Negative Exponents and the Laws of Exponents

Negative Exponents and the
Laws of Exponents
Module 1 Lesson 5
Words
For any integer a, and any exponent n≠0,
π‘Ž
Algebra
Numbers
βˆ’π‘›
1
π‘Žπ‘›
=
βˆ’π‘›
π‘Ž
βˆ’8
3
or
=
1
π‘Žπ‘›
=
1
38
1
π‘Žβˆ’π‘›
or
or
=π‘Ž
𝑛
1
π‘Žβˆ’π‘›
1
3βˆ’8
=
𝑛
π‘Ž
8
=3
Negative
Exponent
Property
β€’ Exercise 1
β€’ Verify the general statement
π‘₯ βˆ’π‘
=
1
π‘₯𝑏
for π‘₯ = 3 and 𝑏 = βˆ’5.
β€’ Exercise 2
β€’ What is the value of 3 × 10βˆ’2 ?
β€’ Exercise 3
β€’ What is the value of 3 × 10βˆ’5 ?
β€’ Exercise 4
β€’ Write the complete expanded form of the decimal 4.728 in
exponential notation.
Come to the board!
6
5
7βˆ’2
1
49
8
7
βˆ’2
βˆ’4
1
16
βˆ’2βˆ’4
1
βˆ’16
10βˆ’5 βˆ™ 107
100
Come to the board!
9
5π‘₯ 4
π‘₯7
5
π‘₯3
10
102 π‘Žβˆ’4
π‘Ž4
100/π‘Ž
8
11
2
𝑏
βˆ™
βˆ’2
𝑏
1
12
6βˆ™
βˆ’3
6
1
36
We accept that for positive numbers π‘₯, 𝑦 and all integers π‘Ž and 𝑏,
π‘₯ π‘Ž βˆ™ π‘₯ 𝑏 = π‘₯ π‘Ž+𝑏
π‘Ž
𝑏
π‘₯
π‘₯𝑦
π‘Ž
= π‘₯ π‘Žπ‘
NOTES! Write these down.
= π‘₯ π‘Ž π‘¦π‘Ž
We claim:
π‘₯π‘Ž
π‘₯𝑏
= π‘₯ π‘Žβˆ’π‘
π‘₯ π‘Ž
𝑦
=
π‘₯π‘Ž
π‘¦π‘Ž
for all integers π‘Ž, 𝑏
for any integer π‘Ž
Exercise 13
Exercise 14
2
16
19
=
195
17
=
17βˆ’3
Ponder this. . .
Reflect. . .
Think about it. . .
Meditate on the beach while doing yoga. . .
β€’ Exercise 15
β€’ Does
7 βˆ’1
5
=
5
7
?