Practice Problems 2 Name: Find the derivative of the following functions: 1. f (x) = (3 − x2 )(x3 − x + 1) 2. f (x) = (x + 1 1 )(x − + 1) x x 3. f (x) = (5x3 − 2x2 + √ 1 x)(x8 + √ ) x 4. f (x) = 4x3 ex 5. f (x) = −2(x9 + 4x + 1 − 6. f (x) = (4ex + ln(x) − 4)( 7. f (x) = 2x + 5 3x − 2 8. f (x) = x2 − 1 x2 + x − 2 √ x) ln(x) 1 1 1 − + 3) x x2 x √ x−1 9. f (x) = √ x+1 1 10. f (x) = ex + 4x2 − 20 ln(x) + 3 11. f (x) = (x3 − 2x2 + 7x − 3)20 12. f (x) = p 3 x2 − 4x + 16 1 13. f (x) = ln(9x2 − 4x + √ ) x 14. f (x) = 3xe4x+3 15. f (x) = (10x2 − 7x + 43)(2x2 − 3x + 8)2 16. f (x) = 3x + 2 2x + 1 3 17. f (x) = (2x + 5)2 e5x+1 r 18. f (x) = ln(2x + 3) 3x2 + 1 2 Answer Key: 1. f 0 (x) = (−2x)(x3 − x + 1) + (3 − x2 )(3x2 − 1) 2. f 0 (x) = (1 − x−2 )(x − 1 x + 1) + (x + x1 )(1 + x−2 ) 1 3. f 0 (x) = (15x2 − 4x + 12 x− 2 )(x8 + √1 ) x + (5x3 − 2x2 + √ 3 x)(8x7 − 21 x− 2 ) 4. f 0 (x) = 12x2 ex + 4x3 ex 1 5. f 0 (x) = −2(9x8 + 4 − 12 x− 2 ) ln x − 2(x9 + 4x + 1 − 6. f 0 (x) = (4ex + x1 )( x1 − 1 x2 + 1 x3 ) 7. f 0 (x) = 2(3x−2)−3(2x+5) (3x−2)2 8. f 0 (x) = 2x(x2 +2−2)−(x2 −1)(2x+1) (x2 +x−2)2 9. f 0 (x) = 10. f 0 (x) = 1 1 −2 2x √ x) x1 + (4ex + ln x − 4)(−x−2 + 2x−3 − 3x−4 ) 1 √ √ ( x+1)−( x−1)( 12 x− 2 ) √ ( x+1)2 1 (ex +8x)(ln x+3)−(ex +4x2 −20)( x ) (ln x+3)2 11. f 0 (x) = 20(x3 − 2x2 + 7x − 3)19 (3x2 − 4x + 7) 2 12. f 0 (x) = 31 (x2 − 4x + 16)− 3 (2x − 4) 13. f 0 (x) = 3 · (18x − 4 − 12 x− 2 ) 1 9x2 −4x+ √1x 14. f 0 (x) = 3e4x+3 + 3xe4x+3 · 4 15. f 0 (x) = (20x − 7)(2x2 − 3x + 8)2 + (10x2 − 7x + 43) · 2(2x2 − 3x + 8)(4x − 3) 16. f 0 (x) = 3 3x+2 2x+1 2 · 3(2x+1)−(3x+2)(2) (2x+1)2 17. f 0 (x) = 2(2x + 5) · 2e5x+1 + (2x + 5)2 e5x+1 · 5 18. f 0 (x) = 1 2 ln(2x+3) 3x2 +1 − 12 · 2 1 2x+3 ·2(3x +1)−[ln(2x+3)](6x) (3x2 +1)2 3
© Copyright 2026 Paperzz