5.3 First One of Two Special Equations - Legendre’s Equation 1. Legendre’s equation and solution: Legendre’s differential equation: 1 " x 2 y UU " 2xy U nn 1 y 0, where n is a real number. 1 " x 2 y UU " 2xy U 3 y 0, n 1 2 4 Example 1 " x 2 y UU " 2xy U 6y 0, n 2; Solve Legendre’s differential equation: 1 " x 2 y UU " 2xy U nn 1 y 0. Since a 2 x 1 " x 2 0 when x 1 and x "1, the equation has singular points: x o1. . a. Let x 0 0 (it is a regular point) and y ! m0 c m x m . Then U . y ! c m mx m"1 , . and ! c m mm " 1 x m"2 . y UU m1 m2 b. Substitute y U and y UU into the equation 1 " x 2 y UU " 2xy U nn 1 y 0, or y UU " x 2 y UU " 2xy U nn 1 y 0. We have . . . . m2 m2 m1 m0 ! c m mm " 1 x m"2 " ! c m mm " 1 x m " ! 2c m mx m ! nn 1 c m x m 0. In the 1st summation, replace m " 2 by k : m k 2, k m " 2, when m 2, k 0. In the last 3 summations, replace m by k. . . . . ! c k2 k 2 k 1 x " ! c k kk " 1 x " ! 2c k kx ! nn 1 c k x k 0. k k0 k k2 2c 2 nn 1 c 0 . ! k2 k k1 k0 nn 1 " 2 c 1 6c 3 x c k2 k 2 k 1 " c k kk " 1 " 2c k k nn 1 c k xk 0 c. Solving from the equation, we have a recurrence relation: nn 1 c0 2 nn 1 " 2 n " 1 n 2 c1 " c1 nn 1 " 2 c 1 6c 3 0, c 3 " 3! 6 c k2 k 2 k 1 " c k kk " 1 " 2c k k nn 1 c k 0, for k 2, 3, . . . 2c 2 nn 1 c 0 0, c2 " For k 2, 3, . . . c k2 kk " 1 2k " nn 1 k 2 k " nn 1 n " k n k 1 ck ck " ck k 2 k 1 k 2 k 1 k 2 k 1 Example Find the solution of Legendre’s equation 1 " x 2 y UU " 2xy U 6y 0. n1 n 6, n 2. 23 nn 1 c0 " c "3c 0 c2 " 2 2 0 n " 1 n 2 1 4 c3 " c1 " c1 " 2 c1 3! 3! 3 For k 2, 3, . . . , 1 k " 2 3 k 2 " k 3 k "k " 2 3 k ck " ck ck k 2 k 1 k 2 k 1 k 2 k 1 c k2 " k 2 c4 " k3 c5 1 6 c3 5 4 k5 c7 3 8 c5 7 6 k7 c9 5 10 c7 9 8 B B k 2m " 1 c 2m1 " 2 " 2 5 c 2 0 ® c 2m 0 for m 2, 3, . . . 4 3 1 2 2 3! 1 22 c1 " c1 " 1 c1 5 3! 5! 2 3 1 2 3! 1 3 2 4! c1 " c1 " 4 c1 " 5! 35 7! 1 23 5 4 3 8 7 6 " 5 10 9 8 " 1 3 2 3 4! c1 7! 1 3 5 2 4 5! c1 " 5 c1 63 9! " 1 3 5 C2 2m"1 2m " 3 ! c1 2m 1 ! y c 0 1 " 3x 2 c 1 x " 2 x 3 " 1 x 5 " 4 x 7 " 5 x 9 " C 5 3 35 63 . 1 3 5 C2 2m"1 2m " 3 ! 2m1 x c 0 1 " 3x 2 c 1 x " 2 x 3 " ! 3 2m 1 ! m2 Example Find the solution of Legendre’s equation 1 " x 2 y UU " 2xy U 3 y 0. 4 n1 n 1 3 3 , n 1 . 2 4 2 2 1 3 nn 1 1 3 c2 " c 0 " 2 2 c 0 "1 c0 " 3 c0 2 2 8 2!4 n " 1 n 2 c3 " c1 " 3! "1 2 3! 5 2 c 1 "1 2 1 5 c1 5 c1 24 3!4 For k 2, 3, . . . , c k2 1 " k 3 k k " 1 3 k n " k n k 1 1 " k 3 k 2 ck " 2 ck " ck ck " 4k 2 k 1 4k 2 k 1 k 2 k 1 k 2 k 1 k2 c4 k4 c6 B k 2m " 1 2 1 5 c2 44 3 3 7 c4 46 5 " 7 c0 1024 1 5 44 3 3 7 46 5 "1 " 1 3 c0 2!4 " 1 2 3 5 c0 4!4 2 B c 2m " 1 2 3 5 C2m " 3 2 2m " 1 2m 1 c0 2m ! 4 m 1 2 3 5 c0 " 5 c0 128 4!4 2 " 1 2 3 2 5 7 c0 6!4 3 k3 c5 k5 2 6 c3 45 4 21 23 45 4 1 5 c1 3!4 2 2 1 2 3 5 c1 1 c1 32 5!4 2 2 2 1 2 3 5 22 24 4 8 c5 c1 47 6 47 6 5!4 2 1 c1 168 2 3 2! 4! 5 23 25 6 10 c9 c7 c1 49 8 49 8 7!4 3 5 c1 4032 B 2 2m"3 2m " 5 !2m " 3 !5 c 2m1 c1 2m 1 ! 4 m c7 k7 B k 2m " 1 y c 0 1 " 3 x 2 " 5 x 4 " " 7 x 6 ". . . 8 128 1024 2 3 2! 4! 5 c1 7!4 3 2 5 3! 5! 5 c1 9!4 4 c 1 x 1 x 3 1 x 5 5 x 7 . . . 32 628 4032 . c0 1 2 3 5 C2m " 3 2 2m " 1 2m 1 2m 1 " 3 x2 " ! x 8 2m ! 4 m m2 . 2 2m"3 2m " 5 !2m " 3 !5 2m1 x c1 x 1 x3 ! 32 2m 1 ! 4 m m2 Remarks: a. The general solution of a Legendre equation For any n, nn 1 n " 1 n 2 c0, c3 " c1 c2 " 2 3! n " k n k 1 c k2 " c k , for k 2, 3, . . . k 2 k 1 k2 k3 nn 1 n " 2 n 3 n " 2 n 3 c2 " c0 " 2 4 3 4 3 n " 2 n 3 nn 1 c0 "1 2 4! n " 1 n 2 n " 3 n 4 n " 3 n 4 c5 " c3 " c1 " 3! 5 4 5 4 n " 1 n 2 n " 3 n 4 n " 3 n 4 c3 " c1 " " 3! 5 4 5 4 c4 " nn 1 2 n " 2 n 3 nn 1 4 x "1 2 x . . . 2 4! n " 1 n 2 3 n " 3 n 4 n " 1 n 2 5 x "1 2 x . . . c1 x " 6 5! c0 y1 c1 y2 y c0 1 " where c 0 and c 1 are arbitrary constants. Observe that y 1 is even and y 2 is odd. Hence, y 1 and y 2 are linearly independent, and y c0 y1 c1 y2 3 is the general solution of Legendre’s equation. b. Radius of convergence y is called a Legendre function for x in the interval of convergence. The radius R of convergence of the power series for a Legendre function is 1 which is the distance to the nearest singular point x 1 or x "1. That is, y is a Legendre function for "1 x 1. 2. Legendre Polynomials: Observe that nn 1 n " 1 n 2 c0, c3 " c1 2 3! n " k n k 1 ck, k 2, 3, . . . . " k 2 k 1 c2 " c k2 When n is a nonnegative integer and n " k 0, c k2 0 for k u n. In this case, y 1 if k is even) or y 2 if k is odd) is a polynomial. For example, when n 0, c 2 0 and then c 4 0, c 6 0, . . . . So, y 1 c 0 , a polynomial of degree 0; when n 1, c 3 0 and then c 5 0, c 7 0, . . . . So, y 2 c 1 x, a polynomial of degree 1; when n 2, c 4 0 and then c 6 0, c 8 0, . . . . So, y 1 c 0 c 2 x 2 , a polynomial of degree 2; when n 3, c 5 0 and then c 7 0, c 9 0, . . . . So, y 2 c 1 x c 3 x 3 , a polynomial of degree 3. The polynomials derived from the Legendre’s function are called Legendre polynomials. With choosing 1 3 5 . . . n " 1 1 3 5 . . . n c 0 "1 n/2 , and c 1 "1 n"1 /2 , 2 4 . . . n 2 4 . . . n " 1 P 0 x 1 P 2 x P 4 x 1 2 1 8 P 1 x x 3x 2 " 1 P 3 x 35x 4 " 30x 2 3 P 5 x B 1 2 1 8 5x 3 " 3x 63x 5 " 70x 3 15x B 1 0.8 0.6 y 0.4 0.2 -1 -0.8 -0.6 -0.4 -0.2 0 -0.2 0.2 0.4 x 0.6 0.8 -0.4 -0.6 -0.8 -1 y P0, P1, P2, P3, P4, P5 Example Show that P 5 x 4 1 8 63x 5 " 70x 3 15x satisfies Legendre equation. 1 Since n 5, consider the differential equation: 1 " x 2 y UU " 2xy U 30y 0. U P 5 x 315 x 4 " 105 x 2 15 , P UU5 x 315 x 3 " 105 x 4 2 8 8 2 105 105 15 315 315 1 x3 " x " 2x x4 " x2 30 1 " x 2 63x 5 " 70x 3 15x 2 4 8 2 8 8 0 3. Properties of Legendre’s Polynomials: a. P 2m ’s are even and P 2m1 ’s are odd. b. P m ’s are orthogonal on "1, 1 . Recall: Functions f and g are orthogonal on a, b if b ; a fx gx dx 0. Recall: If f is odd, then a ; "a fx dx 0. 1 1 ; "1 P 2 x dx ; "1 1 3x 2 " 1 dx 0 2 1 1 ; "1 P 4 x dx ; "1 18 35x 4 " 30x 2 3 dx 0 1 1 ; "1 P 2 x P 4 x dx ; "1 12 3x 2 " 1 18 35x 4 " 30x 2 3 dx 0 We know that £1, x, x 2 , . . . , x m ¤ forms a basis for polynomials of degree m. Legendre’s polynomials P 0 , P 1 , . . . , P m also forms an orthogonal basis for polynomials of degree m. 5
© Copyright 2026 Paperzz