COLLEGE ALGEBRA II (MATH 010) FALL 2010 FINAL EXAMINATION(Solutions) 1. If log3 2 = A, log3 5 = B, and log3 7 = C write the following in terms of A, B and C. b) log3 140 a) log3 35 3 Solution: (a) log3 35 3 = log3 35 − log3 3 = log3 (5 × 7) − 1 = log3 5 + log3 7 − 1 = B + C − 1 (b) log3 140 = log3 (22 × 5 × 7) = 2 log3 2 + log3 5 + log3 7 = 2A + B + C 2. Solveh fori x: logx 625 16 = 4 Solution: x4 = ( 52 )4 x = 52 A 3. Let logb A = 2.227 and logb B = 1.365. Find logb B . Solution: A logb B = logb A − logb B = 2.227 − 1.365 = .862 4. Solve for x: log5 (x2 + 1) = 2 Solution: x2 + 1 = 52 x2 = 24 √ √ x = ± 24 = ±2 6 1 5. Suppose Javonia has $1000 to invest at 8% per year compounded quarterly, how long will it take before she has $1150? Solution: 4t 1150 = 1000(1 + .08 4 ) 1150 = 1000(1.02)4t 1150 4t 1000 = (1.02) 23 4t 20 = (1.02) h i 4t ln( 23 ) = ln (1.02) 20 ln( 23 20 ) = 4t ln(1.02) t= ln( 23 20 ) 4 ln(1.02) = 1.7644 years 6. Since 1950, the growth in world population in millions closely fits the function A(t) = 2600e0.018t , where t is the number of years since 1950. Estimate the population in the year 2003. Solution: t = 2003 − 1950 = 53 A(53) = 2600e0.018(53) ≈ 6750 million 2 7. (a) Graph the region that satisfies the constraints: x ≥ 0, y ≥ 0, x ≤ 3, y ≤ 4, 5x + 4y ≥ 20 (b) Find the maximum and minimum values of the objective function z = 10x − 8y + 28 subject to the constraints in part (a) and indicate the coordinates x and y at which they occur. Solution: 6 5 ( 45 , 4) 4 (3, 4) 3 2 (3, 45 ) 1 0 0 1 2 3 4 5 6 Figure 1: Region satisfying the constraints (a) Point ( 4 , 4) (b) 5 5 (3, 4 ) (3, 4) z = 10x − 8y + 28 Max/Min 4 Min 48 Max 26 3 8. For the arithmetic sequence an , find the common difference and write out the first six terms. an = 23 + n4 Solution: 2 n d = an+1 − an = ( 23 + n+1 4 ) − (3 + 4 ) n 1 = n+1 4 − 4 = 4 1 14 a1 = 23 + 41 = 11 a2 = 11 12 12 + 4 = 12 1 17 17 1 20 a3 = 14 12 + 4 = 12 a4 = 12 + 4 = 12 1 23 23 1 26 a5 = 20 12 + 4 = 12 a6 = 12 + 4 = 12 9. Evaluate 5k=1 k 3 − 9. P Note: This is different from 5k=1 (k 3 − 9) Solution: (13 + 23 + 33 + 43 + 53 ) − 9 = (1 + 8 + 27 + 64 + 125) − 9 = 216 P 10. For each sequence below, determine if the sequence is arithmetic, geometric, or neither. If arithmetic, find the common difference and 67-th term. If geometric, find the common ratio and 8-th term. 3 −3 (a) 2, −2, −6, −10, ... (b) −3 2 , 4 , 8 , ... Solution: (a) d = −4, an = 2 − 4(n − 1), a67 = 2 − 4(66) = −262 (b) r = − 21 , an = (− 23 )(− 12 )n−1 , a8 = (− 23 )(− 12 )7 = 11. Find the sum of the sequence whose general term is n−1 an = 3 4 n Solution: This is an infinite sum with a1 = 14 and r = 43 . Hence S= 1 4 1− 34 =1 4 3 256 12. In how many ways can a committee consisting of 3 faculty members and 5 students be formed if 7 faculty members and 12 students are eligible to serve on the committee? Solution: 7! 12! C(7, 3) × C(12, 5) = 3!4! × 5!7! = 27, 720 13. On the 14. For each equation shown, indicate whether it is the equation of a circle, parabola, ellipse, hyperbola, or non-conic. (a) 8x2 + 3y 2 − 7x + 13 = 0 (b) 6x2 − 6y 2 + 5x − 2y = 0 (c) 3x2 + 8x + 9y + 21 = 0 (d) 9x2 + 9y 2 − 4x + y − 7 = 0 Solution:(Use Ax2 + Cy 2 + Dx + Ey + F = 0) (a) A = 8, C = 3; AC = 24 > 0 Ellipse (b) A = 6, C = −6; AC = −36 < 0 Hyperbola (c) A = 3, C = 0; AC = 0 Parabola (d) A = 9, C = 9; AC = 81 Circle (A = C) 5 15. Sketch the graph of any two of the following: (a) x2 9 − y2 25 =1 (b) (x − 2)2 + 16(y + 3)2 = 64 (c) y 2 + 2x − 4y − 4 = 0 Solution: (a) x2 9 2 y − 25 =1 √ a=√ 3, b = 5, c2 = a2 + b2 = 34, c = 34 5 < 34 < 6 √ center= (0, 0), vertices= (±3, 0), foci= (± 34, 0) 13 12 11 10 9 8 7 6 5 4 3 2 1 0 −1 −7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 6 (b) (x − 2)2 + 16(y + 3)2 = 64 (x−2)2 (y+3)2 + =1 64 4 √ a=√ 8, b = 2, c2 = a2 − b2 = 60, c = 60 7 < 60 < 8 √ center= (2, −3), vertices= (2±8, −3), foci= (2± 60, −3) 2 1 0 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 −8−7−6−5−4−3−2−1 −2 −3 −4 −5 −6 −7 (c) y 2 + 2x − 4y − 4 = 0 y 2 − 4y = −2x + 4 (y 2 − 4y + 4) = −2x + 4 + 4 (y − 2)2 = −2(x − 4) 4p = −2, p = − 12 focal diameter= |4p| = 2 vertex= (4, 2), focus= (4 − 21 , 2) = ( 27 , 2) directrix: x = 4 + 12 = 92 4 3 2 1 0 −2 −1 0 −1 1 2 3 4 5 6 −2 −3 −4 7 16. Find the center, foci and vertices of either of the conics below. (a) 2x2 + y 2 − 8x − 6y − 1 = 0 (b) 2x2 − y 2 − 8x − 6y + 1 = 0 Solution: (a) 2x2 + y 2 − 8x − 6y − 1 = 0 (2x2 − 8x) + (y 2 − 6y) = 1 2(x2 − 4x) + (y 2 − 6y) = 1 2(x2 − 4x + 4) + (y 2 − 6y + 9) = 1 + 8 + 9 2(x − 2)2 + (y − 3)2 = 18 2 (x−2)2 + (y−3) =1 9 18 2 Ellipse: c = a2 − b2 = 9, c = 3 √ Center= (2, 3), foci= (2, 3 ± 3), vertices= (2, 3 ± 18) (b) 2x2 − y 2 − 8x − 6y + 1 = 0 (2x2 − 8x) − (y 2 + 6y) = −1 2(x2 − 4x) − (y 2 + 6y) = −1 2(x2 − 4x + 4) − (y 2 + 6y + 9) = −1 + 8 − 9 2(x − 2)2 − (y + 3)2 = −2 (y+3)2 (x−2)2 − =1 2 1 √ 2 Hyperbola: c = a2 + b2 = 3, c =√ 3 Center= (2, −3), foci= √ (2, −3 ± 3) vertices= (2, −3 ± 2) 8 17. Solve the system of equations x + 2y − z = −3 2x − 4y + z = −7 −2x + 2y − 3z =4 Solution: −2E1 +E2 =E2 → x + 2y − z = −3 − 8y + 3z = −1 −2x + 2y − 3z =4 2E1 +E3 =E3 → 4E3 → x + − 3E2 +E3 =E3 → − 81 E2 and → x + 2y − z = −3 − 8y + 3z = −1 6y − 5z = −2 2y − z = −3 8y + 3z = −1 24y − 20z = −8 x + 2y − − 8y + 1 − 11 E3 z = −3 3z = −1 −11z = −11 x + 2y − y − z=1 y = 18 + 38 = 12 x = −3 − 2( 12 ) + 1 = −3 (−3, 12 , 1) 9 z = −3 = 81 z =1 3 8z
© Copyright 2026 Paperzz