191 A two-stage biomass dynamic model for Bay of Biscay anchovy: a Bayesian approach Leire Ibaibarriaga, Carmen Fernández, Andrés Uriarte, and Beatriz A. Roel Ibaibarriaga, L., Fernández, C., Uriarte, A., and Roel, B. A. 2008. A two-stage biomass dynamic model for Bay of Biscay anchovy: a Bayesian approach. – ICES Journal of Marine Science, 65: 191 – 205. A two-stage biomass-based state-space model with stochastic recruitment processes and deterministic dynamics was developed for the Bay of Biscay anchovy population. It is fitted in a Bayesian context with posterior computations carried out using Markov chain Monte Carlo techniques. The model is tested first on a simulated dataset and the effects of different modelling assumptions and of missing values evaluated. Then, it is applied to a real historical series of commercial catch and survey data from 1987 to 2006. Results are compared with those obtained by the standard assessment model for this stock, integrated catch-at-age analysis (ICA). From the posterior distribution of biomass in the latest year (2006), the distribution of unexploited biomass in 2007 can be derived assuming the distribution of recruitment in 2007 to be a mixture of the posterior distributions of past series recruitment. Hence, the effect of different catch options on future biomass levels can be quantified in probabilistic terms. Finally, directions for possible further improvements are indicated. Keywords: anchovy, Bayesian, Markov chain Monte Carlo, mixture distribution, state-space model, stock assessment. Received 2 March 2007; accepted 23 December 2007. L. Ibaibarriaga: AZTI-Tecnalia, Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain, and Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK. C. Fernández: IEO, Centro Oceanográfico de Vigo, Cabo Estai—Canido, Apartado 1552, 36200 Vigo, Spain. A. Uriarte: AZTI-Tecnalia, Herrera Kaia Portualdea z/g, 20110 Pasaia, Spain. B. A. Roel: Cefas, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK. Correspondence to L. Ibaibarriaga: tel: þ34 94 602 94 00; fax: þ34 687 00 06; e-mail: [email protected] Introduction Anchovy (Engraulis encrasicolus) in the Bay of Biscay is an important commercial species and is exploited by Spanish and French fleets (Uriarte et al., 1996). As it is a short-lived species (generally living up to 3 and at most 5 years), the population level depends strongly on the incoming year-class strength, which is highly variable and largely dependent on environmental factors (Motos et al., 1996; Borja et al., 1998; Allain et al., 2003; Fréon et al., 2005). At present, following a series of consecutive recruitment failures, the population is below the biomass reference points, which are the limit and precautionary population levels established by the International Council for the Exploration of the Sea (ICES) to provide advice (ICES, 2003), following several international agreements (Doulman, 1995; FAO, 1995). In 2005, the population was estimated to be at its lowest historical level (ICES, 2006), prompting the closure of the fishery during the second half of the year. In 2006, although a reduced total allowable catch (TAC) of 5000 t was set initially, the fishery was closed again in the second half of the year when the surveys estimated that the stock biomass was still low. Two research surveys, conducted for the implementation of the acoustic and the daily egg production method (DEPM), respectively, take place every year during the spawning period (May/ June) and provide indices of stock biomass and the age structure of the population (ICES, 2006, and references therein). Until recently, the procedure used at ICES combined these population indices with commercial catch data to provide a synoptic estimate of the state of the stock through application of integrated # 2008 catch-at-age analysis (ICA; Patterson and Melvin, 1996). This analysis models in terms of numbers-at-age, and assumes a period in which the fishing mortality is separable into age- and year-effects. However, because of the short lifespan of the species, a model based on fully age-structured population dynamics may not be the most suitable. Here, we investigate whether simpler models can provide good alternatives to ICA for the assessment of the stock. The simplest models of fish population dynamics are biomassbased (Hilborn and Walters, 1992). In their most basic form, models of this type describe the overall change in population level from one year to the next without making any specific assumption on recruitment, growth, or natural mortality. Another alternative to fully age-structured models are two-stage models (Collie and Sissenwine, 1983; Mesnil, 2003), which separate the recruits from the rest of the population in terms of numbers. This allows tracking of the population dynamics via recruitment, and is simpler and with lower demands on data than fully age-structured models. For Bay of Biscay anchovy, the acoustic and DEPM surveys provide biomass indices, and at the same time, newly recruited fish (age 1) form the larger fraction of the population and the main source of variability. This leads naturally to consideration of two-stage biomass-based models, an approach already used by Roel and Butterworth (2000) for the South African chokka squid (Loligo vulgaris reynaudii). State-space models provide a unified framework for describing animal population dynamics (Buckland et al., 2004; Thomas et al., International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved. For Permissions, please email: [email protected] 192 L. Ibaibarriaga et al. 2005). They consist of two time-series evolving in parallel: the state process, representing the evolution of population abundances in time, and the observation process, modelling the relationship between the observations and population abundance. Both these processes are often non-linear and non-normal. A Bayesian approach (Punt and Hilborn, 1997; Gelman et al., 2004) permits incorporation of expert knowledge through the prior distribution. It provides a coherent framework for uncertainty propagation, leading from prior knowledge to posterior knowledge (taking into account what has been learnt from the observation data) and subsequently into a predictive distribution. It allows one to make probabilistic predictions naturally under different management scenarios, and to compute risk in a decision-making context. Two general computational approaches are available for Bayesian inference: sequential Monte Carlo (Doucet et al., 2001) and Markov chain Monte Carlo (MCMC; Gilks et al., 1996). Both have been used successfully in fisheries (McAllister and Ianelli, 1997; Meyer and Millar, 1999a, b; Millar and Meyer, 2000a, b; Trenkel et al., 2000; Newman et al., 2006). Here, we develop a two-stage biomass-based model for the Bay of Biscay anchovy. The model can be cast in a state-space framework, though with limited stochasticity in the state equations. We perform Bayesian inference using MCMC methods. First we set up the state and observation equations, identify the unknown variables, define the prior distributions, describe the MCMC implementation, and demonstrate how to make predictions. Then we test the performance of the model and methodology on simulated data, evaluating the effect of different modelling assumptions as well as of missing values, and finally apply the method to a time-series of real commercial catch and survey data for the years 1987–2006. We illustrate how to derive catch options for 2007, starting from the posterior distribution of 2006 biomass and assuming a mixture distribution for the incoming recruitment based on historical estimates. Methods For modelling the dynamics of Bay of Biscay anchovy, we consider two periods within each year. The first begins on 1 January, when it is assumed that age incrementation occurs and age 1 recruits enter the exploitable population, and runs to the date when the monitoring research surveys (acoustics and DEPM) take place. The timing of the surveys varies slightly from year to year, but for the purposes of this model, it is assumed that both surveys take place on 15 May. The second period covers the rest of the year. The fraction of the year corresponding to the first period is denoted by f (hence, 15 May corresponds to f ¼ 0.375). The fractions from the beginning of year y to the time point within each period when commercial catch is assumed to take place are denoted by h1( y) and h2( y), respectively, with 0 , h1(y) , f , h2(y) , 1. Figure 1 provides a schematic display of the timing of events throughout the year. Let B(s( y), a) and C(s(y), a) denote population biomass and catch (in tonnes), respectively, of age class a (where class a+ will denote individuals aged a and older) at time instant s of year y. Recruitment in year y corresponds to age 1 biomass at the beginning of the year, and it is assumed to be equal in logarithmic scale to average recruitment (mR) plus some normally distributed process error with precision (inverse of variance) cR, i.e. logðRy Þ ¼ logðBð0ðyÞ ; 1ÞÞ NðmR ; 1 Þ: cR ð3Þ Taking into account the rate of biomass decrease, g, and the age 1 catch taken during the first period, age 1 biomass at survey time f is Bð fðyÞ ; 1Þ ¼ Ry expfgf g Cðh1ðyÞ ; 1Þ expfgð f h1ðyÞ Þg: ð4Þ Total biomass at survey time is the sum of age 1 biomass and the biomass surviving from the survey period of the previous year, taking into account the rate of biomass decrease and the catch taken: Bð fðyÞ ; 1þÞ ¼ Bð fðyÞ ; 1Þ þ Bð fðyÞ ; 2þÞ State equations The basic processes controlling the dynamics of closed (nonmigrating) and exploited fish populations are growth, recruitment, natural mortality, and fishing mortality or catch (Hilborn and Walters, 1992). Our model for the Bay of Biscay anchovy is based on that developed by Roel and Butterworth (2000) for the South African chokka squid. The population dynamics are described in terms of biomass with two distinct age groups, recruits or fish aged 1 year, and fish that are 2 or more years old. It is assumed that recruitment and catch occur instantaneously as pulses, whereas growth and natural mortality operate continuously in time, as described by the following deterministic differential equation: dBðtÞ ¼ gBðtÞdt; ¼ Bð fðyÞ ; 1Þ þ Bð fðy1Þ ; 1þÞ expfgg Cðh2ðy1Þ ; 1þÞ expfgð1 h2ðy1Þ þ f Þg ð5Þ Cðh1ðyÞ ; 2þÞ expfgð f h1ðyÞ Þg: ð1Þ where B(t) denotes the biomass at time t, and g is an instantaneous rate of biomass decrease accounting for intrinsic rates of growth (G) and natural mortality (M ), where g ¼ M 2 G, which are assumed year- and age-invariant. Integrating Equation (1) over the time interval (t0, t1) without recruitment and catch gives Bðt1 Þ ¼ Bðt0 Þ expfgðt1 t0 Þg: ð2Þ Figure 1. Timing of events taking place throughout the year for the Bay of Biscay anchovy population. 193 Two-stage biomass dynamic model for Bay of Biscay anchovy Applying Equations (4) and (5) repeatedly, the total biomass at survey time in any year y can be expressed as a function of the initial biomass, defined as the total biomass at the beginning of the second period of year 0, i.e. B0 ¼ Bð fð0Þ ; 1þÞ; ð6Þ and all previous recruitment and catch values: Bð fðyÞ ; 1þÞ ¼ B0 expfgyg þ y X Rj expfgð f þy jÞg j¼1 y X Cðh2ð j1Þ ; 1þÞ expfgð f þ1h2ð j1Þ þyjÞg j¼1 y X The Beta distribution allows a variety of shapes for its density function, making it a flexible tool for modelling proportions. The Beta distribution in Equation (9) has as mean the age 1 biomass proportion in the population at survey time, P( f( y)), and as variance (1 + ejsurv)21 P( f(y))(1 2 P( f(y))). This variance function agrees with the values of the standard errors estimated for the historical series of age 1 biomass proportion estimates from the DEPM surveys (standard errors are not available for the age 1 biomass proportion estimates arising from acoustic surveys). For each year and survey, it is assumed that observation Equations (8) and (9) are independent of each other. Independence of these equations between years y ¼ 1, . . . , Y and surveys surv = depm, ac is also assumed. Parameters and prior distributions Cðh1ð jÞ ; 1þÞ expfgð f h1ð jÞ þ y jÞg: j¼1 ð7Þ We interpret Equation (3) as a stochastic state equation incorporating process error for recruitment, whereas Equations (4) and (7) are deterministic state equations, expressing age 1 and total biomass at survey time each year as a function of the unknown total initial biomass, B0, annual recruitments, Ry, and the rate of biomass decrease, g. The unknown parameters are the rate of biomass decrease, g, the initial total biomass, B0, the average log-recruitment level, mR, the precision of the normal process error for log-recruitment, cR, the survey catchability parameters, qdepm and qac, and the parameters defining (or intervening in) the precisions of the observation equations, cdepm, cac, jdepm, and jac. The series of catches are assumed known. As a Bayesian analysis will be conducted, a prior distribution on the unknown parameters has to be elicited. We assume that all are independent a priori, so that the joint prior distribution is the product of the individual prior distributions, which are chosen to be Observation equations The biomass index from a survey is assumed to be proportional to the true population biomass at the time of the survey, with constant of proportionality q, referred to as the catchability coefficient. The survey is said to provide an absolute biomass index if q ¼ 1, and a relative index otherwise. In statistical terms, the most common error distribution assumption for survey indices is Lognormal (Hilborn and Walters, 1992), which is adequate for their non-negative real values. For each of the two surveys (surv=depm, ac) considered, we take as observation equation: 1 logðBsurv ð fðyÞ ; 1þÞÞ Normal logðqsurv ÞþlogðBð fðyÞ ; 1þÞÞ; ; csurv ð8Þ where the quantity on the left hand side is the logarithm of the survey surv index of total biomass at the time of the survey, f. The parameters qdepm and qac denote catchability of DEPM and acoustic surveys, respectively, and are assumed constant through time. The parameters cdepm and cac are the precisions (inverses of variances) of the Normal distributions (so that pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi expð1=csurv Þ 1 for surv = depm, ac are the coefficients of variation of the indices in the original scale, before taking logs). In addition to total biomass indices, the DEPM and acoustic surveys provide estimates of the age structure of the population. Let P(s(y)) ¼ B(s( y), 1)/B(s(y), 1+) denote the age 1 biomass proportion in the population at time instant s of year y. The observation equation for the age 1 biomass proportion estimated from each survey, Psurv ( f( y)) for surv = depm, ac, is taken as: Psurv ð fðyÞ Þ Beta ejsurv Pð fðyÞ Þ; ejsurv ð1 Pð fðyÞ ÞÞ : ð9Þ logðqdepm Þ Normal mqdepm ; logðqac Þ Normal mqac ; 1 cqac 1 ! cqdepm ! Gamma acdepm ; bcdepm ac cdepm with mean ¼ depm bcdepm ac cac Gamma acac ; bcac with mean ¼ ac bcac ! 1 jdepm Normal mjdepm ; cjdepm ! 1 jac Normal mjac ; cjac 1 logðB0 Þ Normal mB0 ; cB0 ! 1 mR Normal mmR ; cmR ac cR Gamma acR ; bcR with mean ¼ R bcR ! 1 logðgÞ Normal mg ; : cg ! ð10Þ The hyperparameters of these prior distributions and corresponding prior medians and 95% probability intervals are listed in Table 1. The prior distributions were centred at values that 194 L. Ibaibarriaga et al. were considered realistic and chosen to have substantial but not unreasonably large dispersion. In particular, qdepm and qac have prior median 1, corresponding to absolute abundance indices. The Gamma prior distributions of cdepm and cac have median 10, which corresponds to a coefficient of variation of around 32% for the Lognormal observation equations, whereas jdepm and jac are centred at 5. The prior median value assumed for g is 0.7, computed as g ¼ M 2 G, based on a natural mortality rate of M ¼ 1.2, and an average biomass growth rate G ¼ 0.5, estimated from weight-at-age data (ICES, 2006). The prior median of cR is 1.8, leading to a coefficient of variation for the recruitment process of around 85%. To analyse the sensitivity of posterior inference to prior assumptions, two sets of hyperparameter values are considered for the logarithm of initial biomass, log (B0), and the average of the log-recruitment series, mR. For the first set of priors, mB0 is set equal to the midpoint of the range of observed (for the real dataset) DEPM and acoustic total biomass indices (in log scale) and mmR is set equal to the midpoint of the range of the observed (for the real dataset) age 1 biomass indices (in log scale) projected backwards to the beginning of the year using the prior median value of g ¼ 0.7. For the second set of priors, we consider larger means. The variances of log (B0) and mR are fixed at 1 and 2, respectively, leading to a wide range of plausible values, as can be seen from the prior credible intervals listed in Table 1. Joint posterior distribution From Bayes’ theorem, the joint posterior probability density function (hereafter pdf) of the unknowns (parameters and states) in a state-space model is proportional to the product of the pdfs of observations, states and priors: pð param, statesjobservÞ / pðobservj param, statesÞpðstatesj paramÞpð paramÞ: ð11Þ Substituting in Expression (11) the pdf of the observation equations in (8) and (9), the pdf of the state equations in (3) and the product of the prior pdfs in (10), the joint posterior pdf is Y Y fN ðlogðBsurv ð fðyÞ ; 1þÞÞj logðqsurv Þ surv y[Isurv;1þ 1 þ log ðBð fðyÞ ; 1þÞÞ; csurv Y Y jsurv fB ðPsurv ð fðyÞ Þje Pð fðyÞ Þ; ejsurv ð1 Pð fðyÞ ÞÞÞ surv y[Isurv;prop 1 fN logðRy ÞjmR ; cR y¼1 Y Y fN ðlogðgÞÞfN ðlogðB0 ÞÞfN ðmR ÞfG ðcR Þ Y fN ðlogðqsurv ÞÞfG ðcsurv ÞfN ðjsurv Þ surv Y Y Y I½Bð fðyÞ ; aÞ . 0; ð12Þ y¼1 a¼1;2þ where Isurv,1+ and Isurv,prop are vectors indexing the years y for which there is a total biomass index and an age 1 biomass proportion estimate from the appropriate survey (to exclude missing values). The first three lines in Equation (12) are the observation equations, the fourth line contains the state process for recruitment, and the fifth and sixth lines correspond to the prior distribution of the parameters. The last line in Equation (12) is a product of indicator functions, which are equal to 1 if the restriction within the brackets is fulfilled, and to 0 otherwise. From Equations (4) and (7), this implies that the rate of biomass decrease g must be small enough, and initial total biomass B0 and annual recruitments Ry large enough, to support the recorded catch levels across years. The restrictions written in Table 1. Hyper-parameters specifying the two prior distributions and corresponding medians and 95% central credible intervals for survey catchabilities qsurv, the parameters defining and intervening in the precision of the observation equations csurv, and jsurv for surv¼depm,ac, the initial biomass B0, the average log-recruitment level mR, the precision of the normal process error for log-recruitment cR, and the rate of biomass decrease g. Parameter Prior 1 Prior 2 Hyper-parameters Median (95% CI) Hyper-parameters Median (95% CI) m ¼ 0 1 (0.1, 16.0) m ¼ 0 1 (0.1, 16.0) q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . surv . . . . . surv c ¼ 0.5 c ¼ 0.5 q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .q. surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . csurv ac . . . . .¼ 0.8 10 (0.2, 65.1) ac . . . . .¼ 0.8 10 (0.2, 65.1) . . . . . surv ............................................... . . . . . surv ............................................... ¼ 0.05 b ¼ 0.05 b c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . surv . . surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . jsurv mj . . . . .¼ 5 5 (0.6, 9.4) mj . . . . .¼ 5 5 (0.6, 9.4) . . . . . surv ............................................... . . . . . surv ............................................... cj . . . . .¼ 0.2 cj . . . . .¼ 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . surv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m ¼ 10.5 36 316 (5 116, 257 806) m ¼ 10.9 54 176 (7 631, 384 602) B0 B B 0 0 ......................................................... ......................................................... c ¼ 1.0 c ¼ 1.0 B B 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mR mm ¼ 9.8 9.8 (7.0, 12.6) mm ¼ 10.7 10.7 (7.9, 13.5) . . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c ¼ 0.5 c ¼ 0.5 m m R R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cR ac ¼ 4 1.8 (0.5, 4. 4) ac ¼ 4 1.8 (0.5, 4. 4) . . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ¼ 2 b ¼ 2 b c c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mg ¼ log (0.7) 0.7 (0.1, 5.0) mg ¼ log (0.7) 0.7 (0.1, 5.0) g ......................................................... ......................................................... cg ¼ 1 cg ¼ 1 qsurv 195 Two-stage biomass dynamic model for Bay of Biscay anchovy Equation (12) indirectly imply that we treat the catch as dissagregated by age class in the first period of the year, but without disaggregation in the second period. If treating the catch as dissagregated by age in the second period also was considered more suitable, it would be enough to replace the current restrictions by the stronger ones Pa¼ 1,2+ I[B(1(y), a).0], which correspond to changing the time point for the restrictions from survey time f to the end of the year. From model Equations (3), (4), and (7) –(9), it is clear that likelihood-based estimators of the catchabilities qdepm and qac will be positively correlated among themselves, and negatively correlated with those for initial biomass B0, average log-recruitment mR, and biomass decrease rate g. At the same time, estimators of the last three parameters will be positively correlated among themselves. Note that if catches were all set to zero, there would be a complete lack of identifiability in the likelihood, and it would be impossible to estimate the parameters uniquely, because multiplying B0 and exp(mR) by any positive constant while dividing qdepm and qac by that same constant would leave the observation equations invariant. This problem is mitigated by the fact that there are positive catches, and by the prior distribution in a Bayesian context (because it centres the values of the unknown quantities around some levels, although there can be substantial prior uncertainty). Nevertheless, strong correlations will remain a posteriori. The general problem of strong correlation between catchability and recruitment estimators has already been noted by the ICES Working Group on Assessment of Mackerel, Horse mackerel, Sardine, and Anchovy (WGMHSA; see ICES, 2006), whose usual response has been to consider that the DEPM provides absolute indices (qdepm ¼ 1; note that this is interpreted as perfect prior knowledge in a Bayesian context). The reasoning underlying this procedure is that for the implementation of the DEPM, all biological parameters involved in the estimation process are measured and are assumed to be estimated without bias from the surveys. Similarly, the issue of correlation between estimators of the rate of biomass decrease, g, and average log-recruitment, mR, could be addressed by assuming that one of them is known without error. A common assumption in most of the assessment models is that natural mortality is known. Therefore, at present it would seem more plausible to fix g than mR. MCMC implementation We sample from the joint posterior distribution in Equation (12) using MCMC techniques. A MCMC algorithm to sample from a multidimensional distribution (such as the posterior pdf here) works as follows. It is started from any arbitrary vector. Then, each component (or subset of components) of the multidimensional vector is sampled in turn, conditioning on the current values of the other components. Repeating the latter step a large number of times, the draws can for most purposes be used as if they were from the joint multidimensional distribution. Thus, instead of sampling from the original high-dimensional distribution, one samples from lower-dimensional conditional distributions derived from it, a much simpler problem. MCMC is particularly well suited to the Bayesian setting, where often one encounters complex high-dimensional posterior distributions which need to be explored via simulation. The book by Gilks et al. (1996) provides an accessible introduction to MCMC. A main issue with MCMC is to decide at which point the chain has converged (i.e. when the samples are truly representative of the multidimensional distribution). The draws have to explore the whole domain, so the chain has to be long enough and the draws kept must be independent of the starting vector. Start-up effects and autocorrelation within the chain are usually mitigated by discarding an initial number of draws (the so-called burn-in period), and by keeping only one draw every several iterations (referred to as thinning), respectively. The length of the chain, the burn-in period, and the thinning interval should all be long enough to ensure convergence. Cowles and Carlin (1996) present a comparative review of commonly used convergence diagnostics. The free software CODA (Convergence Diagnostics and Output Analysis; Best et al., 1997) provides a suite of functions to examine MCMC draws. Visual inspection of the traces is also important to understand the behaviour of the chain (Gilks et al., 1996). MCMC algorithms should always be run several times from different starting vectors, checking that posterior results from the different runs are practically indistinguishable. BUGS (Bayesian inference Using Gibbs Sampling) is a software that implements Bayesian analysis using MCMC (Spiegelhalter et al., 1996; Gentleman, 1997; Lunn et al., 2000). It can be freely downloaded from http://www.mrc-bsu.cam.ac. uk/bugs/. The sampling method for each conditional distribution is chosen automatically by the program, depending on conjugacy, concavity, or other properties (Lunn et al., 2000). BUGS is flexible and easy to use, avoiding the need to write specific computer code in a low-level language and facilitating the routine implementation of MCMC methods. Examples of the use of BUGS in fisheries can be found in Meyer and Millar (1999b), Mäntyniemi and Romakkaniemi (2002), and Michielsens et al. (2006). The BUGS code for our model consists of observation Equations (8) and (9), Equations (3), (4), and (7) describing the population dynamics, and the prior distributions in Equation (10). The restrictions on g, B0, and Ry imposed by the positive catch values are handled using the following programming trick: auxiliary Bernoulli variables are introduced, where the probability of the assumed realized values is 1 if the restrictions are fulfilled, and 0 otherwise (this is coded using the so-called step function). From Equation (12), the conditional posterior distributions are Normal for log(qdepm) and log(qac) and Gamma for cdepm, cac, and cR, so these parameters are sampled directly. The conditional posterior distributions of the rest of parameters are non-standard, and Metropolis –Hastings steps are used. Prediction Predicting the level of the population in the year after the last observation year, Y + 1, can be crucial to provide appropriate management advice. Biomass at the beginning of year Y + 1 is composed of the new recruits entering the population and the survivors from year Y. The survivors from year Y are obtained by projecting the posterior distribution of total biomass at survey time, B( f(Y ), 1+), forward to the beginning of year Y + 1 by the equation Bð0ðYþ1Þ ; 2þÞ ¼ Bð fðYÞ ; 1þÞ expfgð1 f Þg Cðh2ðYÞ ; 1þÞ expfgð1 h2ðYÞ Þg; ð13Þ where C(h2(Y ), 1+) is the commercial catch in the second period of year Y. In Equation (13), g and B( f(Y ), 1+) must be drawn from the posterior distribution, where the draws of B( f(Y ), 1+) are obtained 196 L. Ibaibarriaga et al. applying Equation (7), using the posterior draws of g, B0, and R1, . . . , RY. According to the process model in Equation (3), the predictive distribution of log-recruitment in year Y + 1 is log (RY+ 1) N(mR, 1/cR), with (mR, cR) drawn from the posterior distribution. However, in practice, it may be more appealing to assume for the predictive distribution of recruitment in year Y + 1 a mixture of the posterior distributions of the past recruitment series: RYþ1 Y X wy py ðjobservÞ; ð14Þ y¼1 where py(. j observ) denotes the posterior distribution of Ry, and PY wy are the weights of the mixture distribution, such that y=1 wy ¼ 1. These weights can be set based on information on incoming recruitment or on assumptions regarding future recruitment scenarios. Otherwise, all Y years could be weighted equally. Making assumptions on commercial catch in year Y + 1, a predictive distribution of biomass at any time point in that year or at the beginning of year Y + 2 can be derived. These biomass predictive distributions permit the evaluation of a variety of catch options under different recruitment scenarios, allowing managers and stakeholders to establish appropriate exploitation levels for the population in accordance with specific management targets. Results To assess the properties of the model and the methodology, we first considered simulated data. Only then did we analyse the real dataset of commercial catch and DEPM and acoustic survey indices for the years 1987–2006 (Table 2). For both simulated and real data, the two surveys (DEPM and acoustic) were assumed to provide estimates for 15 May in all years, so f ¼ 0.375. The values of h1( y) and h2(y) were estimated for each year as the average over the months in the corresponding period of the annual fractions from the beginning of the year to the middle of the month, weighted by the total monthly catch. All posterior results presented were based on MCMC runs with a burn-in period of 50 000 iterations, followed by 100 000 additional iterations, of which every tenth draw was kept (thinning to reduce autocorrelation). Each of these runs took 310 min on a PC with a 1.7 GHz Pentium processor. Runs from different starting vectors led to similar results. Because of the strong correlations a posteriori, the chains’ mixing was expected to be worse for the case when both surveys’ catchabilities were treated as unknown, compared with the case where qdepm ¼ 1 was assumed. This was confirmed by visual inspection of traces and plots of autocorrelation functions. Further examination of the chains’ behaviour was carried out with the convergence diagnostics provided in CODA. In particular, cumulative plots of quantiles showed stability after the burn-in period, and the retained draws passed the Geweke’s and the Heidelberger and Welch’s convergence diagnostics. Despite the generally high autocorrelation within the chains, the Raftery and Lewis diagnostic confirmed that the burn-in period and the chain length were sufficient to estimate the median and the posterior 95% credible intervals of the parameters with the reported accuracy. Greater accuracy could be obtained by running longer chains. Simulated data A simulated scenario consisting of population biomass, parameter values, and survey observations was generated trying to emulate the main features of real data. Commercial catches and their timing through the years were taken to be equal to those in the real dataset (Table 2). The annual rate of biomass decrease was chosen as g ¼ 0.68 (ICES, 2006). Initial biomass (B0), i.e. total biomass at the beginning of the second period in 1986, was taken to be 46 000 t. This was derived starting from the real DEPM age 2+ survey index for 1987 (no acoustic index was available in 1987; see Table 2) and projecting it backwards in time taking into account g and the catches taken in the intervening period. The annual recruitments, Ry, were taken to be the values estimated by the ICA model for the period 1992–2006, because the ICA estimates are only considered to be reliable for the past 15 years, the years it uses for model fitting. For earlier years, Ry was derived from the average of the real DEPM and acoustic age 1 indices in that year (Table 2) after accounting for the corresponding survey catchability estimates (qdepm ¼ 1, qac ¼ 1.3, based on the ICA estimates), and projecting the resulting value back to the beginning of the year taking into account g and the age 1 catch taken before the survey of that year. From these chosen values of g, B0, and Ry and from the catch data, time-series of age 1 and total biomass were calculated using the deterministic state Equations (4) and (7). The chosen values of B0 and Ry were sufficiently large and g sufficiently small to support the level of catches through the time-series. The parameters intervening in the precision of the observation equations were chosen as cdepm ¼ cac ¼ 10, jdepm ¼ jac ¼ 4.72, values derived from the estimated standard errors of the real DEPM survey indices (currently there is no estimate of the precision of the acoustic surveys). Simulated DEPM and acoustic total biomass indices and age 1 proportion estimates were drawn from observation Equations (8) and (9), conditioning on the “true” (chosen as explained above) age 1 and total biomass values and the “true” values of the parameters qdepm, qac, cdepm, cac, jdepm, and jac. The prior distributions that we specified (summarized in Table 1) do not take into account the restrictions on g, B0, or the annual recruitments Ry attributable to the positive catches. Truncating the prior distributions to the permissible area has the effect of shifting g towards smaller values and B0 and Ry towards larger values. Figure 2 illustrates this for g, Ry in 2005, which has low catches, and Ry in 2001, which has large catches, for Priors 1 (upper panels Figure 2) and 2 (lower panels). The larger the catches, the larger the effect of the restrictions. Inference was conducted for the simulated dataset using Priors 1 and 2. Two different settings were explored, depending on whether the DEPM survey was assumed to provide an absolute or a relative abundance index (qdepm ¼ 1 or unknown, respectively). Table 3 summarizes the posterior distributions of the parameters in the model, and Figure 3 displays the time-series of posterior medians and 95% credible intervals of recruitment and compares it with the “true” values (black dots) for Prior 1 (dashed lines) and Prior 2 (continuous lines). When catchabilities are treated as unknown for both surveys, they are underestimated. Owing to posterior correlations, this is reflected in overestimation of g, B0, and the recruitments Ry (left panel of Figure 3). Prior 2, which has larger means for recruitment and initial biomass, leads to slightly higher recruitments a posteriori. When the 197 Two-stage biomass dynamic model for Bay of Biscay anchovy Table 2. Historical dataseries of catch data (age 1 and total) by period with the corresponding annual timings (h1( y) and h2( y)) and DEPM and acoustic age 1 and total biomass indices. y h1( y) h2( y) C(h1( y), a) C(h2( y), a) Bdepm ( f(y), a) Bac ( f(y), a) a51 a 5 1+ a 5 1+ a51 a 5 1+ a51 a 5 1+ 1986 – 0.596 – – 5 080 – – – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1987 0.307 0.569 2 711 8 318 6 543 14 235 29 365 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1988 0.325 0.552 2 602 3 864 10 954 53 087 63 500 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1989 0.282 0.608 1 723 3 876 4 442 7 282 16 720 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1990 0.307 0.581 9 314 10 573 23 574 90 650 97 239 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1991 0.235 0.573 3 903 10 191 8 196 11 271 19 276 28 322 64 000 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1992 0.254 0.593 11 933 16 366 21 026 85 571 90 720 84 439 89 000 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1993 0.237 0.613 6 414 14 177 25 431 – – – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1994 0.233 0.580 3 795 13 602 20 150 34 674 60 062 – 35 000 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1995 0.292 0.550 5 718 14 550 14 815 42 906 54 700 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1996 0.276 0.573 4 570 9 246 23 833 – 39 545 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1997 0.208 0.637 4 323 7 235 13 256 38 536 51 176 38 498 63 000 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1998 0.199 0.632 5 898 7 988 23 588 80 357 101 976 – 57 000 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 1999 0.230 0.638 2 067 10 895 15 511 – 69 074 – – . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2000 0.257 0.575 6 298 12 010 24 882 – 44 973 – 98 484 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2001 0.298 0.595 5 481 11 468 28 671 73 198 124 132 90 928 137 200 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2002 0.183 0.614 1 962 7 738 9 754 6 352 30 697 17 723 97 051 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2003 0.300 0.654 625 2 379 8 101 16 575 23 962 15 732 29 430 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2004 0.299 0.588 2 754 4 623 11 657 14 649 19 498 37 124 46 018 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2005 0.114 0.449 102 790 372 2 063 8 002 2 405 15 603 . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . 2006 0.327 – 287 598 – 15 280 21 436 16 686 30 649 Figure 2. Prior distributions of g and recruitment (grey), and the effect of imposing restrictions through catches (black). Catches were low in 2005, and high in 2001. The top panels correspond to Prior 1 and the bottom panels to Prior 2. Vertical dashed lines indicate the medians of the distributions. 198 L. Ibaibarriaga et al. Table 3. Results for simulated data without missing values. Parameter DEPM relative DEPM absolute Prior 1 Prior 2 Prior 1 Prior 2 (1) 0.5 (0.3, 0.9) 0.5 (0.3, 0.7) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) q. . .depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 (0.4, 1.2) 0. 6 (0.3, 0.9) 1.2 (0.9, 1.5) 1.2 (0.9, 1.5) q. . .ac. . . .(1.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c (10) 7.3 (3.4, 13.4) 7.1 (3.4, 13.1) 7.6 (3.5, 14.3) 7.5 (3.4, 14.1) depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c (10) 6.6 (3.2, 11.8) 6.5 (3.1, 11.6) 7.2 (3.5, 13.0) 7.2 (3.5, 13.0) ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . depm (4.72) 5. 9 (4.1, 9.3) 6.1 (4.2, 9.6) 4.7 (3.7, 7.8) 4.7 (3.7, 7.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . ac (4.72) 4.3 (3.5, 6.1) 4.3 (3.5, 5.4) 4.9 (3.7, 8.7) 4.9 (3.7, 8.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 000) 101 424 (50 057, 214 726) 120 746 (70 215, 245 734) 50 361 (38 556, 66 644) 51 387 (39 448, 68 495) B. . .0. . .(46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m ( –) 11.3 (10.6, 12.0) 11.5 (10.9, 12.1) 10.7 (10.3, 11.1) 10.7 (10.3, 11.1) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c 1.7 (0.9, 2.9) 1.7 (0.9, 2.9) 1.6 (0.9, 2.7) 1.6 (0.9, 2.7) R (–) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g (0.68) 1.0 (0.7, 1.1) 1.0 (0.8, 1.2) 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) Posterior median and 95% credible intervals, depending on the prior and on assumptions regarding the catchability of the surveys. “True” values are given in brackets next to the parameter names. catchability of the DEPM survey is fixed at its “true” value of qdepm ¼ 1, posterior inference improves considerably, with posterior distributions that are closer to the “true” values and have less spread. In this case, inference on recruitment is not dependent on the prior chosen, and the “true” recruitment values are within the 95% posterior credible intervals in most of the years (right panel of Figure 3). Figure 4 provides some pairwise scatterplots of the posterior distribution under Prior 1 with DEPM taken as relative. As expected, these show positive correlation between the catchabilities qdepm and qac, negative correlation between qdepm and the initial biomass B0, the average log-recruitment level mR, and the biomass decreasing rate parameter g, although these last three parameters are positively correlated among themselves. Table 4 presents posterior inference when g is fixed to its “true” value of 0.68. With DEPM as relative, fixing g improves inference considerably, as can be seen by comparison with the results in Table 3. With DEPM as absolute, posterior inference was already good with unknown g (Table 3), so fixing g only improves the results marginally. The same conclusion emerges from Figure 5, which compares, under Prior 1, posterior inference on recruitment with g estimated (dashed lines) or fixed (continuous lines). Missing data are common in research surveys at sea. For the real data provided in Table 2, 30% of the survey indices are missing. To study the effect of missing data, the model was applied to the simulated dataset with the same missing values as in the real data. Figure 6 displays “true” values (black dots), and posterior medians and 95% credible intervals of recruitment for the Figure 3. Results for simulated data without missing values, with g estimated: posterior median and 95% credible intervals of recruitment under the two priors (dashed line and open square for Prior 1 and solid line and cross for Prior 2). The left panel is for the case in which DEPM is taken as relative and the right panel when it is absolute. The black dots represent the “true” values of recruitment. 199 Two-stage biomass dynamic model for Bay of Biscay anchovy Figure 4. Results for simulated data without missing values, g estimated, Prior 1, taking DEPM as relative: pairwise scatterplots of the posterior distribution of some parameters. simulated dataset without (dashed lines) and with (continuous lines) missing values, under Prior 1 (with g estimated). Clearly, the presence of missing values leads to larger uncertainty in the results. The differences are smaller in the last few years, because there are no missing values from 2001. Real data The real historical series of the Bay of Biscay anchovy abundance data is presented in Table 2 (ICES, 2006). The model was run with Priors 1 and 2 and with the DEPM index taken as relative (qdepm unknown) or absolute (qdepm ¼ 1). Always, g was treated as unknown and estimated. Posterior medians and 95% credible intervals are displayed in Figure 7 for the annual recruitments (dashed and continuous lines relate to Priors 1 and 2, respectively), and in Table 5 for parameters. When the DEPM index is taken as absolute, there is almost no difference between the posterior distributions obtained from the two priors, because fixing the value of a catchability parameter gets around part of the confounding issue. When DEPM is taken as relative, qdepm is estimated to be well below 1. This has the effect too of lowering the estimate of qac, while increasing those of g, B0, and the Ry. Figure 8 shows the posterior distributions (median and 95% credible intervals) of the spawning-stock biomass (SSB, defined Table 4. Results for simulated data without missing values when g is fixed to its “true” value (0.68). Parameter DEPM relative DEPM absolute Prior 1 Prior 2 Prior 1 Prior 2 (1) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) q. . .depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 (1.0, 1.4) 1.2 (1.0, 1.4) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) q. . .ac. . . .(1.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c (10) 7.6 (3.6, 14.0) 7.6 (3.6, 14.1) 8.0 (3.9, 14.6) 8.1 (3.9, 14.7) depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c (10) 7.2 (3.5, 13.1) 7.2 (3.6, 13.1) 7. 3 (3.6, 13.0) 7.3 (3.6, 13.1) ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . depm (4.72) 4.9 (3.8, 7.9) 4.8 (3.7, 8.3) 4.8 (3.7, 8.1) 4.7 (3.7, 7.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . ac (4.72) 4.7 (3.7, 8.2) 4.7 (3.7, 7.8) 4.9 (3.7, 7.9) 4.9 (3.7, 8.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (46 000) 48 110 (40 438, 57 778) 48 225 (40 553, 57 949) 48 171 (40 494, 56 632) 48 473 (40 717, 820) B. . .0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ............. m 10.7 (10.3, 11.0) 10.7 (10.3, 11.1) 10.7 (10.3, 11.0) 10.7 (10.3, 11.0) R ( –) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cR (–) 1.7 (0.9, 2.8) 1.7 (0.9, 2.8) 1.6 (0. 9, 2.7) 1.6 (0.9, 2.7) Posterior median and 95% credible intervals, depending on the prior and on assumptions regarding the catchability of the surveys. “True” values are given in brackets next to the parameter names. 200 L. Ibaibarriaga et al. Figure 5. Results for simulated data without missing values, Prior 1: posterior median and 95% credible intervals of recruitment under two assumptions of g (dashed line and open square when g is estimated, solid line and cross when g is fixed at its “true” value of 0.68). The left panel is for the case in which DEPM is taken as relative, and the right panel when it is absolute. The black dots represent the “true” values of recruitment. as total biomass at the peak of spawning period, which corresponds to survey time) series divided by the SSB in 1989, which is currently the year defining the ICES biological reference points for management (ICES, 2006, and references therein). It is reassuring that the posterior distributions of these relative SSBs are rather insensitive to the DEPM catchability assumption and the priors used. As already mentioned, the usual practice in ICES WGMHSA is to fix qdepm ¼ 1 and to estimate just qac. The tendency also is to fix the natural mortality rate at M ¼ 1.2. Here, we noticed with the simulated data that it was not possible to estimate both survey catchabilities and g, so hereafter we focus only on the case where the DEPM index is considered as absolute (qdepm ¼ 1). On the other hand, the rate of biomass decrease g ¼ M 2 G is estimated. Figure 6. Results for simulated data with g estimated, Prior 1: posterior median and 95% credible intervals of recruitment (dashed line and open square is without missing values, solid line and cross with missing values). The left panel is for the case in which DEPM is taken as relative and the right panel when it is absolute. The black dots represent the “true” values of recruitment. 201 Two-stage biomass dynamic model for Bay of Biscay anchovy Figure 7. Results for real data with g estimated: posterior median and 95% credible intervals of recruitment under the two priors (dashed line and open square for Prior 1, solid line and cross for Prior 2). Left and right panels correspond to DEPM taken as relative and absolute, respectively. Only the results for Prior 1 are presented, because this prior is considered to be more in accordance with expert knowledge of the stock from the historical catch series and survey data. We note, however, that posterior results are almost identical under both sets of priors. Figure 9 compares the prior (continuous lines) and posterior (dashed lines) densities of the recruitments from 1987 to 2006. Rather different posterior distributions are obtained for different years. Recruitment has been low since 2002, and at its lowest in 2005. The posterior medians and 95% credible intervals of SSB are compared with the estimates resulting from ICA (ICES, 2006) in Figure 10. The results show reasonable agreement, despite substantial differences in model formulation. There are missing survey values in a number of years before 2001, widening the credible intervals. Starting from 2001, however, there have been no missing values, so taking also the low recruitment estimates, posterior credible intervals for the final years are narrower. Prediction for 2007 The mixture of the posterior distributions of annual recruitments described in Equation (14) with all the years weighted equally is shown in Figure 11a. The density has three peaks of decreasing height, then decreases to zero with a long tail. Low, medium, and high recruitment regimes might be defined using the local minima between the peaks, as depicted in Figure 11a. This partition of the mixture distribution of annual recruitments could be used to define mixture weights for predicting under three different scenarios: low recruitment scenario—give positive equal weight to all years y for which the posterior median of recruitment falls in the leftmost interval, and assign zero weight to all other years; medium recruitment scenario—give positive equal weight to all years y for which the posterior median of recruitment falls in the central interval, and assign zero weight to all other years; high recruitment scenario—give positive equal weight to all years y for which the posterior median of recruitment Table 5. Results for real data. Parameter DEPM relative DEPM absolute Prior 1 Prior 2 Prior 1 Prior 2 0.4 (0.2, 0.7) 0.3 (0.1, 0.7) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) q. . .depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0.2, 1.0) 0.4 (0.1, 0.9) 1.2 (0.8, 1.7) 1.2 (0.8, 1.7) q. . .ac. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c 5.2 (2.3, 11.0) 5.1 (2.2, 11.1) 6.0 (2.6, 12.2) 5.9 (2.5, 12.1) depm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c 5.9 (2.2, 14.9) 6.1 (2.2, 15.3) 4.9 (1.7, 11.2) 4.9 (1.8, 11.3) ac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . depm 3.6 (2.3, 6.8) 3.6 (2.3, 6.1) 4.0 (2.4, 8.9) 4.0 (2.4, 8.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j. . ac 3.2 (1.9, 5.2) 3.1 (1.9, 4.9) 3.3 (2.1, 7.5) 3.3 (2.0, 6.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 (43 889, 239 707) 112 619 (47 660, 354 122) 36 140 (26 232, 53 755) 37 009 (26 644, 57 172) B. . .0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m 11.4 (10. 7, 12.3) 11.6 (10.8, 12.7) 10.5 (10.1, 11.0) 10.5 (10.1, 11.0) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c 1.5 (0.8, 2.5) 1.5 (0.8, 2.6) 1.3 (0.7, 2.3) 1.4 (0.7, 2.3) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g 0.9 (0.7, 1.1) 1.0 (0.7, 1. 2) 0.6 (0.4, 0.8) 0.6 (0.4, 0.8) Posterior median and 95% credible intervals depending on the prior and on assumptions regarding the catchability of the surveys. 202 L. Ibaibarriaga et al. Figure 8. Results for real data with g estimated: posterior median and 95% credible intervals of SSB relative to SSB in the reference year 1989 under the two priors (dashed line and open square for Prior 1, solid line and cross for Prior 2). Left and right panels correspond to DEPM taken as relative and absolute, respectively. falls in the rightmost interval, and assign zero weight to all other years. Figures 11b –d illustrate the distribution of recruitment in 2007 for each of these scenarios. Two quantities are central to the implementation of the precautionary approach to fisheries management by ICES: Blim, defined as the SSB level below which the population has a high probability Figure 9. Results for real data with g estimated, Prior 1, with DEPM taken as absolute: prior (solid line) and posterior (dashed line) densities of annual recruitments. 203 Two-stage biomass dynamic model for Bay of Biscay anchovy Figure 10. Results for real data. Comparison of posterior median (thick solid line) and 95% credible intervals (thin solid lines) and ICA point estimates (dashed line) of SSB. The Bayesian results are with g estimated, Prior 1, and with DEPM taken as absolute. of collapse, and Bpa (where the subscript pa stands for precautionary approach), defined as the level such that when SSB is estimated to be above it, the true stock SSB has a low probability of being below Blim. Starting from the posterior distributions of SSB (total biomass at survey time) in 2006 and biomass decrease rate g (under Prior 1 and taking qdepm ¼ 1) and assuming that no catch is taken in the second period of 2006, Table 6 shows the predictive probability that SSB in 2007 will fall below Blim and Bpa under different recruitment scenarios and catch options for the first period of 2007. For the Bay of Biscay anchovy population, Figure 11. Results for real data with g estimated, Prior 1, with DEPM taken as absolute. The different recruitment scenarios are (a) undetermined, (b) low, (c) medium, and (d) high, constructed using different weights for the mixture distribution used to predict recruitment. 204 L. Ibaibarriaga et al. Table 6. Results for real data. Catch C(h1(2007),1+) Undetermined R Low R Medium R High R P(B < Blim) P(B < Bpa) P(B < Blim) P(B < Bpa) P(B < Blim) P(B < Bpa) P(B < Blim) P(B < Bpa) 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..0.10 0.31 0.29 0.85 0.00 0.03 0.00 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 5. . . .000 0.19 0.37 0.53 0.95 0.00 0.10 0.01 0.03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 10 000 0.27 0.43 0.76 0.98 0.01 0.24 0.01 0.04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 15 000 0.33 0.49 0.90 0.99 0.05 0.42 0.02 0.06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 20 000 0.39 0.55 0.97 1.00 0.15 0.58 0.03 0.09 Predictive probability of the SSB in 2007 falling below the reference points Blim (21 000 t) and Bpa (33 000 t) under different recruitment scenarios and catch options for the first period of 2007. The timing of the catches h1(2007) and the percentage split of the total catch C(h1(2007),1+) between ages 1 and 2+ are taken as the average of the values in the historical series. B in the table denotes SSB in 2007. Blim and Bpa are currently set by ICES at 21 000 and 33 000 t, respectively. For a low recruitment scenario, even if no catches are taken in the first period of 2007, the probability of SSB being below Blim in 2007 is 30%. On the other hand, as for all shortlived species, good recruitment will drive the population back to within safe biological limits. Discussion Here, we developed a two-stage biomass model for the population dynamics of Bay of Biscay anchovy. Modelling the recruits of the population separately captures the major changes in the population of this short-lived species, which is mainly dominated by the incoming recruitment. On the other hand, modelling biomass instead of numbers of fish is sensible, because the overall population indices from the research surveys (DEPM and acoustic) of this population, as well as commercial catch values, are given in terms of biomass. The performance of the model was examined with simulated data and found to be satisfactory on the whole. Despite the relative simplicity of the model, results for real data were reasonably consistent with those obtained from ICA. The over-parameterization of ICA for the assessment of Bay of Biscay anchovy has been recognized by ICES (ICES, 2006), mainly because of the disaggregation of the population into six age classes, when no more than three are usually observed. The overall agreement indicates that the bulk of the information regarding the population dynamics is contained in the common elements of the two models, mainly in the two age-class biomass indices from the surveys and, to a lesser extent, in the total level of catches. Little is gained by ICA from including catch-at-age data into the observation equations, emphasizing the importance of monitoring the population by direct surveying (ICES, 2006). The model here has been set in a state-space framework (though with limited stochasticity in the state equations) that provides a general means of including different sources of uncertainty in the model, such as a variety of observation processes or uncertainty in the state equations. It has been fitted via Bayesian methods, using the free software BUGS, which has helped to illustrate one of the common problems in survey-based assessments: the near impossibility of determining the absolute level of the population. In this case, this was shown by the high posterior correlations between the surveys’ catchability parameters, annual recruitments, total initial biomass, and the rate of biomass decrease. If commercial catches were equal to 0, the overall level of these parameters could not be determined. Positive commercial catches and the prior distributions help somewhat to identify this level. Nonetheless, inference on recruitment levels will be dependent on the assumptions made on the surveys’ catchabilities and on the rate of biomass decrease, so the estimated recruitment values should be considered as relative rather than as absolute values. When both surveys are considered as relative (unknown catchabilities), examination of the simulated data shows that posterior results are not reliable. Therefore, if additional external information or expert knowledge on the level of the population was available, it would be advisable to use it to construct the prior distributions for initial biomass and annual recruitments. Additionally, the restrictions imposed by the observed catches can have non-negligible effects on the results. As expected, missing values in the data lead to wider posterior credible intervals for the recruitments. The Bayesian framework allows one to quantify the increased uncertainty for missing values, and potentially to incorporate information from additional sources via the corresponding prior distribution. The two-stage biomass model we have developed can be used not only to assess current population levels, but also to provide management advice using the predictive distribution of biomass. Predicting recruitment remains the major hurdle. Until an efficient predictor indicator for recruitment is found, defining the predictive distribution of recruitment as a mixture of the posterior distributions of past recruitments provides a flexible way to examine different recruitment scenarios while incorporating uncertainty. Starting from the predictive distribution of unexploited biomass (biomass without catch removals), it is straightforward for managers to evaluate and to quantify the effect of different catch options thereafter. The model could also be used to evaluate harvest control rules for the population, and to test the effectiveness of management measures such as annual quotas, two-step quotas, area, and season or other closures. Further work on this model that is currently being undertaken includes generalizing the deterministic differential equation describing biomass dynamics to a stochastic differential equation. This leads naturally to the full inclusion of process errors into the state equations (instead of just for recruitment), resulting in more realistic uncertainty description and risk quantification. However, as the model becomes more complex and the number of parameters to be estimated increases, additional sources of information, in the form of either data for the observation equations or expert knowledge for prior specification, will be necessary for sensible results to be obtained. Acknowledgements We thank the participants of the ICES Working Group on Assessment of Mackerel, Horse Mackerel, Sardine, and Anchovy for providing the data and encouraging this work, as well as two Two-stage biomass dynamic model for Bay of Biscay anchovy anonymous referees for useful comments that helped to improve the paper. The study was partially supported by the Industry, Commerce, and Tourism Department and by the Agriculture, Fisheries, and Food Department of the Basque Government, and by the Mathematics and Statistics Department at Lancaster University, UK, where the first author is registered as a PhD student. The paper is contribution no. 385 from AZTI-Tecnalia (Marine Research Unit). References Allain, G., Petitgas, P., Grellier, P., and Lazure, P. 2003. The selection process from larval to juvenile stages of anchovy (Engraulis encrasicolus) in the Bay of Biscay investigated by Lagrangian simulations and comparative otolith growth. Fisheries Oceanography, 12: 407– 418. Best, N. G., Cowles, M. K., and Vines, S. K. 1997. CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.4. MRC Biostatistics Unit, Cambridge. Borja, A., Uriarte, A., Egaña, J., Motos, L., and Valencia, V. 1998. Relationships between anchovy (Engraulis encrasicolus) recruitment and environment in the Bay of Biscay. Fisheries Oceanography, 7: 375 – 380. Buckland, S. T., Newman, K. B., Thomas, L., and Koesters, N. B. 2004. State-space models for the dynamics of wild animal populations. Ecological Modelling, 171: 157 –175. Collie, J. S., and Sissenwine, M. P. 1983. Estimating population abundance data measured with error. Canadian Journal of Fisheries and Aquatic Sciences, 40: 1871– 1879. Cowles, M. K., and Carlin, B. P. 1996. Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91: 883– 904. Doucet, A., de Freitas, N., and Gordon, N. 2001. Sequential Monte Carlo Methods in Practice. Springer, New York. 581 pp. Doulman, D. J. 1995. Structure and Process of the 1993 – 1995 United Nations Conference on Straddling Fish Stocks and Highly Migratory Fish Stocks. FAO Fisheries Circular, 898. 81 pp. FAO. 1995. Code of conduct for responsible fisheries. FAO, Rome. 41 pp. Fréon, P., Cury, P., Shannon, L., and Roy, C. 2005. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes. Bulletin of Marine Science, 76: 385– 462. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. 2004. Bayesian Data Analysis, 2nd edn. Chapman and Hall, London. 668 pp. Gentleman, R. 1997. A review of BUGS: Bayesian inference using Gibbs sampling. Chance, 10: 48– 51. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, London. 486 pp. Hilborn, R., and Walters, C. J. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Chapman and Hall, New York. 570 pp. ICES. 2003. Report of the Study Group on Precautionary Reference Points for Advice on Fishery Management. ICES Document CM 2003/ACFM: 15. 85 pp. ICES. 2006. Report of the Working Group on Assessment of Mackerel, Horse Mackerel, Sardine and Anchovy. ICES Document CM 2006/ ACFM: 36. 601 pp. Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. 2000. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10: 325– 337. 205 Mäntyniemi, S., and Romakkaniemi, A. 2002. Bayesian markrecapture estimation with an application to a salmonid smolt population. Canadian Journal of Fisheries and Aquatic Sciences, 59: 1748– 1758. McAllister, M. K., and Ianelli, J. N. 1997. Bayesian stock assessment using catch-at-age data and the sampling-importance resampling algorithm. Canadian Journal of Fisheries and Aquatic Sciences, 54: 284– 300. Mesnil, B. 2003. The catch-survey analysis (CSA) method of fish stock assessment: an evaluation using simulated data. Fisheries Research, 63: 193– 212. Meyer, R., and Millar, R. B. 1999a. Bayesian stock assessment using state-space implementation of the delay-difference model. Canadian Journal of Fisheries and Aquatic Sciences, 56: 37– 52. Meyer, R., and Millar, R. B. 1999b. BUGS in Bayesian stock assessments. Canadian Journal of Fisheries and Aquatic Sciences, 56: 1078– 1087. Michielsens, C. G. J., McAllister, M. K., Kuikka, S., Pakarinen, T., Karlsson, L., Romakkaniemi, A., Perä, I., et al. 2006. A Bayesian state-space mark-recapture model to estimate exploitation rates in mixed-stock fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 63: 321– 334. Millar, R. B., and Meyer, R. 2000a. Bayesian state-space modeling of age-structured data: fitting a model is just the beginning. Canadian Journal of Fisheries and Aquatic Sciences, 57: 43– 50. Millar, R. B., and Meyer, R. 2000b. Non-linear state-space modelling of fisheries biomass dynamics by using Metropolis – Hastings within-Gibbs sampling. Applied Statistics, 49: 327– 342. Motos, L., Uriarte, A., and Valencia, V. 1996. The spawning environment of the Bay of Biscay anchovy (Engraulis encrasicolus, L). Scientia Marina, 60(Suppl. 2): 117– 140. Newman, K. B., Buckland, S. T., Lindley, S. T., Thomas, L., and Fernández, C. 2006. Hidden process models for animal population dynamics. Ecological Applications, 16: 74 – 86. Patterson, K. R., and Melvin, G. D. 1996. Integrated catch at age analysis, version 1.2. Scottish Fisheries Research Report, 58. 60 pp. Punt, A. E., and Hilborn, R. 1997. Fisheries stock assessment and decision analysis: a review of the Bayesian approach. Reviews in Fish Biology and Fisheries, 7: 35– 63. Roel, B. A., and Butterworth, D. S. 2000. Assessment of the South African chokka squid Loligo vulgaris reynaudii: is disturbance of aggregations by the recent jig fisheries having a negative impact on recruitment? Fisheries Research, 48: 213 – 228. Spiegelhalter, D. J., Thomas, A., Best, N., and Gilks, W. R. 1996. BUGS 0.5, Bayesian inference using Gibbs sampling. Manual version ii. Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge, England. Thomas, L., Buckland, S. T., Newman, K. B., and Harwood, J. 2005. A unified framework for modelling wildlife populations. Australian and New Zealand Journal of Statistics, 47: 19 – 34. Trenkel, V. M., Elston, D. A., and Buckland, S. T. 2000. Fitting population dynamics model to account and cull data using sequential importance sampling. Journal of the American Statistical Association, 95: 363 – 374. Uriarte, A., Prouzet, P., and Villamor, B. 1996. Bay of Biscay and Ibero Atlantic anchovy populations and their fisheries. Scientia Marina, 60: 237– 255. doi:10.1093/icesjms/fsn002
© Copyright 2026 Paperzz