The Case Against Bullet, Approval and Plurality Voting Saari, D.G. and Newenhizen, J. van IIASA Collaborative Paper February 1985 Saari, D.G. and Newenhizen, J. van (1985) The Case Against Bullet, Approval and Plurality Voting. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP-85-003 Copyright © February 1985 by the author(s). http://pure.iiasa.ac.at/2745/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR THE CASE AGAINST BULLET. APPROVAL AND PLURALITY VOTING Donald G. S a a r i Jill Van Newenhizen C o l l a b o r a t i v e P a p e r s r e p o r t work which has not been performed solely at the International Institute f o r Applied Systems Analysis and which has received only limited review. Views o r opinions expressed herein do not necessarily r e p r e s e n t those of t h e Institute, i t s National Member Organizations, o r o t h e r organizations supporting t h e work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria PREFACE In this paper Don Saari pursues his inquiry into the paradoxes of voting systems and shows that bullet, approval and plurality voting can have most unlooked-for consequences. This research w a s carried out in collaboration with the System and Decision Sciences Program. ALEXANDER KURZHANSKI Chairman System and Decision Sciences Program THE CASE AGAINST BULLET. APPROVAL AND PLURALtTY VOTING Donald G. Saari Jill Van Newenhizen I t i s w e l l Known that p l u r a l i t y v o t i n g need not r e f l e c t the t r u e sentiments of the uoters. When there are more than two candidates running f o r the same o f f i c e , i s probable t h a t the candidate approved by most o f the voters won't win. it Examples abound; perhaps the best Known one i s the Senatorial e l e c t i o n i n the s t a t e o f New YorK d u r i n g 1970. Conservative James Buckler b e n e f i t e d fram a s p l i t uote f o r h i s two l i b e r a l .opponents; he was e l e c t e d w i t h 3YL o f the vote even though 61% o f the electorate preferred a l i b e r a l . I n the 1983 Democratic Party primary campaign f o r the mayor o f Chicago, the black candidate, Harold Washington, was e l e c t e d because o f a s p l i t vote f o r h i s two w h i t e opponents, Jane Bryne and Richard Daley. Indeed, examples can be found i n many c l o s e l y contested e l e c t i o n s among three or more candidates. To i l l u s t r a t e the problem, consider the f o l l o w i n g example o f f i f t e e n v o t e r s and three candidates A, B, and C. Suppose the uoters' preferences are s p l i t i n the f o l l o w i n g way: Six o f the v o t e r s have the r a n k i n g A)C)B; B)C)A, and f o u r haue the r a n k i n g C)B)A. w i t h a t a l l y 6:5:4. p r e f e r B t o A. f i v e haue the r a n k i n g The r e s u l t o f a p l u r a l i t y e l e c t i o n i s A)B)C But, although A i s elected, a m a j o r i t y (60%) o f these v o t e r s More s e r i o u s l y , a m a j o r i t y (60%) o f these v o t e r s p r e f e r C, the l a s t place candidate, t o 4 , and 213 of them p r e f e r C t o B! candidate, but t h i s f a c t isn't So, C i s the p r e f e r r e d r e f l e c t e d i n the e l e c t i o n r e s u l t s . T h i s i s because w i t h a p l u r a l i t y vote the v o t e r s can vote f o r o n l y t h e i r top ranked candidate. Voters are aware of t h i s phenanena and r e a c t by using s t r a t e g i c v o t i n g behavior. T h i s i s manifested by the c m o n r e f r a i n near e l e c t i o n time o f 'Don't waste your uote, mark your b a l l o t f o r ---.' To remain viable, candidates must devote valuable campaign time t o counter t h i s e f f e c t . For instance, d u r i n g the 1984 p r e s i d e n t i a l primaries, Jesse Jackson urged h i s f o l l o w e r s t o vote f o r him r a t h e r than s t r a t e g i c a l l y v o t i n g f o r Walter Mondale. There i s l i t t l e question t h a t t h i s instrument o f democracy i s i n need o f reform. B u t , what s h o u l d be i t s replacement? One r e f o r m measure, w h i c h i s i n t e n d e d t o c a p t u r e how s t r o n g l y a v o t e r p r e f e r s h i s f a v o r i t e c a n d i d a t e , i s b u l l e t votinq. Here a v o t e r h a s two v o t e s ; he can v o t e f o r h i s t o p r a n k e d c a n d i d a t e , h i s t o p two c a n d i d a t e s , o r he can c a s t b o t h v o t e s f o r h i s t o p r a n k e d c a n d i d a t e . For i n s t a n c e , i n t h e above example, i f a l l o f t h e v o t e r s had s u f f i c i e n t r e g a r d f o r c a n d i d a t e C, then she w o u l d be e l e c t e d . B u l l e t v o t i n g was used i n I l l i n o i s f o r c e r t a i n l e g i s l a t i v e o f f ices. A second proposed r e f o r m method i s a ~ ~ r o v av ol t i n q . votes f o r o f the c a n d i d a t e s he approves o f . T h i s i s where a v o t e r As such, when t h e r e a r e N c a n d i d a t e s , t h e v o t e r has N c h o i c e s ; he can v o t e a p p r o v a l f o r h i s t o p i c a n d i d a t e s , i=l,..,N. A g a i n f o r t h e above example, depending upon t h e degree w h i c h t h e v o t e r s f a v o r c a n d i d a t e C, she may, o r mar n o t , emerge v i c t o r i o u s . I t was Approval v o t i n g e n j o y s the support o f several e x p e r t s i n t h i s f i e l d . employed f o r a s t r a w b a l l o t d u r i n g the P e n n s y l v a n i a Democratic p a r t y c o n f e r e n c e i n December, 1983, C11, and i t was used t o s e l e c t f a c u l t y members t o t h e N o r t h w e s t e r n U n i v e r s i t y P r e s i d e n t i a l s e a r c h c m i t t e e i n November, 1983. i t '..is I n addition, now used i n academic s o c i e t i e s such a s t h e E c o n a n e t r i c S o c i e t y , i n t h e s e l e c t i o n o f members o f t h e N a t i o n a l Academy o f Science d u r i n g f i n a l b a l l o t i n g , and by t h e U n i t e d N a t i o n s S e c u r i t y C o u n c i l i n t h e e l e c t i o n o f a S e c r e t a r y General. B i l l s t o enact t h i s r e f o r m a r e now b e f o r e the s t a t e l e g i s l a t u r e s o f New York and Vermont .' t 2 1 . Much o f t h i s s u p p o r t i s a consequence o f t h e a n a l y s i s o f i t s p r o p e r t i e s b y two o f i t s foremost advocates, Steven Brams and P e t e r F i s h b u r n . Most o f t h e i r c o n c l u s i o n s , w h i c h h i g h 1 i g h t s e v e r a l of t h e d e s i r a b l e p r o p e r t i e s o f t h i s system, a r e summarized i n t h e i r book 'Approval Voting'C31. To demonstrate t h e s t r e n g t h o f a p p r o v a l v o t i n g , o f t e n t h e y canpared i t w i t h those c m o n l y used systems w h i c h d i s t i n g u i s h between two s e t s o f c a n d i d a t e s v o t i n g i s t h e s p e c i a l case where k = l ; c a n d i d a t e and a l l o t h e r s . - t h e t o p k and t h e r e s t . P l u r a l i t y i t d i s t i n g u i s h e s between t h e top r a n k e d Because o f the t e c h n i c a l d i f f i c u l t i e s i n v o l v e d , n o t a l l of t h e p r o p e r t i e s o f 'approval u o t i n g ' were f o u n d , and i n 131 i t wasn't compared w i t h a1 1 o t h e r v o t i n g systems. A t a c o n f e r e n c e i n J u l y , 1984, one o f u s (DGS) p r e s e n t e d s e v e r a l n e g a t i v e r e s u l t s c o n c e r n i n g t h e b e h a v i o r o f a p p r o v a l v o t i n g (see 14,531 a s p a r t o f a l e c t u r e d i s c r i b i n g what can occur w i t h v o t i n g methods. L a t e r , S. Brams p r i v a t e l y asked whether t h e t e c h n i q u e s developed t o o b t a i n t h e s e r e s u l t s c o u l d expose o t h e r p r o p e r t i e s o f approval uoting. We s t a r t e d t h i s p r o j e c t w i t h t h e e x p e c t a t i o n t h a t a p p r o v a l v o t i n g i s , i n sane sense, b e t t e r t h a n most systems. B u t , we f o u n d t h a t i t has s e v e r a l d i s t u r b i n g f e a t u r e s w h i c h makes i t worse than even t h e p l u r a l i t y v o t i n g system. I n d e e d , these p r o p e r t i e s appear t o be s u f f i c i e n t l y bad disaualif~ a ~ p r o v a lv o t i n a a s a v i a b l e r e f o r m a l t e r n a t i v e . I n t h i s p a p e r , we r e p o r t on sane o f t h e s e n e g a t i v e f e a t u r e s w h i c h a r e s h a r e d b y v o t i n g systems, such as a p p r o v a l u o t i n g , b u l l e t u o t i n g , c a r d i n a l u o t i n g , e t c . , t h e r e i s more t h a n one way t o t a l l y each v o t e r ' s r a n k i n g o f t h e c a n d i d a t e s . f e a t u r e emphasized h e r e i s t h a t t h e e l e c t i o n outcome can be 'random" r a t h e r than b e i n g decisiue. More p r e c i s e l y , where The i n nature i f there are N candidates, then t h e r e a r e N! p o s s i b l e ways t o rank them w i t h o u t t i e s . The purpose o f an e l e c t i o n i s t o d e t e r m i n e w h i c h one o f them i s t h e group's c h o i c e . a given s e t o f voters' I f a v o t i n g system i s d e c i s i v e , p r o f i l e s u n i q u e l y d e t e r m i n e s one o f these r a n k i n g s . f o r a p p r o v a l and b u l l e t u o t i n g , t h e r e a r e a l a r g e number o f examples where However, N! o u t c a n e s o c c u r f o r t h e same p r o f i l e ! T h a t i s , each v o t e r v o t e s h o n e s t l y a c c o r d i n g t o h i s f i x e d r a n k i n g o f the candidates. B u t , as t h e v o t e r s v a r y t h e i r c h o i c e o f how t h e i r b a l l o t s w i l l be t a l l i e d , each o f t h e p o s s i b l e N! r a n k i n g s emerge! T h i s phenomenon can be i l l u s t r a t e d w i t h t h e above example. L e t w,y,z denote, r e s p e c t i v e l y , t h e number o f v o t e r s f r o m t h e t h r e e t y p e s o f v o t e r s who v o t e a p p r o v a l f o r t h e i r t o p two c a n d i d a t e s r a t h e r t h a n j u s t t h e i r t o p r a n k e d c a n d i d a t e . O(w(6, O(y(5, O(z(4, and t h e t a l l y f o r A:B:C i s 6:5tz:4twty. t h a t 9 e l e c t i o n outcome i s a t t a i n a b l e f r o m these u o t e r s . Then, I t f o l l o w s immediately For i n s t a n c e t h e r e s u l t B>A>C o c c u r s when 212 ( a t l e a s t two f r o m t h e l a s t s e t o f v o t e r s v o t e f o r t h e i r t o p two r a n k e d c a n d i d a t e s ) and wty(1. Even t i e s a r e p o s s i b l e . A deadlocked e l e c t i o n o f - &B=C r e s u l t s f r o m z=1 and w+y=2, w h i l e t h e r e s u l t B=C>A r e s u l t s f r o m w+y-l=z>2. T h i s example and t h e g e n e r a l r e s u l t i n d i c a t e s t h a t systems such a s approval and b u l l e t v o t i n g possess f e a t u r e s which a r e more u n d e s i r a b l e t h a n even those o f t h e p l u r a l i t y v o t i n g system! J u s t t h i s s t o c h a s t i c , random n a t u r e o f t h e e l e c t i o n outcome r a i s e s s e r i o u s q u e s t i o n s whether a p p r o v a l v o t i n g , and r e l a t e d methods, t r u l y o f f e r any r e f o r m . The proposed c u r e seems t o be much worse than t h e disease. T h i s r e s u l t doesn't of t h e p l u r a l i t~ v o t i n g . a voter's first, second, mean we a r e doomed t o a c c e p t and t o l i v e w i t h t h e f a i l i n g s There a r e o t h e r ways t o t a l l y a b a l l o t which would r e f l e c t .., l a s t ranked candidates. For i n s t a n c e , a Borda Count i s where when t h e r e a r e N c a n d i d a t e s , N p o i n t s a r e t a l l i e d f o r a v o t e r ' s candidate, (N-1) f o r h i s second r a n k e d c a n d i d a t e , candidate, .., and ..., (N-k) 1 p o i n t f o r h i s l a s t ranked candidate. top ranked f o r h i s kTH ranked (The Borda r a n k i n g f o r t h e above example i s t h e d e s i r e d one of C>B>A w i t h a t a l l y o f 34:29:27.) So, o u t o f a l l p o s s i b l e ways t h e r e a r e t o t a l l y b a l l o t s , t h e p r o b l e m i s t o i s o l a t e those ways which best capture the wishes o f the e l e c t o r a t e . I t t u r n s o u t t h a t t h e unique s o l u t i o n f o r t h i s p r o b l e m i s t h e Borda Count.161 2. The m a i n r e s u l t s . Assume t h e r e a r e N13 c a n d i d a t e s denoted by ( a ~ , . . , a N l . (WI, ..., WJ~WK WN) Let W= be a v o t i n ~v e c t o r where i t s components s a t i s f y t h e i n e q u a l i t i e s i f and o n l y i f j < k , and WI>WN. w e i g h t s t o be r a t i o n a l numbers. s i m p l i f y the proofs. Furthermore, we r e q u i r e a l l o f t h e (The o n l y purpose o f t h e l a s t r e q u i r e m e n t i s t o C l e a r l y i t doesn't impose any p r a c t i c a l l i m i t a t i o n s because f o r a l l commonly used methods the w e i g h t s a r e f r a c t i o n s and/or integers.) Such a v e c t o r d e f i n e s t h e t a l l y i n g p r o c e s s f o r an e l e c t i o n voter's jTH ranked candidate. determines her f i n a l ranking. p l u r a l it y vote. . Count.) Let EN be p o i n t s are t a l l i e d f o r a For example, t h e v e c t o r (1,0,..,0) corresponds t o the d e f i n e s t h e u s u a l Borda Count p r o c e d u r e . g e n e r a l l y , a Borda V e c t o r i s whenever t h e d i f f e r e n c e s nonzero c o n s t a n t f o r j=i,. ,N-1. WJ Then, the sum o f t h e p o i n t s t a l l i e d f o r a c a n d i d a t e .. , I ) BN=(N,N-1,. -- WJWJ+I (More a r e t h e same An e l e c t i o n u s i n g such a v o t i n g v e c t o r i s a Borda the vector N-l(l,l,..,l). This isn't a l l o f t h e components a r e equal, so i t can't a v o t i n g v e c t o r because d i s t i n g u i s h how c a n d i d a t e s a r e ranked. A s i m p l e v o t i n a system i s where a s p e c i f i e d v o t i n g v e c t o r i s used t o t a l l y t h e voters' r a n k i n g s o f the candidates. A a e n e r a l v o t i n a system i s where t h e r e i s a s p e c i f i e d s e t o f a t l e a s t two v o t i n g v e c t o r s , any two o f these v e c t o r s i s n ' t same.) (WJ), a scalar m u l t i p l e o f where t h e d i f f e r e n c e between EN. (Hence, no two a r e t h e Then, each v o t e r s e l e c t s a v o t i n g v e c t o r t o t a l l y h i s b a l l o t . Examples. l,O,..,O, is l,O,.., F o r t h e b u l l e t method, t h e s e t o f t h r e e v o t i n g v e c t o r s a r e l,l,O,..,O, 0 , , , O , , 2,0,..,0. O,.., For a p p r o v a l v o t i n g , t h e s e t o f N v e c t o r s l , , . 0, 1 , 1 , . , 1 the v o t e r i s f r e e t o s e l e c t t h e v a l u e s o f t h e w e i g h t s constraints. WJ For c a r d i n a l v o t i n g , subject t o c e r t a i n F o r i n s t a n c e , t o s t a n d a r i z e t h e c h o i c e s , t h e w e i g h t s m i g h t be r e q u i r e d t o sum t o u n i t y , o r t o be bounded above and below by s p e c i f i e d c o n s t a n t s . The extreme i n d e c i s i v e n e s s f o r e l e c t i o n s w h i c h was d e s c r i b e d above i s c h a r a c t e r i z e d i n the f o l l o w i n g d e f i n i t i o n . D e f i n i t i o n 1. A g e n e r a l v o t i n g system f o r N c a n d i d a t e s i s s a i d t o be s t o c h a s t i c i f t h e r e e x i s t p r o f i l e s o f v o t e r s where all p o s s i b l e r a n k i n g s o f t h e c a n d i d a t e s ( w i t h o u t t i e s ) can r e s u l t f r a n t h e same p r o f i l e a s t h e v o t e r s v a r y t h e i r c h o i c e how t h e i r b a l l o t s a r e t o be t a l l ied. I n o t h e r words, f o r these examples o f v o t e r s ' p r o f i l e s , the outcome i s random and r e f l e c t s t h e v o t e r s ' f l u c t u a t i o n s i n t h e i r choice o f t a l l y i n g procedure r a t h e r than t h e i r r a n k i n g s o f t h e c a n d i d a t e s . Thus, t h e e l e c t i o n outcome c o u l d be . .. , e t c . a ~ > a z > ..>an, or a n > a n - I > . . > a l , o r a1 > a ~ > . where t h e determining f a c t o r i s the voters' c h o i c e o f how t h e i r b a l l o t s a r e t o be t a l l i e d , t h e i r rankings o f the candidates. As i n the i n t r o d u c t o r y example, a l l r a n k i n g s , even those w i t h t i e s can o c c u r . not T h i s random f e a t u r e i s a p r o p e r t y we want t o a v o i d , s o i t i s i m p o r t a n t t o c h a r a c t e r i z e those general v o t i n g systems w h i c h have i t . A1 1 g e n e r a l v o t i n g systems a r e Theorem 1. Assune t h e r e a r e N)3 candidates. stochast ic. As i l l u s t r a t e d b y t h e i n t r o d u c t o r y example, a m a j o r c r i t i c i s m o f t h e p l u r a l i t y v o t e i s t h a t i t need n o t r e f l e c t t h e u o t e r s ' t r u e wishes. a measure of the t r u e s e n t i m e n t o f t h e v o t e r s . To q u a n t i f y t h i s , we need The one most commonly used i s the Condorcet w i n n e r . Candidate D e f i n i t i o n 2. Assume t h a t t h e N)3 c a n d i d a t e s a r e ( a ~ , a z , . . , a ~ ) . a r i s c a l l e d a Condorcet w i n n e r i f , i n a11 p o s s i b l e p a i r w i s e c a n p a r i s i o n s , a r a l w a y s w i n s b y a m a j o r i t y v o t e . A Condorcet l o s e r i s an c a n d i d a t e w h i c h always l o s e s by a m a j o r i t y v o t e i n a11 p o s s i b l e p a i r w i s e c a n p a r i s i o n s w i t h t h e o t h e r candidates. A Condorcet w i n n e r appears t o c a p t u r e the t r u e c h o i c e o f t h e v o t e r s ; a f t e r a1 1 , she was t h e c h o i c e o f a m a j o r i t y o f t h e e l e c t o r a t e when she was compared w i t h any other candidate. B u t , t h e i n t r o d u c t o r y example shows t h a t t h e p l u r a l i t y v o t e can r a n k a Condorcet w i n n e r i n l a s t p l a c e and a Condorcet l o s e r i n f i r s t p l a c e ! A c t u a l l y , as i t i s s h w n i n 161, t h i s type o f b e h a v i o r i s c h a r a c t e r i s t i c o f a l l s i m p l e u o t i n g systems w i t h t h e s o l e e x c e p t i o n o f the Borda Count. Theorem 2.t61. Suppose t h e r e a r e N)3 candidates. Then, f o r any system o t h e r than a Borda Count, t h e r e e x i s t examples o f v o t e r s ' Condorcet u i n n e r i s r a n k e d i n l a s t p l a c e and t h e Condorcet 1o s e r p l a c e . The Borda Count i s t h e u n i q u e method which never r a n k s a l a s t p l a c e , and never r a n k s a Condorcet l o s e r i n f i r s t p l a c e . How does a g e n e r a l v o t i n g system f a r e ? simple v o t i n g p r e f e n c e s rrhere t h e i s ranked i n f irst Condorcet r r i n n e r i n I t t u r n s o u t t h a t i t can be even worse. D e f i n i t i o n 3. A general v o t i n g system (W_J) i s ' p l u r a l i t y 1 ike' i f there are non-negat i ue s c a l a r s ( b ~ such l t h a t when the d i f f e r e n c e s be tween successive components o f Z ~ J ~are J Jcomputed, a1 1 b u t one are zero. The summation d e f i n e s a v o t i n g v e c t o r , and the c o n d i t i o n i s t h a t t h i s v e c t o r d i s t i n g u i s h e s between o n l y two s e t s of candidates. This condition i s s a t i s f i e d a u t m a t i c a l l y when the general v o t i n g method i n c l u d e s a v o t i n g v e c t o r o f t h i s type, e.g., a p l u r a l i t y v o t i n g vector. p l u r a l i t y 1i k e . Thus, b o t h approval and b u l l e t v o t i n g are A l s o , the c o n d i t i o n i s t r i v i a l l y s a t i s f i e d should the general method i n c l u d e N-1 v o t i n g v e c t o r s which, a l o n g w i t h independent s e t . T h i s i s because the v e c t o r s span EN, form a l i n e a r l y RN. Theorem 3. Suppose there are N)3 candidates. Choose a r a n k i n g f o r each o f the ( T h i s may be done i n a randan N(N-1112 p a i r s o f candidates i n any manner you wish. f a s h i o n ; the r a n k i n g s need n o t be t r a n s i t i v e . ) Assume t h a t a l l subsets o f more than two c a n d i d a t e s are t o be ranked w i t h a p l u r a l i t y l i k e , general v o t i n g method. Then, t h e r e e x i s t examples o f v o t e r s ' p r o f i l e s so t h a t 1) f o r each of the p a i r s o f candidates, a m a j o r i t y o f the v o t e r s have the i n d i c a t e d preference, and 2) f o r each subset of three o r more candidates, t h e o u t c m e i s s t o c h a s t i c . (As i t w i l l becme c l e a r i n the p r o o f , method i s ' p l u r a l i t y 1 ike' general v o t i n g systems. isn't the c o n s t r a i n t t h a t the geceral v o t i n g necessary; the c o n c l u s i o n holds f o r almost a1 1 We impose t h i s assumption because i t s i g n i f i c a n t l y s i m p l i f i e s the p r o o f w i t h o u t i n c u r r i n g much o f a s a c r i f i c e t o g e n e r a l i t y -- the general methods which have been s e r i o u s l y considered o r used, such as approval o r b u l l e t voting, s a t i s f y t h i s condition.) T h i s theorem means t h a t there e x i s t examples o f v o t e r s ' p r o f i l e s where f o r each p a i r ( a ~ , a ~ )a, m a j o r i t y o f the v o t e r s p r e f e r the candidate w i t h the smaller subscript. Thus, the r a n k i n g s o f the p a i r s are h i g h l y t r a n s i t i v e and imp1 y a group r a n k i n g o f a l > a z > . . > a ~ . I n s p i t e o f t h i s , f o r the same v o t e r s , the a p p r o v a l v o t i n g rankings o f all subsets o f three o r more candidates are s t o c h a s t i c . Thus the approval v o t i n g outcome o v e r a s e t o f more than two c a n d i d a t e s c o u l d depend more on the q u i r k s and f o r t u n e s o f how t h e v o t e r s s e l e c t t o have t h e i r b a l l o t s t a l l i e d than on how they rank t h e c a n d i d a t e s . The i n t r o d u c t o r y example i l l u s t r a t e s t h i s f o r N=3. Our goal was t o compare approval v o t i n g w i t h the Condorcet w i n n e r . This i s a c o r o l l a r y of t h e theorem when the r a n k i n g s o f t h e p a i r s d e f i n e a Condorcet w i n n e r . F o r i n s t a n c e , when k 4 , t h e r e e x i s t examples o f v o t e r s s o t h a t whenever a , i s compared w i t h any o t h e r c a n d i d a t e , she always w i n s w i t h a m a j o r i t y v o t e . Yet, when these same v o t e r s use a p p r o v a l v o t i n g t o rank t h e c a n d i d a t e s , t h e outcome i s s t o c h a s t i c whether t h e s e t o f c a n d i d a t e s i s i a l , a z , a a , a + I , a , a , a , a , , a or a , a , a . I n o t h e r words, ia~,az,asI, it i s p r o b a b l e t h a t a Condorcet w i n n e r c o u l d w i n an approval e l e c t i o n o n l y by a c c i d e n t . Moreover, t h e approval v o t i n g outcome over any o f these s u b s e t s o f c a n d i d a t e s i s random, so i t i s n ' t c l e a r who i s t h e approval winner. T h i s t y p e o f an example i s i m p o r t a n t because i t i l l u s t r a t e s t h a t a general v o t i n g method can be random even when t h e r e i s a Condorcet w i n n e r ; a general v o t i n g method need n o t r e f l e c t the voters' t r u e views. The g e n e r a l i z a t i o n o f the example i s h i g h l i g h t e d i n t h e f 01 1 owing f o r m a l s t a t e m e n t . Because we a r e n ' t considering p o s s i b l e s u b s e t s of c a n d i d a t e s , t h e c o n d i t i o n on t h e general v o t i n g system i s r e l a x e d . Assume t h e r e a r e N)3 c a n d i d a t e s which a r e t o be r a n k e d w i t h a C o r o l l o r y 3.1. g e n e r a l v o t i n g method. Assume t h a t t h e g e n e r a l v o t i n g system has a t l e a s t one v e c t o r w h i c h i s n ' t a Borda v e c t o r . There e x i s t examples o f v o t e r s ' p r o f i l e s s o t h a t even though t h e r e i s a Condorcet w i n n e r , t h e r a n k i n g o f the N c a n d i d a t e s i s stochastic. Again, t h e i n t r o d u c t o r y example i l l u s t r a t e s t h i s r e s u l t f o r N=3. t h i s r e s u l t extends t o a l l s u b s e t s o f . t h e N c a n d i d a t e s . Furthermore, Thus, a g e n e r a l method, such as approval o r b u l l e t v o t i n g , need n o t r e f l e c t the w i s h e s o f t h e v o t e r s over any subset o f t h e c a n d i d a t e s . These n e g a t i v e s t a t e m e n t s about approval v o t i n g can be r e c o n c i l e d w i t h some o f t h e p o s i t i v e ones w h i c h appear i n t h e l i t e r a t u r e . settings, I n particular, in certain i t has been p r o v e d t h a t approval v o t i n g can r e s u l t i n a Condorcet w i n n e r b e i n g r a n k e d i n f i r s t p l a c e C31. I t f o l l o w s f r o m t h e above s t a t e m e n t s t h a t such f a v o r a b l e c o n c l u s i o n s can o c c u r , b u t , they a r e j u s t one o f t h e many p o s s i b l e s t o c h a s t i c f l u x u a t i o n s of t h e e l e c t i o n ! The c o r o l l a r y and t h e theorem a s s e r t t h a t i f t h e v o t e r s behave by c h o o s i n g t o t a l l y t h e i r c h o i c e s i n c e r t a i n , s p e c i f i e d wars, then these d e s i r a b l e outcanes w i l l r e s u l t . But i f they don't, then a n y t h i n g can o c c u r . I n o t h e r words, r e s u l t s as u n d e s i r a b l e a s one may f e a r a r e p r o b a b l e . Another imp1 i c a t i o n of Theorem 3 concerns those p r o c e d u r e s used t o c o n s i d e r v o t e r s ' p r e f e r e n c e s n o t o n l y over the t o t a l s e t o f c a n d i d a t e s , b u t a l s o o v e r subsets. F o r example, t h e f o l l o w i n g i s a s t a n d a r d approach: F i r s t r a n k t h e N c a n d i d a t e s , and t h e n d r o p the c a n d i d a t e who i s i n l a s t p l a c e . Rerank t h e r e m a i n i n g s e t and c o n t i n u e t h i s e l i m i n a t i o n procedure u n t i l o n l y t h e r e q u i r e d number o f candidates remain. voting, Now, suppose we employ a g e n e r a l method, such as a p p r o v a l t o r a n k t h e c a n d i d a t e s a t each s t e p of t h i s e l i m i n a t i o n procedure. Theorem 3 shows t h a t t h e s t o c h a s t i c n a t u r e o f t h e c o n c l u s i o n c o u l d f o r c e t h e f i n a l r e s u l t t o have no r e l a t i o n s h i p whatsoever w i t h how t h e v o t e r s r e a l l y r a n k t h e c a n d i d a t e s . Theorem 3 can be extended. For i n s t a n c e , c o n s i d e r a s i t u a t i o n where t h e r e a r e 4 c a n d i d a t e s , b u t t h e e l e c t i o n i s o n l y c l o s e l y c o n t e s t e d among t h r e e o f them. Then we m i g h t e x p e c t t h a t t h e s t o c h a s t i c e f f e c t a f f e c t s o n l y these t h r e e c a n d i d a t e s , n o t t h e l a s t one. T h i s does happen; r e s u l t s about ' p a r t i a l stochastic' e f f e c t s can be obtained. So f a r we've candidates. compared general v o t i n g methods o n l y w i t h the r a n k i n g s o f p a i r s o f A n o t h e r t e s t i s t o c m p a r e i t w i t h p l u r a l i t y v o t i n g and o t h e r s i n g l e v o t i n g methods. After all, p l u r a l i t y v o t i n g aren't Condorcet w i n n e r . i n the i n t r o d u c t o r y example, the c o n c l u s i o n s o f i n d i c a t i v e o f the v o t e r s ' p r e f e r e n c e s as measured by a The f o l l o w i n g statement compares t h e r e s u l t s o f a g e n e r a l v o t i n g method w i t h any s i m p l e v o t i n g system. Theorem 4. Assume t h e r e a r e N)4 c a n d i d a t e s . L e t ~JNbe a v o t i n g v e c t o r d e f i n i n g a s i m p l e v o t i n g method, and assume t h a t a g e n e r a l v o t i n g method i s g i v e n where a t l e a s t two of t h e v e c t o r s and En a r e 1 i n e a r l y independent. Then t h e r e e x i s t examples o f u o t e r s ' p r o f i l e s s o t h a t a. There i s a Condorcet w i n n e r . b. I f & I i s n ' t a Borda v e c t o r , then the s i m p l e v o t i n g method h a s any p r e v i o u s l y s e l e c t e d r a n k i n g o f the c a n d i d a t e s . c. The g e n e r a l method i s s t o c h a s t i c . I f t h e g e n e r a l v o t i n g method i s e i t h e r a p p r o v a l o r b u l l e t v o t i n g , t h e n t h e conclusion holds f o r N23. So, w i t h t h e e x c e p t i o n o f t h e Borda Count, Theorem 4 i l l u s t r a t e s t h a t examples e x i s t where a n y t h i n g can occur w i t h the s i m p l e v o t i n g scheme w h i l e t h e g e n e r a l method i s s t o c h a s t i c . I n particular, t h i s i m p l i e s the e x i s t e n c e o f examples o f v o t e r s ' p r o f i l e s where the p l u r a l i t y outcome does r a n k the Condorcet w i n n e r i n f i r s t p l a c e w h i l e approval v o t i n g has a s t o c h a s t i c e f f e c t . Consequently, i t i s p r o b a b l e t h a t the p l u r a l i t y e l e c t i o n r e s u l t s v o t e r s ' w i s h e s w h i l e a p p r o v a l v o t i n g does n o t . Again, r e f l e c t the t h i s i s because t h e random f l u x u a t i o n s o f a p p r o v a l v o t i n g a l law any type o f e l e c t i o n r e s u l t t o emerge. A second consequence of t h i s theorem, a l o n g w i t h Theorem 2, i s t h a t among a l l s i n g l e v o t i n g systems, o n l y t h e Borda Count r e f l e c t s t h e v o t e r s ' intent. A r e m a i n i n g i s s u e i s t h e r o b u s t n e s s o f these c o n c l u s i o n s . That i s , can we d i s m i s s these s t a t e m e n t s because t h e c o n c l u s i o n s occur o n l y w i t h some h i g h l y p a t h o l o g i c a l example w h i c h i s h i g h l y u n l i k e l y t o o c c u r ? We show t h i s i s n ' t so; w i t h any f a i r l y general d i s t r i b u t i o n o f u o t e r s ' p r e f e r e n c e s , these r e s u l t s have a positive p r o b a b i l i t y of occurring. Moreover, as i t w i l l become apparent i n the p r o o f s , these s t o c h a s t i c outcomes a r e more 1 i k e l y t o occur i n those t y p e s o f s i t u a t i o n s w h i c h have been used t o d i s c r e d i t t h e p l u r a l i t y system. I t turns out t h a t these random e l e c t i o n outcomes tend t o occur when t h e r e i s a c l o s e l y c o n t e s t e d e l e c t i o n among t h r e e o r more c a n d i d a t e s . To show t h a t these examples a r e p r o b a b l e , we need t o i n t r o d u c e a measure f o r the d i s t r i b u t i o n o f the voters' p r o f i l e s . I f t h e r e a r e N c a n d i d a t e s , then t h e r e a r e N! p o s s i b l e r a n k i n g s o f them. For each p o s s i b l e r a n k i n g , A, f r a c t i o n o f the v o t e r s w i t h t h i s r a n k i n g . l e t na be t h e The sum o f these numbers e q u a l s u n i t y , so t h e r e a r e N ! - 1 degrees of freedom; these numbers d e f i n e a u n i t cube, C(N), p o s i t i v e o r t h a n t o f a N!-1 d i m e n s i o n a l space. w i t h t h e ( r a t i o n a l ) p o i n t s i n C(N). Voters' i n the p r o f i l e s can be i d e n t i f i e d Because a l l o f t h e u s u a l c o n t i n u o u s d i s t r i b u t i o n s i d e n t i f y a p o s i t i v e p r o b a b i l i t y o f occurrance w i t h an open s e t i n C(N), outcomes a r e p r o b a b l e i f t h e y a r e i d e n t i f i e d w i t h open s e t s i n C(N). f o l l o w i n g theorem a s s e r t s t h a t t h i s c h a r a c t e r i z e s our a s s e r t i o n s . The Also, statements a s s e r t i n g t h e a s y m p t o t i c , p o s i t i v e l i k e l i h o o d o f these examples, a s t h e number o f v o t e r s grows, f o l l o w i m m e d i a t e l y . The 1 i m i t s a r e r e l a t e d t o t h e measure o f the open s e t s i n C(N). (See 14,51.) Theorem 5. F o r each o f the above theorems, the s e t o f examples d e f i n i n g t h e d e s c r i b e d b e h a v i o r c o n t a i n s an open s e t i n C(N). F i n a l l y , we a r e l e f t w i t h t h e i s s u e o f r e f o r m . g e n e r a l method does not c o n s t i t u t e The above d e m o n s t r a t e s t h a t a a reform alternative f o r p l u r a l it y voting. But, t h i s doesn't mean we a r e f o r c e d t o l i v e i n t h e i m p e r f e c t w o r l d o f p l u r a l i t y v o t i n g . I n Theorems 2 and 4 and i n C o r o l l a r y 3.1, we see t h a t the Borda Count i s t h e u n i q u e s i m p l e v o t i n g scheme w h i c h a v o i d s many o f t h e p i t f a l l s a s s o c i a t e d w i t h p l u r a l i t y voting. T h i s i n i t s e l f d e m o n s t r a t e s t h a t t h e Borda Count i s b e s t c a n d i d a t e , of t h e v o t i n g methods, f o r r e f o r m . For a more d e t a i l e d a n a l y s i s o f i t s p r o p e r t i e s a l o n g w i t h a comparison of i t w i t h o t h e r s i m p l e v o t i n g methods, see 161. 3. P r o o f s Proof of Theorem 1. Assume t h e r e a r e NL3 c a n d i d a t e s { a , , t h e g e n e r a l v o t i n g system c o n s i s t s o f t h e v o t i n g v e c t o r s . ., a ~ land { W J ~ , j=l,..,s, that where 512. Then, each WJ i s a v e c t o r i n t h e N dimensional space RN. r a n k i n g a l > a z > . ..>an, p e r m u t a t i o n s of A. and l e t P(A) be a g e n e r i c r e p r e s e n t a t i o n f o r t h e N ! For v o t i n g vector the b a l l o t w i l l be t a l l i e d . p e r m u t a t i o n o f the v e c t o r if p(3,2,1), L e t A denote t h e WJ. WJ, any such p e r m u t a t i o n P(A) d e t e r m i n e s how I n f a c t , t h i s t a l l y can be viewed as b e i n g a Denote t h i s permuation by WJP~A). For instance, then t h e s t a n d a r d r a n k i n g a l > a n ) a a d e f i n e s t h e v e c t o r (3,2,1). The r a n k i n g a3)al)an d e f i n e s t h e p e r m u t a t i o n o f W_, (2,1,3), t o r e f l e c t that f o r t h i s r a n k i n g , two p o i n t s a r e t a l l i e d f o r a l , one f o r an, and t h r e e f o r a3. L e t n p t a ) denote t h e f r a c t i o n o f the v o t e r s w i t h t h e r a n k i n g o f t h e The t a l l y o f a s i m p l e e l e c t i o n u s i n g W_J c a n d i d a t e s P(A). 4.1 is npca ) W J P ( a 1 where t h e summation i s over a l l N! p e r m u t a t i o n s P(A). The outcome o f t h e e l e c t i o n i s d e t e r m i n e d by a l g e b r a i c a l l y r a n k i n g t h e components i n t h i s v e c t o r sum. There i s a g e o m e t r i c r e p r e s e n t a t i o n f o r t h i s a l g e b r a i c r a n k i n g . i n d i f f e r e n c e h y p e r p l a n e i n RN g i v e n b y XI=XK. I f t h e v e c t o r sum 4.1 Consider t h e i s on t h e s i d e o f t h i s h y p e r p l a n e , then a ~ r a n k s h i g h e r t h a n ax, and v i c e v e r s a . XK)XI I n p a r t i c u l a r , t h e N(N-1)/2 'ranking regions', p o s s i b l e ' i n d i f f e r e n c e h y p e r p l a n e s ' d i v i d e s RN i n t o and the f i n a l r a n k i n g o f t h e c a n d i d a t e s i s d e t e r m i n e d b y which r a n k i n g r e g i o n c o n t a i n s the v e c t o r sum. F o r a g e n e r a l v o t i n g system, l e t m r r t a ) denote t h e f r a c t i o n of those v o t e r s w i t h a P(A) r a n k i n g t h a t e l e c t t o have t h e i r b a l l o t s t a l l i e d w i t h t h e vector. Then, JTH voting t h e f r a c t i o n o f the t o t a l number o f v o t e r s w i t h t h i s t a l l y i s n p t a ) m ~ r ( a ) . Consequently, t h e t o t a l t a l l y i s g i v e n b y t h e double sum )[Srn~r 4.2 Again, ( a )WJP ta 1 1 . Z n r (a 4 Pr A l t h e r a n k i n g o f t h e c a n d i d a t e s i s determined by t h e r a n k i n g r e g i o n o f RN w h i c h c o n t a i n s t h i s v e c t o r sum. We r e p r e s e n t Eq. 4.2 as a mapping. Toward t h i s end, l e t Because each term d e f i n e s a p e r c e n t a g e , t h e s e t C n p t a ) I i s a ( r a t i o n a l ) p o i n t i n the s e t Si(N!). For each P ( A ) , the s e t Crnrrta)l i s i n S i ( s ) . t h e e n t r i e s d e f i n e non-negative f r a c t i o n s which sum t o u n i t y . ) domain p o i n t i s i n the ( N ! - l ) ( s - l ) ~ ! T = S i (N! ) x ( S i ( s ) ) " ! ( T h i s i s because T h i s means t h a t a d i m e n s i o n a l space . Any r a t i o n a l p o i n t i n T c o r r e s p o n d s t o an example o f v o t e r s J p r o f i l e s a l o n g w i t h t h e i r i n d i v i d u a l s e l e c t i o n o f v o t i n g v e c t o r s t o t a l l y the b a l l o t s . Thus, Eq. 4.2 can be viewed a s b e i n g a mapping fran T t o RN F:T 4.3 -------- ) R", where F i s the sumnation. D e f i n e t h e "complete i n d i f f e r e n c e " r a n k i n g i n RN t o be the l i n e g i v e n b y a l l scalar multiples o f EN. The name comes fran the f a c t t h a t t h i s l i n e c o r r e s p o n d s t o where t h e r e i s a complete t i e i n t h e r a n k i n g s of a l l o f t h e c a n d i d a t e s . Notice that a) t h e c u n p l e t e i n d i f f e r e n c e r a n K i n g i s the i n t e r s e c t i o n o f a l l o f t h e i n d i f f e r e n c e h y p e r p l a n e s , and b) t h i s 1 i n e i s on t h e boundary o f a1 1 o t h e r r a n k i n g r e g i o n s . To p r o v e t h i s theorem, we must show t h e e x i s t e n c e o f a n* i n S i (N! (a choice of v o t e r s J p r o f i l e s ) s o t h a t as t h e v a r i a b l e m=CrnJpta)I v a r i e s , t h e image o f F((n*,m)) meets a l l p o s s i b l e r a n k i n g r e g i o n s . L e t n * c o r r e s p o n d t o where t h e r e i s an equal number o f v o t e r s w i t h each p o s s i b l e r a n k i n g o f the candidates; i .e., n*=(N!)-i(l ,l,..,l). I t follows i m m e d i a t e l y t h a t i f m i p t a ) = l f o r a l l c h o i c e s o f P(A) ( a l l v o t e r s choose t h e f i r s t voting vector), then Eq, 4.2 reduces t o Eq. 4.1, complete i n d i f f e r e n c e l i n e . equal. and the image o f F i s on t h e The same c o n c l u s i o n h o l d s i f a l l o f the m r p t a ) a r e T h i s i s because t h e double summation can be i n t e r c h a n g e d t o o b t a i n s e p a r a t e summations o f the type g i v e n i n Eq. 4.1, complete i n d i f f e r e n c e l i n e . each o f w h i c h y i e l d s a p o i n t on the Denote t h i s domain p o i n t by (n*,m*). The i d e a i s t h e f o l l o w i n g . equal t o N, where, held fixed. Assume t h a t the Jacobian o f F a t (n*,m*) has ranK i n the c o m p u t a t i o n o f the Jacobian, t h e n p t a ) v a r i a b l e s are (We t r e a t them as parameters.) T h i s means t h a t t h e r e i s an open s e t about the i n t e r i o r p o i n t m* w h i c h i s mapped t o an open s e t about t h e image F n , m T h i s open s e t y i e l d s outcomes which can be a t t a i n e d w i t h the same p r o f i l e o f v o t e r s (n*), b u t where m, w h i c h i n d i c a t e s t h e c h o i c e o f v o t i n g v e c t o r s t o t a l l y the b a l l o t s , varies. Because an open s e t about any p o i n t on t h e l i n e o f complete i n d i f f e r e n c e meets a l l r a n k i n g r e g i o n s , t h e c o n c l u s i o n f o l l o w s . easy t o show t h a t t h e r e a r e r a t i o n a l c h o i c e s o f m w i t h t h i s p r o p e r t y . (It i s For d e t a i l s , see 14,51.) Thus, the p r o o f i s completed i f we can determine c e r t a i n p r o p e r t i e s about the Jacobian o f F a t (n*,m*). There a r e two cases t o c o n s i d e r , and t h e y a r e based upon t h e sum o f the components of each v o t i n g v e c t o r . E i t h e r a t l e a s t two o f these sums d i f f e r , or t h e y a r e a l l t h e same. Assume t h a t a t l e a s t two of t h e sums d i f f e r . For each P(A), e l i m i n a t e t h e dependency of t h e components C r n r r t a ) l b y s e t t i n g m ~ r t a ) = l - ~ m r r t n ) .Then, the jrt. r a n k o f t h e J a c o b i a n o f F i s d e t e r m i n e d by t h e maximum number of independent v e c t o r s i n subsets from where P(A> ranges over a1 1 N! permutat i o n s o f A and where j = 2 , . c h o i c e o f j where t h e sum of t h e components o f components o f MI, say j = 2 . There i s a WJ doesn't equal the sum o f t h e Moreover, w i t h o u t l o s s o f g e n e r a l i t y , we can assume t h a t t h e sum o f t h e components o f WI. .,s. bJ2 i s l a r g e r than t h e sum o f the c m p o n e n t s o f What we show i s t h a t t h e s e t o f v e c t o r s 4.5 spans CW_z~(a)-W_~rta)) RN. T h i s w i l l complete t h e p r o o f . ~t f o l i o w s immediately t h a t where t h e s c a l a r i s ( N - I ) ! L ~ J r t h i) s w\- a nonzero s c a l a r mu1 t i p l e of t i m e s t h e sum o f the components o f ~JJ. Thus, EN ~ ( W _ ~ ~ ~ ~ , - W _ I Pi s~ Aa , p) o s i t i v e s c a l a r m u l t i p l e o f Pt61 EN, so t h i s v e c t o r i s i n The simplex Si(N) has the space spanned by the v e c t o r s i n Eq. 4 . 5 . EN a s a normal v e c t o r , so the theorem i s proved i f t h e s i m p l e x i s spanned b y the v e c t o r s i n Eq. 4.5. Each v e c t o r i n Eq. 4 . 5 can be viewed a s b e i n g a p e r m u t a t i o n of the components of W-2-UI. L e t v e c t o r be t h e p e r m u t a t i o n o f g which has t h e l a r g e s t v a l u e i n t h e f i r s t component, t h e second l a r g e s t i n t h e second canponent, e t c . i f W_z=(5,4,2,1) then e(0,3,1,1) and g1=(5,1 ,I,0), a1 l p o s s i b l e permutat i o n s o f and p ( 3 , 1 , 1 , 0 ) (For example, .) 'The set of 9, CVP t a l l , 4.6 agrees w i t h the s e t i n Eq. 4 . 5 . Because " . .-- ? multiple of EN, \-I can be viewed as b e i n g a v o t i n g v e c t o r and t h e v e c t o r s i n Eq. 4.6 can be viewed as b e i n g the v a r i o u s ways t o t a l l y b a l l o t s . T h a t t h i s s e t spans S i ( N ) f o l l o w s i m n e d i a t e l y from [ 7 , 4 3 . Suppose t h e sums o f the components f o r each o f the v o t i n g v e c t o r s a r e t h e same. We show t h a t t h e Jacobian o f F has r a n k N-1 and i t s image spans a s i m p l e x S i (N). T h i s r e q u i r e s t h e f o l l o w i n g adjustment i n t h e p r o o f . mapped t o an open s e t about F((n*,m*)) must meet a l l r a n k i n g r e g i o n s . i n the simplex. F i r s t , an open s e t about m* i s However, such an open s e t (The s i m p l e x has codimension one, and i t s normal d i r e c t i o n i s g i v e n by the l i n e of complete i n d i f f e r e n c e . ) . Thus, a l l we need t o show i s t h a t t h e v e c t o r s i n 4 . 6 span t h e subspace o r t h o g o n a l t o same argument g i v e n aboue. EN. T h i s i s the T h i s completes the proof. The p r o o f s of Theorems 3 and 4 depend h e a v i l y upon the p r o o f s and r e s u l t s i n 163. E s s e n t i a l l y , the i d e a o f the p r o o f s i s t o use s p e c i a l ways i n which t h e v o t e r s choose t h e i r v o t i n g v e c t o r s t o o b t a i n a s i m p l e v o t i n g systems. Then, m o d i f i c a t i o n s of the t y p e used i n t h e p r o o f o f Theorem 1 and r e s u l t s from l 6 1 l e a d t o a condi t i o n o f the type where F((n*,m*)) i s on the 1 i n e of complete i n d i f f e r e n c e . The Jacobian c o n d i t i o n f o l l o w s f r o m the a n a l y s i s g i v e n i n the p r o o f s o f 161. The f o l l o w i n g i s a consequence o f Theorems 5 and 7 i n [dl. Proof o f Theorem 4. L e m a . Suppose t h e r e a r e two s i m p l e u o t i n g v e c t o r s , V_I and 92 which, a) f o r m a l i n e a r l y independent s e t a l o n g w i t h and b) a B o r d a u e c t o r i s n ' t i n t h e span o f these t h r e e u e c t o r s . Rank t h e p a i r s of c a n d i d a t e s i n any way and r a n k t h e N c a n d i d a t e s i n any two ways. Then, t h e r e e x i s t p r o f i l e s o f u o t e r s f o r w h i c h when t h e same u o t e r s c o n s i d e r each p a i r o f c a n d i d a t e s , a m a j o r i t y p r r f e r t h e d e s i g n a t e d one. When these same u o t e r s r a n k t h e N c a n d i d a t e s by t h e s i m p l e v o t i n g system V _ j , the outcome i s t h e j T n r a n k i n g o f t h e candidates, j=1,2. EM A c c o r d i n g t o the statement of t h e theorem, the range space c o n t a i n i n g t h e t a l l y o f t h e v a r i o u s subsets o f c a n d i d a t e s i s g i v e n by S=(RH)x(RH)x(R*)C p=N(N-1)/2. where The f i r s t component space i s t h e t a l l y o f the s i m p l e v o t i n g system, t h e second i s t h e t a l l y o f the g e n e r a l v o t i n g system, and t h e l a s t p c o m p ~ n e n t sc o n t a i n t h e t a l l y o f t h e b i n a r y comparisons. The domain i s T. Thus, the o b v i o u s summat i o n s d e f i n e t h e mapping F*: T -------- ) S. The p r o o f f o l l o w s much as i n t h a t o f Theorem 1. We show t h e e x i s t e n c e o f a s e t o f p r o f i l e s n' f o r which the r a n k i n g s o f t h e simple system and t h e r a n k i n g s o f t h e p a i r s o f c a n d i d a t e s a r e as s p e c i f i e d . Moreover, n' i s such t h a t t h e r e i s an i n t e r i o r p o i n t , ma, i n the p r o d u c t o f t h e s i m p l i c e s w h i c h d e s i g n a t e how t h e v o t e r s s e l e c t t h e i r t a l l y i n g v e c t o r s so t h a t F((n8,m')) g e n e r a l system. repeated. i s complete i n d i f f e r e n c e f o r t h e Then, t h e above argument c o n c e r n i n g the Jacobian o f F*, is The main d i f f e r e n c e i s t h a t i t i s e v a l u a t e d a t (nm,m') r a t h e r than a t (n*,m*). F i r s t we f i n d m'. on P(A). To do t h i s , we choose the m r p t a ) ' ~ t o depend on j b u t n o t T h i s d e f i n e s a convex c o m b i n a t i o n o f t h e v o t i n g v e c t o r s w h i c h a r e a v a i l a b l e t o t a l l y the r a n k i n g s . I n t u r n , t h i s d e f i n e s a new v o t i n g v e c t o r ; indeed, i t d e f i n e s a continuum o f them where t h e dimension o f the continuum depends upon t h e number o f 1 i n e a r l y independent v e c t o r s i n t h e g e n e r a l v o t i n g system. Since we have a continuum o f them a v a i l a b l e , and s i n c e a t l e a s t two v e c t o r s i n t h i s system d e f i n e a t h r e e dimensional space w i t h vector VN which, along w i t h WN, EN, we can choose t h e mJ's t o o b t a i n a v o t i n g s a t i s f i e s the c o n d i t i o n o f the lemma. t h e l e m a , choose t h e r a n k i n g c o r r e s p o n d i n g t o r a n k i n g corresponding t o EN t o VN To use t o be complete i n d i f f e r e n c e , t h e be as s p e c i f i e d i n t h e theorem, and t h e p a i r w i s e r a n k i n g s a s s p e c i f i e d i n t h e theorem. The c o n c l u s i o n then f o l l o w s from t h e above and t h e lemma. Proof of Theorem 3. I n t h i s s e t t i n g , t h e domain and t h e image o f F changes d r a s t i c a l l y f r o m t h a t g i v e n above. a t l e a s t two c a n d i d a t e s . Thus, Here we have 2N-(Ntl) d i f f e r e n t subsets w i t h t h e range space i s t h e c a r t e s i a n p r o d u c t over a l l o f these s e t s o f E u c l i d e a n spaces o f the same dimension as the number o f c a n d i d a t e s i n the subset. The danain a l s o i s i n c r e a s e d s i g n i f i c a n t l y . a g e n e r a l v o t i n g method. F o r each s u b s e t , t h e r e i s Thus, f o r each r a n k i n g o f t h e c a n d i d a t e s i n each s u b s e t , t h e domain i s i n c r e a s e d by a n o t h e r p r o d u c t o f a s i m p l e x r e f l e c t i n g t h e v a r i o u s c h o i c e s t h e v o t e r s have t o t a l l y t h e i r b a l l o t s . L e t t h e new domain, which i s a much l a r g e r p r o d u c t space of s i m p l i c e s , be g i v e n b y T', g i v e n b y R'. The t a l l y o f t h e b a l l o t s s t i l l i s g i v e n by summations o f t h e type found i n Eq. 4.2. F':T' and l e t t h e l a r g e r image space be They d e f i n e a mapping --------) R', As i n t h e statement o f t h e theorem, d e s i g n a t e f o r each p a i r o f c a n d i d a t e s which one i s t o be p r e f e r r e d by a m a j o r i t y o f t h e v o t e r s . t61. We now appeal t o Theorem 6 i n A consequence o f t h i s r e s u l t i s t h a t f o r 'mostm s i m p l e v o t i n g systems, t h e r e e x i s t p r o f i l e s o f v o t e r s so t h a t f o r each o f the p a i r s o f t h e c a n d i d a t e s , a m a j o r i t y o f them f a v o r t h e d e s i g n a t e d c a n d i d a t e . Yet, t h e i r rankings o f a l l subsets w i t h t h r e e o r more c a n d i d a t e s i s complete i n d i f f e r e n c e . "Most' r e p l a c e s the l i n e a r independence c o n d i t i o n i n t h e lemma, and i t means t h a t the v o t i n g v e c t o r s f o r v a r i o u s s u b s e t s don't make a c e r t a i n d e t e r m i n a n t v a n i s h . For our p u r p o s e s i t s u f f i c e s t o n o t e t h a t f o r t h i s c o n d i t i o n i s s a t i s f i e d f o r any v o t i n g v e c t o r w h i c h i s 'plurality like'. To use t h i s theorem, we f i n d a s p e c i a l case of t h e g e n e r a l v o t i n g system w h i c h i s a s i m p l e v o t i n g system s a t i s f y i n g t h e above. F o r each subset o f more t h a n t h r e e c a n d i d a t e s , choose m ~ r t a ~ m T~h i.s , t h e n , d e f i n e s a convex c o m b i n a t i o n o f t h e v o t i n g v e c t o r s w h i c h a r e a v a i l a b l e t o t a l l y the rankings. Now, choose t h e m ~ ' s s o t h a t CmJIAJ d e f i n e s a v e c t o r o f t h e t y p e i n D e f i n i t i o n 3. vanish. Such a v e c t o r doesn't make t h e d e t e r m i n a n t c o n d i t i o n I f n o t a l l of t h e J'S a r e p o s i t i v e , t h e n t h e y can be p e r t u r b e d s o t h a t a l l a r e p o s i t i v e and t h e sum i s s t i l l a v e c t o r which s a t i s f i e s t h e n o n - v a n i s h i n g of the determinant. ( T h i s i s because t h e d e t e r m i n a n t c o n d i t i o n i s an open c o n d i t i o n . ) Thus, f o r each subset, a c h o i c e of t h e Cm~3 can be made so t h a t t h e r e s u l t i n g v e c t o r s o v e r a l l s u b s e t s do n o t s a t i s f y t h e v a n i s h i n g d e t e r m i n a n t c o n d i t i o n . L e t m' c o r r e s p o n d t o t h e s e c h o i c e s o f C m ~ p t a ) 3over a l l s u b s e t s . have from Theorem 6 i n 161 t h a t t h e r e e x i s t p r o f i l e s o f v o t e r s , n', v a r i o u s components o f F((n',m')) t h e range. so t h a t the a r e on t h e l i n e o f complete i n d i f f e r e n c e , y e t t h e r a n k i n g o f the p a i r s i s as designated. t h e J a c o b i a n o f F', Then we What remains t o be shown i s t h a t t h e r a n k of where n i s h e l d f i x e d , i s of the r a n k o f the t h e dimension of B u t , w i t h t h e m o d i f i c a t i o n s o f t h e type g i v e n i n t h e p r o o f o f Theorem 3, t h i s f o l l o w s from t h e p r o o f o f Theorem 6 i n [&I. Indeed, t h e p r o o f o f Theorem 6 i s based upon t h i s independence c o n d i t i o n h o l d i n g . Proof of C o r o l l a r y 3.1. isn't Theorem 4 i n [&I a s s e r t s t h a t i f t h e v o t i n g v e c t o r a Borda V e c t o r , t h e n f o r any r a n k i n g s o f t h e p a i r s o f a l t e r n a t i v e s and f o r any r a n k i n g of t h e N a l t e r n a t i v e s , t h e r e i s a p r o f i l e o f v o t e r s w h i c h w i l l r e a l i z e a l l o f these outcomes s i m u l t a n e o u s l y . I n p a r t i c u l a r , the r a n k i n g s o f t h e p a i r s can be chosen t o d e f i n e a Condorcet w i n n e r , and t h e r a n k i n g o f the N c a n d i d a t e s can be chosen t o d e f i n e t h e complete i n d i f f e r e n c e r a n k i n g . The h y p o t h e s i s o f t h e c o r o l l a r y a s s e r t s t h a t t h e r e i s a t l e a s t one v o t i n g v e c t o r i n t h e general methods w h i c h i s n ' t a Borda V e c t o r . Thus, m' can be chosen i n a manner s i m i l a r t o t h e above so t h a t t h e r e s u l t i n g v o t i n g vector isn't Borda. Then, t h e same t y p e o f p r o o f goes t h r o u g h . P r o o f o f Theorem 5 f o r h y p o t h e s i s o f Theorem 1. The b a s i c i d e a s a r e demonstrated f o r Theorem 1; s i n c e t h e ideas e x t e n d immediately f o r t h e o t h e r theorems, we o n l y p r o v e t h i s case. To p r o v e t h e theorem, a1 1 t h a t i s necessary i s t o show t h a t t h e r e i s an open s e t U about n* i n S i ( N ) ( t h e space o f v o t e r s ' t h e r e i s an i n t e r i o r p o i n t m' complete i n d i f f e r e n c e . i n (Si(s))N!such p r o f i l e s ) so t h a t i f n' t h a t F((n',m')) i s i n U, t h e n i s on t h e l i n e o f To do t h i s , we g i v e a g e o m e t r i c i n t e r p r e t a t i o n o f Eq. 4 . 2 . For each r a n k i n g o f t h e c a n d i d a t e s , P(A), t h e b r a c k e t e d term i n t h e double summation Eq. 4 . 2 d e f i n e s t h e convex h u l l o f t h e v e c t o r s ( l d ~ t t a 1 ) . Thus, t h i s means t h a t t h e double summation y i e l d s t h e convex h u l l o f t h e N! convex h u l l s . f a c t t h a t t h e image of F((n*,m)) The c o n t a i n s an open s e t means t h a t t h i s p a r t i c u l a r convex c o m b i n a t i o n o f t h e convex h u l l s c o n t a i n s a open s e t around t h e p o i n t F((n*,m*)) on t h e l i n e o f complete i n d i f f e r e n c e . I t now f o l l o w s f r o m c o n t i n u i t y c o n s i d e r a t i o n s t h a t the conclusion holds. We c o n c l u d e w i t h an o b s e r v a t i o n which i n d i c a t e s t h a t t h e r e i s a l a r g e l i k e l i h o o d o f a s t o c h a s t i c e f f e c t f o r a g e n e r a l v o t i n g system. According t o the above p r o o f , a measure of t h i s i s the abundance o f t h e p o i n t s (n',m') F((n',m')) i s on t h e l i n e o f complete i n d i f f e r e n c e . independence argument, such t h a t B u t , a c c o r d i n g t o t h e above i t f o l l o w s f r o m the imp1 i c i t f u n c t i o n theorem t h a t t h e i n v e r s e image o f t h e complete i n d i f f e r e n c e l i n e i n T i s an a f f i n e space o f codimension N-1. To o b t a i n some f e e l i n g f o r t h e s i z e o f t h i s space, c o n s i d e r t h e s e t t i n g where N=4 and where we a r e u s i n g an a p p r o v a l v o t i n g system (s=3). Then, t h e base p o i n t s d e f i n e a 58 dimensional l i n e a r subspace i n a 61 d i m e n s i o n a l space. I n c i d e n t l y , these l a r g e dimensions a l r e a d y f o r o n l y 4 c a n d i d a t e s i n d i c a t e s 1 ) why s u f f i c e i n t h e a n a l y s i s o f such v o t i n g schemes, 2) s t a n d a r d methods won't why we used a c o n v e x i t y argument t o prove Theorem 5 i n s t e a d o f an i m p l i c i t f u n c t i o n argument ( w h i c h w o u l d have i n v o l v e d a massive l i n e a r independence argument), 3) why t h e s t o c h a s t i c e f f e c t o c c u r s (F i s t r y i n g t o f o r c e t h e i n p u t f r o m a 61 dimensional space i n t o a 3 dimensional space, so we must expect such r e s u l t s ) , 4) why s i m p l e v o t i n g systems don't have as adverse e f f e c t s ( t h e subspace i s 20 d i m e n s i o n a l i n a 23 d i m e n s i o n a l space), and 5) t h a t t h e r e a r e many examples o t h e r t h a n those suggested by t h e p r o o f o f the theorems. (Because t h e 58 dimensional space i s a f f i n e , i t must i n t e r s e c t t h e b o u n d a r i e s o f T. The b o u n d a r i e s correspond t o examples of v o t e r s ' p r o f i l e s where t h e r e a r e no v o t e r s w h i c h have c e r t a i n r a n k i n g s o f the N c a n d i d a t e s . ) A c k n o w l edgemen t s The work o f b o t h a u t h o r s was s u p p o r t e d , i n p a r t , b y NSF Grant IST 8415348. As m e n t i o n e d i n t h e i n t r o d u c t i o n , t h i s work was p a r t i a l l y s t i m u l a t e d b y q u e s t i o n s and comments made by S. Brams, C a r l Simon, and t h e o t h e r p a r t i c i p a n t s a t t h e J u l y , 1984, 'Workshop on Mathematical Models i n P o l i t i c a l Science' which was o r g a n i z e d b y John A l d r i c h and C a r l Simon. T h i s conference was j o i n t l y sponsored b y the NSF I n s t i t u t e f o r M a t h e m a t i c s and i t s A p p l i c a t i o n s and t h e Department o f P o l i t i c a l Science, b o t h a t t h e U n i v e r s i t y of Minnesota, M i n n e a p o l i s , Minnesota. R e fe r c n c c s 1. N a g e l , J., A debut f o r approval v o t i n g , PS W i n t e r 1984, l7, 62-65. Brams, S., and P. F i s h b u r n , h e r i c a ' s u n f a i r e l e c t i o n s , The Sciences, Now. 1983, 2. r e p r i n t e d i n E a s t e r n A i r l i n e s ' Review Magazine, Feb. 1984. 3. Brams, S., and P. F i s h b u r n , A ~ p r o v a lU o t i n q , B i r k h a u s e r , Boston, 1982. 4. S a a r i , D. G., The u l t i m a t e o f chaos r e s u l t i n g from w e i g h t e d v o t i n g systems, Advances i n A p p l i e d Mathematics 3 (19841, 286-308. 5. S a a r i , D. G., The source of some paradoxes from s o c i a l c h o i c e and p r o b a b i l i t y , NU Center f o r Math Econ D i s c u s s i o n paper M609, June, 1984. 6 . S a a r i , D. G., The o p t i m a l r a n k i n g method i s t h e Borda Count, NU D i s c u s s i o n p a p e r , Jan. 1985. 7 . S a a r i , D . G., I n c o n s i s t e n c i e s o f w e i g h t e d v o t i n g systems, M a t h o f O p e r a t i o n s Research z ( 1 9 8 2 1 , 479-490.
© Copyright 2025 Paperzz