ISSN 1211-3026 Cas. Slez. Muz. Opava (A), 57: 37-44.2008 Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic IvanH. T u f -Jana T u f o v a Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic. - Cas. Slez. Muz. Opava (A), 57: 37-44, 2008. A b S t r a c t : Terrestrial invertebrates are frequently used for evaluation of habitat quality. Centipedes, millipedes and terrestrial isopods can be used for this purpose as well, due to their life history parameters and sufficient number of representatives of our fauna (in total 188 species for the Czech Republic). The proposed scheme divides all species into three categories after their habitat requirements: relic (restricted to natural, undisturbed habitats), adaptable (able to colonise both undisturbed and moderately disturbed habitats), and eurytopic (colonising different biotopes include heavily anthropically disturbed sites). Proportion of species of individual categories at locality is possible to use for evaluation of its human disturbance. Possible application is demonstrated using known faunistic data from six different areas differing in level of naturalness and in size respectively. K e y w o r d s : habitat quality, Chilopoda, Diplopoda, Isopoda, Oniscidea Biodiversity depletion is only one possible evident result of changes in natural condition caused by human beings. The reduction of number of species is the most evident; nevertheless, replacement of rare species by other common species is very frequent too. Several groups of soil invertebrates have been used for bioindication of environmental changes (Dufrgne & Baguette 1990, van Straalen 1998, Bohac 1999, Frouz 1999, Lobry de Bruyn 1999, Marc et al. 1999, Paoletti 1999, Allegro & Sciaki 2003). In the Czech Republic, ground beetles (Coleoptera: Carabidae) and spiders (Arachnida: Araneae) are used as the most popular indicators. The representatives of both these groups were classified according to their ecological valences (Hhrka et al. 1996, Buchar 1983). Two reasons for use of these taxa for evaluation of habitat quality can be listed: Vast popularity of the given groups among professional and amateur zoologists, and high numbers of species known from the Czech Republic (circa 570 and 800 respectively). Centipedes (Chilopoda), millipedes (Diplopoda) and terrestrial isopods (Isopoda: Oniscidea) represent in our fauna smaller invertebrate groups generally left out these evaluation approaches, although there have been trials to use them for assessing habitat quality as well (Bilton 1996, Paoletti & Hassall 1999, Souty-Grosset et al. 2005). Representatives of these soil invertebrates are relatively common; they inhabit all types of terrestrial habitats in the Czech Republic from lowlands to mountain tops. Hence they are useful for evaluation of environmental conditions. Their propriety for environmental studies is based on their limited dispersal capabilities -they are wingless and they move relatively slowly. Furthermore, besides individual collecting or soil samples heat-extracting, there is a simple sampling method of their communities, e.g. they are easily caught by pitfall trapping. All three groups are studied frequently together because of similar life style, comparable densities, similar activity pattern during the year and other characteristics. The fauna of the Czech centipedes, millipedes and terrestrial isopods is relatively well known. The check-list of centipedes of the Czech Republic was published by Tajovski (2001a) and actualized by Tuf and LaSka (2005), and Tuf et al. (2008, in prep.). Altogether, 66 centipede species are known from the Czech Republic. The check-list of millipedes was also published by Tajovskg (2001~);several new species of millipedes were added by Kocourek (2001, 2004), Tajovsky and Mlejnek (2007) and Tufovl et al. (in prep.). So far, 80 species of millipedes in total are known from the Czech Republic. The fauna of the Czech terrestrial isopods has been studied for a long period by Flasarovh (2000). There are 42 isopod species known from the Czech Republic. Descriptions of ecological categories In order to evaluate habitat, species ecological valence related to its habitat allegiance is the most important characteristic (Zimmer et al. 2000). It seems to be more important than rarity of individual species because there are some rarely introduced species which are opportunist in their homeland and adapt frequently to different conditions in new areas. Proposed classification is applicable mainly to the Czech Republic because ecological requirements of species can differ in their distribution range (Souty-Grosset et al. 1988, Lardies & Bozinovic 2006). All species of the Czech fauna were split up into three ecological categories; affiliation of individual species to the respective category is presented in tables 1-3. Table 1: List of species of centipedes (Chilopoda) known from the Czech Republic (66 species) and their affiliation to ecological categories. R, A, E - see the text. E R R R A A A R A R A A E R R E E R A R R R R A E A E LITHOBIOMORPHA Henicopidae Lomyctes emarginatus Newport, 1844 Lithobiidae Eupolybothrus grossipes (C.L.Koch, 1847 ) Eupolybothrus tridentinus (Fanzago, 1874) Harpolithobius anodus (Latzel, 1880) Lithobius aeruginosus L.Koch, 1862 Lithobius agilis L.Koch, 1847 Lithobius austriacus Verhoeff, 1937 Lithobius biunguiculatus Loksa, 1947 Lithobius borealis Meinert, 1868 Lithobius burzenlandicus Verhoeff, 1934 Lithobius calcaratus C.L.Koch, 1844 Lithobius crassipes L.Koch, 1862 Lithobius curtipes C.L.Koch, 1847 Lithobius cyrtopus Latzel, 1880 Lithobius dentatus C.L.Koch, 1844 Lithobius erythrocephalus CL.Koch, 1847 Lithobiusforficatus Linnaeus, 1758 Lithobius lapadensis Verhoeff, 1900 Lithobius lapidicola Meinert, 1872 Lithobius latro Meinert, 1872 Lithobius lucifugus L.Koch, 1862 Lithobius lusitanus Verhoeff, 1925 Lithobius luteus Loksa, 1947 Lithohius macilentus L.Koch, 1862 Lithobius melanops Newport, l845 Lithobius micropodus (Matic, 1980) Lithobius microps Meinert, 1868 SCUTIGEROMORPHA Scutigeridae A Scutigera coleoptrata (Linnaeus, 1758) R A E A R R A E A R A R A A R A R R A A A GEOPHILOMORPHA Schendylidae Schendyla monoeci Brolemann, 1904 Schendyla montana (Attems, 18%) Schendyla nemorensis (C.L.Koch, 1836) Geophilidae Clinopodesflavidus C.L.Koch, 1847 Folkmanovius paralellus Dobromka, 1957 Geophilus carpophagus Leach, 1814 Geophilus electricus (Linnaeus, 1758) Geophilusflavus (DeGeer, 1778) Geophilus insculptus Attems, 1895 Geophilus oligopus (Attems, 1895) Geophilus osquidatum Brijlemann, 1909 Geophilus proximus C.L.Koch, 1847 Geophilus pygrnaeus Latzel, 1880 Geophilus truncorum Bergsoe & Meinert, 1866 Photophilus griseus Follunanovfi, 1928 Pachymerium ferrugineum (C.L.Koch, 1835) Stenotaenia linearis (C.L.Koch, 1835) Dignathodontidae Dignathodon microcephalus (Lucas, 1846) Henia brevis (Silvestri, 1896) Henia illyrica (Meinert, 1870) Henia vesuviana (Newport, 1845) E A R R A R R R A R Lithobius mutabilis L.Koch, l862 Lirhobius muticus C.L.Koch, 1847 Lithobius nodulipes Latzel, 1880 Lithobius pelidnus Haase, 1880 Lithobius piceus L.Koch, 1862 Lithobius punctulatus C.L.Koch, 1847 Lithobius salicis Verhoeff, 1925 Lithobius schuleri Verhoeff, 1925 Lirhobius tenebrosus Meinert, 1872 Lithobius tricuspis Meinert, 1872 Linotaeniidae E Strigamia acuminata (Leach, 1814) A Strigamia crassipes (C.L.Koch, 1835) A Strigamia transsilvanica (Verhoeff, 1928) Himantariidae A Srigmatogaster subterranea (Shaw, 1789) SCOLOPENDROMORPHA Cryptopidae A Cryptops anomalans Newport, 1844 A Cryptops hortensis (Donovan, 1810) A Cryptops parisi Brolemann, 1920 Table 2: List of species of millipedes (Diplopoda) known from the Czech Republic (80 species) and their affliation to ecological categories. R, A, E - see the text. POLYXENIDA Polyxenidae A Polyxenus lagurus (Linnaeus, 1758) POLYZONIIDA Polyzoniidae A Polyzonium germanicum Brandt, 1831 R R A A R R R R A R R R E R R R E A A A A A CHORDEUMATLDA Brachychaeteumatidae Brachychaeteuma bradeae (Bmlemann & Brade-Birks, 1917) Mastigophorophyllidae Haploporatia eremita (Verhoeff, 1909) Masrigona bosniensis (Verhoeff, 1897) Mastigona mutabilis (Latzel, 1884) Mastigona vihorlarica (Attems, 1899) Mastigophorophyllon alpivagum bohemicum Attems, 1900 Mastigophorophyllon saronicum Verhoeff, 1910 Haaseidae Haasea flavescens (Latzel, 1884) Haasea germanica (Verhoeff, 1901) Haasea pinivaga (Verhoeff, 190 1) Craspedosomatidae Craspedosoma alemannicum Verhoeff, 1910 Craspedosoma germanicum (Verhoeff, 1910) Craspedosoma rawlinsii Leach, l 8 15 Cras~edosomaslavum Anems, 1929 Craspedosoma transsilvanicum (Verhoeff, 1897) Listrocheiritium septentrionale GuliEka, 1965 Ochogona caroli (Rothenbiihler, 1900) Chordeumatidae Melogona broelemanni (Verhoeff, 1897) Melogona gallica (Latzel, 1884) Melogona voigti (Verhoeff, 1899) Mycogona g e m n i c a (Verhoeff, 1892) Verhoffiidae Haplogona oculodistincta (Verhoeff, 1893) E E E E A A A R R A A A A R A A A A A E R R A R R A E A E A E E R A JULIDA Nemasomatidae Nemasoma varicorne C.L.Koch, 1847 Blaniulidae Blaniulus guttulatus (Fabricius, 1798) Choneiulus palmatus (Ngmec, 1895) Nopoiulus kochii (Gervais, 1847) Proteroiulusfuscus (Am Stein, 1857) Julidae Allajulus nitidus (Verhoeff, 1891) Brachyiulus bagnalli (Curtis, 1845) Brachyiulus lusitanus Verhoeff, 1898 Cylindroiulus arborum Verhoeff, 1928 Cylindroiulus brirannicus (Verhoeff, 1891) Cylindroiulus boleti (C.L.Koch, 1847) Cylindroiulus caeruleocinctus (Wood, 1864) Cylindroiulus latestriatus (Curtis, 1845) Cylindroiulus luridus (C.L.Koch, 1847) Cylindroiulus parisiorum (Brolemann & Verhoeff, 1896) Cylindroiulus punctatus (Leach, 1815) Cylindroiulus truncorum (Silvestri, 1896) Cylindroiulus vulnerarius (Berlese, 1888) Enantiulus nanus (Latzel, 1884) Julus scandinavius Latzel, 1884 Julus scanicus Lohmander, 1925 Julus rerrestris Linnaeus, 1758 Kryphioiulus occultus (C.L.Koch, 1847) Leutoiulus cibdellus (Chamberlin, 1921) Leptoiulus montivagus (Latzel. 1884) Leptoiulus noricus Verhoeff, 1913 Leptoiulus proximus (Ngmec, 1896) Leptoiulus trilobatus (Verhoeff, 1894) Megaphyllum projectum (Verhoeff, 1894) Megaphyllum unilineatum (C.L.Koch, 1838) Ommatoiulus sabulosus (Linnaeus, 1758) Ophyiulus pilosus (Newport, 1842) Pachypodoiulus eurypus (Attems, 1895) Rossiulus vilnensis (Jawlowski, 1925) R A A A E A E E E R A POLYDESMIDA Macrosternodesmidae Macrosternodesmus palicola (Brijlemann, 1908) Oniscodesmidae Amphitomeus attemsi (Schubart 1934) Paradoxosomatidae Oxidus gracilis (C.L.Koch, 1847) Strongylosoma stigmatosum (Eichwald, 1830) Polydesmidae Brachydesmus superus Latzel, 1884 Polydesmus angustus Latzel, 1884 Polydesmus complanatus (Linnaeus, 1761) Polydesmus denticulatus C.L.Koch, 1847 Polydesmus inconstans Latzel, 1884 Propolydesmus germanicus (Verhoeff, 1896) Propolydesmus testaceus (C.L. Koch, 1847) A Tachypodoiulus niger (Leach, 1815) E Uncigerfoetidus (C.L.Koch. 1838) A Unciger transsilvanicus (Verhoeff, 1899) R A A A A A R R GLOMERIDA Glomeridae Geoglomeris subterranea Verhoeff, 1908 Glomeris connexa C .L .Koch, l847 Glomeris hexasticha Brandt, 1833 Glomeris klugii Brandt, 1833 Glomeris pustulata Latreille, 1804 Glomeris tetrasticha Brandt, 1833 Doderiidae Trachysphaera costata (Waga, 1857) Trachysphaera gibbula (Latzel, 1884) Table 3: List of species of terrestrial isopods (Isopoda: Oniscidea) known from the Czech Republic (42 species) and their affiliation to ecological categories. R, A, E - see the text. R E R A A A R E A R R R R E A A E A E A ISOPODA: ONISCIDEA Ligiidae Ligidium germanicum Verhoeff, 1901 Ligidium hypnorum (Cuvier, 1792) Trichoniscidae Androniscus dentiger Verhoeff, 1908 Androniscus roseus (C. Koch, 1838) Haplophthalmus danicus Budde-Lund, 1880 Haplophthalmus mengii (Zaddach, 1844) Hyloniscus mariae Verhoeff, 1908 Hyloniscus riparius (C. Koch, 1838) Metatrichoniscoides leydigi (Weber, 1880) Trichoniscoides helveticus (Carl, 1908) Trichoniscus crassipes Verhoeff, 1939 Trichoniscus noricus Verhoeff, 1917 Trichoniscus provisorius Rakovitza, 1908 Trichoniscus pusillus Brandt, 1833 Trichoniscus pygmaeus Sars, 1898 Buddelundiellidae Buddelundiella cataractae (Verhoeff, 1930) Platyarthridae Platyarthrus hoffmannseggi Brandt, 1833 Philosciidae Lepidoniscus minutus (C. Koch, 1838) Oniscidae Oniscus asellus Linnaeus, 1758 Cylisticidae Cylisticus convexus (De Geer, 1778) R A R A E A A A A A E A E A A A R R A E R A Trachelipodidae Protracheoniscus major (Dollfus, 1903) Protracheoniscuspolitus (C. Koch, 1841) Trachelipus difjicilis (Radu, 1950) Trachelipus nodulosus (C. Koch, 1838) Trachelipus rathkii (Brandt, 1833) Trachelipus ratzeburgii (Brandt, 1833) Porcellium collicola (Verhoeff, 1907) Porcellium conspersum (C. Koch, l84 1) Porcellionidae Porcellionides pruinosus (Brandt, 1833) Porcellio dilatatus Brandt, 1833 Porcellio laevis Latreille, 1804 Porcellio montanus Budde-Lund, 1885 Porcellio scaber Latreille, 1804 Porcellio spinicornis Say, l 8 l 8 Armadillidiidae Armadillidium nasatum Budde-Lund, 1885 A r d i l l i d i u m opacum (C. Koch, 1841) Armadillidium pictum Brandt, 1833 Armadillidium pulchellum (Zenker, 1798) Armadillidium versicolor Stein, 1859 Armadillidium vulgare (Latreille, 1804) Armadillidium zenckeri Brandt, 1833 Paraschizidium roubali Frankenberger, 1940 Relic species ( R )-In this category, the most stenotopic species are included. These species inhab- it exclusively undisturbed habitats with low impact of human activities, e.g. the nature-closest forests, rests of steppes, caves, stony debris, or mountain habitats. Adaptable species (A) - These species are grouped in communities in nature-close habitats such as.different types of forests or meadows. However, they are able to inhabit artificial and manmade habitats as well. It is possible to meet for example typical forests inhabiting species in older parks, abandoned gardens, graveyards etc. with more stable environmental conditions. Introduced species are involved in this category too; although they can be rare in Czech Republic, their distribution is typically connected with human made sites (greenhouses, parks etc.) Eurytopic species (E) - Species in this category have the widest ecological valence. They are frequently found for example in both forests and non-forested biotopes and also in many humanmade biotopes (fields, brown-fields, etc.). Synantropical species inhabiting wide spectrum of man-made localities are also involved in this category although they can miss in communities at natural biotopes (e.g. Porcellio scaber). According to this categorization, 40% of species of the Czech centipede fauna can be classified as relic, 45 % as adaptable and 15 % as eurytopic. Similarly, within the millipedes known from the Czech Republic, 31 % we categorize as relic, 49% as adaptable and 20 % as eurytopic. For the Czech terrestrial isopods this ratio is 29% relic, 50% adaptable and 21 % eurytopic species. At the family level, the relic ones are the millipede families Brachychueteumidae and Macrosternodesmidue with cave species and the endogeic family Doderiidae. The high proportion of relic species (50% or more) is typical for the families Mastigophorophyllidae, Haaseidae, and Craspedosomatidue (Diplopoda), Lithobiidae (Chilopoda), and Trichoniscidae (Oniscidea). Based on the classification of known species and determination of portion of proposed ecological categories we can evaluate habitat quality. Undisturbed, nature-close habitats are inhabited mainly by relic and adaptable species. The moderately influenced sites, e.g. planted forests, are mainly inhabited by adaptable species with the low proportion of relic species. Human-made biotopes, such as residential areas etc., are mainly inhabited by adaptable species with higher proportion of eurytopic species, too. The usefulness of categorization of species according to their Table 4: Comparison of species number and assemblages structure based on the ecological groups (proportion in %) in six different areas. Sources: ' - Tajovse 2002; - Tajovskf 2001d;' - Tufova & Tuf in litt., Strichelovi in - Tajovskf 1998;5- Tajovsky 2001b, Voienillcovi in Mt.; - Navratil in litt. R, A, E - see the text. iofin Primeval Forest NNR1 Chilopoda species R A E Diplopoda species R A E Oniscidea species R A E together species R A E BflB Karpaty Labskt colliery heapsspoil Olomouc City6 (forest parts piskovce PLA4 new sokolov5 19 41 17 21 15 19 31.6 52.6 15.8 29.3 51.2 19.5 29 A 35.3 35.3 19.0 42.9 38.1 6.7 40.0 53.3 5.3 57.9 36.8 14 33 21.2 42.4 36.4 20 17 15 16 10.0 65 .O 25 O . 11.8 41.2 47.1 0O . 33.3 66.7 0O . 68.7 31.3 21.4 42.9 35.7 7 14 11 28.6 57.1 14.3 7.1 50.O 42.9 9O . 45.5 45.5 8 12.5 37.5 50O . 8 0 .O 50.O 50 O . 0 .O 56.2 43.8 40 88 22.7 47.7 29.6 48 16.7 50.0 33.3 46 15.2 41.3 43.5 38 2.6 39.5 57.9 2 .O 60.8 37.2 27.5 50.0 22.5 16 51 ecological valences for evaluation of habitat quality is demonstrated on the following comparison of assemblages from different areas (tab. 4). We used data obtained from papers of Tajovskf (1998, 2001b, 2001d, 2002), unpublished master theses of VoZenflkovi (in litt.) and Navritil (in litt.), and own data from inventory research (TufovB & Tuf in litt.). The proportion of relic species corresponds well with naturalness of the area and consequently with level of locality protection. Localities with the highest naturalness and protection level (National Nature Reserve and National Park) are inhabited by assemblages with the highest portion of relic species (more than 20% in millipedes, circa 30% in centipedes, about !4 in all groups together). To the contrary, relic species do not occur (millipedes, terrestrial isopods) or occur only rarely (centipedes) at human made habitats (see colliery spoil heaps and the Olomouc City in tab. 4). High proportion of eurytopic species is typical for primary succession on the colliery spoil heaps, whereas adaptable species are typical mostly for the Olomouc City with the high diverse mosaic of different but often stabilized biotopes. Our analyses showed that evaluation of habitat does not depend on the size of assessed territory. The same proportion of relic species of centipedes and millipedes were obtained from the &fin Primeval Forest NNR as well as from the Podyji NP despite to hundred times larger area and twice as higher number of species in the given national park. Centipedes and millipedes seem to be more useful for the proposed purpose than terrestrial isopods because of different number of species in their communities. Typical community of terrestrial isopods in any forest habitat is created only by 4-7 species (see the ?o!nif Primeval Forest NNR in tab. 4). Presence or absence of l relic species in such community represents a big proportional difference. Usage of terrestrial isopods for habitat quality evaluation together with other two presented myriapod groups is therefore highly recommended. A c k n o W l e d g e m e n t s . We are grateful to Martin KonviEka who encouraged us to prepare classification of these species for habitat evaluation. We thank Karel Tajovskf, who introduced us to soil biology many years ago, for a lot of information about individual species distribution during frequent consultations and for many useful comments to this manuscript. Furthermore we would like to thank Dana BednGovi for improving of English. This study was supported by National Research Programme I1 (No. 2B 06101). References A I l e g r o G., S c i a k y R. (2003): Assessing the potential role of ground beetles (Coleoptera, Carabidae) as bioindicators in poplar stands, with a newly proposed ecological index (FAI). - Forest Ecology and Management, 175: 275-284. B i l t o n D. T. (1996): Myriapods, isopods and molluscs - useful for enviroment assessment? - In: E y r e M.D. (ed.): Enviromental monitoring, surveilance and conservation using invertebrates. Benton, EMS Publications: 18-21. B o h a c J. (1999): Staphylinid beetles as bioindicators. - Agriculture, Ecosystems & Environment, 74: 357-372. B U c h a r J. (1983): Klasifikace druhi pavouEiviieny Cech, jako pomdcka k bioindikaci kvality iivotnfio prostiedi. - Fauna Bohemiae Septentrionalis. Usti nad Labem, 8: 119-135. D U f r & n e M,, B a g u e t t e M. (1990): Evaluation of carabids as bioindicators: a case study in Belgium. - In: S t o r k N.E. (ed.): The role of ground beetles in ecological and environmental studies. Intercept, Andover, Hampshire: 377-382. F l a s a r o v B M. (2000): iibersicht iiber die faunistische Erforschung der Landasseln (Isopoda, Oniscidea) in der Tschechische Republik. - Cmstaceana, 73: 585-608. F r o u z J. (1999): Use of soil dwelling Diptera (Insecta, Diptera) as bioindicators: a review of ecological requirements and response to disturbance. -Agriculture, Ecosystems & Environment, 74: 167-186. H B r k a K., Ve s e l f P,, F a r k aE J. (1996): Vyuiitf stievlikovit~ch(Coleoptera: Carabidae) k indikaci kvality prostiedi. - Klapalekiana, 32: 15-26. K o c o u r e k P. (2001): Several new species of millipedes (Diplopoda) from the Czech Republic. - Acta Soc. Zool. Bohem., 65: 81-96. - (2004): Mnohonoiky - skrytA fauna v Zoo Praha. - 2iva, 52: 169-171. L a r d i e s M. A., B o z i n o v i c F. (2006): Geographic covariation between metabolic rate and life-history traits. -Evolutionary Ecology Research, 8: 1-16. L o b r y d e B r U y n L.A. (1999): Ants as bioindicators of soil function in rural environments. Agriculture, Ecosystems & Environment, 74: 425-441. M a r c P., C a n a r d A., Y s n e l F. (1999): Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment, 74: 229-273. N a v r a t i l M. (in litt.): Stonoiky, mnohonoiky a suchozemSti stejnonoici ve mkt; (Olomouc & Hodonin). (Diplomova pracehlaster thesis). Palacky University Olomouc, Faculty of Science, 2007, 79 pp. + CD-ROM P a o l e t t i M. G. (1999): The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems &Environment, 74: 137-155. P a o l e t t i M. G., H a s s a l l M. (1999): Woodlice (Isopoda: Oniscidea): their potential for assessing sustainability and use as bioindicators. -Agriculture, Ecosystems & Environment, 74: 157-165. S o u t y - G r o s s e t C . , B a d e n h a u s s e r I . , R e y n o l d s J. D . , M o r e l A. (2005): Investigations on the potential of woodlice as bioindicators of grassland habitat quality. - European Journal of Soil Biology, 41: 109-116. S o u t y - G r o s s e t C., C h e n t o u f i A., M o c q u a r d J. P., J u c h a u l t P. (1988): Seasonal reproduction in the terrestrial isopod Armadillidium vulgare (Latreille): Geographical variability and genetic control of the response to photoperiod and temperature. - Invertebrate Reproduction and Development. 14: 131-151. S t r i c h e l o v 6 J. (in lin.): SpoloEenstva suchozemskych rovnakonoiiek na vybranych lokalitkh Bflych KarpPt. (Bakalfikh pdce/Bachelor thesis). Palacky University Olomouc, Faculty of Science, 2008,42 pp. T a j o v s k 9 K. (1998): Terrestrial arthropods (Oniscidea, Diplopoda, Chilopoda) of Labske piskovce Protected Landscape Area (North Bohemia, Czech Republic). - In: P i i l V. et T a j o v s k y K. (eds.): Soil Zoological Problems in Central Europe. ISB AS CR, Cesk6 BudEjovice: 235-242. - (2001a): Centipedes (Chilopoda) of the Czech Republic. - Myriapodologica Czecho-Slovaca, l : 39-48. - (2001b): Colonization of colliery spoil heaps by millipedes (Diplopoda) and terrestrial isopods (Oniscidea) in the Sokolov region, Czech Republic. -Restoration Ecology, 9: 365-369. - (2001~):Millipedes (Diplopoda) of the Czech Republic. - Myriapodologica Czecho - Slovaca, 1: 11-24. - (2001d): SouEasnf stav poznani fauny mnohonoiek (Diplopoda), stonoiek (Chilopoda) a suchozemskych stejnonoich (Oniscidea) v Nirodnim parku Podyji. - Thayensia (Znojmo), 4: 161-167. - (2002): Mnohonoiky (Diplopoda), stonoiky (Chilopoda) a suchozembti stejnonoici (Oniscidea) Nirodni pfiodni rezervace bfinsky prales v Novohradskych horach. - In: P a p E e k M. (ed.): Biodiverzita a piirodni podminky Novohradskych hor. SBU & ENTU AS CR, Cesk6 BudEjovice: 157-161. T a j o v s k 9 K., M l e j n e k R. (2007): Nilezy novqch dmhh troglofilnich mnohonoiek. - Ochrana piirody, 62: 19-20. T u f I. H., L a S k a V. (2005): Present knowledge on centipedes in the Czech Republic: a zoogeographic analysis and bibliography 1820-2003. - Peckiana, 4: 143-161. T u f I. H., N a v r d t i l M . , R i e d e l P . , T a j o v s k y K . , M i k u l a J. (in prep.): New and interesting records of centipedes from Czech Republic. T u f I. H., W y t W e r J., T a j o v s k ); K. (2008): On the identity of the species described in the genus Lithobius Leach, 1814 by L. J. Dobroruka from the former Czechoslovakia (Czech and Slovak Republics) (Chilopoda: Lithobiomorpha). - Zootaxa, 1788: 37-46. T u f o v d J . , M i k u l a J., N a v r a t i l M . , T a j o v s k y K . , T u f I. H. (in prep.): New and interesting records of millipedes from Czech Republic. T u f o v B J., T u f I. H. (in litt.): ZavEreEni zprava inventarizaEniho pGzkumu tii lesnich MZCHU v ramci CHKO Bflt Karpaty. Chilopoda & Diplopoda & Oniscidea. - Ms. depon on Sprava CHKO Bfle Karpaty, 2004,ll pp. V a n S t r a a l e n N. M. (1998): Evaluation of bioindicator systems derived from soil arthropod communities. -Applied Soil Ecology, 9: 429-437. Vo i e n i l k o v d K. (in litt.): Vyvoj spoleEenstev stonoiek (Chilopoda) v podminkkh primarni sukcese na vysypkach v oblasti Sokolovska. (Magisterskd pricehlaster thesis). South Bohemian University Qesk6 BudEjovice, Faculty of Biology, 2003,35 pp. Z i m m e r M,, B r a U c k m a n n H. J., B r o l l G., T o p p W. (2000): Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. - Pedobiologia, 44: 695-704. Nhvrh ekologickk klasifikace stonoiek, mnohonoiek a suchozemsk$ch stejnonoicd pro hodnoceni kvality stanoviSt'v CR SuchozemSti bezobratli jsou Easto pouiivini jako nistroj pro hodnoceni kvality stanoviSt'. Stonoiky, mnohonoiky a suchozemSti stejnonoici mohou bft vyuiiti takt, d k y jejich biologii (nelttavi iivoEichovt atp.) a dostateEnCmu poEtu druhi (v r h c i CR celkem 188 druhii). Zdstupci 3 kategorii podle jejich ekologickfch niiroki: reliktni (omezeny vSech tii skupin byli rozdgleni do t vfskytem na nenaruSen6 prost?edf), adaptabilni (schopnt kolonizovat ElovEkem EisteEnE pietvoient prostfedf) a eurytopnl (kolonizujicl r h n t biotopy vEetnE siln6 ElovEkem postiienfch). Zastoupeni jednotlivych kategorii ve spoleEenstvu dantho dzemi je moint vyuilt k hodnoceni stupnk jeho zachovalosti. Moint pouiiti klasifikace je demonstrovino na phlladech z n h f c h faunistickfch ddaji ze Sesti dzemnich celki IiSicich se stupnkm antropicktho ovlivnEni i vlastni velikosti dzemi. Authors' addresses: Ivan H. T U f & Jana T U f o v ,Department of Ecology and Environmental Science, Faculty of Science,Palacky University, Svobody 26,77200 Olomouc, Czech Republic; e-mail: [email protected],[email protected]
© Copyright 2026 Paperzz