Chapter 32 Exercise 32.1 Q. 1. (i) 2x + 3y = 6 x=0 y=0 3y = 6 2x = 6 y=2 x=3 (0,2) (3,0) 5 2x + 3y = 6 4 3 2 (0,2) 1 (3,0) 0 –3 –2 –1 0 1 2 3 4 5 6 4 5 6 7 –1 –2 (ii) 5x + 3y = 15 x=0 y=0 3y = 15 5x = 15 y=5 x=3 (0,5) (3,0) 8 5x + 3y = 15 7 6 5 (5,0) 4 3 2 1 (3,0) 0 –3 –2 –1 0 1 2 3 –1 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 1 (iii) 7x − 3y = 21 x=0 y=0 −3y = 21 7x = 21 y = −7 x=3 (0,−7) (3,0) 7x - 3y = 21 3 2 1 (3,0) 0 –3 –2 –1 0 1 2 3 4 5 6 7 8 –1 –2 –3 –4 –5 –6 (0,7) –7 (iv) 2x − 5y = 30 x=0 y=0 −5y = 30 2x = 30 y = −6 x = 15 (0,−6) (15,0) 1 (15,0) 0 –3 –2 0 –1 1 2 3 4 5 6 7 –1 –2 –3 –4 –5 (0,–6) –6 2 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 8 9 10 11 12 13 14 15 16 (v) 3x − y = 0 x=0 4 x=1 −y = 0 3(1) − y = 0 3 y=0 3−y=0 2 (0,0) 3x – y = 0 (1,3) −y = −3 1 y=3 (0,0) 0 (1,3) –3 –2 –1 0 1 2 3 4 5 –1 –2 –3 (vi) 4x + 3y = 12 x=0 y=0 3y = 12 4x = 12 4 y=4 x=3 3 (0,4) (3,0) 2 (0,4) 4x + 3y = 12 1 (3,0) 0 0 –1 1 2 3 4 5 –1 Q. 2. (i) y = 2x + 6 x=0 y=0 y=6 2x = −6 (0,6) x = −3 (−3,0) y = 2x + 6 6 (0,6) 5 4 3 2 1 0 –5 –4 –3 (–3,0) –2 –1 0 1 2 3 4 5 –1 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 3 (ii) y = −x + 2 x=0 y=0 y=2 x=2 (0,2) (2,0) y = –x + 2 6 5 4 3 2 (0,2) 1 (2,0) 0 –5 –4 –3 –2 –1 0 1 3 2 4 5 –1 1 (iii) y = __x + 3 2 x=0 y=0 1 __ x = −3 2 x = −6 y=3 (0,3) 3 (0,3) 2 y = 0.5x + 3 1 (−6,0) (–6,0) 0 –6 –5 –4 –3 –2 –1 0 1 2 –1 –2 1 (iv) y = −__x + 3 3 x=0 y=0 1 __ y=3 3 (0,3) x=3 x=9 (9,0) 5 4 y = –0.33x + 3 3 (0,3) 2 1 (9,0) 0 –5 –4 –3 –2 –1 0 1 2 3 –1 4 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 4 5 6 7 8 9 10 11 3 3 (v) y = −__x − 6 4 x=0 y=0 3 __ x = −6 4 3x = −24 y = −6 (0,−6) x = −8 (−8,0) y = –0.75x – 6 3 2 1 (–8,0) –13 –12 –11 –10 –9 –8 –7 0 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 –1 –2 –3 –4 –5 –6 (0,–6) –7 (vi) y = 5x x=0 x=1 y=0 y=5 (0,0) (1,5) y = 5x 7 6 (1,5) 5 4 3 2 1 0 –1 (0,0) 0 1 2 3 4 –1 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 5 Q. 3. Q. 4. Q 6 1 5 0 –3 –2 –1 –1 4 3 2 1 0 1 2 –2 f: x → 3x – 1 0 1 –2 –1 –1 –3 –4 2 3 –5 4 –6 –2 –7 –3 –8 f: x → 2x – 3 –9 –4 –5 –6 (i) (4,4) Q. 5. Q –7 (ii) (−2,1) (iii) (2,−4) (iv) (0,−3) Q. 6. (i) x + 3y = 12 x=0 y=0 3y = 12 x = 12 y=4 (12,0) 6 5 x + 3y = 12 4 3 (0,4) (6,2) 2 x − 2y = 2 x=0 −2y = 2 y = −1 1 y=0 x=2 (2,0) (0,−1) 0 –2 0 –1 x – 2y = 2 1 2 3 4 5 6 7 8 9 –1 –2 –3 POI: (6,2) –4 –5 (ii) x + y = 6 2x + y = 8 x=0 y=0 x=0 y=0 y=6 x=6 y=8 2x = 8 (0,6) (6,0) (0,8) x=4 POI : (2,4) 6 Active Maths 1 – Strands 1–5 – Ch 32 Solutions (4,0) 10 11 12 2x + y = 8 9 x+y=6 8 7 6 5 (2,4) 4 3 2 1 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 –1 –2 (iii) x − 3y = −12 x=0 2x + 3y = 30 y=0 x=0 y=0 −3y = −12 x = −12 3y = 30 2x = 30 y=4 (−12,0) y = 10 x = 15 (0,10) (15,0) (0,4) POI: (6,6) –14–13–12–11–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 –13 (6,6) 3 4 5 6 7 8 9 10 11 12 13 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 7 (iv) 5x − 2y = −10 x−y=1 x=0 y=0 x=0 y=0 −y = 1 x=1 −2y = −10 5x = −10 y=5 x = −2 y = −1 (0,5) (−2,0) (0,−1) (1,0) POI: (−4,−5) 5x – 2y = –10 5 4 3 2 1 0 –6 –5 –4 –3 –2 0 –1 1 2 3 4 5 6 7 8 –1 –2 –3 –4 –5 (–4,–5) x–y=1 –6 (v) x + 2y = 8 x − 2y = 0 x=0 y=0 x=0 x=2 2y = 8 x=8 −2y = 0 2y = 2 y=4 (8,0) y=0 y=1 (0,0) (2,1) (0,4) POI: (4,2) 5 x + 2y = 8 4 3 (4,2) 2 1 0 –2 –1 0 1 2 3 4 –1 x – 2y = 0 –2 8 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 5 6 7 (vi) y = 2x + 4 y = 3x − 3 x=0 y=0 y=4 2x = −4 y = −3 3x = 3 (0,4) x = −2 (0,−3) x=1 x=0 y=0 (−2,0) (1,0) POI: (7,18) y = 3x – 3 20 y = 2x + 4 18 (7,18) 16 14 12 10 8 6 4 2 0 –12 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20 22 –2 –4 (vii) y = x + 1 y = −3x + 5 x=0 y=0 x=0 y=0 y=1 x = −1 y=5 (0,1) (−1,0) (0,5) 3x = 5 5 x = __ 3 2 (1__,0) 3 POI: (1,2) 5 y = –3x + 5 4 3 2 (1,2) 1 0 –3 –2 0 –1 1 2 3 4 5 6 –1 y=x+1 –2 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 9 x=0 y=0 1 y = −__x + 2 2 x=0 y=1 x=1 y=2 (0,1) (1,0) (0,2) (viii) y = −x + 1 y=0 1 __ x=2 2 x=4 POI: (−2,3) (4,0) y = –x + 1 5 4 y = –0.5x + 2 (–2,3) 3 2 1 0 –5 –4 –3 –2 0 1 2 3 4 –1 –2 y=0 2 y = __x 3 x=0 x=3 y = −4 2x = 4 y=0 y=2 (0,−4) x=2 (0,0) (3,2) (ix) y = 2x − 4 x=0 (2,0) POI: (3,2) y = 2x – 4 5 4 3 2 (3,2) 1 0 –6 –5 –4 –3 –2 –1 0 1 –1 –2 –3 y = 0.67x –4 –5 –6 10 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 2 3 4 5 6 7 8 9 (x) 3x − 4y = 0 1 y = −__x + 4 4 x=0 x=4 x=0 x=4 −4y = 0 3(4) − 4y = 0 y=4 y = −1 + 4 y=0 12 − 4y = 0 (0,4) y=3 (0,0) −4y = −12 (4,3) y=3 POI: (4,3) (4,3) 5 y = –0.25x + 4 4 (4,3) 3 2 1 0 –3 –2 –1 0 1 2 3 4 5 6 7 –1 3x –4y = 0 –2 Q. 7. (i) No. 5x – 2y = –10 6 5x – 2y = 20 5 4 3 2 1 0 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 –1 –2 –3 –4 –5 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 11 (ii) Yes. 6 –3x + y = –6 –2x + y = –4 5 4 3 2 1 0 –4 –3 –2 0 –1 1 2 –3 –2 3 4 5 6 1 2 7 8 9 10 11 4 5 6 7 –1 –2 –3 –4 –5 (iii) Yes. 0 –8 –7 –6 –5 –4 –1 0 y = 4x –2 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 12 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 3 y = 2x –5 (iv) No. 8 y = 2x –4 y = 2x + 8 7 6 5 4 3 2 1 0 –5 –4 –3 –2 0 –1 1 2 3 4 5 6 7 8 9 –1 –2 –3 Exercise 32.2 Q. 1. (i) €180 (i) €136 (ii) €60 (ii) €175 (iii) 550 km (iii) 900 units (iv) y = 0.2x + 20 (iv) Cost = 0.164(1,500) + 22.12 = 268.12 (v) Cost = 0.2(1220) + 20 = €264 Q. 2. Q Q. 3. (i) €11 (ii) €9 1 (iii) 4__ km 2 (iv) y = 2x + 3 (v) Cost = 2(10) + 3 = €23 Q. 4. Q (i) €40 (ii) €55 (iii) 400 units (iv) y = 0.1x + 20 (v) Cost = 0.1(800) + 20 = €100 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 13 Q. 5. (i) Fahrenheit 220° 200° 180° 160° 140° 120° 100° 80° 60° 40° 20° Celsius 0° –20° 0° 10° 20° 30° (ii) 32°F Q. 6. 50° 70° f(x) = 3x + 1 1 2 3 4 5 6 (i) 100 80° 90° 100° (iv) 212°F (iii) 0 60° (iii) 5°C 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 –1 40° 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 –1 7 f(x) = 3x + 1 g(x) = 2x 0 1 2 3 4 5 (iv) €70 (ii) 5 days Q 7 Q. 7. Q. 8. (i) €100 (i) €84 €84,000 000 (ii) €220 (ii) €92,000 (iii) 270 people (iii) 2013 (iv) y = 0.6x + 100 (iv) Apartment: €101,000 (v) Cost = 0.6(350) + 100 = €310 Car: €52,000 (i) €20,000 Total: €153,000 (ii) €12,800 Yes, he will have enough. (iii) €8,000 (iv) y = −2,400x + 20,000 14 Q. 9. Q 9 (v) Value = −2,400(6) + 20,000 = €5,600 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 6 Exercise 32.3 Q. 1. (i) Week Savings (€) 0 1 2 3 4 5 Savings (EURO) 550 300 350 400 450 500 550 500 450 400 350 300 250 200 (ii) €370 150 (iii) €480 100 50 0 Weeks 0 –0.5 Q. 2. (i) 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Cost (€) 50 80 110 140 170 Call-Out Change 1 hr 2 hrs 3 hrs 4 hrs (ii) 0.5 180 Cost (EURO) 160 140 120 100 80 60 40 20 Time (hrs) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 (iii) No. The line does not pass through (0,0). Q Q. 3 3. (i) Month Jan. Feb. Mar. Apr. May Comics (No.) 22 27 32 37 42 (ii) This is a linear pattern, since the first difference is constant. (iii) 22 + 11(5) = 77 4.5 5 5.5 (iv) €200 Q. Q 4 4. (i) (v) €290 Time (in Weeks) Height (in cm) 0 50 1 55 2 60 3 65 4 70 (ii) 50 cm (iii) Linear, since the first difference is constant. (iv) 50 + 9(5) = 95 cm 100 − 50 50 (v) _________ = ___ = 10 weeks 5 5 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 15 Q. 5. (i) Week 1 Week 2 Week 3 No. of kilometres run 18 21 24 (ii) Linear. The first difference is a constant. (iii) 60 50 Km 40 30 20 10 0 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 (iv) After the first three weeks of training, he may decide to increase the rate at which he trains. In this case, the second part of the line graph would be steeper than the first part (the first 3 weeks). Q. 6. (i) (ii) Radiators (Nos) 0 1 2 3 4 5 6 7 2000 Cost (€) 1,000 1,125 1,250 1,375 1,500 1,625 1,750 1,875 Cost (EURO) 1800 1600 1400 1200 1000 800 600 400 200 No. of Radiators 0 –0.5 16 0 0.5 1 1.5 2 2.5 3 3.5 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 4 4.5 5 5.5 6 6.5 7 (iii) 1,000 + 10(125) = 1,000 + 1,250 = €2,250 3,000 − 1,000 (iv) _____________ = 16 125 Q. 7. (i) No. of Days 0 1 2 3 4 5 6 7 8 Cost (€) 50,000 70,000 90,000 110,000 130,000 150,000 170,000 190,000 210,000 (ii) 220000 Cost (EURO) 200000 180000 160000 140000 120000 100000 80000 60000 40000 20000 0 No. of days 0 1 2 3 4 5 6 7 8 9 10 (iii) After Day 3 (iv) 210,000 + 6(20,000) = €330,000 (v) 500,000 − 330,000 − 100,000 = €70,000 profit Q. 8. (i) No. of Seán Ciara Days 0 10 0 1 15 7 2 20 14 3 25 21 4 30 28 5 35 35 6 40 42 7 45 49 8 50 56 9 55 63 10 60 70 (ii) 70 No. of Words Ciara Seán 60 50 40 30 20 10 No. of days 0 0 1 2 3 4 5 6 7 8 9 10 (iii) 5 100 − 10 90 (iv) _________ = ___ = 18 days 5 5 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 17 (i) Q. 9. Quantity No. of Supplied Weeks (litres) 0 200,000 1 215,000 2 230,000 3 245,000 4 260,000 5 275,000 6 290,000 Quantity Supplied (litres) 300000 250000 200000 150000 100000 50000 No. of Weeks 0 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 800,000 − 200,000 600,000 (ii) __________________ = ________ = 40 weeks 15,000 15,000 Q. 10. Milk (litres) Cheese (kg) 12,000 1,000 24,000 2,000 36,000 3,000 Cheese (kg) 3000 2500 2000 1500 1000 500 Milk (litres) 0 0 18 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000 Active Maths 1 – Strands 1–5 – Ch 32 Solutions (ii) No. of Cost (€) books 0 20,000 0 20,000 300 21200 600 22400 900 23600 1200 24,800 1500 26000 1800 27200 2100 28400 2400 29,600 2700 30,800 3000 32,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 Number of Books Mad Printers No. of books Cost (€) 0 21000 300 21600 600 22200 900 22800 1200 23400 1500 24000 1800 24600 2100 25200 2400 25800 2700 26400 3000 27000 35,000 30,000 25,000 Cost (€) (i) Cost (€) Q. 11. 20,000 15,000 10,000 5,000 0 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 Number of Books (iii) Cheap Print: €32,000; Mad Printers: €27,000 (iv) The cost of printing is the same for either company. (v) Mad Printers Exercise 32.4 Q. 1. (i) 200 (ii) 159 km Height (km) (iii) 1.4 minutes = 1 minute 24 seconds 180 160 140 120 100 80 60 40 20 0 Time (minutes) 0 –20 1 2 3 4 5 6 7 8 9 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 19 Q. 2. (i) Q Q. 5. 1.4 Area Covered (sq. km) (i) Quadratic (as it declines to a minimum value and then rises) (ii) Month 11 1.2 1 (iii) Month 5 0.8 (iv) ≈ 17 km2 = 30% 17 ___ = 10% 3 170 ____ = 100% 3 2 Answer ≈ 56__ km2 3 (v) Months 9, 10 and 11 0.6 0.4 0.2 0 Days 0 1 2 3 4 (ii) Exponential (iii) 5 days: 2.24 Weeds grow more vigorously during the summer. This is indicated during months 9 to 11 in the graph. 6 days: 4.48 7 days: 8.96 Q Q. 6. Ans: 8.96 km2 Q. 3. x 0 1 2 3 4 5 6 16 14 12 10 8 (i) 6 4 2 0 1 2 3 4 5 6 7 8 (ii) 7.3 m/s (iii) 4 s (iv) 2.6 and 5.4 seconds Q. 4. 20 (i) 17,000 y 9 4 1 0 1 4 9 10 9 8 7 6 5 4 3 2 1 –1 0 1 2 3 4 5 6 (ii) Quadratic (ii) 9 m (iii) 12,000 (iii) 1 second and 5 seconds after release (iv) 10 am. This is the time after which the population declines. (iv) 3 seconds after release Active Maths 1 – Strands 1–5 – Ch 32 Solutions Q. 7. (i) Height (cm) 35 F E 30 D 25 C 20 B 15 10 5 A f Day 0 0 0.5 1 1.5 2 2.5 3 3.5 4.5 4 5 (ii) 6 cm (iii) Day 4 and 5 (iv) Day 0 and Day 1 (v) 27 cm Q. 8. x –2 –1 0 1 2 3 y 7 0 –3 –2 3 12 12 11 10 f(x) = 2x2 – x – 3 9 8 7 6 5 (i) –2°C 4 3 (ii) x ≈ 0.25 2 1 ∴ From approximately 05:15 (iii) From x = –1 to x = 1.5 ∴ 2.5 hours (iii) 1 hour + 1.5 hours = 2.5 hours –2 –1 –1 0 1 2 3 –2 –3 Exercise 32.5 Q. 1. (i) 50 + 20 + 20 + 50 = 140 km (ii) 13:00 (iii) Along the line segment [DE] Active Maths 1 – Strands 1–5 – Ch 32 Solutions 21 Q. 2. 5 Distance (km) 4 3 2 1 0 0 5 10 15 20 25 30 35 40 45 50 55 Time (minutes) Q. 3. Left school for a class trip at 9.00 walked 2 km to the local museum which we reached at 10:00. Spent one hour there before leaving and travelling at a quicker pace to the bus stop which was 3 km away. Got the bus at 12.00 and went on a coach tour over a scenic route (10 km eventually from school) before returning to school at 14.00. Q. 4. Fig A → Statement 5 Fig B → Statement 4 Fig C → Statement 2 Fig D → Statement 1 Fig E → Statement 3 Q. 5. (ii) 2.7 secs. (iii) 45 m/s Speed (m/sec) (iv) 22 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 A 0 0 G F E D C B 1 2 3 Time (sec) Active Maths 1 – Strands 1–5 – Ch 32 Solutions 4 5 6 Q. 6. (i) Race A: Oisín; Race B: Juan (ii) Race A: 150 m; Race B: 250 m (iii) Race A: Oisín 25 seconds; Juan 30 seconds Race B: Oisín 45 seconds; Juan 40 seconds 150 (iv) Oisín: ____ = 6 m/s 25 150 ____ Juan: = 5 m/s 30 (v) 0 seconds: start of race 23 seconds: point of intersection of two graphs (vi) Juan: He starts approximately 10 m ahead of Oisín at 0 seconds. (vii) Juan: The slope of his graph at the start is greater than the slope of Oisin’s graph. This shows that his rate of change is greater. (viii) Oisín: The slope of his graph at the finish is greater than the slope of Juan’s graph. Revision Exercises Q. 1. (i) x + y = 5 2x − y = −8 x=0 y=0 x=0 y=0 y=5 x=5 y=8 x = −4 (0,5) (5,0) (0,8) (−4,0) ∴ POI: (−1,6). 8 (–1,6) 7 6 5 4 3 2 1 0 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 –1 –2 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 23 4x − y = −6 (ii) x − 2y = −5 x=0 y=0 x=0 y=0 −2y = −5 5 y = __ 2 1 0,2 __ 2 ∴ POI: (−1,2) x = −5 −y = −6 (−5,0) y=6 ( ) 4x = −6 3 6 x = −__ = −__ 4 2 1 (−1__,0) 2 (0,6) –4x + y = 6 6 5 4 3 (–1,2) 2 1 0 –7 –6 –5 –4 –3 –2 –1 0 1 2 x – 2y = –5 x=0 () y=0 y=6 (0,6) ∴ POI: (3,2) 4 1 y = __ x + 1 3 x=0 (iii) 4x + 3y = 18 3y = 18 3 –1 4x = 18 18 9 x = ___ = __ 4 2 1 (4__,0) 2 y=0 1 __ y=1 3 (0,1) 4x + 3y = 18 5 4 3 (3,2) 2 1 0 24 –4 –3 y = 0.33x + 1 –2 –1 x = −3 (−3,0) 6 –5 x = −1 0 1 –1 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 2 3 4 5 6 x=0 x=1 1 y = __x + 8 3 x=0 y=0 y=1 y=8 y=2+8 (0,0) (1,1) (0,8) y = 10 (iv) y = x x=6 (6,10) ∴ POI: (12,12) 12 (12,12) 10 8 6 y = 0.33x + 8 4 2 0 –8 –4 –6 –2 0 2 4 8 6 10 12 14 16 –2 –4 y=x Q. 2. 40 (i) ___ = 8 5 (ii) They earn €8 per hour. (iii) After 4 hrs: €32 (iv) y = 8x x=8 y = 8(8) Ans = €64 (v) The equation of the line method is more accurate if the correct equation is used. Reading the graph, as drawn, will involve some error (most likely). Q. 3. (i) (ii) Initial set-up costs. Cost (EURO) (iii) €19 70 (iv) €75 60 [y = 2(35) + 5 = 75] 40 30 20 10 Number of Magazines 0 0 5 10 15 20 25 30 35 40 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 25 Q. 4. (i) Time Money owed 0 500 1st month 425 2nd month 350 3rd month 275 (ii) Money Owed (EURO) 500 400 300 200 100 Months 0 0 1 2 3 5 4 6 7 8 9 10 (iii) More than 6 months. (Between 6 and 7 months) Q. 5. (i) Time (hours) Cost (€) 0 50 1 70 2 90 3 110 4 130 5 150 6 170 4 3 2 1 0 0 1 2 3 –1 –2 –3 –4 (i) 2.25° (iii) Call−out charge. (ii) –4° at 3 a.m (iv) Additional cost per hour. (iii) 1 a.m and 5 a.m (i) 18:30 (ii) Between 18:45 and 19:00 600 km (iii) _______ = 34.29 km/hr 1.75 hrs 26 5 (ii) y = 20x + 50 (v) y = 20(8.5) + 50 = €220 Q. 6. Q. Q 7. Active Maths 1 – Strands 1–5 – Ch 32 Solutions 4 5 6 Q. 8. (i) Yes 2 y = 3x – 2 y = 2x – 3 1 0 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 0 2 4 6 8 10 12 –1 –2 –3 –4 (–1,–5) –5 –6 (ii) No 8 6 4 2 y = 0.33x + 5 0 –4 –10 –8 –6 –4 –2 14 –2 –4 y = 0.33x – 4 –6 –8 (iii) Yes 6 4x + 3y = 11 4x + 3y = 9 5 4 3 2 1 0 –4 –3 –2 –1 0 –1 1 2 3 4 (2.5,–0.33) 5 6 7 –2 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 27 (iv) No Reasons: 2.5 (i) Slopes are different. (ii) Slopes are equal (i.e. parallel lines). 2 1.5 (iii) Slopes are different. 1 (iv) Slopes are equal (i.e. parallel lines). 0.5 0 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 –0.5 Q. 9. (i) About 9 m (ii) The train travels slowly for the first 20 seconds. Its speed then increases from around 25 seconds into the journey. The fastest speed is between 50 and 60 seconds. (iii) It is a train leaving a station. Q. 10. (a) John walks to school at a constant moderate speed. He looks at his watch, realises he will be late if he doesn’t hurry up, so increases the pace at which he walks to school and walks the final part of the journey at this faster speed. (b) A car turning a sharp bend in the road slows down into the bend and speeds up out of it. (c) The rate at which water fills a storage tank is constantly increasing. (d) A pizza company charge a set delivery charge plus a rate of €x per pizza bought. (e) A car is stuck in traffic and does not move. (f ) A train travels at a constant speed before slowing down to a stop at a train station. Q. 11. Q. Q 13. 16 (i) Number of Birds 14 40 12 30 10 20 8 10 Day 0 6 0 1 2 3 4 5 4 (ii) Quadratic 2 –3 –2 –1 0 1 2 3 4 (i) 12.75 Day 7: 90 (66 + 24) (iii) 10.30 p.m and 2.30 a.m. (i) 450 g (ii) 7 ounces 200 (iv) y = ____x 7 200 ____ (v) y = (50) 7 = 1,428.6 g 200 (iii) ____ 7 28 (iii) Days 4 and 5 (iv) Day 6: 66 (46 + 20) (ii) 00.30 a.m Q. 12. The second differences are constant. Active Maths 1 – Strands 1–5 – Ch 32 Solutions Q. 14. (i) 35 Height (cm) 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 (ii) It is constant. (iii) ≈ 26.4 cm (iv) 21.6 − 8 ≈ 13.6 cm Q. 15. (i) Days: 5 Cost: €600 ∴ Cost per Day = €60 ÷ 5 = €120 (ii) €400 (iii) Cheaper Vans: Linear pattern (with fixed fee): There is an initial fixed fee of €400 followed by a charge of €50 per day. Vans R Us: Linear pattern (proportional): There is no fixed fee and a cost of €120 per day. (iv) Cheaper Vans (v) Vans R Us: Cost = 120 × Time Cost = 120 × 15 = €1,800 Cheaper Vans: Cost = 400 + 50 × Time Cost = 400 + 50 × 15 = €1,150 Q. 16. (i) Exponential (ii) Day No. of Words 0 4 1 8 2 16 3 32 4 64 5 128 6 256 7 512 8 1,024 9 2,048 10 4,096 11 8,192 12 16,384 No. of Words Known 500 400 300 200 100 Days 0 0 1 2 3 4 5 5 5 (iii) Day 12: 16,384 Active Maths 1 – Strands 1–5 – Ch 32 Solutions 29 Q. 17. Q Q. 18. 16 (i) 18 12 16 8 12 Height (metres) 14 10 4 0 8 0 1 2 3 4 6 5 4 –4 2 0 –8 Time (seconds) 0 1 2 3 4 5 –12 (ii) Quadratic –16 (iii) Height = 6.25 m − 6.25 (iv) The pigeon had landed and is now taking off again. (i) 3.8 (ii) 10.4 m (iii) 8.8 m Q. 19. (i) 50 No. of Cans 40 30 10 5 Level 0 0 1 2 3 4 5 6 7 8 9 (ii) 49 + 42 + 35 + 28 + 21 + 14 + 7 = 196 cans (iii) Seven levels in total ∴ 7 × 12 = 84 cm 30 Active Maths 1 – Strands 1–5 – Ch 32 Solutions
© Copyright 2025 Paperzz