x4 βˆ’5x3 + 7x2 βˆ’5x +6 x2 βˆ’5x +6

Nine v.S.
Revision 20
Exercise 2
a) Show that the complex number 𝑖 is a root of the equation
π‘₯ ! βˆ’ 5π‘₯ ! + 7π‘₯ ! βˆ’ 5π‘₯ + 6 = 0
Plug in 𝑖 for x:
β†’ 𝑖 ! βˆ’ 5𝑖 ! + 7𝑖 ! βˆ’ 5𝑖 + 6
= 1 βˆ’ 5(βˆ’π‘–) + 7(βˆ’1) βˆ’ 5𝑖 + 6
= 1 + 5𝑖 βˆ’ 7 βˆ’ 5𝑖 + 6
=0
b) Find the other roots of this equation.
The conjugate of 𝑖 is – 𝑖 β†’ it is a root
π‘₯ βˆ’ 𝑖 π‘₯ + 𝑖 = π‘₯! + 1
Long division:
(π‘₯ ! βˆ’ 5π‘₯ ! + 7π‘₯ ! βˆ’ 5π‘₯ + 6) ÷ (π‘₯ ! + 1)
x 2 βˆ’ 5x + 6
x βˆ’ 5x + 7x βˆ’ 5x + 6
x 2 +1
4
3
2
π‘₯! + π‘₯!
βˆ’5π‘₯ ! + 6π‘₯ !
βˆ’5π‘₯ ! βˆ’ 5π‘₯
6π‘₯ ! + 6
6π‘₯ ! + 6
0
!
β†’ π‘₯ βˆ’ 5π‘₯ + 6 = (π‘₯ βˆ’ 2)(π‘₯ + 3)
β†’π‘₯ = 2 π‘œπ‘Ÿ π‘₯ = 3
Hence, the roots of π‘₯ ! βˆ’ 5π‘₯ ! + 7π‘₯ ! βˆ’ 5π‘₯ + 6 = 0 are:
π‘₯ = 𝑖 π‘₯ = βˆ’π‘–
π‘₯ = 2 π‘₯=3