MAGNETIC FORM FACTOR OF NpAs2 : A CRYSTAL FIELD WAVE FUNCTION FOR 5f ELECTRONS ? G. Amoretti, A. Blaise, M. Bonnet, J. Boucherle, A. Delapalme, J. Fournier, F. Vigneron To cite this version: G. Amoretti, A. Blaise, M. Bonnet, J. Boucherle, A. Delapalme, et al.. MAGNETIC FORM FACTOR OF NpAs2 : A CRYSTAL FIELD WAVE FUNCTION FOR 5f ELECTRONS ?. Journal de Physique Colloques, 1982, 43 (C7), pp.C7-293-C7-299. <10.1051/jphyscol:1982742>. <jpa-00222349> HAL Id: jpa-00222349 https://hal.archives-ouvertes.fr/jpa-00222349 Submitted on 1 Jan 1982 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE Colloque C7, supplément au n°18, Tome 43, MAGNETIC FORM FACTOR OF NpAs décembre 1982 page C7-293 : A CRYSTAL FIELD WAVE FUNCTION FOR 5f ELECTRONS ? G. Amoretti , A. Blaise , M. Bonnet J.M. Fournier+ and F. Vigneron + DHF/FS, CEN Grenoble, ++ L1,B, CFN Saclay, 8bX, 28041 Grenoble 91191 Gif-sur-Yvetle **URF/DN, CEN Grenoble, , J.X. Boucherle Cedex, Cedex, 8bX, 68041 Grenoble , A. Delapalme , France France Cedex, France Résumé.- Les mesures du facteur de forme magnétique du neptunium dans la phase ferromagnétique de NpAs ? (T = 4,2 K, H = 4,6 T) sont analysées avec différentes hypothèses: valence de l'ion neptunium égale à 3,4 ou 5+, fonction d'onde de l'ion libre (couplage Russell-Saunders et couplage intermédiaire) ou état fondamental de champ cristallin £ a |J,m> . Compte-tenu de la précision expérimentale dont on dispose, il n'est pas pSssTble de conclure avec certitude quant à la valence de l'ion Np (3+ ou 4+). Abstract.- Neptunium magnetic form factor measurements in the ferromagnetic phase of NpAs ? (T = 4.2 K, H = 4.6 T) are analysed under different assumptions : NpJ + , Np 4 + or Np 5 + , with a free ion wave-function (Russell-Saunders and intermediate coupling scheme) or with a Crystal Field Wave function for 5f electrons :m ajj,m> The experimental results are compatible with either a 3+ or 4+ state. I. Introduction.- In studies of the electronic structures of actinide metals and compounds, one of the major problems is related to the determination of the number of 5f electrons associated with an actinide ion. In order to answer this question, a polarized neutron study of the neptunium magnetic form factor in NpAs 9 [1] was undertaken at the ILL. NpAsp crystalline structure is tetragonal (P4nmm space group) with a =3.930 (5) A and c = 8.137 (5) S at 4.2 K [2] . With no external magnetic field, NpAs~ orders at T„ = 52 K in a sine-wave modulated structure and becomes ferromagnetic at T = 1 8 K [3J ; the crystal is strongly anisotropic with the easy-magnetization direction along ?. In the present work,the measured (T=4.2 K, ify/c, H=4.6 T) magnetic form factor of neptunium in NpAsg is compared with theory : different 5f electrons wave functions are used corresponding to Np 5 + , Np 4 + and Np 3 + and also to different assumptions (a,b,c : see below) in the treatment of the ionic hamiltonian H . H may be written : H = Hc + H s o + Hr,£p, where Hc is the Coulomb interaction, H S o the spin-orbit interaction and HCEF the crystal field interaction. In the presence of H c only, the wave function is characterized by quantum numbers S and L. In the Russell-Saunders (RS) coupling scheme (assumption a : H = Hc + W s o with so < < Hc) the appropriate quantumnumber for neptunium ground state wave function is J = L -S with L and S given by Hund's rules. H Assumption b takes into account the strong spin-orbit coupling in the actinide ions : H = H + H with H ~ H , such that H mixes states of different S and L into the ground-state J manifold (intermediate coupling scheme). H r c r with Hrcc « H «H . C£r CEF so c Each of these assumptions is considered below : assumptions a and b in part II, assumption c in part III. A crystal field model is then developed in part IV. Assumption c introduces the crystal field interaction Fellowship of C.C.E. Bruxelles, Belgium. On leave from Univ. Parma, Italy. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982742 JOURNAL DE PHYSIQUF, C7-294 11. Magnetic form f a c t o r o f neptunium : f r e e i o n wave f u n c t i o n As t h e experimental form f a c t o r c r i b e d t h e s p a t i a l extension o f t h e t i o n s t a t e s o f neptunium w i t h i n t h e c a l c u l a t e d magnetic form f a c t o r may f = <j > 0 + ( f i g . 1 ) seems t o be n e a r l y i s o t r o p i c , we desmagnetization d e n s i t y f o r t h e d i f f e r e n t i o n i z a d i p o l e approximation. I n t h i s approximation, t h e be w r i t t e n : c2 < j 2 > . The r a d i a l i n t e g r a l s < j.> have been obtained by J.P. i n a r e l a t i v i s t i c ~ i r a c l ~ o cc ak J c u l a t i o n . Desclaux and A.J. Freeman [41 I n t h e RS c o u p l i n g scheme (abunpZLon a) Experimental r e s u l t s ( p f o b s ) and c a l c u l a t e d magnetic form f a c t o r s (pfcalc) then compared w i t h i n a least-square method (parameter : pcalc). are The r e s u l t s f o r 4+ (c2 = 1.75) and Np3+ (c2 = 2.33) RS f r e e ions are summarized i n Np5+ (c2 = 1.5), Np Table I and Fig. I : t h e i o n i z a t i o n s t a t e o f neptunium cannot be c l e a r l y i d e n t i f i e d , however t h e 5+ s t a t e seems t o be l e s s probable. This r e s u l t i s t o be compared w i t h the YSssbauer measurement, which a l s o discounts the presence of a 5+ s t a t e [51. I I I I I Fig.1. Magnetic form f a c t o r o f p t u n i u m (NpAs2 T=4.2 K ) : experimental r e s u l t s 4 (4 : h k t = 0, : h k L # 0) and c a l c u l a t e d p f i n t h e d i p o l e approximation f o r Np5+ 4+ 3+ , NP , NP . D ~ ~ ~ ~ R ((% ) u ~ x) Wave-function ~ ~ 5 f+2 : 3 ~ 4 NP4+ !if3 : 4 ~ 9 j 2 N Free i o n - RS N ~ ~ 5 +f 4 : 5 ~ 4 4 5 f 3 : 83% IgI2 , 15% 2 Np4' ion - 5 5 f 4 : 80% I4 , Free Np3+ np4+ sf3 9 9 : 0 . 6 0 1 ~,+ f Hg/2 2 1.50 4.7 0.86 1.45 4.0 0.64 1.30 4.2 0.69 1.475 4.4. 0.77 1.375 3.8 0.56 1.400 4.4 0.77 1.340 3.8 0.58 i n t e r m e d i a t e coupl4ng [51 17% + 3 H4 9 1 +0.007,9 0.801~,+ 9 7 > C r y s t a l - F i e l d ground s t a t e (R minimum) N ~ ~ 5 f+4 : 0.90]4,+3> + 0.4414,-1> Table I. Wave f u n c t i o n information used i n c a l c u l a t i n g p f : RS s t a t e s , i n t e r m e d i a t e 1~,m> The agreement c o u p l i n g s t a t e s o r c r y s t a l - f i e l d ground - s t a t e given as2 1 (pfobs)2]1'2 o r w i t h experiment i s given by R = [i - (pfobs pfcal c ) /i 2 1 1 x2 = N-P C 7 (ufobs- "fcalc) .,The 02 sum i s over a l l r e f l e c t ~ o n s (N) and o i s t h e - experimentaY u n c e r t a i n t y on k :, . ufobs. --------- As f o r t h e a c t i n i d e i o n s the s p i n - o r b i t i n t e r a c t i o n tfs, does n o t s a t i s f y t h e << H ) f o r RS c o u p l i n g scheme, we t r e e d a 5 f e l e c t r o n s wave-function c o n d i t i o n (tf l i n ~ f o r Np4+ and Np4+ ions [61 (aadurnpfion bi I n i n t h e i n t e r ~ f i ? d i a t e ~ c o u ~scheme t h e t h e o r e t i c a l expression f o r fcalc (fcalc = <j > + c2 <j2>) c2 was considered as 2 O 4 ) t o 1.75 ( IgI2) f o r Np4' and an a d j u s t a b l e parameter, v a r y i n g from 1.20-( H 3+ 9/2 3 5 from 1:50 ( Ha) t o 2.33 ( I,) for N ~ The ~ b e~s t f.i t ( f i g . 1 1 ) i s obtained f o r Np . and c = 2.10.: t h i s value i s i n good agreement w i t h t h e wave f u n c t i o n c a l c u l a t e d by c h i n and Lam 161 f o r t h e 5 f 4 c o n f i g u r a t i o n (80% 514, 17% 3 ~ 4 ) . Table I, Figs. I and I1 show t h a t t h e c a l c u l a t i o n s , w i t h and w i t h o u t intermed i a t e coupling, reproduce t h e experimental value w i t h n e a r l y t h e same agreement. Fig. I shows a l s o t h a t t h e c a l c u l a t e d curves, corresponding t o Np5+,Np4+ o r Np3+, are w e l l separated f o r o n l y t h e low values o f sinB/A , where no observation can be obtained : so, w i t h o u t any f u r t h e r i n f o r m a t i o n on t h e 5 f moment, t h e d i p o l e approximation i s n o t a b l e t o g i v e t h e neptunium i o n i z a t i o n s t a t e . The 5f c a l c u l a t e d moment,^ , i s given i n Table I : i t v a r i e s from 1.30 uB t o 1 . 5 0 ~ These r e s u l t s correspon8"g a s t r o n g r e d u c t i o n o f t h e n e p t u n i u 9 f r e e i g n and ma neeic moment : g J i s r e s p e c t i v e l y equal t o 2.4, 3.27 and 3.2 f o r Np , Np Npg+. T h i s r e d u t t i o i may be explained by t h e c r y s t a l f i e l d i n t e r a c t i o n HCEF t h a t we have n o t taken i n t o account up t o now. . J O U R N I ~ L DE PHYSIQUE F i .II.R (see Table I ) as a *on o f c2 when = c j > + c2 <j2> The fcalc o arrows i n d i c a t e c2 values f o r RS c o u p l i n g scheme (Np4+ and ~ p ~ f r e e i o n s ) . For ~ p 4 + , t h e best f i t ( R minimum) corresponds t o 1.90,which i s o u t s i d e o f t h e :?l;wed range (1.20, 1.75) f o r i n t e r m e d i a t e c o u p l i n g scheme. . 111. Magnetic form f a c t o r o f neptunium : c r y s t a l f i e l d wave f u n c t i o n f o r 5 f electrons ? A f t e r Hc and HSo, t h e n e x t most important i n t e r a c t i o n t o condider i s HCEF. I n a t e t r a ~ o n a lsystem ( f o r Np As2), t h i s i n t e r a c t i o n i s s p e c i f i e d by 5 parameters :B : where 0: a r e the Stevens e q u i v a l e n t operators. I n a l l our c a l c u l a t i o n s i n v o l v i n g the c r y s t a l f i e l d , we assume H >> H >> H EF and a q u a n t i z a t i o n a x i s p a r a l l e l t o t h e -f c a x i s (easy magnetizationCaxis Np $A! and t h e d i r e c t i o n of fl i n our p o l a r i z e d neutron experiment ). a? When comparing pfobs and ufcalc we s y s t e m a t i c a l l y i n v e s t i g a t e t h e p o s s i b l e c r y s - t a l - f i e l d + exchange ground s t a t e wave f u n c t i o n s o f N with ~ and ~ +N ~ :~I@+ = = c m m lJ,m> and The best f i t between theory and experiment i s obtained f o r ~ p w~i t h + = 0.90 14,+3> + 0.4414,-1> (See Table I and F i g u r e 111). Ne have then ucalc = 1 - 3 4 uB. I n t h e case o f Np4+, the lower value o f R (Table I ) i s obtained w i t h 9 9 1 7 + -> + 0.80 IT,9 + 7> + 0.00 17,9 - P>, l e a d i n g t o pcalc = 1 . 4 0 ~ ~ . 2 2 ]cp> = 0.60 I-, From [I] we know t h a t NpAsp presents a s t r o n g magnetic a n i s o t r o p y w i t h as the easy a x i s . The c a l c u l a t e d Iw must reproduce t h i s p r o p e r t y ; any a (4,?3>+ b14,+1> i s convenient f o r m a g n e t o c r y s t a l l i n e anisotropy. I n the case of 9 9 0 I 0 7 a17, t 7 > + a/;?, k2> + +I+, t2>, n a g n e t o c r y s t a l l i n e a n i s o t r o p y i s o n l y obtained f o r + - . 1.75 NPAS2 % 6 y + !62 = 0, a c o n d i t i o n whxch i s n o t f u l f i l l e d w i t h a =0.60,8 =0.80 and y = 0 . 4+ However, i n t h e case o f Np , a n i s o t r o p i c exchange i n t e r a c t i o n s may e x p l a i n t h e s t r o n g magnetic a n i s o t r o p y . So, w i t h i n a c r y s t a l - f i e l d model a p p l i e d t o an a c t i n i d e ion, i t i s again n o t p o s s i b l e t o decide between 3+ and 4+ Np s t a t e s . g 1.25 1.00 The most d i r e c t method t o t e s t CEF model c o u l d be t o measure t h e CEF energy ' t r a n s i t i o n s w i t h neutron I spectroscopy : u n f o r t u n a t e l y these measurements a r e n o t p r e s e n t l y p o s s i b l e due t o t h e low s i z e o f t h e a v a i l a b l e 1 Np As2 c r y s t a l s . - 0.75 0.50 0.25 Fig.111. Magnetic form f a c t o r o f neptunium (Np As2 T=4.2 K) : experimental r e s u l t s and calculated p f (0) f o r ~ p 3 + ( c r y s t a l - f i e l d wave f u n c t i o n : 0.9014,+3> + 0.4414,-1>) (4) 0.00 -0.25 - 0.00 I\!. 0.20 O.LO 0.60 0.80 SIN(THETA l/Un ( A - 1 I 1.00 C r y s t a l f i e l d model. A t e n t a t i v e approach t o f i n d t h e c r y s t a l f i e l d parameter ,:B and then t h e CEF energy l e v e l s and eigenstates, has been c a r r i e d o u t i n terms o f an e l e c t r o s t a t i c model which takes i n t o account the c h a r a c t e r i s t i c l a y e r s t r u c t u r e o f t h i s compound [TI. I n f a c t , an accurate a n a l y s i s o f t h e CEF c o n t r i b u t i o n s f o r t h e NpAs2 c r y s t a l s t r u c t u r e (anti-Fe2As) suggests t h a t t h e most i m p o r t a n t c o n t r i b u t i o n t o t h e Npc e n t r a l i o n comes from t h e i o n s i n the nearest c r y s t a l plahes. T h i s type o f s t r u c t u r e , which i s s c h e m a t i c a l l y shown i n t h e f i g u r e , i s composed of sheets o f c a t i o n s and anions, which a r e stacked i n t h e f o l l o w i n g sequence along t h e c - a x i s : -X-M- Y - Y - M - X - ( I n t h e case o f Np Asg, M E Np, X E AsI, Y 5 AsII). The M and Y atoms a r e v e r y close, so t h a t t h e s t r u c t u r e can be described as composed of M - Y - Y - M l a y e r s , separated from each other by a simple sheet of X atoms. The atoms i n the l a y e r s a r e c h a r a c t e r i z e d by p r e v a l e n t l y i o n i c mutual coup1 i n g [81. C7-298 JOURNAL DE PHYSIQUE Moreover, the basal planes of the unit c e l l s , which are b u i l t up with X atoms e s s e n t i a l l y covalently bonded, can provide a good screen from the outer ions, without contributing substantially t o the crystal f i e l d . This "layer" model i s supported also from the r e s u l t s f o r the e l e c t r i c a l r e s i s t i v i t y in similar Uranium compounds (UP2,UAsz,USb ) , where the conduction i s three times higherin the basal plane than in the perpen%iculardirection [91. The hypothesis underlying the application of the e l e c t r o s t a t i c approximation being precisely defined in the framework of the "layer" model, i t was then possible to study the behaviour of the energy levels f o r the CEF-splitted ground multiplet of Npn++, as a function of the charge of the As ions in the layer. The principal r e s u l t s of t h i s approach a r e the following : 7 1 N h3 con~igwiatcon: When a wavefunction of the type a l ' p9 + 6 l *1p + - 7 ' i s the ground s t a t e , i t i s always too rich in I?;> component, t o account f o r the low value of the saturation moment us, which cannot be obtained in a selfconsistent way, when the molecular f i e l d i s considered. However, a c l e a r tendency t o a decreasing of p i s shown as the charge of the As-ions in the s i t e s of type I1 approach the charac2eristic ionic value of -3, in the interval (-2,-3). This situation corresponds in f a c t t o a quasi-cubic CEF-Hamiltonian, with a ground s t a t e made up principally from the r -doublet of cubic symmetry, which would lead t o us = 1.33 PB ( i n RR-coupling schemes. Moreover, the ground s t a t e which provides the best f i t to the neutron form factor, in the hypothesis Np4+, i s of the T6-type rather than of the rg type. 2 ) NP3+ d4 condLgwu&Lon : The ground mu1 t i p l e t of the f 4 configuration (RS scheme) i s spliL into 5 s i n g l e t s and 2 doublets by the tetragonal CEF-Hamiltonian. The quoted e l e c t r o s t a t i c model shows t h a t a r t doublet i s clearljf the groudd s t a t e f o r the value -3 of the ionic charge of the ~ l ~ ~ - i oThe n scorresponding eigenfunction i s of the type : al+3> + b / i l > with coefficients a and b in good agreement with those found from the magnetic form factor analysis, and also accounting f o r the saturation moment value. 3 ) N 5', con igigunation : The energy-levels scheme obtained from the CEF electroc statyc mogel isdnever consistent with a ground s t a t e of the type : al?3> + bl+l> , whlch on the other hand could f i t the experimental form factor in the Np5+ hypothesis. This argues agaihst the choice of the 5+ charge s t a t e . Yl+ V. Discussion and conclusion The polarized neutrons measurements on NpAs2 have been analyzed, assuming localized 5f electrons with different possible neptunium ionization s t a t e s . This analysis, e i t h e r w i t h a f r e e ion o r w i t h CEF- wave functions, did not enable a choice t o be made between the 3+ and 4+ charge s t a t e s . The CEF analysis hhs been supplemented by an e l e c t r o s t a t i c model. Although the Np3+ hypothesis i s more a t t r a c t i v e from the point of view of a crystal-field interpretation of the ground-state-properties of NpAs2, the possibility of an Np4+ ion, as supported from Mossbauer spectroscopy [5land structural considerations[lO], cannot be disregardered. For Np4+, the e l e c t r o s t a t i c model seems t o be too rough t o completely account for the low ps value, suggesting the presence of more involved physical effects ( i n agreement w i t h the complex magnetic behaviour of t h i s compound in the ordered phases). More experimental information i s needed t o obtain information on the nature (CEF O r exchange) of the anisotropy. In particular, magnetization in high f i e l d s and polarized neutrons measurements on a single crystal o f NpAs2, in the temperature range around TN, would be useful. Moreover w i t h more accurate experimental data, i t would be i n t e r e s t i n g t o take i n t o account i n t e r m e d i a t e coup1 i n g e f f e c t s together w i t h CEF. Acknol edgments We would l i k e t o thank Dr F. Tasset o f the I n s t i t u t Laue Langevin f o r h i s appreciated h e l p d u r i n g experiment. References 111 DELAPALME A., MULAK J., BLAISE A., FOURNIER J.M., t o be published i n J.M.M.M. 30 (1982). i 2 1 mARVILLAT J.P., DAMIEN D., Inorg. Nucl. Chem. L e t t e r s 2 (1973) 337. [31 ROSSAT-MIGNOD J., BURLET P., QUEZEL S., BLAISE A., FOURNIER J.W., DAMIEN D., bIOJAKOWSK1 A., t o be published i n J.M.M.FI. 30 (1982). [41 DESCLAUX J.P., FREEMAN A.J., J.M.M.M. 8 (199i5) 119. BLAISE A., FOURNIER J .M., DAMIEN D., [51 BOGE M., CHAPPERT J., ASCH L., KALVIUS-G.M., 30 (1982). WOJAKOWSKI A., t o be published i n J.M.M.M. [61 CHAN S.K., LAPI D.J., The a c t i n i d e s : E l e c t r z i c S t r u c t u r e and Related P r o p e r t i e s (volume I ) E d i t e d by A.J. Freeman and J.R. Darby J r . Academic Press (1974). [71 AMORETTI G., BLAISE A., 12s Journees des A c t i n i d e s , Orsay (1982). 181 FLAHAUT J., J . o f S o l i d S t a t e Chem. 9 (1974) 124. [91 HENKIE Z., TRZEBIATO14SKI W., Phys. STat. Sol. (1969) 827. HENKIE Z., KLETOWSKI Z., Acta Physica Polonica A42 (1972) 405. [ l o ] DAMIEN D., CHARVILLAT J.P., HERY Y., Amer. C h e m x o c . Fleeting, New Orleans (1977). 35
© Copyright 2026 Paperzz