Name ——————————————————————— Date ———————————— Practice A LESSON 10.6 For use with pages 716–723 Fill in the blanks. Then find the value of x. 1. x p _____ 5 5 p _____ 3 2. 6 p _____ 5 3 p _____ 3. x p _____ 5 8 p _____ 5 9 6 x x x 6 3 8 4 4. 4 p _____ 5 5 p _____ 5. 3 p _____ 5 4 p _____ 4 6. 3 p _____ 5 5 p _____ 5 13 4 x 5 10 3 4 8 7. x 2 5 4 p _____ 8. x 2 5 2 p _____ 9. x 2 5 6 p _____ x 4 12 x 2 x 4 In Exercises 10–24, find the value of x. 10. 11. 5 6 12. 2 5 8 10 6 x x 13. x 3 14. 3 15. x 4 x x 10 8 5 7 LESSON 10.6 6 16 Copyright © Holt McDougal. All rights reserved. 3 x x 4 6 8 Geometry Chapter 10 Resource Book 283 Name ——————————————————————— Practice A LESSON 10.6 For use with pages 716–723 16. Date ———————————— continued 17. 18. 8 12 24 x x 16 3 x 20. 7 6 21. 3 x 2x 3x 4 22. 20 23. 6 9 24. 3x 13 9 x x 5x LESSON 10.6 25. Doorway An arch over a doorway is an arc that is 160 centimeters wide and 50 centimeters high. You are curious about the size of the entire circle. By drawing and labeling a circle passing through the arc as shown in the diagram, you can use the following steps to find the radius of the circle. a. Find AB. b. Find AC and AD. c. Use AB, AC, and AD to find EA. d. Find EB. e. Find the length of the radius, EO. Geometry Chapter 10 Resource Book 8 x�2 3 284 31 x 18 160 cm B C 50 cm A D O E Copyright © Holt McDougal. All rights reserved. 19. Lesson 10.5, continued Lesson 10.6 1. 57.58 2. 528 3. 408 4. 288 5. 638 6. 498 ANSWERS 7. 1808 8. 568 9. 568 10. 628 11. 37 12. 11 13. 8 14. 7 or 8 15. 208 16. 1008 17. Sample answer: Because it is given that m is C tangent to both circles at T, mTU 5 2m∠ KTU 5 mTV . Then mTWU 5 3608 2 2m∠ KTU C C C. Because m∠ TJU 5 12 1 mC 5 mTXV TWU 2 mC TU 2 1 C 2 mTV C 2, the and m∠ TKV 5 2 1 mTXV } } Substitution and Transitive Properties of Equality can be used to show m∠ TJU 5 m∠ TKV. Therefore, j i k by the Corresponding Angles Converse. 18. Sample answer: Because 1 m∠ D 5 }2 (mAG 2 mCE ), you can use the given C C C 5 2mC information mAG CE to substitute: 1 C 2 mCE C) 5 12 mCE C. Because in m∠ D 5 2 (2mCE 1 C 2 mBF C), you the small circle m∠ D 5 2 (mBHF 1 C 2 mBF C) 5 can write m∠ D 5 2 (3608 2 mBF C 5 1808 2 mBF C. Therefore, 12 mCE C 1808 2 BF C 5 3608. which gives mC CE 1 2mBF } } } } } Review for Mastery 1. 2268 2. 828 3. 1808 4. 1098 5. 408 Problem Solving Workshop: Mixed Problem Solving 1. a. 40 ft b. 58 ft 2. a. Check sketches; 368, 368, 728, 728 b. 368, 368 3. Answers will vary. 4. a. 468 b. 468, 1348, 1348 c. 628 5. 5 6. a. 308 b. 1508 c. 4 in., 2 in.; Because the side length of the square is 6 in. and 1 in. on each side of the square is the cardboard, then the circle has a diameter of 4 in., and the radius is 2 in. Challenge Practice 1. 42.58 C C 1 C) BC 1 mAD m∠ CPB 5 2 (mC Thus, m∠ APD 5 m∠ CPB. Therefore, C. 2Ï5 128 AD 5 mCB mC 1 2. m∠ APD 5 } (mAD 1 mBC ) and 2 } 3. A46 Geometry Chapter 10 Resource Book } 4. Practice Level A 1. 3, 9; 15 2. 4, x; 8 3. 4, 6; 12 4. x, 18; 22.5 5. x, 12; 16 6. x, 15; 25 7. 16; 8 8. 18; 6 } 35 9. 10; 2Ï 15 10. 12 11. 4 12. 12.5 13. } 3 14. 12 15. 7.4 16. 9 17. 9 18. 5.7 19. 7.7 20. 3 21. 28.1 22. 2 23. 1.9 24. 5.6 25. a. 50 cm b. 80 cm, 80 cm c. 128 cm d. 178 cm e. 89 cm Practice Level B 1. 15 2. 2 3. 4 4. AB 5 16, DE 5 17 5. AB 5 21, DE 5 23 6. AB 5 32, DE 5 24 7. 5 8. 6 9. 7 10. RT 5 20, TV 5 16 11. RT 5 35, TV 5 45 12. RT 5 36, TV 5 27 13. 15 14. 12 15. 4 16. 18 17. 30 18. 50 19. 4 20. 8 21. 10 22. 8 23. 4 24. 6 25. 15 26. 8 27. 4 28. 20.125 in. 29. 140 in. 30. 14.2 ft Practice Level C 1. 3.7 2. 2.3 3. 7.4 4. 2.5 5. 1 6. 3.9 7. 14.3 8. 5 9. 10 10. 3 11. 6 12. 5 13. Sample answer: When you use the theorem to solve for x and y you get x 5 26 and y 5 39. These segments are not possible in the given diagram, so Thm. 10.14 cannot be applied. 14. AP 5 3, PQ 5 5, QB 5 7, PD 5 18, EQ 5 4 OQ OP 15. 908 16. } 5 } 17. Sample answer: By OQ OR the Segments of Chords Thm., OP(OR) 5 OS(OQ). But OS 5 OQ, so OP(OR) 5 (OQ)2, and by the OP OQ Division Prop. of Equality, } 5} . OQ OR 18. Sample answer: By the Segments of Secants and Tangents Thm., OP(OQ) 5 (OT )2 and OR(OS) 5 (OT)2. Therefore, OP(OQ) 5 OR(OS) by the Transitive Prop. of Equality. 19. a. b. 39.9 ft 23 ft r 10.5 ft C Copyright © Holt McDougal. All rights reserved. Practice Level C
© Copyright 2026 Paperzz