ffe rence between popu lation . The pa in\ i e genetic d i stan e computat ion is based on stepwise mutation models ( ei, 1 978). It hould be noted that region 2 ( Eastern) demon strates h i ghest d i stance " hen ompared to We tern region and not as large of a genet ic d i stance when com pared to o rthern ( ee tab l e 1 3 ) . locat ion of the latter 1\\0 This can be attributed to sam p l e size but geographical region ( Eastern and ort h e rn ) may account for the genetic si l1l i laritie , a the e t\\ 0 regions are coastal regions and may have shared t he same m igratory paths. N ie's genetic d i stance (Takezak and N e i , 1 996; Nei, 1 97 8 ; Peaka l l mouse, 2006), howe e r measures the summation o f a l l genet ic loci exam ined for the popu lation under stud and i t i s prone to b iases for two fu ndamenta l reasons: 1 ) the sam p l e s ize and 2 ) the num ber of genet ic loci exam i ned. A l t hough, t his study h as experimented \\ ith genetic d i stance w it h i n the U A E po pulat ion, the cu rrent i n format ion m u st be caut iously i nterpreted but warrant fUl iher i n vest igat ion at h i gher molec u lar reso lution ( i .e. P, copy Dumber variat i o n ) . appreciate that the geographical location of d i fferent region I t is a l so i m poliant to in the U A E provi ded d i fferent resou rces and attracted d i fferent interests fo r imm igrants. Th is is espec i a l l y true for t h e periods before 1 97 0 ' s d i stance (Nei, 1 9 7 8 ) . 69 Tab le 1 3 : Repre ent the res ults Pain\ i e Population Matrix of for e i Genetic D i stance orthern ( I ), Eastern (2), and We tern ( 3 ) P a i r" ise Popu l a t i o n M a t ri x o f N e i G e n e t i c D i s t a n c e a n d I d e n t ity Pop2 N e i ge n e t i c i d e n t i t y # Pop l I 2 N e i ge n e t i c D i s t a n ce 0.069 0.934- 131 25 I 3 0.043 0.958 131 1 89 .., j 0. 1 3 9 0 . 8 70 25 1 89 Pop l ') - 3.4 # Po p 2 D i c r i m i n a t i o n C a p a c i ty : B) de fi n i tion, D i scri m i nation Capacity ( DC) means that the number of hap lot) pes obse rved o nly once i n the popu lation, w here designated as " U n ique hap lotype". The DC calculated for the 1 7 loci stud i ed a a percentage of unique hap lot) pe by d i v i d i ng the nu mber o f un ique hapl otype over the total number of the hap lotypes. F ro m tab le 1 3 the percentage of DC is equal to 90.03 w h i c h i nd icates that the U A E population is com prised of a re lative ly large num ber of unique hap lot) pes. I n t h i s study none of the shared hap lotypes comes from fi rst degree re latives ( fathers/son brother. paternal cousins). T h i s i n formation has a sign i ficance im pact i n fo rensic analysis and other loc i on Y c hromosome shou l d be used i n conj u nction w ith t h e 1 7 l o c i ut i l ized. FLII1 h ermore, t h e DC ind icates that there are common hap lotypes i n the U AE popu lation that is probabl y contri buted by sharing recent ancestors. The UAE population demography, soc ial structure, and c ulture strengthen \\ hy DC is not approaching 1 00%. 70 Table 1 4 · sho\\ s t he percentage of Discr i m i nation Capa it)' and Haplotype D i versit) In 3.5 E popu lation S h a re d h a p l o t y p e i n U A E p o p u l a t i o n : Common hap lotype among c l ose ly located popu l at ions may i m p ly common paternal ancestry ( Fured i et a I . , 1 999). The fi n d i ng o f hared identical hap lotype i n a popu lation ha probab i l i t) a s i g n i ficant connotation on forensic i n vest igat ions o f identity bet\ een d i fferent popu lation . invest igated in this study i s comprised of 3 0 1 hap lotypes. (n=3 0 1 ). 2 7 1 haplot) pes are u nique wh i le t\\"o i n d i, idual (see figure 1 3 ) . � v ith regard to The U A E popu lation Of the total haplotype haplotypes are shared at least ben een W h i l e the majority of shared haplotypes occ urs bet\\ een n\'o i nd i v iduals there are three cases w here four or more ind i v i duals are sharing identical hap lot pe. Moreover, there are three d i fferent hap lotypes shared by fi e i n d i idu a ls (see Table 1 5 ( A-E). In most case t hese i n d i v i duals are not from the same c l a n . H o\\ e er, in one i nstance t here are three i n d i v i d u a l s with the same tribe name \\ ho are shari ng the same hap lotype; upon fu rther i n vest igat ion, t he three i n d i v i d u a l do not share father or grandfather names. 71 N U M B E R O F S H A R E D H A P LOTY P E .......... N LJ.J 0.. >to --' 0<:t I u.. 0 0 Z N N 1 2 ..... CJ) 4 3 5 6 N O . OF I N D I V I D U LAS F i gure 1 3 : Tot<1l n um b e r o f U n i q ue and S hared I f a p l olypc 72 Tab le 1 5( A - E ) : Presents the haplotypes that are shared in the population. J\ ) l I ap lot) pes shared between two i n d i \ lduals: 11) I l ap iotypes shared between three of I nd i v i duals; C ) l l aplotypes shared between fOLl r of I n d i vi d uals ; D) l I ap lot) pes shared between five or I nd i v i duals. E) I Iaplotypes shared between six I n d i v iduals. The order of al leles i n the tables are DYS 1 9, D Y S 3 8 9 1 , D Y S 3 89 1 1 , DY S390, DYS39 J , D Y S 392, D Y S393, D Y S 3 8 5 A , DY S 3 8 5 B, DYS43 8, DYS439, DYS437, DYS44 8 , D Y S4 56, DYS4 5 8, DYS635 and G A T A - I 14. A No. F r�. S.D 0.005 79 7 0.004093 0.004093 16 15 0 .004093 0.004093 0.004093 0.004093 15 14 26 42 0. 005 797 44 46 0.005797 0.005 79 7 57 59 63 1 00 0.005 797 0.005 797 0.005 797 0. 005 79 7 0 . 00 5 797 0. 005 797 0 . 00 5 79 7 1 27 0.005 797 0.004093 0. 004093 0 . 004093 0 . 004093 0.004093 0 .004093 1 39 0.00579 7 0 . 004093 1 45 0.005 797 1 60 161 0 . 00 5 797 14 16 16 14 13 23 31 13 13 12 23 30 23 24 31 28 30 29 14 14 13 13 13 13 13 13 14 15 13 13 14 0. 004093 16 14 0 .004093 15 0.005 797 0. 004093 1 78 0.00579 7 0.004093 1 84 1 90 0 . 0 0 5 797 0 . 00 5 797 0.005 797 0 .005797 0 .004093 0 . 004093 0. 004093 0.004093 0 .004093 86 89 91 217 280 7 0.005 797 23 23 25 23 23 23 23 30 29 30 30 30 24 24 30 29 14 23 25 16 13 24 30 16 14 13 14 13 14 14 24 23 30 31 25 24 23 29 32 31 24 30 15 13 15 17 13 13 1 72 1 72 14 13 14 15 18 16 15 14 14 13 II 16 13 12 16 13 1 82 17 15 1 82 1 82 1 82 1 82 15 13 14 14 14 14 13 13 13 17 14 14 30 1 82 14 13 32 16 15 16 14 I I 17 17 14 1 82 16 17 17 15 14 15 15 14 13 73 15 11 17 13 I I I I 14 15 H a �I oJype 17 12 10 16 15 20 19 14 17 18 20 18 18 17 14 12 13 12 12 12 13 12 12 12 12 13 12 12 10 10 9 1I I I 10 10 1 1 10 I I 11 10 1 1 I I 10 12 11 13 I I I 1 I I I I 1 1 12 15 20 20 23 21 21 23 21 21 I I 14 14 10 10 20 20 14 14 14 14 14 14 14 14 14 14 I I 9 20 19 20 19 20 20 20 20 19 15 14 10 12 10 10 10 10 10 10 12 10 20 19 19 22 21 21 22 1 I I I 14 11 1 1 13 12 11 13 10 10 1 1 I I 1 1 12 12 11 I I I I 12 14 14 I I 10 20 20 I I I I I I 1 1 13 I I 12 1 1 13 12 I I I I 14 14 14 14 14 14 10 10 I I 10 10 10 20 20 19 23 19 II I I 23 22 13 10 10 23 17 13 10 12 20 18 18 15 12 16 17 13 12 14 13 13 13 10 I I 1I 10 10 10 12 I I 10 12 11 11 20 21 24 18 14 I I 11 ? 21 22 I I 1 1 1 1 13 1 1 1 I 1 I I I 12 20 B N o. Freq. S.D 1 83 0.0087 0.0050 25 0.0087 0.0050 1 18 0.0087 0 .0050 n 0 .0087 0.0050 9 0.0087 0 .0050 H aplotype: 14 13 23 14 13 23 30 14 13 23 30 IS 13 23 30 14 13 23 30 30 14 13 19 1 82 14 13 1 92 14 13 1 72 14 1 82 14 1 92 12 I I 19 12 18 12 13 17 13 18 c D E 74 I I 21 I I I I I I I I 22 I I I I 12 12 21 I I I I 12 10 I I 20 I I I I 12 I I I I 21 I I I I 10 20 14 10 20 14 10 20 14 10 20 14 10 20 14 I hi l� l i ke l ) cil! ' t o t he sharing o f most C0111m011 rec�llt ancestors. I Illwc\'er. i n the maj orit: or cas 's. the trihes name does not pred ict a spec i li c hapl otype. This is not surpri� i ng ,L tri bal names. al though it stems from a cOlll mon founder: i t i 'i given to i l1li i \ iuuals that do not ha\'e d i rect blood re lati onsh ip. These results have signi ficant i m p l ications l)n Curensic science practices These resul ts cal l for more thorough analysis that sht) ll l d i n c l ude Sl P stud i es alongside the 1 7 Y chromosome STR analysis. We also have found that approx i matdy 5 0% o t' thl.:! lTAE popu lation share bctm:en 6 tl) 7 loc i the result. which should restrict the usage of m i n i mal pand o f S T R t see F i gurc 1 4 ) . Tbe data \\ as anal)- zed b y GENALEX 6 which i s b u i l t as Excel ( i\ l icro�ot \{ ) add-in program ( Peab l l and Smouse. 2006). Figure 1 4 presents the number of matc h i ng hapl o types yerSllS un i q ue haplotype by l oc lls. N o . M a t ch i n g vers u s U n i q u e H a p l otypes by locus ' ' ' ' , '), '),x"v -:vx'? '})xt>< x,?x . ,?x '· x,?x '· ,?x .· ,?x '· ,?x '· ,?x '" '?x '" x'?x '" '?x '" x,?x .,· x,?x .·· x":: '" x x x x x x x � x� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� "-;� '), Locus Combination -+- ItWi th m a t c h i n g h a p l otype _ It W i t h u n i q u e h a p l otype Fig ure 1 4 : ;-"Iatching \'�rsus U nique H ap l ot) pes by Loclls. 7S 3.5.0 h a red h a p l o ty p e of A E popu l a t i o n c o m p a red w i t h o t h e r population : I n our popu lation, 3 0 1 d i fferent haplot) pes were ident ified, 2 7 1 of wh ich were unique. The 1110st freq uent hap lotype \\ as found in 22 in tances. The second most frequent hap lot) pe "" ere 4 , , 6, \\ h ich they shared o n ly o n e hap lotype. I n addit ion b) comparison \\ ith other popu lat ions, \\ e found that in L i bya (n= 1 76 i n d i v iduals), they have a total of 1 42 d i fferent haplotype and 1 24 \ as un ique (Tri k i et a I . , 20 1 3 ) . Howe\ er, i n C h i na ( n= 1 1 2 indi iduals) a tota l o f 9 9 hap lot pes were found and 8 8 of them \\ re u n iq ue hapl otypes (Tie et aI., 2003 ) . In add itio n, Syria with 1 1 3 i n d i i d ua ls . the) ob erved that there are 1 0 8 d i fferent haplot pes and 1 04 haplot) pes \\ ere found to be un iq ue ( bd i n et a l . 2 003 ) . M o reover, i n the Kuwa it i popu lat ion a total of 1 0 1 d i fferent hap lotypes, among wh ich 7 8 where un ique, e i ght haplotypes were shared between two i nd i v iduals, three i n d i v i d ual . i n d i v idual shared fou r haplotypes, four hared o n l y one hap lotype and the most freq uent haplot ype was shared by 7 i n d i v i d ua ls ( oumaya et aI., 2 0 1 0 ) . I n Tunisa, they found that the total number of hap lot) pe \\ ere 1 5 4, o f wh ich 1 2 7 were un ique, the most common haplotype was represented b 1 4 i n d i i d u a l s ( Fadh laou i -Z id et a I . , 20 1 2 ) . 76 3.5 G e n e d iv e r ity fo r 1 7 poly m or p h i c l o c i i n UAE p o p u l a t i o n and in 1I b-po p li l a t i o n : Gene d i \ e rsity for a11 3 4 - sample were calculated lIsing the fo l lo w i ng form u l a : H .Y Y - 1 = Where • . 1' , i ( 1 - "'"' L .1'2 ) 1 I the freq uency of each al lele in the locus and iV i pre ented i n the !OCLI ( ei et a I . , 1 987). Accord i n g to measures o f genetic d i versi ty, the h i ghest d i er ity were o bserved at locus DY 4 5 8 OY 3 8 5 - 8 = 0.9 . the number of al lele = 0 . 9 , D Y S 3 8 5 -A Therefore, t hey shou ld be considered a . mo t i n format ive marker for forensic test i ng. = 0.9 and the most variab le and W h i le, loc i with the 10\ er di ersity are the least informat i ve loci (OY 392 \ hich eq u a l 0.437; see table 1 6 ) . nother parameter t hat can b e calcu lated is t h e tota l gen t ic d i versity and we calculated it by d i i d ing the number of observed hapl otype over the total sam ples \\ h ich i equal i n t hi s study 87%. In the sub-pop u l ation, there are varieties of the h ighest and lowest of al l e les frequencies. For exam p le, in Northern region, there are n ine loc i w it h h ighest and 1\\ 0 loc i w i th 10\ est d i er i ty. W h i le i n Eastern region, the h ighe t gene d i versity i s in O Y S 3 89 I I \ ith a value of 1 .00 and the lowest i nvol es t he DY S43 7 locus; moreover i n Western region, the highest gene d i versity is assoc iated \\ ith five d i fferent l oc us ( ee table 1 6) . The t rend of gene d i ver ity in the sub- population i not d i ffe rent from the \\ hole U A E popu lation. H owever, the d i fferential d i ve rs ity per locus rei nforces a stepwise mutation mod e l i n which the memory of the pre ious event o f m utation is mainta i ned ( V a ldes, 1 993 ) as op posed to infin ite mutation model ( H udson, 2002 ) . 77 Table 1 6 : Genet ic d i versity for J 7 pol} morphic loci i n popu lation. UAE p_op_u l a t i o n Nort h e rn Eastern D Y S456 0.8 0.9 D Y S38 9 I 0.6 0.5 0.9 0.7 D Y S390 0.8 0.9 0.8 0.9 D YS389 1 I 0.8 0.9 1 .0 0.8 Lo c us 3.6 A E pop u lation and in sub Wes t e rn 0.8 0.6 D YS458 0.9 0.9 1 .0 0.9 DYS 1 9 0.7 0.8 0.7 D YS 3 8 5 A 0.9 0.9 0.8 1 .0 D Y S385 B 0.9 0.9 1 .0 D Y S393 0.7 0.7 0.8 D Y S39 1 0. 6 0 .6 0.7 0.9 0.9 0.7 D Y S-J39 0.8 0.9 0.8 0.6 0.8 D Y S635 0.8 0.9 0.9 0.9 D Y S392 0. 4 0.5 0.6 GATA H4 0.8 0.9 0.6 0.3 0.7 D Y S437 0.5 0.6 0.5 0.5 DYS438 0.7 0.8 0.8 0.7 DYS448 0.7 0.7 0.7 0.7 A M OV A res u l ts i n U A E p o p u l a t io n : nal) i of M o lecular V ariance ( A M O V A ) was calcu lated i n A rleq u i n software o\ er h\ o sources of ariation among the population and w i t h i n population as shown in tab le 1 7 . A M OY A measures hap lotype d i vers ity rather than j u st a l lele freq uenc ies that prov ides an oppoJ1Ll I1 i ty to measure the d i fference in haplotype in a paitw i se manner. Furtherm ore, the analysis accommodates and re l ies l ess o n d i ffere nt types of assumption about the evo l ut i o n of genet ic models. It is c lear fro m the A MOY A that the m ajority >99 . 5% of the variations w i th i n a po pulation rather than between populations. T h i s re i n forces our earl ier d i scussion that N i e ' s ( 1 9 8 7 ) geneti c d i stance calculations suffered fro m : 1 ) number of loc i , 2), population size (espec i a l l y for Eastern regions), and 3 ) the assumptions that are an i ntrinsic part o f m athemat ical 78 treatment. I n ad d it ion the average F- tat istics ov er a l l loc i F ixat ion Ind ices ( F t 0 . 002 80). A l lhough Fst calcu lation depend con ordance \\ ith l a c k of h ierarchy in the Table 1 7: = on the al lele freq uencies, it is i n E ub-population. M O A design and resu lts (average 0 er 1 7 loc i ) : Sou ,"ce o f V a r i a t i o n S u m of squa res V a r i a n ce c o mpo n e n ts Pe rce n t age V a ri a t io n 0 .0 1 5 0.280 A m o n g po p u l a t io n s 1 5 .065 Within populations 3978.80 I 5.34 1 99.720 To t a l 3 99 3 . 866 5.356 1 00 Howe er, there are apprec iable genet ic d i ersity i n the U A E population as a whole that reflect h i gh rate o f ad m i xture d i fferent geographical regions. (tab le 1 8 ) that fl o\\ account A M OYA shows E popu lation i s c losest to Yemen, Kuwait, I raq and I ran. for these s i m i larit ies and reflects the h i story of the U A E which is in accordance with the hi tory of A rabian Pen i n s u l a ' s h i story. Table 1 8 : MOYA results in other popu lation: Pop u la t io n A fg h a n is t a n Gene A fg h a n i s t a n I ra n I raq Kuwa i t Yemen UAE 0 ha n 0. 0026 0 I ra q 0.0027 0.0002 0 K uwait 0.0039 0 . 00 1 4 0.00 1 4 0 Yemen 0.003 1 0 . 0006 0.0006 0.00 1 8 0 UAE 0. 003 1 0 . 0008 0.0008 0.00 1 9 0.00 1 79 0 C H A PTER I V : CONCLUSION 80 Co n c l u i o n : In thi tud } . buccal s\\ ap sample i n d i \ iduals from the were obta ined from 3 4 5 unre lated n i ted Arab E m i rates population. II of the ON performed in m u l t i p lex fashio n using A m p F L TR Y fi l e peR ( L i fe tandem repeats Te hno logies) to co-am p l i fy 17 hort sa mples , ere m p l i fication K it ( TRs) loc i . Experimental variation \\ as red uced w i th the use o f h i gh l y automated system cal led 3 5 00 L Genetic Analyzer ( L i fe Techno logies). The U A E pop u l at ion was d i v ided into three region accord ing to geographical region and prox i m ity, namely, Northern, Ea tern and Western reg ion . frequency . haplot} pe frequenc ies, (AMO I n the current study, , e have esti mated a l lele ariances. and used analysis o f m o lecu lar variance ) t o trati fy t h e popu lati o n. T h e 1 7 Y c h romosome S T R s analyzed in t h i s study proved t o be h ighly i n forlnati e markers, , ith h i gh val ues fo r gene d i vers ity w i th re lat i vely h igh d iscrim i natory capac it Thus. based on th is study, the appl ication 1 7 Y c hromosome TRs analysis for foren sic and patern ity ana l ys i s proves to be usefu l in the U A E . H o " e er. further. genetic analYSIS such a s S P or copy n u m ber variation such as A l u seq uence is req u i red for defi n itive confi rmation i n forens i c i n vestigation o r deep ancestry stud ies. The a l l e l i c p ro fi le. freq uency, and d istri bution for each locus in the three sUbpopu lations of the U A E fo l low s i m i lar patterns. The a l lele frequency among the three subpo p u l atio ns, however, shows sm a l l fl uctuat ions espec i a l l y for spec ifi c loci and that cou ld be because of the number o f sam p les. A lthough, our study demonstrates that there are un ique a l leles to a subpo pulat i on or not shared by a l l regions. the pro fi l e of the a l lele frequency and d i stri bution are very s i m i lar. 81 We strongl) be l ieve that a larger popu lat ion ize from d i fferent e m i rates w i l l u lt i mate ly iden t if) the u n iq ueness o f the e a l leles in the respecti e subpopu l ations. A l though in our tud) , the popu lation shO\\ s relatively di erse haplotype, there are 2 7 1 unique hap lotype. T\\ enty-two of the haplotypes are shared between two i n d i iduals. There are other hap lot)'pes that are shared between at least two ind i , iduals. H a p l ot) pe d i ver ity in the U A E po pulation is equal to 99 . 8 8 5 %, which mean that there is a large genetic di ers ity in U A E popu lat i o n . On the other hand the percentage of d i sc r i m i nat ion capac ity i eq ual to 90.03%, w h ich ind icates that U E population con i sts of i n d i v iduals who share ident i c a l hap lotype \ h ich are not related a j u dged by the names. Th i s stud) i s very i m pOltant and it contri butes to other st ud ies around the G u l f A rea to stud_ t h e geneti c d i vers ity of pop u lat i o n . H owever, t his study c a l l s fo r more extens i ve genet ic study of the region i n order to elaborate on genet ic d i stance between population, d isease-assoc iated haplotypes, archeological, and h i storical stud ies. 82 B I B L I O G RA P H Y 83 B i b l iogra p h y : bd i n , Lou a i , e t a l . "Anal} i of 1 3 Y -c h romoso m a l am pie fro lll ) ria. " I n ternat ional Congress T R s i n an rab population eries. V o l . 1 2 3 9 . E lsey ier, 2003 . bu-Am ro o K h . , I l e l la n i . A . , G onzalez. A . , Larruga. J ., Cabrera . V . , U nderhi l l . P. (2009) . aud i regIon . B l\ 1 Ali rab ian Y -Ch romo ome d i ve rsity and i t s re lat i o n s h i p w i t h nearby Genetics. 1 0 . 1 1 86( 1 4 7 1 -2 1 5 6), 1 0 - 5 9 . , lI a n a i n E . Genom ic Of T h e H u man Y -Chromosome: assoc iation \ ith male i n fe rt i l it) . Gene 2003 : 3 2 1 : 2 5 -3 7 . A I -Sayegh F . ( l 998). U A E from tribe t o country. A I_Khal eej center fo r books, Dubai, U A E . ( i n A rab i c ) . Am bro s i o , Beatriz, e t a l . " Y -STR genet i c d i e rs i ty i n autochthonous A n d a l u s i ans from H ue l va and G ranada prov inces ( Spa i n ) . " Fore n s i c Sc ience I nternat iona l : Genet ics 6 . 2 ( 2 0 1 2 ) : e66-e7 1 . B a l lanty n e J . , S en sabaugh G . and W itkowsk i J . , ( 1 989). DNA Tec h n o l ogy and Fore n s i c Sc ience. 32 Banbury report, U S A . 84 B a l loux, F. and Lugon-Mo u l i n , . (2002) The esti mation d i fferentiation \\ ith m ic rosate l l ite markers. M o l ecu lar E c o logy, of population I I : 1 5 5- 1 65 . d o i ' 1 0 . I 0-i6/j .0962- 1 083 .200 1 . 0 1 436. Bao W , Pandya A , Zerja T, X u ] , h u Q, Du R, Yang H , Tyler- m i th C.(2000). 1 Y 2 : a 5 10\\ I )' evol ing m i nsate l l ite on the human Y c h romosome w h i c h pro i d e s a u efu l po l y morhoric marker i n C h i nese pop u lations.Gene. 244 :29-3 3 . Becker W M . K le i nsm ith L J , H ard i n J . The \\ orld o f t h e c e l l , 6lh ed . , San Franc isco: B e njam i n Cumm i ngs P u b l i s her; 2006. 796 p. d Bec ker, W . M., Reece, 1 . 8 . , Pon ie, M . F . 1 99 5 , the world of the ce l l . 3 r ed . The Benj a m i n/C um m i ngs P u b l i s h i ng Compan . B o rto l i n i , M . C . Sa lzano, F. M ., Thomas, M . G . , Stuart, S . , Nasanen, S. P. K . , B a u , C . H . D . , H utz, M . H . , Layri sse. L . . Erler, M . L . P . Tsuneto, L . Y . Y . , H i l l , H . , H u rtado, A . M . , de-G uerra, D . c . , Torres, M . M . , G root , H . , M i c h a l s k i " R., ymad awa, P . , Bedoya, G. B radma, N., Labuda. D . , L i nares, A . R . ( 2003 ) . Y Chromosome E v i dence for D i ffe ring A n c ient Demogra p h i c H istories i n the Americas . M. J. H u m . Genet. 7 3 , 5 24-5 3 9 . Bosch, E . , e t a ! . " Y c hrom osome S T R hapl otypes i n fo ur populations from n ortlm est A fr i c a . " I nternat ional journal of lega l med i c i n e 1 1 4 . 1 -2 (2000): 36-40). 85 B r i n k m ann, Bernd, et a l . "Mu tat io n rate in human m ic rosate l l ites : i n fl uence of the tructure and length of the tandem repeaL " The American Journal of Human Genetics 62.6 ( 1 99 8 ) : 1 4 08 - 1 4 1 5 . B utler J 1 . ( 20 1 1 ) . Advanced Top i c 1 11 Foren s i c DNA Typ i n g, 3 rd E d i t i o n . E l se\ ier cadem i c Press, London. Cadenas. A l i ia M . , et a!. tt y -ch romosome d i versity characterizes the Gulf of Oman . " E u ro pean J ournal of H u man Genet i c s 1 6. 3 (2007): 3 74-3 86. Can a l ho- iJ a, D. R . , Santos, F.R., Rocha,J . , Pena, S.D.H. (200 1 ) . The Ph} logeography o f B raz i l ian V-Chro mosome L i neages. A m . J. H u m . Genet, 68, 2 8 1 -286. Chang, Y uet M e n g, et a l . itA d istinct Y - T R haplotype for A m e l ogen i n negat ive males c haracterized by a large deletion." Fore n s i c s c i ence i nternat ional 1 66 . 2 ( 2 0 0 7 ) : 1 1 5 - 1 20 . C l ark, A n d re\ G . "The ro le of hap l otypes i n cand i d ate gene stud i es. " Genet i c ep idem i o l ogy 2 7 . 4 (2004): 32 1 -3 3 3 . 86 o l l i n , Patrick J . , et a ! . " Deve lopmenta l val idation of a single-tube a m p l i ficat ion of the 1 3 CO D I TR loc i , D 2 1 3 3 8 , D 1 9 -+3 3 . and ameloge n i n : the Ident i fi l er pe R A m p l i fication K i t . " Journal of forensic mpFI TR ciences -+9.6 ( :WO-+ ) : 1 26 5 - 1 2 7 7 "Cen u s e of the U A E . " Uae tat istics. 25 1 1 2/20 1 0 http :/h w,,, . uae tat isti cs . gov .ae/En gl i sh H ome/tab id/96/Defa u l t . aspx , 1 0lh May 20 1 -+ . Dan ie l D . C h i ras. H u man B i o l ogy, 6th ed., Canada : Jones and Bart lett Publ ishers Company; 2008. 496 p. Da id B a i nbridge, 'The X i n ex: How t h e X Chromosome Contro l s Our L i ves, page 3 - 5 , 1 3 , H arvard U n i versity Press, 2003 I S BN 06740 1 62 1 1 ). D i fferential G reek and northern A frican m igrations to genetic ev idence fro m the Y c h romosome. i c i l y are supported by E uropean J ournal of H uman Genet ics 1 7 9 1 -99. Donbak, Lale, et al. "Y -STR haplotypes i n popu lations from the Eastern Med iterranean region o f Tu rkey ." I n ternational jo urn al o f legal med ic ine 1 2 0.6 (2006 ) : 3 9 5 -3 96 . 87 Dupuy , B. Difference M yhre, et a l . fly -c hromosomal m ic rosate l l ite mutation rates: In m utation rate bet\ een and \ ithin loc i . " H uman mutation 23. 2 (2004 ) : 1 1 7- 1 24 . Eckert. K . D . and feature . E . H i le (2009 ) . " Every m i c ro ate l l ite is d i fferent: I ntrinsic d ictate m utagenesi s of common microsate l l ites present in the human genom e . " M o l Carc i nog 48(4): 3 79-3 8 8 . E l legren. H an . " M icrosate l l ite m utat ions I n the germ l i ne: i m p l ications for e\'o l u t ion ar) i n ference. " Trends i n genetics 1 6 . I 2 (2000): 5 5 I - 5 5 8 . Excoffier, L . G . La a i , a n d S . Schneider ( 2 0 0 5 ) A rleq u i n ver. 3 . 0 : A n integrated sofu\ are pac kage fo r popu lation genet ics data analys is. Evolut ionary B io i n format ics O nl ine 1 : 4 7 - 50. Excoffi er, L a urent, G u i l laume La a l . and Stefan Schne ider. "Arleq u i n (version 3 . 0 ) : an integrated software package for popu lat io n genetics d ata anal s i s . " E olut ionary b io i nformatics o n l i ne 1 (200 5 ) : 4 7 . Fad h l aoui-Zid, Kari ma, et a l. "Sousse, Tun i s i a : Tumu ltuous h i story and h i gh Y S T R d i vers ity. " E l ectrophoresi s 3 3 .23 ( 20 1 2 ) : 3 5 5 5 - 3 5 6 3 . 88 Gaetano, C . D . , Cerutti, ., Crobu, F . , Robi no, D., I nturri, nderh i l l, P. U . , K ing, R. I I . , Romano, V . , G., a lerno, ., G i no, ., Guarrera, a l i , F . , Gaspar i n i , M . , Matu l lo, ., Torre, c . , P iazza, A . (2009). G i l l , P . , K i mpton, . , U rquhart, A . , Oldroyd , ., M i l l i can, E . , Watson, S . and 00\\ ne , T. ( 1 99 - ) . A u tomated short tandem repeat ( TR) analysis in forensic ca ework - a trateg) for the future . E lectrophores i s 1 6 : 1 5 43- 1 5 5 2 . G usmao L . , et a l . " M utation rates a t Y c hromosome spec i fic m ic rosatel l ites." H u man mutat ion 2 6. 6 (200 5 ) : 5 20-528. H a l d , A nders ( 1 99 8 ) . A H i story o f M athemat ical Stat i st ics. New York : W i ley. I B 0-47 1 - 1 79 1 2-4. Hale) , H u nter-Z i n c k . , Shai la, M usharoff. , Jacq u e l i ne, Sal it., K h a l i d , A. A I -A l i . , Lotfi , Chouchane.,Abeer, Gohar. ,et a i . (20 1 0) : Pop u lation Genetic Structure o f the People of Qatar. The A m erican Journal o f H uman Genetics 87, 1 7-2 5 . H a l lenberg, Charlotte, e t a l . "Y -chromosome STR haplotypes Foren IC c ience i n ternational 1 5 1 . 2 (200 5 ) : 3 J 7-32 1 . 89 111 Som al i s . " H arri , P .. Boy d , E ., Young. B . D .. Ferguson - m i thm 1. .. 1 9 86. Determ ination of the 0 A content of human chromo ames by now c 1ometry. Cytogenet . Ce l l Genet .4 I , 1 4 -2 I . H art O. L . 20 1 1 . Essential Genet ics a Genetics Per pecti ve, 5 th ed. M A : Jones and B art lett Pub l i hers. H art l. Dan iel L., and Andrew G. C lark . Princ i p les of popU lation genetics. V o l . 1 1 6. underlan d : i nauer associates, 1 997. Hedman, M i nttu, et a l . "Analysis o f 1 6 Y STR loc i i n the F i n n ish popu lation reveal a local reduction in the d i versity of male l i neages. " Forensic sci ence i nternat ional 1 42 . 1 (2004): 3 7 -4 3 . Heuertz, M y riam, e t a l . " uc lear m ic rosate l l ites reveal contrast ing patterns of genetic structure between western and southeastern E uropean popu lations of the common ash ( F rax i nus excelsior L.)." Evolution 58.5 (2004 ) : 976-9 8 8 . H o l m l und. G . , e t a l . " Y -c hromosome STR haplotypes i n a I nternational Congre s wed i h population . " eries. V o l . 1 239. E l sev ier, 2003 . Edwards, A . , H am m ond, H . , J i n, L . . Caskey, C. and Chakraborty, R . ( 1 992 ) . Genetic variat ion at fi ve trimeric and tetrameric tandem repeat loc i in fo ur human popU lation groups. Genom ic 1 2, 24 1 -2 5 3 . 90 http:/, \\ \\- \\ . nature.com/sc itab le/defi n itio n/haplotype-haplot} pe - 1 42, 1 41\ la} 20 1 4 . H ud on. R i chard R . "Generating sam p le under a Wright-F i her neutral model of genet ic ariation . " B i o i nformat ics 1 8 .2 ( 2002 ) : 3 3 7-3 3 8 . I mad, I I . . e t a t . "Geneti ( TR ) loci ariation of 1 7 Y -chromosomal short tandem repeats from u nre lated indi iduals in I raq . " I nternational Journal of B i otec hnolog and Molecular B i o l ogy Research 4 . 8 (20 1 3 ) : 1 1 9 - 1 29. larne. Ph i l ippe, and P i erre J L Lagoda. "M icrosatel l ites, from molecu les to popu lations and bac k . " Trends in Ecolog & Evolution 1 1 . 1 0 ( 1 99 6 ) : 424-429. J obl ing MA, Ty ler-Smith C. ( 2003 ) . The human Y c h romosome: an evo lut ionary marker comes of age. Nat. Re . Genet, 4 : 5 9 8-6 1 2 . lobl i ng M A, W i l l iams G . G A , A ffara c h iebel K Pandya A. M c E l rea ey K , Salas L, Rappo ld A, T Ier-S m i th C. ( 1 998)A selective D i fference between human Y ch romosomeal D A haplotypes. C u rrent B io l ogy. 8 : 1 3 9 1 - 1 394. K rausz C. Qui ntana-M u rc i L , Fort i G . ( 2004 ). Y c h ro mosome polymorp h isms i n med icin e . A n n . M e d , 3 6, 5 73-5 83 . Krawczak, M and Schm idtke J . DNA fi ngerprint i ng, Oxfo rd U K : B ios Sc ientific P u b l i s he rs, 1 994, V o l . 23, 69- 1 07 P . 91 Kuri hara, R i n a, et a l . " 1 utat ion in 1 4 Y - TR loc i among Japanese father-son haplot} pe . " I nternat ional journal of legal med i c i ne 1 1 8 . 3 ( 2004) : 1 2 5 - 1 3 I . Lod i h, 1 B 1 0 lecu lar Ce l l B iolog} . 6 th ed., W . H . Freeman and Company. 2007. 0-7 1 6 7-760 1 -4. lanue l i d i s L. , ( 1 9 78). Comp lex a nd s i m p l e seq uences in human repeated DNAs. h romosome 66, 1 -2 1 . M e i nnans, Patrick G . " Us ing the A MOYA framework to est i m ate a standard ized geneti d i fferentiation measure . " Evolution 60. 1 1 (2006): 2 3 99-2402 . M ichalakis y , Excoffier L ( 1 996) A generic esti mation of popu lation subd i v i s ion u s i ng d i stances between al le les w ith spec ial reference for m icrosate l l ite loc i . Genetics 1 42 , 1 06 1 - 1 064. M i l kos G ., and John B ., ( 1 979). H etrochromat i n and sate l l ite DNA 111 man: propert ies and p rospects. Am. J. H u m Genet. 3 1 , 264-280. e i . M . 1 9 7 8 . Estimation of average heterozygosity and genetic d i stance from a sma l l n u m be r of i n d i v id uals. Genet ics 76: 3 79-390. 92 Peakal l. R . O . D . , and Peter E. m o u e. "GE A L E X 6 : genet ic analysis in Exce l . Popu lation genetic o ft\\ are for teac hing and researc h . " M o lec u lar ecolog) notes 6 . 1 (2006): 2 8 8-295 . Pe ton i . C o o cl a l . " l' chromosome TR haplot) pes: genet ic and seq uenc ing data of lhe G a l ic ian populati on ( W pa i n ) . " Internat ional journal of legal med ic ine I 1 2 . 1 ( 1 99 8 ) : I -2 1 . - Rablen, Matthe\ D . and Andre\ J . Oswa l d . " M orta l ity and im morta l ity: The obel Prize as an exper iment into the effect of status upon longe ity." Journal of health econo m ics 2 7 . 6 (200 8 ) : 1 462- 1 47 1 . Rahman. Z . . and T. H usn a i n . "Y -Chromoso mal STR H ap lo type Pro fi l ing i n Yousaf'z a i ' s l iv i ng i n S \\ at Val ley Pak i ta n . 200 8 " . Robi no. c . , e t a l . "Ana lysis of Y -c hromosomal S P hap logroups a n d S T R hap lot) p e s i n an A l gerian population sam p l e . " I nternational journal of legal med i c i ne 1 22 .3 (2008 ) : 2 5 1 -2 5 5 . Rosa, A ., Orne l as, c . , J ob l i ng, M . A . , Brehm, A . , V i l lems, R . (2007). Y ch romosomal d i vers ity i n the popu lation of G u i nea- B i ssau: a m u l t i -ethniC perspective . B M C Evolut ionary B i o logy 1 0 . 1 1 86( 1 4 7 1 -2 1 4 8), 7- 1 24 . 93 Rosa, A l exandra, el a l . " Popu lation data on I I Y -c hromosome TR from Gu ine B i s au." Forensic c ience internat ional 1 5 7.2 (2006): 2 1 0 -2 1 7. ezg l l1, . , D rosdak , A . , 1 c l nto h , J . , Phair, J . P . , Troyer, J . L . , . , Kessi ng. B . . Lauten berger, J . , Goedert, J . m i th. M . W . , Brien, . J. O. (20 1 0). Exam ination of di ea e based selection, demographic h i story and c hromosome Euro pean haplogroup l. population structure in I nst itutes Health of Nat ional l lenn, 1 0. 1 03 8. 6 1 3-620. her A, eyed E 1 r . , M o l ec u lar D issection o f the H u man Y -Ch romosome. Gene 2002 : 283 : 1 - 1 0. I I1ger L. ( 1 9 8 2 ) . H ighly repeated seq uences in mam m a l ian genomes. l nt . Re Cyto l . 76:67- ] 1 2 . lat k i n 1\1 ( 1 99 5 ) A mea u re of population subd ivisio n based on m ic rosate l l ite a l le le freq uenc ies. Genet ics, 1 39, 4 5 7-462. oares-V i e i ra, J ose A., et al. "Population and mutat io n analysis o f Y -STR loc i in a sam p l e from the c i ty o f Sao Pau lo ( B raz i l ) . " Genet ics and M o lecular B io logy 3 1 .3 (200 8 ) : 65 1 -656. 94 trachan T., Read A . H uman Molecular Genet ics. A M A Graphics Ltd . Preston. K . 1 997. tryer, L u bert.. B i oc hem isrty. Takeza k i . tandford U n i vers i ty . 1 st ed., 1 999. aoko. and Masatosh i e i . "G enetic d i stances and reconstruction o f p hylogenetic trees from microsate l l ite D A . " Genetics 1 44. 1 ( 1 996): 3 89-399. Ti hkoff A, K id d K K .(2004) I m p l icat ions of b iogeography of human popu lations for race and med icine. Nature 3 6 : 2 1 -27. Turrina. tefan ia, Renzo Atze i, and Domen ico De Leo. " Y -c hro mosom al STR haplot) pes i n a oltheast I ta l ian popu lation sam p l e using 1 7p lex loci p e R assay." I nternat ion a l journal o f legal med icine 1 20. 1 (2006 ) : 56-59. U nderh i l l Peter A., and Toomas K iv is i l d . " U se o f Y c hromosome and m itoc hond rial DNA popu lation structure i n trac ing human m igrat ions. " Annu. Rev. Genet. 4 1 (2007) : 5 39-564 . U rqu hali A . , K i m pton c . , Downs T., and G i l l P. , ( 1 994). Variation i n short tandem repeats sequences- a su rvey of twe l ve m i c rosate l l ite loc i for lise as forensic identification markers. I nt. J . Leg. M ed . 1 07, 1 3 -20. 95 Valdes. na Maria. Montgomery S latkin, and . B. Frei mer. "A l lele freq uenc ies at mi rosate l l i te loc i : the step' ise mutation model re is ited . " Geneti s 1 3 3 . 3 ( 1 993 ) : 73 7-749. W i l lard I f . , and Waye J . , ( 1 987). H ierarch ical order in c hromosome -spec i fic human alpha sat e l l ite 0 A . Trends in Genet. 3 , 1 92 - 1 98 . W i l l iam B . Pro i n e ( 1 978). "The ro le of mathemat ical popu lation genet ic ists i n the e o l ut ionar) s ) nthes i of the 1 930s and 1 940 ". Stud ies o f the H i story of B iology 1 : 1 6 7- 1 92 . Yang T., H ansen S . , O i s h i K . , R yder 0 . , and H am ka l o A . ( 1 982). Characterizat ion o f a c loned repetit iv e 0 A seq uence concentrated on the human X c hromosome. Proc. [ at l . Acad. Sc i . US A 79, 6593 - 6 5 8 7 . Y u n is, Juan 1 . . e t a l . "Geno-geograph ic origin of Y -spec i fic STR haplotypes i n a sam p l e of Caucasian-Mestizo and A frican-descent male i n d i v iduals from Colombia." B io med ica: rev ista del I n sti tuto Nac ional de Salud 3 3 . 3 (20 1 3 ): 459467. Zheng. L i hong. et al. "Y chromosomal STR polymorphism in northern C hi nese pop u lations." B i o logical research 42 . 4 (2009) : 497-5 04 . 96 Zinck, H . I L M u harofL ., a l it, 1 . . A I - I i . K . A . , Chouchane, L . . Gohar, A . , M aUhe\\ s, R . , B ut ler, M . W . , F ul ler, J . , Hackett, . R . , Crystal, R . G . C lark, A . G . (20 I 0). Popu lation Genetic Structure of t h e Peo ple of Qatar. American Journal o f H u man Genetics, 87, 1 7-2 5 . 97 t � � � . . jiJ 9 0% 7j� SS ' \ .,r j.- ., I .J ��\ 4....1 y.l1 jl : . � ' . .m::.! L...I �I � -::., . ; . .• .J • .:c 4.).l � J..I .JC � .) • . .mil � �J..b. � . s � y ' .:.B r..s:i J ( Hap lot} pe ) i' y. ��I • .)..:i.1 J .Y.d 1 4.. " .).:.:, � . • .J :-:...Ji:. 99. 8 : ° ° .)1 ( Haplof) p . • 1 ,�\ ..)I J j.-o ,..&J1 \ 4....1 .)� 4..it..:JI .::..; �I jA � � y:. ��I • .)� I j .)1 4.... 1 .).!l1 � J . �6..l1 4..1.) yi .JA .J . ;:!YJ 99. 885 °,0 .)1 ( H ap loty pe ) .= ' 1 .)3';' � ..r J I t�.Ii � � j � .J •.:..::.:i..JI �yJI -::"1 .)1... 1 4..1.J- � �\.S....JI �.>il ' � ->- � .;DI �t.UJ 1 wl..>.!-''"l:ill .J .�I�I ww4! O.:c1.iS 1'h.:i .J ( H a plot ) pe ) JI � J.,'\...:i J - � .;D' �..i:!ll -::"l p'i.:iJl J .}\�I �" .;JJ 9 0% Y.)� 1... .)1 J-o:; .)1.))11 �WlI 1'= .)1 � 4..:.. .) - � .,r >� j"i ,. .; � ��.J':"::' • .:c1.iS ..... 4.... 1 .)ol.! ..>.!-''"l:ill ,:i.ih:,..J I .)1 .J j-o j\.S....J I �I w ;;� ..b......i 'I y... �I jA � y:. :;=L! .)jj J.....1 .).!l1 jl : . " . �4J1 4..1} il J4--- � 4-o1�1 � 4..c �..u... �y y:;....:; • .:..::.:i..J 1 �yJI wl .)l...\' 1 :iJ.JJ � �\.S....J I �.>il' ,I...u;. J .� � wl!)l.hl �i ( A MOYA) tJ:!.ibWI 0lS...J 1 .)c ) �� y wy.,! 1... ) �j.;JI 0.!l+il1 J1b.J � "J .J .43 ;;').J� I JJ .lII .�I �yJ I wl.)I..."J 1 :iJJ.l J:,.b �\.S....J I �.>il' .)c �)l., � . 1... ."..= ..,r. yJI � I JJ.l � J;"i > _ .p ,;;J1 J .hi3 .JJ.si!'..-! .......� � �I J ( Y hromo om ) .:;lll!.b3 ,.� ��I 44jill JL,..... ..) 4;i.::-1I .:'LI.J.l.!I ..) r'� J ,� - ' J � j;t3 ..P.-l1 ...,; �1 �I 4...l J; �l yJ � fi::J1 "-.:.ill l.le i .,;" j.o .Y- Y'J fil� � � �""\....J� .� - 4...lJ..l.l1 �I Y' j.o .J."s�1 .j.;c- �I j.o )l;. j.o j.o Y'> t"" � 3-l5 j.o �I.J)I �I J""�I J w...:i � -�J TR' . '-:-').� I Y.f:. �I u�1 j.o �I . j.o �JI � J ( A l l ele ) � .!'.Y-Y'J.fil1 j.o ..);.o-o c!Y' > � jr:- .)-:1"- 80% - 60% j.o � L.. 'I ,' � I � yJ l ul.J �I .y>�1 � I pl � . �I � -$pi ..;;ll <.f�1 J ( Locus ) JS 0� , 4...lJ ..l.lI ..:;1.S..... j.o � J �1.Jj � i Ul �jY J , ,ljLj I �p � t..::..il ..) 1 �I L I.J.l.!1 -....J� J4-J1 1� � yS'J1 y:;...:; l:.:l....1 .J.l . . , .J� I � �)I ) � tY..Y" L.F .)I.JJ J..l<:. 1 7 1..G.:i-1 J-' Y'> � � � jtbi > � ( loc i ) � l yJl � ( I lele) jI . !'Y"" Y'J.fill > �I c!lyJl 04\ .hA J;li r-"tlli .)lS .J 1 • . DYS385-c!Y' J OY 3 8 5 -A c!Y' J DY 4 5 8 c!Y' .} � t ..,.lJ > i 0L .b.Xi �J �I wL.. ).....J 1 .J� � lJ-o �YI J � ySi 4-ii cYL...,i > .J� I � 'Jl:illu 0.9 t41 J B J wL...).....J 1 � I .J � � JSYI t ..,..uJ1 ulj ( Loc i ) JI � . ��I 4...l.l 'J1 V"'� .) �1.b..:i....1 � .0.43 7 o.J� J � t..,.lJ .)c � J OY 392 �yJ l .) � JG.J I ) 30 1 > .J Ji....l 1 � � � � .� I � y.l l wl .JL.. I 4...l J.l � � . 0l5...J1 j.o �l lJH .y::.:u.. � 22 u�J � �I .) .�..;! �� w �J 2 7 1 � ( Haplotype .)1 �L...;..)'� .( Ha p lotype ) J I ud.i lJ-o � J A.......:.. ,A.·.·u l � ..:;."s.J� .l1..;!Y u)'b ...::.,)l3 u.b.J J 01 .)1 �j t�.J1 � J . I ..;!'JI j.o A......u 4..h...ti.>! �.JL..::i:i A.ilA....l1 ( Hap loty pe ) Jl lJ-o 4,j)l3 .lPJ . �lLll 4...l )LJ I .y.ij .,r �.J� �I ;�\ �y.l\ wI.) ' \ �� �.,wl � ;4-=J1 f')c. � 2014 �i
© Copyright 2026 Paperzz