MechonicsReviewTest
June 2OOg
Nqme
Thisyeor there werel$ creditspossibre
of g5 or aboutf!%of
1 TIre speedometerin a
car rloe.snof" mea.sure
"'
the
car'.svelocity because""l.r"itv
i, ;
(l) vecto. q,antitv
*d h,r, a dir-ecti'n a.ssociated rviti it
(2) r'ector quantity and
does not have a dir.ec_
tion a.siociatedMth it
(3) sc'alar.
quantity and ha.sa clirection
a.ssociatecl
rvith it
(+)
quantity and does not have
a clirection
::lol.T
a.ssocitrted
with it
2
pxrjectile launched-at an
angle of 45o above
{
tlr e h' ri z' ntal traveIs,1r..,;;h';i**;;,
C=,,,np*r"d
pxrjectile,.s
p_,i,'*t
:,l.
lf"
no air
triction, the actuai,theoretil,al
tt"J""tory of the pr0jectile
with air friction i"
(l) lo'uver.
and shorter
(J) higher and shorter
(2) lorver and longer
fal fri[fi", o,ra t,urg"r.
3 Cart A has a rnas.sof 2
kikrgrarnsand a speedof
3
,meters per second.- Cart B has a urers.s
of
3 kilograrli and a speed.rf
z lr*,"rr"plr'r""un,l.
Conrparedto the^ine,ti* *nJ'lffitud"
'o---'
uf
rrornenturn of cart A, cart
B ha.s
(l) tlre sameinertia
ancla smaller.rnagnitude
of
rttotttentutn
(2) the saureinertia
aud tlte sarnernagnitudeof
ntornentutn
(3) greater inertia
and a srnaller rnagnitucle
of
rrtornenturtr
(4) gr-eaterinertia ernd
the sante utagnitucleof
ntoutentuln
App*rxirnatelvh'w rnuc.rilime
d,e.s it take light
to travel frclrrithe Sun to
Earth?
( t ) 2.00 x l0-3 s
( t \ l . 2 Bx
l0o.s
(3) 5.OOx 102.s
(4) q.sox tores
the test
5 A rock fall.s from rest a verticzrl distance of
0.72 neter to the surface of a rllanet in
0.63 second. The magnitude of the ac.ieleration
due to gravity on the planet is
( 1 ) l.l rnls2
(3) 3.6 m/s2
( 9 \ 2.3
n't/s2
(4) 9.8 m/.s2
6 T*,, stones, A and B, are thrown horizontallv
fiom the top of a cliff. Stone A lias an iniiial
speed of 15 meters per secondand stone B has
an initial speed of 80. meters per second.
Cornpared to the time it tal<esston^eA to reach
the ground, the time it takesstoneB to reach the
glound is
(1) tlie same
(3) half as sreat
(2) twice as great
(4) four tirrls a.sgreat
.
7 The speed of an object undergoing constant
acceleration increases frorn g."0 nieters per
secondto 16.0rnetersper secondin 10. secoricls.
How far does the object travel during the
I0. seconds?
(i) 3.6 x 102rn
(3) t.Z x 102nr
(2) I.6 x 102rrr
(4) 8.0 x 10rrn
A l20Gkilogram space vehicle travels at
4.8 rnete^rs
per secondalong the level surface of
Mars. If the rnagnitudeof tire gravitationalfield
strength on the surface of Mais is S.7 newtclns
per kilogram, the magnitude of the nonnal force
tuctingon the vehicle is
(r) 320N
(2) e30N
(3) 4400N
(4) 5800N
9 Which diagrarnrepresentsn box in erluilibriurn?
5 N.._'l
Box
F
5N
f
5N
( 1 )
5N
(3)
2N
A
Box
- ---r- r_
5N
5N
2N
2N
(4)
(2)
10 The cliagrarnbekw shorvsan object moving counterclockwise around a liorizontal, circular track.
Horizontaltrack
Which diagramrepresentsthe direction of both the object'.sveloCrtyand the centripetal force acting on the
object r,r'henit is in the position shou,n?
>l
+<
o l
> |
ll t <
=
. = l
9 t
o l
-
Centripetal
Force
( 1 )
Phrsic*Junc'08
Centripetal
Force
l o
l o
l o
.a=l - t
or
g l
Centripetal
Force
-l
Centripetal
Force
t os
lr 0o '
or
> t
Jr €
(3)
(2)
i3l
(4)
lovERl
11 An airpltme flies rvith a -r'elocitv of 750.
kilornetersper hour, 30.0osouth of east.What is
the mngnitudeof the eashvnrdcomponentof the
velocity?
plane'.s
(1) 866kuilr
(2) 650.krn/h
(3) 433knr/h
(4) 375km/L
skier slideson waxedskisakrnga
12 An f3O-kilograrn
horizontal surface of snow at c<lnstantvekrcitl
ri'hile pushing with his poles. What is tlie l-rorizontal cumponent of the force putshing him
frrrr,rrard?
( i ) 0.05N
/ r ) 0 . 4N
n
A 60.-kilogramstudent climbs a ladder a vertical
distance of 4.0 meters in 8.0 seconds.
Approxirnately hor,v much total work is done
against glavity by the student during tlie clirnb?
( I ) 2 . 4x 1 0 3J
(2) 2.9x 102J
18 A car travels at constant speed u up a hill frorn
point A to point B, as shown in the diagram
belorv.
(3) 4 0 N
(4) 4 N
Horizontal
l 3 A l750-kilogranr car travels at a constant speed
of I5.0 meters per seconclaround a horizontal,
circular track with a radius of 45.0 meters. The
rntrgnitucleof the centripetal force acting on the
car is
( l ) 5 . o oN
(2) 583N
(3) 8750N
(4) 3.94x 105N
11 A 0.4s-kikrgrtun footliall traveling at tr speeclof
22 rneters per seconcl is caught bv an
S"l-kilogramstationary receiver. If the football
coures to rest in the receit'er's arllls, tlie
milgnitucle of the impulse irnpaltecl to the
receiverby the ball is
( 1 ) 1800N.s
( 2 ) 9 . 9N . s
(3) 2.4x 102J
(4) 3.0x I0r j
(3) 4 . 4 N . s
(4) 3 . 8N . s
As the car trnvels frorn A to B, its gravitational
potentinl energy
(1) increasesand its kinetic energy decreases
(2) increasesand its kinetic energy rernainsthe
salne
(3) remains the same and its kinetic energy
decleases
(4) remains the same and its kinetic energ/
rernainsthe same
I9 What is the mnximum atnount of wor* that a
ntotor can do in 10. seconds'P
6000.-r.vatt
( 1 ) 6 . 0x I O t J
(2) 6.0x 102J
(3) 6.0x 103J
(4) 6.0x IOaJ
Note that question 15 has only three choices.
i5 A carpenterhits a nail witli a ltatnuter.Comparecl
to the uragnitudeof the force the hatntner exerts
on the nail, the rltrgnitude of the force the ntril
exets on the hiruttner during contact is
(I ) less
(2) greater
(3) the same
16 As a rneteor moves frotn a distanceof 16 Earth
raclii to a distanceof 2 Eafth radii frorn the center
force
of Eath, the rnagnihrdeof the gr:avitational
behl'eenthe tneteor anclEtrrth bectttnes
(t) * as great
(3) 64 tirles as great
(2) B times a-sgreat
(4) 4 times as great
36 The nass of a paper clip is approximately
(l) 1x106kg
(3) 1 x I0--rkg
(2) I x I 0 3 k !
(4) l x I O a k g
37 The graph below representsthe displacementof
an <lllect moving in a str-aightline is a function
ol tinre.
Displacementvs. Time
16
* l z
c
a
L
o
()
Itn
( 1 )
A"
(2)
ttn
(3)
a
e
0
0.0 2.0
o
4.0 6.0 8.0
Time (s)
10.0
39 A block weighllg 10.0 newtons is on a ramp
inclined at 30.0. to the horizontal. A
3.O-newton force of friction, .S, acts on the block
"t
it T pulled up the t"mp dt constant velocity
with force F, which is p_aiallelto the ramp, as
shown in the &agram below.
(4)
(Vectorsnotdrawnto scale)
What is the magnitude of force F?
( 1 ) 7.0N
(2) 8.0N
40 A 2S-newton horizontal force northward and a
3S-newton horizontal force southward act
concurrently on a lS-hlogram oblect on a
frictionless surface. What iJ the magnitude of
'
the object's acceleration?
(1) 0.67m/sz
(2) L.7 rn/sz
\
o
(3) 16 rn
(4\ 24n
38 Which diagram best represents the qravitational
fbrceq {, between a satellite, S, aniEarth?
e
\
g
\l'htrt rvas the total distance traveled bv the
object clrrringthe I0.0-secondtime intervtrl?
(1) 0 nr
(2) B nr
I
I
(3) 2.3 m/s2
(4) 4.0 n/sz
(3) r0.N
(4) 13 N
4l The cliaglan belolv representshvo concurr-entforces.
Wltich vector representstlie f<rrcethat will produce equilibriuur with tliese two forces?
( 1 )
(2)
(3)
(4)
42 Which grapli best representsthe relationsl:ipbetrveenthe nagnitude of the centripetal acceleration
ancl
the speedof an object rtrovingin a circle of cionstantradiusp
(!O
AE
's-
O
F O
;Io
r-r O
I
l /
V
'Ac E
o
i-o
d O
r-r (J
Speed
( 1 )
ll
ruO
I
/
/
(EO
(E0
'A
i oE
e o
a o(J
E
'N
=o
F O
a O
r-r 0
r-r
Speed
(2)
Speed
(3)
I
I
Speed
(4)
before and after they c'ollide. Before the collision, massrrz^is
43
-- The diagrarnbelor,vrepresentstrvo r.nasses
stick together.
,""trg?r the right Jth rp""a o, and rnassnlB is at rest. Upon'collision,the two rnasses
After Collision
BeforeCollision
- n
/) v
\
\
t>-*) (
\-J
mA
mB
are
W6ich expressionrepresentsthe speecl,u', of the nassesafter the collision? [Assumeno outside ftrrces
actir-rgon rllAor nlp.J
,ll . + lll,,u
nI
/n\
\v/
\r/
Bl)
l?}.{ + '?l/J
,n.{
, l l . + , l l ' ,r
(/ Lr \\
1
\!t
lll,{t/
-
lll'.\+ tll'B
,rt,{D
44 Which c<lnrbinationof fundarnentalunits can be used to expressenergy?
(3) kg.ui/s2
(4) kg.m2/s2
(I) kg.m/s
(2) kg.rn2/s
45 An object is thrown vertically uprvarcl.Whicli pair of graphsbest representsthe object'skinetic energr and
gravitationalp<ltentialenerg'/ as functions of its displaceurentwhile it rises?
El
o
tr
UJ
.9
o
l'..
E)
CN
o
c
o
c
uJ
frl
UJ
tt \ \
(!
.g
:( Displacement
E
c
o
o
o-
ctl
o
c
IJJ
tE
F
,s
Y
Displacement
L
[..
t \
Displacement
( 3)
1,,
V
c
o
o
o- Displacement
(2)
c
o
o
Displacement
Displacement
( 1 )
cn
o
c
Lrl
.9
o
(E
F
C'I
cn
o
u
I
.9
o
.E
Y
o
tr
ut
(s
F
c
o
o
o. Displacement
Displacement
( 4)
I
Part B-2
Answer all questions in this part.
Direc'tions(52-61): Recordyour answersin the spacesprovidedin your answerbookiet.
52 The graph below represents the velocity of an
object traveling in a straight line as a function of
time.
Base your answers to questions 55 through 57 on
the information and vector diagram below
A dog walks 8.0 meters due north and then
6.0 meters due east.
Velocityvs. Time
U)
E 10
E
C)
O
R
E
g
Time (s)
Determine the magnitude of the total
&splacement of the object at the end of the first
6.0 seconds. [r]
DD
Using a metric ruler and the vector diagram,
determine the scale used in the diagram. [r]
DO
On the diagram in your ansuer booklet,
construct the resultant vector that represents the
dog's total &splacement. Ill
DI
Determine the magnitude of the dog's total
displacement. tll
Base your answers to questions 53 and 54 on the
information below.
A 65-hlogram pole vaulter wishes to vault
to a height of 5.5 meters.
53 Calculate the minimum amount of hnetic
energy the vaulter needs to reach this height if
air friction is neglected and all the vaulting
energy is derived from hnetic energy. [Show all
work, including the equation and substitution
with units.] tzl
54 Calculate the speed the vaulter must attain to
have the necessary hnetic energy. [Show all
work, including the equation and substitution
with units.l t2l
Physi*June'08
[11]
lovERl
Part C
Answer all questions in this part.
Dircctions (62-76): Record yolrl answersin the spacesprovided in your answerboclklet.
Basev<lurAnswersto <luestions62 through 64 on the infonnation below.
A kicked soccerball lias an initial vekrcity of 25 meters per secondat an angle of 40.'
abovethe hodzontal, level ground. [Neglect fliction.]
62 Calculatethe rlagnitude of the vertical conponent of the ball'.sinitial velocity. [Show all work, including
the erluationand substitutionrvith units.] t2l
63 Calculate the maxirnurnheight the ball reachesabor.eits initial position. lShow all work, including the
equation and substitutionwith units.] t2l
64 On the cliagralt in your onsocr booklt't, sketcli the path of the ball's flight from its initial position at
point P until it returns to level grouncl. tll
Basevour rurswersto questions68 through Tl on the infonnation and data table bekrw.
The spr-ingin a dart launcher has a spring c'onstantof 140 newtons per rneter'. The
Iuuncher h*s ii" power settings,0 through 5, rvitli each successivesetting llavilg a spring
compression0.0i0 rneter beyond tlie plevious seiting. During.testing,.the launcher is
aligneclto the vertical, the spring is cornpressed,and a dart is fir.edupward.^Themaximum
.,eitical disrrlacementof theilart in eachlest trial is ureasttred.The resultsof the testing are
shown in tlie table belorv.
DataTable
Dart's Maximum
Spring
Power
Vertical
Setting Compression(m) Displacement(m)
.0.00
0.000
0
0.29
0.020
1
1.14
0.040
2
2.57
0.060
3
4.57
0.080
4
7.10
0.100
5
Dircctiotts(68-6g): Using the inf<rrnrationin the data table, construct a graph on the grid in your onsuer
lnoklct, following the directions below.
68 Pftrt the data points for the dart'.sntaxirnuurvertical displacementversusspring compression. [1]
69 Draw tlie line or curye of best fit. tll
sqri1g that causesthe
70 Using infonnation frour youl graph,calculatethe energ.vProvidedby lhe compres.sed
the equation
including
work,
all
of i.50 meters. [Sliow
dart io achievea rlaxinun v-erticaldisplacerr-rent
and substitutionwith units.] t2l
7I Deteluine the lragnitude of the frrrce,in nervtons,needed to courpressthe spring 0.040 rneter. tll
il,o.4o.la3
)-r.re
,
ff,"viev Trrl
2OOE
A n s4 c ' )
7'
l,_
,
z-
/o _
t-
ll -
t 7 __,_
I L-
3L-
.J
,
5 a
7.E-
r
Yf
17**
v?
1'
t6
Y5
37 '--3831 -.
ltl-
tt
la
#
.-
'-lLl
l1 -
,
--
5?
);o yl"<c,.rerl =
m,lr,
./tJ_
35' /'^=
rre"lgF
6 . 0m
N
I
W+*+e
+
S
E
q
@
J6- 4^
D ,.rq.a, n,
J
CL
63-
57 ,
r,l,tpl<rs..,rn.l^'
--
GI^
P
Levelground
n
G8-61
u
o(, j." F
Dart's MaximumVerticalDisplacement
vs. SPringComPression
8.0
E 7.O
E
o
E 6.0
o
o
(E
CL
o
E
5.0
(g
o
4.0
o
E 3.0
5
.E
x
(g
= 2.0
.91
E(E
o 1.0
0.020 0.040 0.060 0.080 0.100 0 . 1 2 0
Spring GomPression(m)
10-
7t
C
'
=
| 4(<e
7t/. -zlo n5
i l " . | , - ' . ^i r 5
)-r',e
,
p,rviet Trrf
?oo 6
Nu. ,
Anilc"
/((
.y
A^54trs
t
-
lo
L
,I
L
t1
1 3 _
l
tt
7 J
E 3
l{l
3
T
Yf
1'
Ll
?
.1Ll
'/
L-!
v s J-
t 7 -;- v
3L
3-
37
36- J
3 1 2-
4a
J*2
ve
IE . L
3
t't L
I
l7
ILT
I
6
7
g '
I , I
z l
5 f
! 3
5a
'
);t
I
j
/r<c,,reol
=
s'o
l < 8 . I mv z
) ro()t.165K6
39 - /<^:
6;1Aq
2.
6 . 0m
N
W.
t'
,tre I c-
tE
I
s
56- 6^
D rar..u n
J
CL
vr,i v''nE
v. = v \ J
UK
I
A ,'A 5,n6
I
= 1 5 u r ( s i "q d l
{
63^ '',''','/'<)/
i
tp{ -(/n
r)',z(ar),J,,t,
), =l)n
,/l
,/1.K'ry
i
I
4-{^
I
I
I
)
,r/ g4sultu
57
d , r T i u tc . q e o t .
L.
mclc,
6a-61
Dart's MaximumVerticalDisplacement
vs. SPringComPression
of 5'"Fh
8.0
?c 7 . O
I
;
E
I
E 6.0
o
()
I
(E
ai 5.0
i5
.E
. CI
-. iI11
\
o
c
(-r
l\"
= 3.0
E
x(g
= 2.0
.9r
E(u
o 1.0
0.020 o.o4o 0.060 0.080 0.100 0.120
Spring GomPression(m)
-70 -
P €= | k t '
5
L
=. ) f 5
7l
a
I q(<e
=
5-6
7V. -zfo.5
f ^;4X
r =lf44 t',ur)
)it,\
/;-T\
Jt'-/\
':f-%
. o i ,J
J,lt
[.^o
"/o
Rr)o.
"f zL
46
45
44
100.0
85
97.8
95.7
83.2
qf
93.5
81.3
79.5
77.6
75.8
73.9
72.1
q6
43
42
10
88
70.2
tita
68.4
66.5
64.7
62.8
61.0
59.1
It
8Y
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
91.3
89.1
87.0
84.8
82.6
80.4
78.3
76.1
73.9
71.7
69.€
r,a
PD
/8.
7 7
51.7
49.9
48.0
46.2
44.3
42.5
40.7
38.8
7a
r.-.x
43.5
53
sG,
37.0 r 4
41.3
35.1
39.1
37.0
33.3
4 i
t1q
31.4
'lL,
63.0
60.9
58.7
56.5
54.3
52.2
50.0
47.8
45.7
13
'12
7-,
65.2
22
1€
18
17
16
15
14
115
cl -l
57.3
55.4
53.6
67.4
23
21
2C
laB
34.8
32.6
30.4
28.3
-/t
( ,q
L1
O'l
O,I
29.e Y '
i)
27.7
25.9
Y
24.0
t7
J to(Y
© Copyright 2026 Paperzz