KAUNAS UNIVERSITY OF TECHNOLOGY ODETA BANIUKAITIENĖ CELLULOSE/HYDROXYAPATITE COMPOSITES FOR BONE TISSUE ENGINEERING Summary of Doctoral Dissertation Physical Sciences, Chemistry (03P) 2014, Kaunas 1 The research was carried out at Kaunas University of Technology, Faculty of Chemical Technology, Department of Polymer Chemistry and Technology in the period of 2010–2014 under support of the Lithuanian State Science and Studies Foundation, the Science Council of Lithuania Foundation. Scientific supervisor: Prof. Dr. Jolanta LIESIENĖ (Kaunas University of Technology, Physical Sciences, Chemistry – 03P). Board of the Chemical Science Field: Prof. Dr. Habil. Algirdas ŠAČKUS (Kaunas University of Technology, Physical Sciences, Chemistry – 03P) – chairman; Prof. Dr. Habil. Marek BRYJAK (Wroclaw University of Technology, Poland, Physical Sciences, Chemistry – 03P); Prof. Dr. Saulius GRIGALEVIČIUS (Kaunas University of Technology, Physical Sciences, Chemistry – 03P); Assoc. Prof. Dr. Jolita OSTRAUSKAITĖ (Kaunas University of Technology, Physical Sciences, Chemistry – 03P); Dr. Arvydas ŪSAS (Lithuanian University of Health Sciences, Biomedical Sciences, Medicine – 06B). The official defence of the Dissertation will be held at the public meeting of Board of Chemical Science Field at 1 p.m. on December 12, 2014 in the Rectorate Hall at the Central Building of Kaunas University of Technology. Adress: K. Donelaičio St. 73–402, LT-44029, Kaunas, Lithuania. Tel. (370) 37 300042; fax (370) 37 324144; e-mail: [email protected] The send out date of the Summary of the Dissertation is on 12th of November, 2014. The Dissertation is available at the library of Kaunas University of Technology (K. Donelaičio St. 20, LT-44239, Kaunas). 2 KAUNO TECHNOLOGIJOS UNIVERSITETAS ODETA BANIUKAITIENĖ CELIULIOZĖS/HIDROKSIAPATITO KOMPOZITAI KAULO AUDINIO INŽINERIJAI Daktaro disertacijos santrauka Fiziniai mokslai, chemija (03P) 2014, Kaunas 3 Disertacija rengta 2010–2014 metais Kauno technologijos universitete, Cheminės technologijos fakultete, Polimerų chemijos ir tecnologijos katedroje, remiant Lietuvos valstybiniam mokslo ir studijų fondui ir Lietuvos mokslo tarybai. Mokslinė vadovė: Prof. dr. Jolanta LIESIENĖ (Kauno technologijos universitetas, fiziniai mokslai, chemija – 03P). Chemijos mokslo krypties taryba: Prof. habil. dr. Algirdas ŠAČKUS (Kauno technologijos fiziniai mokslai, chemija, 03P) – tarybos pirmininkas; Prof. habil. dr. Marek BRYJAK (Vroclavo technologijos fiziniai mokslai, chemija – 03P); Prof. dr. Saulius GRIGALEVIČIUS (Kauno technologijos fiziniai mokslai, chemija, 03P); Doc. dr. Jolita OSTRAUSKAITĖ (Kauno technologijos fiziniai mokslai, chemija, 03P); Dr. Arvydas ŪSAS (Lietuvos sveikatos mokslų universitetas, mokslai, medicina – 06B). universitetas, universitetas, universitetas, universitetas, biomedicinos Disertacija bus ginama viešame Chemijos mokslo krypties tarybos posėdyje 2014 m. gruodžio 12 d. 13 val. Kauno technologijos universiteto centrinių rūmų Rektorato salėje. Adresas: K. Donelaičio g. 73–402, LT-44029, Kaunas, Lietuva. Tel. (370) 37 300042; faksas (370) 37 324144; el.paštas: [email protected] Disertacijos santrauka išsiųsta 2014 m. lapkričio 12 d. Disertaciją galima peržiūrėti Kauno technologijos universiteto bibliotekoje (K. Donelaičio g. 20, LT-44239, Kaunas). 4 1. INTRODUCTION Relevance of the work The loss of teeth is associated not only with changes in the esthetical appearance, but also with chewing dysfunction, which leads to a rapid bone atrophy. The artificial implants can be an alternative for teeth. It is the teeth size and shape imitating construction, which is placed in the jaw. The implantation of such constructions which replace the teeth roots and together with fixed crowns perform the function of the teeth is one of the fastest growing areas of dentistry. However, the clinical experience shows that one in five patients have bone loss; thus, it would be impossible to screw in an implant. According to the statistics, about 20% of implantation procedures require the augmentation of the jaw bone. Autogenic bone is known as the best suitable for bone tissue transplantation. Despite additional operation and possible infections, autogenic bone due to its excellent osteoinductive, osteoconductive, and osteogenic properties is still the standard and has no better suitable alternatives. For bone defects augmentation, allogenic bone (donor) or xenogenic bone are also used. However, these are generally associated with disease transmission. In addition, xenogenic bone transplantation is limited due to the ethical predeterminations. The synthetic materials such as calcium phosphates including βtricalcium phosphate (β-TCP), hydroxyapatite (HA) and their composites are also used. However, the clinical practice shows that sometimes after implantation particles agglomerate, and the blood vessels can not grow in. Such construction should be removed. Nowadays, the development of three-dimensional (3D) scaffolds for bone regeneration is one of the current challenges in tissue engineering. A variety of materials are proposed for the fabrication of 3D scaffolds. Usually, synthetic polymers are used, especially polycaprolactone. Significant attention is focused on natural polymers due to their advantages over synthetic polymers, such as biocompatibility, non-toxicity, hydrophilicity, and controllable biodegradability. It is supposed that in this area cellulose is very promising. Although cellulose has long been used in various industries (e.g., paper, textile, pharmaceutical, cosmetic), its use for bone scaffolds due to the specific morphology has not yet been studied. 5 The aim of the study was to create cellulose/hydroxyapatite composites and to investigate their possibility to be used for bone tissue engineering. In order to achieve the aim set out above, the following tasks should be carried out: to select a suitable method for the preparation of well-designed cellulose-based scaffolds; to mineralize the cellulose matrix by imitating biomineralization in vitro in a simulated body fluid; to develop cellulose/hydroxyapatite composite scaffolds by mechanically immobilizing hydroxyapatite particles of different size during cellulose regeneration; to study the elemental composition, morphology and mechanical properties of the cellulose matrix and composite scaffolds; to assess the mineralization process within scaffolds in vitro in a simulated body fluid; to investigate the diffusion kinetics of glucose through the porous scaffolds; to assess the cytotoxicity of the scaffolds in vitro; to assess the biocompatibility of the scaffolds in vivo. Scientific novelty and practical value of the work For the first time, cellulose and its composites with hydroxyapatite were prepared for bone tissue engineering applications. The application of a natural polymer which is non-cytotoxic, biocompatible and slowly absorbable in the human organism is the main advantage of this technology. For the first time it has been shown that the morphology of cellulose xerogel obtained by lyophilization can be varied by changing the solvent inside the gel prior lyophilization and its freezing temperature. The prepared composite scaffolds exhibited the morphology suitable for bone tissue regeneration. The size of pores is suitable for cell adhesion, proliferation, and angiogenesis. The pores are interconnected, revealing nutrients diffusion. During biomimetic mineralization the mineral layer occurs within scaffolds. The results of cytotoxicity in vitro and biocompatibility in vivo have shown that cellulose/hydroxyapatite composites have a great potential for bone tissue renegeration. 6 Statements presented for defense: 1. The morphology of regenerated cellulose xerogel, obtained by lyophilization, depends on the solvent inside the gel prior lyophilization and its freezing temperature. 2. Macroporous cellulose/hydroxyapatite composites are suitable for bone tisue regeneration. Approbation of the research results The results of the research were presented in 21 publications. Among them, 2 articles were published in journals included in the list of Thomson Reuters Web of Knowledge: “Cellulose Chemistry and Technology” (accepted for publication), “BioMed Research International”. Two publications were in other Thomson Reuters Web of Knowledge databases of refereed journals (Proceedings). Also, the results were reported in 17 scientific conferences, among them 15 International ones. Structure and contents of the dissertation The dissertation consists of the introduction including the research objectives, literature overview, experimental part, results and discussion, conclusions, list of references (163), and a list of publications on the dissertation topic. The material of the dissertation is presented on 97 pages including 5 tables and 46 figures. 2. EXPERIMENTAL Materials. For the present study, cellulose diacetate (substitution degree 2.4) was obtained from Roshal (Russia). Hydroxyapatite was purchased from Sigma-Aldrich (USA). MG-63 (ATCC® CRL-1427™) cells were obtained from the American Type Culture Collection (USA). Methods. The cellulose-based gel was prepared by the regeneration of cellulose from cellulose diacetate. The gel samples were washed with ethanol–water solutions and lyophilized in a Christ ALPHA 2-4 LSC (Martin Christ Gefriertrocknungsanlagen GmbH, Germany) freeze dryer for up to 24 h. Their morphology was studied using a high resolution field emission scanning electron microscope Quanta 200 FEG (FEI Company, Netherlands). The pore size was calculated using ImageJ version 1.47 software (National Institutes of Health, USA). The microcomputer tomography analysis was performed at a b-cube company (Switzerland) using a µCT40 system (Scanco Medical AG, Netherlands) for the morphological characterisation of the scaffolds. 7 The in vitro mimetic biomineralization was carried out by immersing the samples into a simulated body fluid (SBF). The electrolyte solution was refreshed once a week. Changes in the weight of the scaffolds after biomineralization were presented as percentages of mass increase. X-ray diffraction (XRD) was used for the identification of the calcium phosphate phase. Diffraction patterns were recorded on a DRON-6 (Bourevestnik Inc., Russia) using a Cu Kα radiation at 30 kV and 20 mA. Infrared spectroscopy (IR) was used to analyse the chemical structure of cellulose before and after modification; 4 mg of cellulose was mixed with 200 mg of KBr for the preparation of transparent pellets. All spectra were recorded in the range from 4000 to 400 cm-1 on a Perkin Elmer FT-IR spectrometer (Perkin Elmer, England). The SEM equipped with the energy dispersive spectrometer Quanta 200 with a detector XFlash 4030 (Bruker AXS Microanalysis GmbH, Germany) was used for the elemental analysis. The biological characterization of the scaffolds was conducted with human osteoblastic cells (ATCC® CRL-1427™) for a period of 7 days. Colonized materials were evaluated throughout the culture time by DNA content and by SEM in order to address the cell proliferation. DNA was analyzed by the PicoGreen DNA quantification assay according to the manufacturer’s instructions. The mechanical properties of the cellulose matrix and composite scaffolds were studied using the H25KT system (Tinus Olsen, England). Scaffolds were loaded under compression using a crosshead speed of 1 mm/min with a 5000 N loud cell. Glucose diffusion within scaffolds was evaluated using “side-by-side” cell. The amount of diffused glucose was determined by the phenol-sulfuric acid method. According to this method samples were analyzed with a spectrofotometer Varian Cary 50 UV-VIS (Varian, Germany) reading the absorbance at λ = 490 nm. In vivo studies were approved by the Committee of the State Food and Veterinary Service of Lithuania (No. 0208). The scaffolds were implanted subcutaneously in the back of mice and harvested after 2 weeks, 1 and 3 months of implantation for histological examination. 3. 3.1 RESULTS AND DISCUSSION Preparation of the cellulose-based matrix By saponification of cellulose acetate in solution, a homogeneous semi-rigid gel was prepared. Its pores, determined by the gel-inversion 8 chromatography are accessible to molecules of the molecular mass approx. 500000 Da. However, such pores are too small for the formation of bone tissue as pores from 100 µm up to 1000 µm are required. Lyophilization was chosen to create a highly porous matrix with an optimal pore size required for a successful bone regeneration. Before lyophilization, samples of the gel were washed with ethanol– water solutions (ethanol concentration ranged from 0 to 40%). It was noticed that the gel changed its volume depending on the ethanol concentration. When the gel was in water it was swollen. However, when ethanol was added into the system the affinity of the hydrophilic polymer to the solvent decreased, what caused the structural collapse with an increased density of the polymer network. Such samples were frozen at different temperatures (-25 ºC or -80 ºC) and lyophilized. The scanning electron microscopy (SEM) photographs (Fig. 1 and Fig. 2) showed that the structure of the gel depended on the solvent in its discontinuous phase and on its freezing rate prior to the drying process. The morphology of the obtained scaffolds varied from the macroporous to dense structure. 9 Fig. 1. SEM photographs of the lyophilized cellulose matrix* from: (a) water; (b) 10% ethanol; (c) 15% ethanol; (d) 20% ethanol; (e) 25% ethanol; (f) 40% ethanol * The matrix was pre-frozen at -25 ºC As demonstrated by the SEM photograph (Fig. 1 a), the effect of expanded frozen water destroyed the structure of the gel after it had been filled with water, frozen at -25 ºC, and lyophilized. The obtained matrix was expanded by about 5%. The majority of pores were larger than 1000 µm. This kind of a matrix would be unsuitable for the bone scaffold as very large pores decrease the surface area and limit the cell attachment. 10 The use of 15% ethanol solution shrunk the gel slightly; thus, the matrix contained pores still rather large in the diameter (Fig. 1 b). The ideal morphology for the bone tissue growth was obtained by filling the cellulose gel before its freeze-drying with 20% ethanol solution. The pore size ranged from micro to macro scale (Fig. 1 d). The SEM showed that pores distributed through the matrix homogeneously. Lyophilization of gels with 25% or 40% ethanol solutions gave opposite results (Fig. 1 e, f). Fig. 2. SEM photographs of the lyophilized cellulose matrix* from: (a) water; (b) 10% ethanol; (c) 15% ethanol; (d) 20% ethanol; (e) 25% ethanol; (f) 40% ethanol * The matrix was pre-frozen at -80 ºC 11 Figure 2 demonstrates the morphology of the scaffolds obtained by lyophilization of the samples which had been pre-frozen at -80 ºC. Comparing the SEM photographs (Fig. 1 and Fig. 2) it was assumed that the faster freezing (at a lower temperature) results in smaller pores. In our case, faster freezing is inexpedient as clearly large or very small pores are formed (Fig. 2 a, b, c, d, e). The lyophilization of the gel from 40% of ethanol gave an almost non-porous matrix (Fig. 2 f). It can be concluded that the matrix of an optimal structure was obtained by lyophilization of cellulose gel fulfilled with 20% ethanol and frozen at -25 ºC. 3.2 Cellulose/hydroxyapatite composites In order to enhance the bioactivity of the cellulose matrix with the bone tissue, the composites of cellulose with hydroxyapatite were prepared by two different methods: (i) mimicking bone biomineralization in a simulated body fluid, and (ii) reinforcing the cellulose gel with the synthetic hydroxyapatite (HA). 3.2.1 Cellulose-based composites obtained by biomimetic mineralization For the development of a mineral layer by means of biomimetic mineralization, an increased concentration of calcium ions is required as they accelerate the nucleation rate of the crystals. Polymers with, e.g., hydroxyl, carboxyl and silanol groups are used due to their capacity to induce apatite nucleation. Thus, the cellulose matrix had been pre-treated using three different methods: (i) treating freeze-dried cellulose samples with CaCl2 and (NH4)2HPO4 solutions; (ii) storing the carboxymethylated cellulose matrix in a saturated Ca(OH)2 solution; (iii) treating the lyophilized samples with Si(OC2H5)4 : H2O : C2H5OH : HCl : CaCl2 solution. The XRD, IR, SEM and EDS confirmed that the mineral phase forms on the cellulose-based scaffolds after a few days of immersion in a simulated body fluid. The highest mineralization rate was achieved on the carboxymethylated cellulose matrix which was activated with the Ca(OH)2 solution. The mass percentage of the mineral phase was two times larger (12%) after exposure to 1.5×SBF for 14 days as compared with the others. The largest aggregates appeared on this kind of scaffold. This was clearly visible in a SEM micrograph (Fig. 3 d). 12 Fig. 3. SEM micrographs of the surface of: (a) the cellulose matrix treated with CaCl2 and (NH4)2HPO4 solutions and then (b) soaked in 1.5×SBF; (c) the matrix activated with Ca(OH)2 and then (d) soaked in 1.5×SBF; (e) the matrix treated with the Si(OC2H5)4 : H2O : C2H5OH : HCl : CaCl2 solution and then (f) soaked in 1.5×SBF The biological characterization of the cellulose matrix (control scaffold) and the three developed mineralized cellulose samples was conducted with human osteoblastic cells. Assessment of DNA content showed that the cellulose matrix supports the proliferation of the osteoblastic cells, with increasing values throughout the 7 day culture period. Comparatively, significantly increased values were observed for the mineralized cellulose matrices, suggesting a higher number of attached cells over these substrates. Cultures grown on carboxymethylated cellulose presented, throughout the culture time, the highest values for the total DNA content. However, differences among the three mineralized samples were not statistically significant (Fig. 4). 13 Fig. 4. Osteoblastic cells proliferation over the cellulose and the mineralized cellulose scaffolds The observed results prove that the developed cellulose porous matrix is not cytotoxic and can be used in contact with biological systems. In addition, the presence of a calcium phosphate layer in the originally prepared cellulose matrix clearly improves cell adhesion and proliferation. 3.2.2 Cellulose reinforced with hydroxyapatite Cellulose/HA scaffolds were produced by the regeneration of cellulose from its acetylated derivative and mechanically immobilizing nanohydroxyapatite (nHA) and microhydroxyapatite (µHA) particles. Highly porous cellulose/nHA and cellulose/µHA scaffolds were produced by freezedrying hydrogel filled with 20% of ethanol and frozen at -25 ºC. It was found that HA improved the mechanical properties of the cellulose matrix. The Young's modulus increased up to 9 MPa. For the morphological characterisation of the prepared scaffolds, micro-computed tomography was chosen. 2D images showed that HA particles affected the morphology of the prepared scaffolds: differences in pore size, framework thickness, and their distribution appeared (Fig. 5, Table 1). 14 The cellulose matrix as well as composite scaffolds comprised nonsymmetrical interconnected pores. Such arrangement of the pores is particularly important for cellular activity and achieving the optimum rate of the new tissue growth. Fig. 5. 2D images: (a) cellulose matrix; (b) cellulose/nHA scaffold; (c) cellulose/µHA scaffold The structural parameters, such as the percent framework volume (Xv), porosity (P), specific surface (SS), mean framework thickness (L), mean pore diameter (D) within the scaffold were determined from 3D images (Fig. 6). Fig.6. 3D images: (a) cellulose matrix; (b) cellulose/nHA scaffold; (c) cellulose/µHA scaffold The structural parameters of the regenerated cellulose matrix and its composites with nHA and µHA are summarized in Table 1. For comparison, the structural parameters of the human jaw bone are included. 15 Table 1. Structural parameters of the scaffolds and natural bone Structural parameters Samples Xv, % P, % SS, mm-1 L, mm D, mm Cellulose scaffold 25 75 15 0,21 0,75 Cellulose/nHA scaffold 28 72 19 0,12 0,49 Cellulose/µHA scaffold 34 66 13 0,21 0,54 Anterior maxilla 1228 7288 1226 0,140,31 0,540,96 Anterior mandible 1447 5386 914 0,280,40 0,630,99 Posterior maxilla 730 7093 1228 0,120,32 0,501,03 Posterior mandible 749 5193 830 0,130,41 0,441,77 The microcomputer tomography data showed that the porosity of cellulose scaffold was larger, leading to a reduced percentage of the framework volume, as compared with its composites with nHA and µHA. The largest pores also appeared within the cellulose scaffold. The mean diameter of the pores was of 750 µm (Table 1). The framework thickness with immobilized HA particles of different composite scaffolds was different (Table 1). The frameworks of cellulose/µHA scaffold were almost twice thicker, as compared with frameworks of the cellulose/nHA composite. The specific scaffold surface was found to be larger of cellulose/nHA due to thinner frameworks and a higher number of them per millimeter, as supposed. Thus, the scaffold had smaller pores. The mean pore diameter was of 490 µm (Table 1). Generally, the morphology of the prepared scaffolds for bone tissue engineering meets the requirements of materials which are implanted in the bone defect and have the possibility to provide space for the cells to synthesize collagen and mineralize it. The structural parameters (Xv, P, SS, L, D) of composite scaffolds were compared with those of the human jaw bone. It was found that the structural parameters of the cellulose scaffold with nHA particles were in the range of the anterior maxilla, posterior maxilla and posterior mandible values. The specific surface of the cellulose/nHA scaffold was significantly increased, as compared with the anterior mandible. The porosity of the cellulose/µHA scaffold was not in the range of the anterior and the posterior maxilla. Thus, 16 this kind of composite scaffold would be suitable only for the regeneration of bone tissue in the mandible area. The morphology of the scaffold should be appropriate for the nutrients and waste exchange; otherwise, necrotic regions within the material could appear. In order to ensure an excellent morphology of the scaffolds, a glucose diffusion through the scaffold layer was evaluated using a “side-by-side” cell. 60 Diffused glucose (%) 50 1 2 40 3 30 20 10 0 0 4 8 12 16 20 24 28 32 Time (h) Fig. 7. Glucose diffusion through: 1 – cellulose scaffold, 2 – cellulose/μHA scaffold, 3 – cellulose/nHA scaffold It should be noted that the diffusion of glucose within cellulose-based scaffolds was influenced by the morphology of the composites (Fig. 7). The faster rate of diffusion was observed within cellulose scaffold. After 0.5 h, the diffused glucose reached up to 15%. After 24 h, the concentration of glucose was equal in both chambers. As the porosity of the cellulose/nHA scaffold was higher than of cellulose/µHA, the faster rate of diffusion was expected. However, the results were opposite, due to larger pores of cellulose/µHA than expected. It is important to note that both scaffolds were permeable to the glucose solution. After 24 h, the concentration of glucose was approximately equal in both chambers, revealing that the structure of cellulose-based scaffolds is suitable for nutrients transport. Studies in biomimetic mineralization showed that the size of HA particles as well as the morphology of the scaffold effected the mineralization 17 process. It was found that the mass percentage of the mineral phase was largest on the cellulose/nHA scaffold (Table 2). Table 2. Mass increase on scaffolds after mineralization Time, weeks Mass increase, % Cellulose/nHA scaffold Cellulose/µHA scaffold 1 4 ± 0.5 1± 0.3 3 5 ± 0.2 5± 0.6 6 13 ± 0.7 11± 0.6 9 18 ± 0.3 13 ± 0.7 12 22 ± 0.7 15 ± 0.5 The cellulose/nHA composite accelerated the nucleation of crystals more than cellulose/µHA due to the presence of more crystalization centers than supposed. Moreover, the specific surface of cellulose/nHA was larger than of cellulose/µHA, thus, there was more space for mineral formation. In order investigate the cytotoxicity of the cellulose/nHA and cellulose/µHA scaffolds, human osteoblastic cells were cultured on novel scaffolds. The presence of nHA or µHA in the scaffolds improved cell adhesion, as shown by the higher DNA content at day 1, found in these scaffolds. Also, a higher cell proliferation was evident throughout the culture time as compared with the control cellulose matrix (comp. Fig. 4 and Fig. 8). 18 Fig. 8. Osteoblastic cell culture proliferation over the cellulose/nHA and cellulose/µHA scaffolds The DNA content after 3 and 7 days was higher in the cellulose/nHA scaffold. More cells were found in this kind of scaffold due to the better morphology of the scaffold for cell adhesion and proliferation. Further, there is an evidence that the presence of nHA promotes cell adhesion and growth, due to the biomimetic nature of the resulting surface as in the bone there is also apatite of nanosize. In vitro studies with human osteoblastic cells have confirmed that scaffolds are not cytotoxic and can be used in contact with biological systems. However, a cellulose/nHA scaffold can be a better candidate for bone tissue engineering than cellulose/µHA. Moreover, the scaffold with nHA displayed the morpholocical parameters closer to those of the native bone. Thus, it was decided to use this kind of scaffol for in vivo studies. Cellulose/nHA scaffolds were implanted subcutaneously in the back of mice. After 2 weeks, 1 and 3 months of implantation the scaffolds were harvested for histological examination. It should be noted that all mice remained alive after the implantation periods as well as after the surgery. No wound complications were observed. After 2 weeks of implantation, the histological analysis showed that there was the inflammatory response of the surrounding tissue. The scaffold was surrounded with a fibrous and collagenous tissue capsule. However, the histological analysis of specimens harvested after 1 and 3 months revealed 19 the biocompatibility of the scaffold (Fig. 9). The connective tissue proliferated within the scaffold, angiogenesis was also expressed. Fig. 9. Histological analysis of the scaffold after 3 months of implantation (40 ×) From the in vivo results it can be concluded that the cellulose/nHA scaffold has a possibility to be used as an implantable material in bone defects. CONCLUSIONS 1. It has been shown that the cellulose gel is suitable for the formation of frameworks for bone tissue engineering. The morphology of the scaffold could be varied changing conditions before lyophilization, e.g., changing the solvent inside the gel prior to lyophilization and its freezing rate. The morphology suitable for bone regeneration was successfully created by the lyophilization of the regenerated cellulose gel filled with 20% ethanol and frozen at -25 ºC. 2. It was found that mineral layer formation on the cellulose matrix (treated with a solution of CaCl2 and (NH4)2HPO4; carboxymethylated and stored in a saturated Ca(OH)2 solution; treated with Si(OC2H5)4 : H2O : C2H5OH : HCl : CaCl2 solution) could be achieved in a simulated body fluid. The highest mineralization rate was achieved on the matrix of carboxymethylated cellulose activated with Ca(OH)2 solution. Such mineralized scaffold showed best osteoconductive properties. 3. A new method was developed for the preparation of cellulose composites with the micro- and nanosize particles of hydroxyapatite. The composites of cellulose with embedded hydroxyapatite particles were prepared by 20 4. 5. 6. 7. 8. mechanically immobilizing hydroxyapatite particles of different size during the regeneration of cellulose. The cellulose scaffold with nanohydroxyapatite displayed the morpholocical parameters closer to the native bone than did cellulose with microhydroxyapatite. It was found that a faster mineralization of cellulose occurs with embedded nanohydroxyapatite. After 12 weeks the mass increased by 22%. The mechanical properties of cellulose-based frameworks increase with immobilizing hydroxyapatite particles. The prepared composites exhibited Young᾽s modulus of 6–9 MPa. Despite structural differences, both scaffolds with nano- and microhydroxyapatite are permeable to the glucose solution. The rate of diffusion is faster within the cellulose scaffold with embedded microhydroxyapatite due to larger pores. In vitro studies with human osteoblastic cells have confirmed that scaffolds are not cytotoxic. The higher cell growth rate was evident throughout the culture time on cellulose with embedded nanohydroxyapatite particles. In vivo results with mice have revealed the biological properties of the cellulose scaffold with immobilized nanohydroxyapatite. The histological analysis confirms that the proliferation of connective tissue and angiogenesis processes occurs within scaffold. LIST OF SCIENTIFIC PUBLICATIONS ON THE TOPIC OF THE DISSERTATION Articles in the journals included in the list of Thomson Reuters Web of Knowledge 1. Petrauskaite, Odeta; Juodzbalys, Gintaras; Viskelis, Pranas; Liesiene, Jolanta. Control of a porous structure of cellulose-based tissue engineering scaffolds by means of lyophilization // Cellulose Chemistry and Technology. 2014. [Thomson Reuters Web of Knowledge] [Impact factor: 0.833] (accepted). 2. Petrauskaite, Odeta; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Juodzbalys, Gintaras; Stumbras, Arturas; Maminskas, Julius; Liesiene, Jolanta; Cicciu, Marco. Biomimetic mineralization on a macroporous cellulose-based matrix for bone regeneration // BioMed Research International. ISSN 2314-6133. 2013, vol. 2013, p. 1 –9. [Thomson Reuters Web of Knowledge]. [Impact factor: 2.880]. 21 Articles in the other reviewed Thomson Reuters Web of Knowledge Database [Proceedings and others] 1. Petrauskaitė, Odeta; Liesienė, Jolanta; Vitkauskas, Vytas; Jaraminaitė, Monika; Juodžbalys, Gintaras; Daugėla, Povilas; Stumbras, Artūtas; Maminskas, Julius. Cellulose reinforced with hydroxyapatite for bone tissue engineering // Polymer Chemistry and Technology: Proceedings of Scientific Conference Chemistry and Chemical Technology. 25 April, 2012, Kaunas University of Technology. Kaunas: Technologija. ISSN 2029-2457. 2012, p. 93–96. 2. Petrauskaitė, Odeta; Vitkauskas, Vytas; Liesienė, Jolanta; Stumbras, Artūras; Maminskas, Julius; Juodžbalys, Gintaras. Tissue engineering: cellulose scaffolds for bone replacement // Polymer Chemistry and Technology: Proceedings of Scientific Conference Chemistry and Chemical Technology. 27 May 2011, Kaunas University of Technology. Kaunas: Technologija. ISSN 2029-2457. 2011, p. 37–40. Papers of scientific conferences 1. Petrauskaite, Odeta; Juodzbalys, Gintaras; Stumbras, Artūras; Maminskas, Julius; Daugela, Povilas; Gomes, Pedro de Sousa; Liesiene, Jolanta. In vitro and in vivo biological analysis of cellulose-based scaffolds for bone tissue engineering // 8th International Conference on Polymer and Fiber Biotechnology (IPFB), May 24–28, 2014, Braga, Portugal: book of abstracts, 2014, p. 95. 2. Jaraminaite, Monika; Petrauskaite, Odeta; Jaruseviciute, Ieva; Liesiene, Jolanta. Glucose diffusion within cellulose/hydroxyapatite scaffolds // Chemistry and Chemical Technology: Proceedings of International Conference of Lithuanian Chemical Society, Chemistry and Chemical Technology. 25 May 2014, Kaunas University of Technology. ISSN 2351-5643. 2014, p. 317–320. 3. Petrauskaite, Odeta; Liesiene, Jolanta; Juodzbalys, Gintaras; Maminskas, Julius; Stumbras, Artūras; Gomes, Pedro de Sousa; Fernandes, Maria Helena; Costa, Maria Elisabete Jorge Vieira. Cellulose with embedded hydroxyapatite nanoparticles for bone tissue in-growth // MiMe-Materials in Medicine: International Conference 1st edition, October 8–11, 2013, Faenza, Italy: final programme and abstract book. National Research Council of Italy, Institute of science and technology for Ceramics. 2013, p. 216. 4. Petrauskaite, Odeta; Liesiene, Jolanta; Jaruseviciute, Ieva; Juodzbalys, Gintaras; Maminskas, Julius; Stumbras, Artūras; Daugela, Povilas. 22 Cellulose/hydroxyapatite frameworks for bone tissue regeneration // Baltic Polymer Symposium 2013, September 18–21, 2013, Kaunas, Lithuania: programme and abstracts. Vilnius University. ISBN978-609459-227-0. 2013, p. 153. 5. Maminskas, Julius; Stumbras, Artūras; Juodzbalys, Gintaras; Liesiene, Jolanta; Petrauskaite, Odeta; Gomes, Pedro de Sousa; Costa, Maria Elisabete Jorge Vieira. Tissue engineering perspective in bone tissue regeneration: cellulose-hydroxyapatite composite scaffold // The Fifth International BOA Congress, September 13–14, 2013, Kaunas, Lithuania: programme and abstract book. Baltic Osseointegration Academy. ISBN 978-609-95550-0-3. 2013, p. 24–25. 6. Petrauskaitė, Odeta; Liesienė, Jolanta; Juodžbalys, Gintaras; Gomes, Pedro de Sousa; Costa, Maria Elisabete Jorge Vieira. Nanohydroxyapatite/cellulose scaffolds // 3rd International Conference on Multifunctional, Hybrid and Nanomaterials, March 3–7, 2013, Sorrento, Italy: abstracts. Oxford: Elsevier, 2013. p. 1. 7. Jaraminaitė, Monika; Vitkauskas, Vytas; Petrauskaitė, Odeta. Cellulose matrix for bone tissue regeneration in defect size // Chemija ir cheminė technologija, gegužės 4, 2012, Klaipėda, Lietuva: pranešimų medžiaga. Klaipėdos universitetas / Klaipėdos universiteto leidykla. ISBN978995518-651-9. 2012, p. 91–93. 8. Petrauskaite, Odeta; Liesiene, Jolanta; Catarina, Santos; Gomes, Pedro de Sousa; Garcia, Monika; Fernandes, Maria Helena; Almeida, Maria Margarida; Costa, Maria Elisabete Jorge Vieira; Juodzbalys Gintaras; Daugela, Povilas. Nano-hydroxyapatite/cellulose composite scaffold for bone tissue engineering // Journal of Tissue Engineering and Regenerative Medicine. Special Issue: 3rd TERMIS World Congress 2012. ISSN: 1932-6254. 2012, vol. 6, p. 34. 9. Daugela, Povilas; Juodzbalys, Gintaras; Liesiene, Jolanta; Petrauskaite, Odeta; Gomes, Pedro; Costa, Elisabete. A novel cellulose-hydroxyapatite scaffold for bone tissue regeneration // Clinical Oral Implants Research. Special Issue: EAO 18 th Annual Scientific Meeting. ISSN 09057161. 2012, vol. 23, p. 230. 10. Stumbras, Artūras; Maminskas, Julius; Juodžbalys, Gintaras; Liesienė, Jolanta; Petrauskaitė, Odeta; Darinskas, Adas. Aloplastinio celiuliozėshidroksiapatito kaulo karkaso biologinių savybių analizė: tyrimai in vitro ir in vivo // LSMU SMD Jaunųjų tyrėjų ir mokslininkų konferencija 2012, gegužės 24–25, 2012, Kaunas, Lietuva: LSMU SMD JMTK tezių knyga, II dalis. Lietuvos sveikatos mokslų universitetas. 2012, p. 295. 23 11. Petrauskaite, Odeta; Liesiene, Jolanta. 3D matrix based on regenerated cellulose for bone tissue regeneration // Baltic Polymer Symposium 2012, September 19–22, 2012, Liepaja, Latvia: programme and proceedings. Tallinn University of Technology. 2012, p. 73. 12. Maminskas, Julius; Stumbras, Artūras; Juodzbalys, Gintaras; Liesiene, Jolanta; Petrauskaite, Odeta; Gomes, Pedro; Costa, Maria Elisabete Jorge Vieira. Analysis of aloplastic cellulose-hydroxyapatite bone scaffold biological features // The Fourth International BOA Congress, September 7–8, 2012, Kaunas, Lithuania: programme and abstract book. Baltic Osseointegration Academy. ISBN 978-9955-905-11-0. 2012, p. 33. 13. Petrauskaitė, Odeta; Jaraminaitė, Monika; Liesienė, Jolanta. Porous cellulose matrix for bone tissue engineering // EUPOC 2012, Europolymer Conference, June 3–7, 2012, Gargnano, Italy: booklet of abstracts. Gargnano: European Polymer Federation, 2012. p. 101. 14. Juodzbalys, Gintaras; Daugela, Povilas; Liesiene, Jolanta; Petrauskaite, Odeta; Gomes, Pedro; Costa, Elisabete. Bone tissue regeneration in cellulose/hydroxyapatite scaffold // The 6th International ACBID Congress, May 30 - June 3, 2012, Antalya, Turkey: abstract book, p. 91. 15. Petrauskaite, Odeta; Vitkauskas, Vytas; Liesiene, Jolanta; Stumbras, Artūras; Maminskas, Julius; Juodzbalys, Gintaras. Cellulose/hydroxyapatite composites for bone tissue engineering // 10th International Conference of Lithuanian Chemists "Chemistry 2011", October 14–15, 2011, Vilnius, Lithuania: programme and abstracts. Lithuanian Academy of Sciences. ISBN 9789955634652. 2011, p. 86. 16. Maminskas, Julius; Stumbras, Artūras; Juodzbalys, Gintaras; Liesiene, Jolanta; Petrauskaite, Odeta. Bone tissue engineering: polimeric cellulosehydroxyapatite scaffold as bone grafting material. Synthesis and analysis // The Third International BOA Congress, September 29 - October 1, 2011, Kaunas, Lithuania: programme and abstract book. Baltic Osseointegration Academy. ISBN 978-9955-905-08-0. 2011, p. 26–27. 17. Petrauskaitė, Odeta; Liesienė, Jolanta. Cellulose/hydroxyapatite composites as scaffolds for replacement of demaged bone // Baltic Polymer Symposium 2011, September 21–24, 2011, Pärnu, Estonia: program and abstracts. Tallinn: Tallinn University of Technology, p. 91. 24 CURRICULUM VITAE Name, surname: Date of birth and place: Edutation: June 2008 Experience: September 2010 – Present September 2011 – Present May 2007 – May 2011 Fellowships: February 2006 – May 2006 Odeta Baniukaitiene 11th of November, 1982 in Šilalė Kaunas University of Technology, Faculty of Chemical Technology, Master of Science in Applied Chemistry PhD studies at Kaunas University of Technology, Department of Polymer Chemistry and Technology, Faculty of Chemical Technology Assistant at Kaunas University of Technology, Department of Polymer Chemistry and Technology, Faculty of Chemical Technology Chemist–analyst, Company „Valentis“, Drug Quality Control Department, Kaunas Erasmus student at Wageningen University, Laboratory of Physical Chemistry and Colloid Science, Netherlands ACKNOWLEDGEMENTS I would like to express my deepest appreciation to Prof. Dr. Jolanta Liesiene for being my supervisor, for her support throughout all this time. I am very grateful to Prof. Dr. Gintaras Juodžbalys and his students for their advices and help. I am grateful to Pedro de Sousa Gomes for the collaboration. I would like to thank to all the colleagues with whom I have had the pleasure to work. I am grateful to my family and friends for warm support and understanding. REZIUMĖ Temos aktualumas Dantų praradimas yra susijęs ne tik su estetinės išvaizdos pokyčiais, bet ir su kramtymo funkcijos sutrikimu, kas sukelia greitą kaulinio audinio atrofiją (tirpimą). Prarastų dantų alternatyva – implantai. Tai dantų dydį, formą ir funkciją imituojančios konstrukcijos, kurios įsriegiamos 25 žandikaulyje buvusių dantų vietoje. Dantų implantavimas – tai bene greičiausiai besivystanti odontologijos sritis. Senstanti populiacija, didelis dantų implantavimo procedūrų sėkmės procentas (92–95 % dešimties metų laikotarpyje), nuolatiniai moksliniai tyrimai, ieškant būdų kaip supaprastinti dantų implantaciją bei sparti technologijų pažanga lemia augantį dantų implantavimo procedūrų populiarumą visame pasaulyje. Tačiau praktika rodo, jog maždaug vieno iš penkių pacientų žandikaulio kaulo nepakanka implantui įsriegti, todėl apie 20 % dantų implantavimo procedūrų reikalauja kaulo priauginimo operacijos. Dažnai tam pasirenkamas autogeninis (nuosavas) kaulas. Nors transplanto naudojimas susijęs su papildomomis operacijomis ir galimomis komplikacijomis, bet dėl savo puikių osteoindukcinių, osteokondukcinių ir osteogenetinių savybių jis vis dar laikomas standartu, kuriam iki šiol nėra tinkamų alternatyvų. Kaulo defekto vietai užpildyti naudojamas ir alogeninis (donoro) kaulas, tačiau baiminamasi dėl ligų pernešimo, o ksenogeninės (gyvulinės) kilmės kaulo ribotas naudojimas neretai susijęs su etiniais įsitikinimais. Esama ir sintetinių augmentacinių medžiagų. Tarpe jų, populiariausi – βtrikalcio fosfatas (β-TCP), hidroksiapatitas (HA) ir jų kompozitai. Po operacijos augmentacinė medžiaga turėtų peraugti tikru kaulu, tačiau neretai užsitęsia uždegimai, įvyksta dalelių aglomeracija, neįauga kraujagyslės ir šis darinys turi būti pašalintas. Siekiant išvengti šių problemų, neorganinės medžiagos yra įkomponuojamos trimačiuose polimeriniuose karkasuose. Trimačių karkasų, taikomų kaulo regeneracijai defektų srityse, sukūrimas yra vienas iš dabartinių iššūkių audinių inžinerijoje. Karkasų gamybai naudojamos įvairios medžiagos. Dažniausiai pasirenkami sintetiniai polimerai, tarpe jų, plačiausiai naudojamas poli(ε-kaprolaktonas). Kadangi sintetiniai polimerai pasižymi blogesniu biosuderinamumu nei gamtiniai, pastaruoju metu didelis dėmesys skiriamas gamtinių polimerų panaudojimui kaulo audinio inžinerijoje. Manoma, kad šioje srityje didelę perspektyvą turi celiuliozė. Celiuliozė ir jos dariniai jau seniai naudojami įvairiose pramonės šakose (popieriaus, tekstilės, farmacijos, kosmetikos ir kt.), tačiau jos naudojimas kaulo audinio inžinerijoje dėl savitos morfologijos, tyrinėtas mažai. Disertacijos darbo tikslas – sukurti celiuliozės/hidroksiapatito kompozitus ir ištirti jų panaudojimo kaulo audinio inžinerijai galimybes. Tikslui pasiekti keliami uždaviniai: parinkti metodą, kuris užtikrintų tinkamos morfologijos celiuliozės karkaso gavimą; 26 mineralizuoti celiuliozės karkasą, taikant imitacinę biomineralizaciją in vitro modeliniame kūno skystyje; suformuoti celiuliozės kompozitus su skirtingo dydžio hidroksiapatito dalelėmis celiuliozės gelio gavimo metu; ištirti celiuliozės karkaso bei kompozitų elementinę sudėtį, morfologiją bei mechanines savybes; ištirti biomineralizacijos procesą karkasuose in vitro modeliniame kūno skystyje; ištirti gliukozės difuzijos kinetiką per akytus kompozitus in vitro; įvertinti karkasų citotoksiškumą in vitro; įvertinti kompozitų biosuderinamumą in vivo. Mokslinio darbo naujumas ir praktinė vertė Pirmą kartą kaulo audinio inžinerijoje pasiūlyta panaudoti regeneruotos celiuliozės/hidroksiapatito kompozitus. Privalumai – naudojamas ne sintetinis, o gamtinis polimeras, kuris yra necitotoksiškas, biologiškai suderinamas, organizme rezorbuojasi lėtai. Pirmą kartą parodyta, kad celiuliozės kserogelio, gaunamo liofilizacijos būdu, morfologija priklauso tiek nuo tirpiklio, esančio pertraukiamojoje gelio fazėje, tiek nuo šaldymo prieš liofilizaciją temperatūros. Keičiant etilo alkoholio koncentraciją regeneruotos celiuliozės gelyje, pagaminti trimačiai kompozitai, kurių morfologija atitinka kaulo audinio regeneracijai keliamus reikalavimus. Akutės savo dydžiu tinkamos ląstelių adhezijai, proliferacijai bei angeogenezei. Akutės tarpusavyje susisiekiančios, todėl užtikrina maistinių medžiagų difuziją. Imitacinės biomineralizacijos metu karkasuose vyksta mineralizacija. Citotoksiškumo tyrimais in vitro ir biosuderinamumo tyrimais in vivo parodyta, kad celiuliozės/hidroksiapatito kompozitai yra tinkami kaulo audinio inžinerijai. Ginamieji disertacijos teiginiai 1. Regeneruotos celiuliozės kserogelio, gaunamo liofilizacijos būdu, morfologija priklauso tiek nuo tirpiklio, esančio pertraukiamojoje gelio fazėje, tiek nuo šaldymo prieš liofilizaciją temperatūros. 2. Makroporėtos struktūros celiuliozės/hidroksiapatito kompozitai tinka kaulinio audinio regeneracijai. IŠVADOS 1. Parodyta, kad regeneruotos celiuliozės gelis tinka karkasų, skirtų kaulo audinio inžinerijai, formavimui. Nustatyta, kad celiuliozės gelio 27 2. 3. 4. 5. 6. 7. 8. morfologija gali būti reguliuojama, keičiant mėginių apdorojimo sąlygas prieš jų liofilizavimą t.y. keičiant tirpiklį gelyje ir jo užšalimo greitį. Tinkamos morfologijos karkasas gautas gelį prieš liofilizaciją inkliuduojant 20 % etilo alkoholiu ir šaldant -25 °C temperatūroje. Parodyta, kad celiuliozės karkasą galima mineralizuoti imitacinės biomineralizacijos metodu modeliniame kūno skystyje, prieš tai celiuliozę apdorojant trimis būdais: (a) veikiant CaCl2 ir (NH4)2HPO4 tirpalais; (b) karboksimetilinant ir po to veikiant sočiu Ca(OH) 2 tirpalu; (c) veikiant Si(OC2H5)4 :H2O : C2H5OH : HCl : CaCl2 mišiniu. Nustatyta, kad mineralizacija sparčiausiai vyksta ant karboksimetilintos celiuliozės, veiktos Ca(OH)2 tirpalu. Šis karkasas pasižymi didžiausiu biosuderinamumu ir geriausiomis osteokondukcinėmis savybėmis. Pasiūlytas naujas metodas celiuliozės su nano- bei mikrodydžių hidroksiapatito dalelėmis kompozitams gauti, mechaniškai įterpiant hidroksiapatito daleles celiuliozės gelio formavimo metu. Nustatyta, kad celiuliozės kompozitų su nanohidroksiapatito dalelėmis struktūrinių parametrų vertės artimesnės kauliniam audiniui, negu kompozitai su mikrohidroksiapatito dalelėmis. Imituojant biomineralizaciją modeliniame kūno skystyje, nustatyta, kad spartesnė mineralizacija vyksta celiuliozės kompozituose su nanodydžio hidroksiapatito dalelėmis. Po 12 savaičių masės prieaugis siekia 22 %. Nustatyta, kad hidroksiapatito imobilizavimas į celiuliozę pagerina karkaso mechanines savybes. Pagamintų kompozitų Jungo modulis siekia 6–9 MPa. Nustatyta, kad nepaisant struktūrinių skirtumų, abu kompozitai su nano- ir mikrohidroksiapatitu yra pralaidūs gliukozės tirpalui. Spartesnė gliukozės difuzija vyksta per celiuliozės su mikrohidroksiapatitu kompozitą dėl didesnių akučių jame. Tyrimais in vitro su žmogaus osteoblastų ląstelėmis patvirtintas kompozitų cito-tolerantiškumas. Didesnė ląstelių proliferacija vyksta celiuliozės kompozituose su nanohidroksiapatito dalelėmis. Tyrimais in vivo su pelėmis patvirtintas celiuliozės kompozitų su nanohidroksiapatito dalelėmis biosuderinamumas. Atlikus histologinę šių mėginių analizę nustatyta, kad vyksta jungiamojo audinio proliferacija ir angiogenezė. 28 UDK 547.458.81+611.716](043.3) SL344. 2014-11-07, 2 leidyb. aps. l. Tiražas 70 egz. Užsakymas 608. Išleido leidykla „Technologija“, Studentų g. 54, 51424 Kaunas Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas 29
© Copyright 2026 Paperzz