R3101 Plant Taxonomy, Structure and Function

INCLUDING EXAMINER COMMENTS
R3101
PLANT TAXONOMY, STRUCTURE & FUNCTION
Level 3
Wednesday 24 June 2015
09:30 – 11:10
Written Examination
Candidate Number:………………………………………………………………….
Candidate Name:…………………………………………………………………….
Centre Number/Name:………………………………………………………………
IMPORTANT – Please read carefully before commencing:
i)
The duration of this paper is 100 minutes;
ii)
ALL questions should be attempted;
iii)
EACH question carries 10 marks;
iv)
Write your answers legibly in the spaces provided. It is NOT necessary
that all lined space is used in answering the questions;
v)
Use METRIC measurements only;
vi)
Use black or blue ink only. Pencil may be used for drawing purposes only;
vii)
Where plant names are required, they should include genus, species and
where appropriate, cultivar;
viii)
Where a question requires a specific number of answers; only the first
answers given that meet the question requirement will be accepted,
regardless of the number of answers offered;
ix)
Please note, when the word ‘distinct’ is used within a question, it means
that the items have different characteristics or features.
Ofqual Unit Code H/505/2966
Please turn over/…..
ANSWER ALL QUESTIONS
MARKS
Q1
a)
Differentiate between family and genus giving a NAMED example for EACH.
4
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………….
Please see over/…..
2
MARKS
b)
State the meaning of the term intergeneric hybrid, giving a NAMED plant
example.
2
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
c)
Explain, using TWO NAMED plant examples how specific epithets can
indicate the geographical origin of plants.
4
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
3
MARKS
Q2
a)
Describe the following types of inflorescence, giving a NAMED example for
EACH:
i)
ii)
iii)
umbel;
corymb;
cyme.
2
2
2
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
4
MARKS
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
b)
Describe the structure of a capitulum of a NAMED plant indicating how it is
adapted for pollination.
4
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
5
MARKS
Q3
a)
Describe parenchyma under EACH of the following:
i)
ii)
2
4
structure of the cells;
functions of the tissue.
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
6
MARKS
b)
State the function(s) of EACH of the following:
i)
ii)
iii)
collenchyma;
sclereids;
epidermis.
1
1
2
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
7
MARKS
Q4
a)
State, in relation to flowering, what is meant by the terms:
i)
ii)
vernalisation;
photoperiodism.
2
2
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
b)
Define the following terms giving a NAMED plant example for EACH:
i)
ii)
iii)
2
2
2
short day plant;
long day plant;
day neutral plant.
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
8
MARKS
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
9
MARKS
Q5
a)
Differentiate between a true fruit and a false fruit.
2
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
b)
i)
Describe the structure of a NAMED succulent/fleshy true fruit.
3
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
ii)
1
NAME ONE plant example with this type of fruit.
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
10
MARKS
c)
Describe the following fruits giving a NAMED plant example for EACH:
i)
ii)
legume;
achene.
2
2
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
Please turn over/…..
11
MARKS
Q6
Describe, using a NAMED plant example in EACH case, how their flowers
are adapted for pollination by:
i)
ii)
5
5
flies;
birds.
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………….
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………....
………………………………………………………………………………………….
………………………………………………………………………………………….
Please see over/…..
12
MARKS
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
13
MARKS
Q7
a)
Explain how increasing temperature influences the rate of photosynthesis in
plants.
6
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
14
MARKS
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
b)
List FOUR distinct methods by which temperature can be manipulated in
glasshouse production to maximize photosynthesis.
4
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
15
MARKS
Q8
a)
Describe the structure of a mitochondrion.
2
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
b)
Describe the processes that occur in mitochondria during aerobic respiration.
4
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
16
MARKS
c)
State the difference between a climacteric fruit AND a non-climacteric fruit,
giving a NAMED example for EACH.
4
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
Please turn over/…..
17
MARKS
Q9
a)
Describe how outdoor planting conditions affect the rate of transpiration.
6
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
18
MARKS
b)
Explain how the rate of transpiration affects plant growth.
4
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Total Mark
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
Please turn over/…..
19
MARKS
Q10
a)
i)
Describe the mechanism of gravitropism (geotropism) in the root.
4
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
ii)
Explain the significance of gravitropism for growth of the root and
shoot in a germinating seedling.
2
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
Please see over/…..
20
MARKS
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
b)
i)
Define the term thigmotropism.
1
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
ii)
Explain the significance of thigmotropism for the growth of a
NAMED plant.
3
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………....
…………………………………………………………………………………………
*******
21
Total Mark
DO NOT USE THIS PAGE
22
DO NOT USE THIS PAGE
23
©These questions are the property of the Royal Horticultural Society.
They must not be reproduced or sold.
The Royal Horticultural Society, Wisley, Woking, Surrey GU23 6QB.
Charity Registration Number: 222879/SC038262
24
R3101
PLANT TAXONOMY, STRUCTURE & FUNCTION
Wednesday 24 June 2015
Level 3
Candidates Registered
Candidates Entered
Candidates Absent/Withdrawn
45
40
5
88.89%
11.11%
Total Candidates Passed
Passed with Commendation
Passed
Failed
24
7
17
16
60%
17.5%
42.5%
40%
General comments
On the whole this paper was well answered with the majority of candidates attempting and
completing all the questions. The following guidelines should be of help to future candidates.





Where named plant examples are asked for, full botanical names (genus and species) are
required to achieve full marks. Common names will not be given a mark.
Use the command statements e.g. list or name (single words only), state (a few sentences),
describe or explain (a fuller answer) together with the mark allocation, to judge the depth of
the answer. Half marks are often allocated where the basic information given is correct but
needs further qualification to gain the full mark.
Where a number of answers are specified in the question, the examiner will not select
correct answers from a list e.g. if the question states ‘State’ TWO plant names’, only the
first two names given will be marked.
Labels on diagrams should be correctly positioned to avoid ambiguity and diagrams should
be clearly drawn and annotated. No marks will be awarded for artistic merit.
Candidates should use unambiguous plant examples as reference sources from, for
example, the RHS Find a Plant Service available on the RHS Website.
25
Q1
a) Differentiate between family and genus giving a NAMED example for
EACH.
b) State the meaning of the term intergeneric hybrid, giving a NAMED plant
example.
c) Explain, using TWO NAMED plant examples how specific epithets can
indicate the geographical origin of plants.
Full marks were awarded for defining family and genus in terms of their
position in the taxonomic hierarchy, for example, family is the rank below order
or above genus. Alternatively, marks were awarded for stating that a family
comprises a group of closely related genera, similarly a genus comprises a
group of closely related species. Simply stating that either taxon consists of a
group of closely related plants or plants with similar characteristics was not
precise enough to be awarded full marks as this could apply to any taxon.
Whilst similarities in flower structure occur between species which make up a
genus, stating that a genus is a group of plants with identical sexual organs is
incorrect and is not a definition. Candidates should ensure that family names
have the correct ending –aceae. Where candidates gave a binomial name as
an example of a genus, marks were awarded only if the generic epithet was
indicated.
Most candidates successfully defined an intergeneric hybrid as a cross
between two plants or species from different genera, the commonest example
being xCuprocyparis leylandii.
Many correct examples of specific epithets indicating geographical origin were
given including lusitanica (from Portugal), australis (southern) and sinensis
(from China).
Q2
a) Describe the following types of inflorescence, giving a NAMED example for
EACH:
i)
ii)
iii)
umbel;
corymb;
cyme.
b) Describe the structure of a capitulum of a NAMED plant indicating how it is
adapted for pollination.
Most candidates correctly described an umbel, e.g. Allium giganteum, which
has pedicels arising from the same point on the peduncle and a corymb e.g.
Sambucus nigra which is a flat topped inflorescence with pedicels of different
lengths arising from different points on the peduncle. An Achillea species was
given by many as an example of a corymb and this was accepted because the
capitula are arranged in a corymbose fashion in the inflorescence. Clear and
accurate diagrams were also accepted. A cyme e.g. Myosotis sylvatica, was
less well known and the key feature that this is a determinate inflorescence
with the oldest flowers at the apex was not well described.
Where diagrams were used to illustrate a cyme it was essential to indicate the
order of flowering.
26
Almost any member of the Asteraceae could be used as an example of a
capitulum e.g. Bellis perennis. Detailed descriptions of specific structural
features gained full marks, for example, closely packed ray and disc florets
which are attached to a flat topped receptacle. These may be sterile or fertile
and are sessile. The calyx becomes a pappus. The whole inflorescence is
supported by overlapping bracts forming an involucre. Again, adaptations for
pollination needed to be specific with better candidates describing how the flat
capitulum enables insects to gather nectar and pollen efficiently with minimal
energy expenditure because they can walk from floret to floret and these are in
close proximity. Although diagrams were accepted it was difficult to gain full
marks here without some description either on the diagram or in the text.
Q3
a) Describe parenchyma under EACH of the following:
i)
ii)
structure of the cells;
functions of the tissue.
b) State the function(s) of EACH of the following:
i)
ii)
iii)
collenchyma;
sclereids;
epidermis.
The structure of parenchyma cells in part a) was generally well described with
candidates noting that these were living cells, often undifferentiated with thin
cellulose walls which are unlignified and permeable. They contain organelles
such as mitochondria, a nucleus and a vacuole and characteristically have air
spaces between the cells. As well as acting as ‘packing’ or support tissue,
other functions were accepted including starch or water storage,
photosynthesis in chlorenchyma, buoyancy and oxygen uptake in aerenchyma
and the potential ability to divide and differentiate into other cells, for example
in callus production. Where diagrams were drawn these often showed a
generalised cell which could not be credited unless the specific features of
parenchyma were indicated or described.
In part b), candidates who described functions of the tissues rather than their
structures were credited. Thus collenchyma’s function is to support or
strengthen, particularly in leaves, stems and petioles where flexibility is
required. Sclereids also have a strengthening and supportive role and provide
protection in the endocarp of fruits e.g. stone cells. Some candidates confused
these with tracheids. For epidermis, several functions could be given including
protection from pests, diseases and damage, control of water release and
gaseous exchange through stomata together with any specialised functions
such as prickles for defence or trichomes for reducing water loss.
The term ‘providing structure’ was not credited for any of these cell and tissue
types.
27
Q4
a) State, in relation to flowering, what is meant by the terms:
i)
ii)
vernalisation;
photoperiodism.
b) Define the following terms giving a NAMED plant example for EACH:
i)
ii)
iii)
short day plant;
long day plant;
day neutral plant.
In part a), the majority of candidates correctly stated that vernalisation is the
requirement for a period of cold to initiate or promote flowering. Mention of day
degrees or details of specific temperatures and treatment times were also
credited. Stating the meaning of photoperiodism was less easy. Full marks
were given for understanding that this is a plant’s response to changes in the
length of daylight (or darkness) in a 24 hour period, rather than the amount of
light, which controls the switch between vegetative and flowering growth.
The definitions in part b) had to include a reference to the idea of plants having
a specific daylength or critical daylength requirement. Therefore, short day
plants flower if the daylength is less than their critical daylength, whilst in long
day plants the daylength must be greater than the plant’s critical daylength for
the plant to flower. Simply stating that flowering in short day plants takes place
in ‘short days’ or for long day plants in ‘long days’ was not accepted without
some explanation of what these terms mean. Flowering in day neutral plants is
unaffected by daylength. Plant examples chosen should be easy to verify, for
example, Chrysanthemum morifolium (SDP), Latuca sativa (LDP) and
Taraxacum officinale (DNP). Good examples can be found amongst plants
used in bedding, pot plants and cut flower production but are less easy to find
in herbaceous and woody perennials.
Q5
a) Differentiate between a true fruit and a false fruit.
b)
i)
ii)
Describe the structure of a NAMED succulent/fleshy true fruit.
NAME ONE plant example with this type of fruit.
c) Describe the following fruits giving a NAMED plant example for EACH:
i)
ii)
legume;
achene.
Most candidates correctly described true fruits as originating from the ovary
compared with false fruits in which other flower tissues, such as the receptacle,
are included. Many forgot to mention that false fruits still include the ovary and
a number thought that fruits develop within the ovary. In describing the
structure of a named succulent true fruit, several candidates chose false fruits
such as a pome so could not be credited. Suitable fruits named were berries
and drupes. Drupes have a thin exocarp, a fleshy mesocarp and a hard stony
endocarp, which is fused to the surface of the single seed e.g. in Prunus
avium, and are formed from one carpel, whilst berries have a similar exocarp
and mesocarp but have many seeds embedded in a fleshy endocarp e.g. in
Vitis vinifera, and are formed from two or more carpels.
28
In part b), most candidates knew of a suitable plant example for a legume e.g.
Pisum sativum and were able to state that it was a dry, dehiscent fruit which
splits along two sides as fibres in the pericarp shorten and twist on drying.
Candidates were less familiar with achenes, which were often confused with
nuts. These are dry indehiscent fruits containing one seed with a separate
pericarp and testa. Both legumes and achenes derive from one carpel. A good
example for an achene would be Helianthus annuus. Several described
strawberries as achenes themselves rather than the individual achenes which
are embedded in the surface of the false fruit.
In both parts a) and b) detailed descriptions of each fruit gained full marks.
Q6
Describe, using a NAMED plant example in EACH case, how their flowers are
adapted for pollination by:
i)
ii)
flies;
birds.
Most candidates were able to name a specific plant pollinated by flies and
birds.
For fly pollinated flowers, better candidates gave a detailed description of their
chosen flower and appreciated that the type of pollinating fly is influenced by
the structure of the flower. So for carrion flies, plant examples included Arum
maculatum and Stapelia gigantea and these have somewhat different flower
structures and mechanisms. For hoverflies, bee flies etc. suitable plant
examples included Angelica sylvestris and Hedera helix. Detailed descriptions
of fly trapping mechanisms, flower size and position, specific colours, presence
or absence and type of scent and opening time all gained marks as did
mention of the presence or absence of nectar and inflorescence structure. Full
marks were awarded where the flower structure was linked to the behaviour of
the fly, for example an odour of rotting flesh attracting carrion flies which feed
on dead animal matter or a flat flower inflorescence enables hoverflies to walk
from flower to flower with the least energy expenditure.
Similarly for bird pollination, the majority chose flowers pollinated by humming
birds e.g. Fuchsia magellanica whilst others described flowers on which birds
perch to feed e.g. Strelizia reginae. In each case, the flower structure will differ
according to the way in which the birds feed. Again, marks were awarded for a
detailed description which linked specific flower structure to pollination method
such as the position of the stigma and stamens, colour, type and amount of
nectar and scent. For example, these flowers have little scent because a
sense of smell is not highly developed in birds but they are brightly coloured,
often red, to stand out from foliage and attract birds from far off.
Q7
a) Explain how increasing temperature influences the rate of photosynthesis
in plants.
b) List FOUR distinct methods by which temperature can be manipulated in
glasshouse production to maximize photosynthesis.
29
In part a), the best approach to this question was to start with a clear statement
that increasing temperature initially increases the rate of photosynthesis. This
could then be followed by an explanation of the reasons. So, as temperature
increases, the activity of the enzymes involved in the light independent
reactions of photosynthesis is increased as is the rate of diffusion of carbon
dioxide into the leaf. Next, candidates should state that above an optimum
temperature, the rate of photosynthesis declines as temperature increases.
This is due to high temperatures causing a reduction in enzyme activity due to
loss of enzyme structure. Many stated that high transpiration rates at high
temperatures would reduce water availability for photosynthesis but this is not
the case since there is always sufficient water in cells for use in
photosynthesis. However, high transpiration rates will indirectly reduce the rate
of photosynthesis because stomatal closure to reduce water loss leads to a
decline in carbon dioxide uptake and wilting reduces the leaf surface area
exposed to light. The reduction in photosynthetic output in C3 plants at high
temperatures due to photorespiration was credited as was the increased
temperature optima in C4 species. Mention of the Law of Limiting Factors was
also rewarded.
In part b), full marks were given for stating a method to control temperature in
glasshouses with examples of how this is done e.g. heating using hot water
pipes or hot air convectors to increase temperature. Methods used to reduce
temperature could include ventilation, both passive or fan assisted; evaporative
cooling and increasing humidity through damping down or use of wet pads and
fans; or shading using screens or paint on materials.
Q8
a) Describe the structure of a mitochondrion.
b) Describe the processes that occur in mitochondria during aerobic
respiration.
c) State the difference between a climacteric fruit AND a non-climacteric fruit,
giving a NAMED example for EACH.
Most candidates successfully described the structure of a mitochondrion using
a diagram indicating the key features: cristae, matrix and double membrane.
The presence of DNA and ribosomes was also mentioned by some.
In part b), many candidates only gave the overall equation for aerobic
respiration and could not gain full marks unless they described the processes
involved. In the matrix, pyruvate used in the Krebs Cycle to generate ATP
where carbon dioxide and oxygen diffuses across to the cristae. Here,
electrons which are passed along an electron transport chain and hydrogen
provided by hydrogen carriers (reduced co-enzymes) combine with oxygen to
produce water. Overall 38 molecules of ATP are produced from 1 molecule of
glucose. Since splitting of glucose (glycolysis) takes place in the cell cytoplasm
no mark was awarded for this.
In part c), few candidates understood the meaning of the terms climacteric and
non-climacteric fruit and hardly any gave full botanical names of examples.
Although many correctly mentioned the peak in ethylene levels or sudden
ripening which are characteristic of climacteric fruit, it is the respiratory pattern
which is the key.
30
Simply stated, climacteric fruit such as Pyrus communis (pear) show a burst of
respiration on ripening whereas non-climacteric fruits such as Fragaria x
ananassa (strawberry) do not. Some gave plants with dry fruits as examples of
non-climacteric behaviour but the terms are generally used to describe
succulent fruit.
Q9
a) Describe how outdoor planting conditions affect the rate of transpiration.
b) Explain how the rate of transpiration affects plant growth.
To answer the first part of this question, candidates needed to consider the
range of environmental conditions which affect the rate of transpiration in an
outdoor setting e.g. air temperature, relative humidity, windspeed, light levels,
shade and soil water availability. No marks were awarded where a factor was
given but its effect on the rate was not stated. For example ‘air temperature
affects the rate of transpiration’ was not sufficient; whereas’ if the air
temperature increases the rate of transpiration increases up to a point then
reduces’, was credited. Following on from this, the reason for the change in
rate needed to be explored e.g. increasing temperature increases the rate of
diffusion of water vapour from the leaf but at high temperatures the stomata
close, so transpiration ceases. Similarly, better candidates stated that high
windspeeds will reduce the boundary layer width around the leaf so increasing
the diffusion gradient and the rate of water vapour loss, or high humidity in the
surrounding air will reduce transpiration rates because the difference in water
vapour concentration inside and outside the leaf is reduced. Low soil water
availability will reduce transpiration rates because of stomatal closure to
conserve moisture, which is mediated by abscisic acid. Discussion of the
effects of plant spacing on transpiration rates should be linked to its effect on
the environmental factors above.
In the second part of the question, very few candidates were able to link
transpiration to growth. Firstly transpiration is required to supply minerals for
processes involved in growth e.g. photosynthesis, cell wall manufacture.
Secondly, sufficient turgor is necessary for maximum cell expansion and if
transpiration rates are too high turgor will be reduced. Thirdly at very high
transpiration rates stomata will close, leaves will wilt, leaf area will be reduced
or leaves shed so net photosynthesis will be reduced along with growth.
Q10
a)
b)
i)
Describe the mechanism of gravitropism (geotropism) in the
root.
ii)
Explain the significance of gravitropism for growth of the root
and shoot in a germinating seedling.
i)
Define the term thigmotropism.
ii)
Explain the significance of thigmotropism for the growth of a
NAMED plant.
31
Candidates who defined the term gravitropism in relation to the root
(downwards growth in response to gravity) and then went on to give an
explanation of one or more mechanisms, scored highly. Mechanisms
describing the involvement of statoliths or changes in cell turgor/hydrostatic
pressure or calcium concentrations were all credited as was the involvement of
auxin which accumulates on the downward side of the root where it inhibits cell
expansion leading to downwards curvature. Whilst candidates appreciated that
roots grow down and shoots grow up, the reasons why they grow in these
directions e.g. roots need to locate water and mineral nutrients or shoots need
to reach the light for photosynthesis were not always given. Well annotated
diagrams were accepted.
Thigmotropism was familiar to almost all and was well defined being a tropic
response to contact with a solid object. Plants with twining stems, e.g. Wisteria
sinensis or tendrils e.g. Pisum sativum were suitable examples. However
marks were often lost by candidates who described the mechanism of
thigmotropism rather than explaining why this is important to the plant. It
enables them to reach the light for photosynthesis, raise flowers above other
plants for better pollination or avoid herbivores, giving them a competitive
advantage.
©These questions are the property of the Royal Horticultural Society.
They must not be reproduced or sold.
The Royal Horticultural Society, Wisley, Woking, Surrey GU23 6QB.
Charity Registration Number: 222879/SC038262
32