0 - Walton High

'-
ApplicationslReview
~=ations
~atic
Functions
1) Find the dimensions of a rectangle with area of 28 square inches if the length is 3
more inches than the width.
(t~l·w
;).'i::: w (&J+3)
d-.f;;;. w 7--+- 3 vJ
-:l- 3w -;lS-::;;'0;y
W +1
-I~)-O
(,,()-"- -
.
w-
W~
2) If the width of a rectangle is 4 less than the length, and the area is ~ square
the width of the rectangle.
1·w
s, ifid
A ::;
.3:;.::;~ (.1. - 4)
J 2-:;...12- - L/J.
..12.._,/~ - 3;)- -::;;0
(f.- 8X~ -1-4)= 0
3) The playground has a hopscotch pad that is 8 feet longer than it is wide. The total
area of the pad is 48 square feet. What are the dimensions of the hopscotch pad?
A~.J·w
)
Lj6:::.v.J(wrS)
L+-8w-48=0
LV
LW
2
u.J;:; -
)-::::=- 0
(w-tf
4- /2-
()J ~
4-
4) A rectangular patio measures 20 feet by 30 feet. B adding x feet to the width and x
feet to the length, the area is doubled. Find the new dimensions of the patio. (
V
A-
0
I 00
10
2.0
'\ - '" "0
X -t-Z-Oj\.X-t- 30)
- UJ
o )C
dou.bled
s:
'(2..+
2o~~
ILOO
50K
~
(X -+ '"
B2-fore.
..t-(oCO-=='
11m
)('Z... + 5 0)(. - ,,00 -:::.
0
r' K-- ,0
(\He~
O~(X~ 10) -.=.0
5) The area of a mirror is 20 square inches and the length is 3 more inches than twice
the width. Find the length of the mirror.
(\-:=.1,· W
Ja:;: w(2w+
3)
dO -z: ;)-(..1) "Z.. +- 3uJ
")~3
- 2-0 -:::- 0
.:rfU.fuJ -t: y..) ;::;-0
( uP
6) The area of a square is 81 square units.
5(7-
If the side length
IS
3k·3X:;;;<1.x2--==81
~3)(
)<"'L-::;
3)(
v.J::= -
L/-
3x, find the value ofX'~~:::::;::-:.../
~
q
X= ± 3
..-3
X. -
...,c.::::.:::=:=:::::::::::::=::::::::~
7) The area of a rectangle is 16. The length is 2 more than 3 times the width.
\\lo
3w+
)w
2-
Find x.
0., ..v :;:::.L
w
(3V->-T"2...)=
l Co
3w'Z- ~ z..u...>- L (p -:::. 0
(31)..) + 8
~
w- 2. )
-:::-c)
p::=-vJ
"
U
8) A pool deck of uniform width is going to be built around a rectangular pool that is 20
by 15 feet. After the deck is built, a total of 414 square feet will be occupied. How
wide is the deck encompassing the pool?
A-::=- ~x +- IS-
X
l S ~ 'Poo
4/4
\
z:
9)( -;-~)
4~2.+-10)( .f-
0 z:
4X
X
'2-
y:
0;::; 'Z-)C.-+-38
)c.~ - 19
2-
d-X-t-I<
J.(3h.) t-I S-
Wlv..>+3)~40
=a o >
3,h \
~~
wictfh;;
Find the length.
9) The area of a rectangle is 40. The length is 3 more than the width.
LU"--t-'3w
30V
-r 70)£ - /I '-I
0 z: (2-)( +-- 38 2.)( -J )
2-0
7.. 0
Y
0
IB
(W;-8J}W-S)~D
I
~Eu=ii~
a~
10) The area of a rectangle is 78.
r
The width is 7 less than the length.
J...
.&
11) The area of a triangle is 16.
l~
&;
-z-
-1 :=O
C~-13).,i +-~)~
f If;::;
eX+efEifi
1J2--7~
....x
1\ -e- ~6h
1X
<fo
::: J..2_?..R :::78
The base is x+4 and the height is x.
12) The area of a triangle is 40.
value ofx.
l-r-r
1
B
I
Find the width.
J(..f-7)-==78
.
)
\It,::: ~ ()(+'-I)(X
\~ -:::-~()(L+-<+)(.)
I
Find x.
~
:::
The base is x-2 and the height is x.
Find the
A :::=--t ex -~ 'i'le)) 4- -=k (x-z.)(x)
40=
.;X
Jjo-=1:-Cxz--'Z-x)
9,o(x-2)
·
80 =- X"Z-- 2.. x
X"--'z.:'1...--80
;::::..0
13) The dimensions of the old stage were 30 feet wide and 15 feet deep. The new stage
has a total area of 1000 square feet. The dimensions of the new stage were created by
adding the same distance x to the widthand the depth of he old stage. What i\the
l
_
/3)
(lJld-J(
z (p
X'H>t-32..=-o
0<-fO)Q(-t6~
value of x?
~
j_ IS
Q..tt;l
\
IS + )C
8-<'X>
Qc+- r5 XX-r3 0) = tPVV
30+ X
30
)(::: /()
-
y.."2.. +45)(
-+-4)"o-:::wUJ
X1.-+tf-5K - ~-=-o
14) The area of a painting is 25 square inches and the length is 5 inches more than twi{J< + 55 )(-/0) ~ 0
the width. Find the length of the painting.
(JJ (*l-W -r~ )
2.f"
X e 10
I
-=
}
u.J
.
{).W 2..
.
:l:w
Ft.AJ -
(2.aJ-
w.§j2...
+--5
2-~
-- D
w+S-)=o
-)
~
~
15) A computer store sells 30 computers a month at $350 eac . For every $20 decrease,
about 10 more computers are sold. What is the maximum revenue expected? At what
price should the computer store sell the computers? ~
I'~~:'
:its'old lit
,
•
fna...t,./l'YlLLn> "
X== -.k-
0-::::.
ZO-
-==
-«oj).,=- 13
-~o
~/OI:l,s--=-<rt"\a..AJ-l
w!
"'02.0 de ccea.se: -
'N-Wr"icJl.
)
,
fYlG~
30 • 35"""0
(30+iOX)(35"O-2-0X
3<;()-UJ(~)g:LOOKZ.
+
)
29novf-/OSOo
•
16) A convenient store sells 45 cups of coffee each day at a price of $1.25 each. For
each increase $0.05 increase in price, they expect to sell 3 less per day. What would the
price be set at? What would the maximum revenue be at that new price?
~~.:;.
tLj5~sXI.~~)
1L.f2,u)
rn~1~
~
X
'C!
(
=
z:
('15"-3)(.)
::
~/S-x2, -/5"x
I,
r)
as: +
_
S4..2S"' -+ e .es:» -
= !Jo
c:: -
i
j
:'l
IS-X~
3.7!J X -
ex.
-t-~2S-
-== 502£3. 75'
·
12- '5 ~
-01..
/..,:, ,,---
Q-. -
X ~ Lfo"! Jii"s~ 51. ~
~o(
If. 8 :J
(diS+o.,nc.Q.
'\'\
~
€>'
. "~",8'2
~~
.00-15
toJ<.) h...,.s--'
-r0..J
b~
..
,
~
0)0
~~~
;
fY'
i-/.:;'J.~
f
-;;:;[, )..3
40
~
'fo
18) A golf ball is shot in the air and can be modeled by the function y = -0.001x(x-260)
where x is the horizontal distance (in yards) from the impact point and y is the
corresponding height (in yards).
How many yards away from the impact point does the
golf ball land?
What is the maximum height of the golf shot?
V ~:
- ~
\
~
VJ.
\~
rco-b o.re: 0
Iou 'S It-th~
~
O\D\'
__ ~~
~fM~
bt( "Z-
1-/'~'"
~
-,
l'
.»
(Mof
u-=J-
00'
\)£tU..t.¥;Sl/4-00,
x·
eo
a
)(-:::-6 ~ 130
-zA.
V~
'2<00
0:=-D.001x.1(-..-=0
X:::::-o
X-:: 2.~0
('s l(-z, (..•.xu-(
5D II-GP ~
Y /(, . cr
(x- 1400)'1-+10
J 3'fOO
-_111
_ 1CAT\",
15
19) A cable is suspended between 2 buildings and forms a parabola and can be modeled
by the function y = (x-1400)2 + 10. What is the distance between the 2 buildings?
~
3400
.
'.J.A..1-.
.Ae..~Ylfc:£.
V1J
-
~f~
17) A bridge is built over the river in order for the boyscouts to cross over to their
campsite. The height of the bridge can be modeled by y= -0.2(x-40i + 25 where y is the
vertical distance (in feet) from the base of the arch and x is the horizontal distance from
the bank on the left, where the bridge begins. What is the width of the arch of the
bridge? (assume the bank on the left is the point (0,0)). What would the width be if the
the starting point were unknown? .
/,
) ~
..--~
0= -O.2.()(-L.\-c)"L+~
~\j0r--r4;:::'
t4o,2.5"
~~
-Z-S=-o.2. ()(.-fJc,)'
,,2.
~
-::(;1..
~C5D
(J/
#O~)(
S1nc£
1/
I
~
,J/ 'J..-.~
u-.<~7unCQ
10)
/
(/
s /7.. w~
'
~ 2..8{)()
20) The ~ath of a shot put released at an angle of 35° can be modeled by
y = -O.lx + 0.7x + 6 where x is the horizontal distance in feet and y is the corresponding
height in feet. Find the interval on which the heizht is increasinz. What is the average
rate of change on this interval?
- -- -
V RJvtfVI- X-=:; -:01
.:;:35
;)(-0.01 )
Y";.- I~. "2-~
21) The ~th of a soccer ball after being kicked can be modeled by the function y = 0.025x2 + 1.125x where x is the horizontal distance in yards and y is the corresponding
height, in yards. Find the interval on which the height is increasing. What is the average
rate of change on this interval'> (J.~#S)I:). ~~).
...
.-..
..vJ;:,u. •
-== - I' lz..S""
-z: ;;L ~ .••S'
#
\~
ZC-o.o'Z-)")
~ ~ (2..0,,"02.)
kc.o:'
-
/a.
&5 ~zs-_0::::
~
I
S" --
0
GJZ:j)
\::;;(;V
zmplify.
22) (-1 - 2i) + (-5 + 3i) + 6(i)(8 -7i)
-I - ;'L..i -5 -f- 31.. +<f8 . -f t/-J-
pcP
+-Lfq~J
24) -5 - (4 + 6i) + 3 + (-6 - 6i)(-3 - 2i)
-5-L/--
(pc ..,.-3
+
~ L{;!q.L J
25) (-2 - 2i) - (-5 + i) + (4i)(4i)(-6 + 5i)
18+IZ~-r(8~-I£
-{).-:;..t
?-..t -r/(pt2.(-0+-S-';)
-;;J. -;;J.
Z ~
- ;;J.. - a
'S -.;. -a'" (-to +- 5.<?
Z + s+- q 0
[9q -832J
- 80
,-,L-
29) -8
-9i
2,
...J.30) -1 - 2i
-3i
~
-2-
-- - _~- :J c -- _....<-- -r 2..
-.3(23
31) 1-7i
2i
.."v
.
.A.
-
;. -1---<-
2~L-
[~ -~ J
31.
fO
-r-/~
2
2+-
~ 2/0
I
l
+8(
33)
3
-8 - lOi
- g +- /0
L-
-7 + /0
l
.
Uz
-g-
:::
d- t/
-
mi.f
-r 3/) (
+ /0-0
-d,lj -I30t
:;J. if c'
-
?--
,
. z...
1&i.L
-f
-
••.. L
~
~
- r~ ..,../:1 i
-
-;)..,
-'7
•
32) 3 + 2i
6 - 4i
.J.- + 1
-
#
-1-
-/2.
"'?5""..,
O&.-
/61
ISZ
-
132- -
--
~.J-
'II
/5)
, -;s;,
Ov-
L
,tify each complex number graphed.
It
Imaginary
C5-3~)
8 (-3)
.~
Real
D
C(;L'f~)
D( D'-'-I~)
E (3-3~)
Find the absolute value of each complex number.
(~)L+(4r~-C2
"B + 10 =-C
<2-
d-Lf z: C 2.C:=.
± ;;J s:
[c,~~&J
37)
I-toil
Calculate the average rate of change of the function on the given interval.
1
2
39) y = - . x + x - 2 ,-1 ~x~5
2
~
40) y
(-'I-~)
C 5) ¥)
=-
1
2
4 . x + x;
2~x~4
@, I)
f, ~(~7
-2-