Introduction & motivation Example discussion Hands-on experience Unit conversion in LBM Timm Krüger Department of Microstructure Physics and Metal Forming 40237 Düsseldorf, Germany [email protected] LBM Workshop (Edmonton, Canada), August 22–26, 2011 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 1 / 31 Introduction & motivation Example discussion Hands-on experience Outline 1 Introduction & motivation 2 Example discussion 3 Hands-on experience Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 2 / 31 Introduction & motivation Example discussion Hands-on experience Outline 1 Introduction & motivation 2 Example discussion 3 Hands-on experience Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 3 / 31 Introduction & motivation Example discussion Hands-on experience Physical observables and units physical observables usually dimensional, i.e., a number plus a dimension measuring means comparing with a reference scale (e.g., measuring tape) physical units fundamental units, e.g., meter, second, kilogram (SI) bethlehem-news.de uniquely derived units, e.g., newton, joule, watt Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 4 / 31 Introduction & motivation Example discussion Hands-on experience Computers and physical units computers can only process binary numbers numbers are dimensionless user has to provide unit conversion (physical unit ↔ number) img.ehowcdn.com Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 5 / 31 Introduction & motivation Example discussion Hands-on experience Computers and physical units computers can only process binary numbers numbers are dimensionless user has to provide unit conversion (physical unit ↔ number) img.ehowcdn.com proper unit conversions are required to 1 set up a computer simulation 2 interpret the results afterwards Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 5 / 31 Introduction & motivation Example discussion Hands-on experience Hydrodynamics and the law of similarity (1) dimensionless Navier-Stokes equations ρ ∂u + (u · ∇)u ∂t Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany = −∇p + ρν∇2 u Unit conversion in LBM 6 / 31 Introduction & motivation Example discussion Hands-on experience Hydrodynamics and the law of similarity (1) dimensionless Navier-Stokes equations ρ ∂u + (u · ∇)u ∂t = −∇p + ρν∇2 u ∂ ũ ˜ ũ = −∇ ˜ p̃ + 1 ∇ ˜ 2 ũ + (ũ · ∇) Re ∂ t̃ ũ = u/um , 2 p̃ = p/(ρum ), t̃ = tum /H, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany ˜ = ∇H, ∇ Unit conversion in LBM Re = um H ν 6 / 31 Introduction & motivation Example discussion Hands-on experience Hydrodynamics and the law of similarity (1) dimensionless Navier-Stokes equations ρ ∂u + (u · ∇)u ∂t = −∇p + ρν∇2 u ∂ ũ ˜ ũ = −∇ ˜ p̃ + 1 ∇ ˜ 2 ũ + (ũ · ∇) Re ∂ t̃ ũ = u/um , 2 p̃ = p/(ρum ), t̃ = tum /H, ˜ = ∇H, ∇ Re = um H ν significance of Reynolds number only dimensionless number constructible from um , H, and ν characterizes solutions of Navier-Stokes equations flows with same Re are equivalent, even if um , H, and ν are different Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 6 / 31 Introduction & motivation Example discussion Hands-on experience Hydrodynamics and the law of similarity (2) concept of characteristic dimensionless numbers can be generalized to more complicated hydrodynamic problems example: presence of diffusive tracer with diffusivity D additional dimensionless number (Schmidt number): Sc = ν/D flows with same Re and Sc are equivalent Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 7 / 31 Introduction & motivation Example discussion Hands-on experience Hydrodynamics and the law of similarity (2) concept of characteristic dimensionless numbers can be generalized to more complicated hydrodynamic problems example: presence of diffusive tracer with diffusivity D additional dimensionless number (Schmidt number): Sc = ν/D flows with same Re and Sc are equivalent general recommended approach always find all independent dimensionless numbers for given problem before anything else is done Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 7 / 31 Introduction & motivation Example discussion Hands-on experience Conversion principle (1) for each physical quantity Q, one can write Q = Q̃ × CQ Q Q̃ CQ [Q] [Q̃] = 1 [CQ ] = [Q] physical value (incl. unit) dimensionless value conversion factor (incl. unit) Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 8 / 31 Introduction & motivation Example discussion Hands-on experience Conversion principle (1) for each physical quantity Q, one can write Q = Q̃ × CQ Q Q̃ CQ [Q] [Q̃] = 1 [CQ ] = [Q] physical value (incl. unit) dimensionless value conversion factor (incl. unit) user’s task: find all required conversion factors CQ , but relevant dimensionless parameters must be correct simulation parameters must be valid Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 8 / 31 Introduction & motivation Example discussion Hands-on experience Conversion principle (2) example for velocity conversion u = ũ × Cu u = 10 m s, ũ = 0.1 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ Cu = 100 ms Unit conversion in LBM 9 / 31 Introduction & motivation Example discussion Hands-on experience Conversion principle (2) example for velocity conversion u = ũ × Cu u = 10 m s, ũ = 0.1 =⇒ Cu = 100 ms conversion of dimensionless numbers dimensionless numbers should generally be invariant, e.g., f Re = Re ⇐⇒ ! CRe = 1 possible exceptions: e.g., Mach number (next slide). Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 9 / 31 Introduction & motivation Example discussion Hands-on experience LBM and the Mach number usually, LBM Mach number is larger than in reality otherwise, simulations would be too expensive (too many time steps) no problem since Ma is not important www.allmystery.de ! Ma 1, e.g., Ma < 0.3 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 10 / 31 Introduction & motivation Example discussion Hands-on experience Approaching a hydrodynamic problem 1 identify relevant dimensionless numbers (e.g., Reynolds or Péclet number) 2 write down their definitions, e.g., Re = uH ν 3 make use of their invariance during unit conversion, f and CRe = 1 e.g., Re = Re 4 from this, it is possible to construct a unique set of unit conversions Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 11 / 31 Introduction & motivation Example discussion Hands-on experience Approaching a hydrodynamic problem 1 identify relevant dimensionless numbers (e.g., Reynolds or Péclet number) 2 write down their definitions, e.g., Re = uH ν 3 make use of their invariance during unit conversion, f and CRe = 1 e.g., Re = Re 4 from this, it is possible to construct a unique set of unit conversions Explicit examples will be shown later! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 11 / 31 Introduction & motivation Example discussion Hands-on experience Primary conversion factors for mechanical problems, all quantities have units mql sqt kgqm quantity velocity force kinematic viscosity Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany unit m s kg sm2 m2 s Unit conversion in LBM ql 1 1 2 qt −1 −2 −1 qm 0 1 0 12 / 31 Introduction & motivation Example discussion Hands-on experience Primary conversion factors for mechanical problems, all quantities have units mql sqt kgqm quantity velocity force kinematic viscosity unit m s kg sm2 m2 s ql 1 1 2 qt −1 −2 −1 qm 0 1 0 three independent primary conversion factors required, e.g., for length, time, mass length, velocity, energy length, time, density Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 12 / 31 Introduction & motivation Example discussion Hands-on experience Primary conversion factors for mechanical problems, all quantities have units mql sqt kgqm quantity velocity force kinematic viscosity unit m s kg sm2 m2 s ql 1 1 2 qt −1 −2 −1 qm 0 1 0 three independent primary conversion factors required, e.g., for length, time, mass length, velocity, energy length, time, density All other (secondary) conversion factors are uniquely derived. Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 12 / 31 Introduction & motivation Example discussion Hands-on experience Finding secondary conversion factors 1 set primary conversion factors, e.g., for length, time, and density (Cl , Ct , Cρ ) 2 express secondary units in terms of primary units, e.g., for the energy [E] = 3 [Cρ ][Cl ]5 kg m2 kg m5 [ρ][l]5 = = = s2 m 3 s2 [t]2 [Ct ]2 read off secondary conversion factor, e.g., for the energy CE = Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Cρ Cl5 Ct2 Unit conversion in LBM 13 / 31 Introduction & motivation Example discussion Hands-on experience Finding secondary conversion factors 1 set primary conversion factors, e.g., for length, time, and density (Cl , Ct , Cρ ) 2 express secondary units in terms of primary units, e.g., for the energy [E] = 3 [Cρ ][Cl ]5 kg m2 kg m5 [ρ][l]5 = = = s2 m 3 s2 [t]2 [Ct ]2 read off secondary conversion factor, e.g., for the energy CE = Cρ Cl5 Ct2 Only the unit of the secondary quantity has to be known! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 13 / 31 Introduction & motivation Example discussion Hands-on experience Outline 1 Introduction & motivation 2 Example discussion 3 Hands-on experience Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 14 / 31 Introduction & motivation Example discussion Hands-on experience Gravity-driven planar Poiseuille flow H relevant input parameters channel height (wall distance) viscosity density gravity (force per volume) H ν ρ f = ρg g relevant output parameters maximum velocity (Poiseuille law): um = fH 2 8ρν um Reynolds number: Re := Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany um H gH 3 = ν 8ν 2 Unit conversion in LBM ρ, ν 15 / 31 Introduction & motivation Example discussion Hands-on experience Physical parameters example input parameters channel height viscosity density gravity Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany H ν ρ g 10−3 m 2 10−6 ms kg 103 m 3 10 sm2 Unit conversion in LBM 16 / 31 Introduction & motivation Example discussion Hands-on experience Physical parameters example input parameters channel height viscosity density gravity H ν ρ g 10−3 m 2 10−6 ms kg 103 m 3 10 sm2 resulting output parameters um = 1.25 ms , Re = 1250 These values are defined by the physical problem! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 16 / 31 Introduction & motivation Example discussion Hands-on experience Choose simulation parameters resolution H̃ = 20, H = 10−3 m Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ CH = 5 × 10−5 m Unit conversion in LBM 17 / 31 Introduction & motivation Example discussion Hands-on experience Choose simulation parameters resolution H̃ = 20, H = 10−3 m =⇒ CH = 5 × 10−5 m density ρ̃ = 1, ρ = 103 kg m3 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ Cρ = 103 Unit conversion in LBM kg m3 17 / 31 Introduction & motivation Example discussion Hands-on experience Choose simulation parameters resolution H̃ = 20, H = 10−3 m =⇒ CH = 5 × 10−5 m density ρ̃ = 1, ρ = 103 kg m3 =⇒ Cρ = 103 kg m3 relaxation time τ = 0.6 The user may choose any other set of parameters! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 17 / 31 Introduction & motivation Example discussion Hands-on experience Make use of Reynolds number Reynolds number in physical and dimensionless systems Re = um H , ν Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany f = ũm H̃ Re ν̃ Unit conversion in LBM 18 / 31 Introduction & motivation Example discussion Hands-on experience Make use of Reynolds number Reynolds number in physical and dimensionless systems Re = um H , ν f = ũm H̃ Re ν̃ equality of Reynolds numbers ! f Re = Re =⇒ ν um H = ν̃ ũm H̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ Cν = Cu CH Unit conversion in LBM 18 / 31 Introduction & motivation Example discussion Hands-on experience Make use of Reynolds number Reynolds number in physical and dimensionless systems Re = um H , ν f = ũm H̃ Re ν̃ equality of Reynolds numbers ! f Re = Re =⇒ ν um H = ν̃ ũm H̃ Cν = Cu CH =⇒ consistency check [Cν ] = [Cu ][CH ] = Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany m2 s X Unit conversion in LBM 18 / 31 Introduction & motivation Example discussion Hands-on experience Get time conversion factor lattice spacing and time step f = 1 and ∆t f =1 for convenience, choose ∆x =⇒ ∆x = CH , Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany ∆t = Ct Unit conversion in LBM 19 / 31 Introduction & motivation Example discussion Hands-on experience Get time conversion factor lattice spacing and time step f = 1 and ∆t f =1 for convenience, choose ∆x =⇒ ∆x = CH , ∆t = Ct LBM viscosity ν= τ− 1 2 cs2 ∆t, cs2 = 1 ∆x 2 3 ∆t 2 =⇒ ν= τ − 12 CH2 3 } Ct | {z ν̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 19 / 31 Introduction & motivation Example discussion Hands-on experience Get time conversion factor lattice spacing and time step f = 1 and ∆t f =1 for convenience, choose ∆x ∆x = CH , =⇒ ∆t = Ct LBM viscosity ν= τ− 1 2 cs2 ∆t, cs2 = 1 ∆x 2 3 ∆t 2 =⇒ ν= τ − 12 CH2 3 } Ct | {z ν̃ time conversion factor Ct = τ− 3 1 2 CH2 = 8.3̄ × 10−5 s ν Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 19 / 31 Introduction & motivation Example discussion Hands-on experience Get velocity conversion factor secondary conversion factor [u] = [H] [t] =⇒ Cu = Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany CH Ct =⇒ Cu = 0.6 ms Unit conversion in LBM 20 / 31 Introduction & motivation Example discussion Hands-on experience Get velocity conversion factor secondary conversion factor [u] = [H] [t] =⇒ Cu = CH Ct =⇒ Cu = 0.6 ms compute maximum lattice velocity ũm = um /Cu =⇒ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany ũm = 2.083̄ Unit conversion in LBM 20 / 31 Introduction & motivation Example discussion Hands-on experience Get velocity conversion factor secondary conversion factor [u] = [H] [t] =⇒ Cu = CH Ct =⇒ Cu = 0.6 ms compute maximum lattice velocity ũm = um /Cu =⇒ ũm = 2.083̄ consistency of Reynolds number Re = um H ! ũm H̃ = = 1250 ν ν̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany X Unit conversion in LBM 20 / 31 Introduction & motivation Example discussion Hands-on experience Correct simulation parameters problem Simulation parameters are consistent, but not valid for LBM simulations (ũm 0.3). Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 21 / 31 Introduction & motivation Example discussion Hands-on experience Correct simulation parameters problem Simulation parameters are consistent, but not valid for LBM simulations (ũm 0.3). correction approach Cu = 3 CH = Ct τ− 1 2 ν CH decrease CH =⇒ more expensive decrease τ =⇒ LBM may become unstable User has to find a consistent and valid set of parameters! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 21 / 31 Introduction & motivation Example discussion Hands-on experience Example correction change resolution and relaxation parameter CH = 5 × 10−5 m → CH∗ = 1 × 10−5 m τ = 0.6 → τ ∗ = 0.55 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 22 / 31 Introduction & motivation Example discussion Hands-on experience Example correction change resolution and relaxation parameter CH = 5 × 10−5 m → CH∗ = 1 × 10−5 m τ = 0.6 → τ ∗ = 0.55 corrected velocity conversion factor Cu∗ = τ∗ 3 − 1 2 ν = 6 ms CH∗ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ ∗ ũm = 0.2083̄ X Unit conversion in LBM 22 / 31 Introduction & motivation Example discussion Hands-on experience Example correction change resolution and relaxation parameter CH = 5 × 10−5 m → CH∗ = 1 × 10−5 m τ = 0.6 → τ ∗ = 0.55 corrected velocity conversion factor Cu∗ = τ∗ 3 − 1 2 ν = 6 ms CH∗ =⇒ ∗ ũm = 0.2083̄ X consistency of Reynolds number Re = ∗ H̃ ∗ um H ! ũm = = 1250 X ν ν̃ ∗ The user has found a consistent and valid parameter set. Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 22 / 31 Introduction & motivation Example discussion Hands-on experience Get force conversion factor secondary conversion factor [f ] = [ρ][H] [t]2 =⇒ Cf = Cρ CH Ct2 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ Cf = 3.6 × 109 Unit conversion in LBM N m3 23 / 31 Introduction & motivation Example discussion Hands-on experience Get force conversion factor secondary conversion factor [f ] = [ρ][H] [t]2 =⇒ Cf = Cρ CH Ct2 =⇒ Cf = 3.6 × 109 N m3 compute lattice force density f̃ = f /Cf =⇒ f̃ = 2.7̄ × 10−6 Everything for a successful simulation is prepared! Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 23 / 31 Introduction & motivation Example discussion Hands-on experience Alternative routes start with H̃ and ũm 1 choose H̃ and ũm =⇒ CH , Cu 2 find viscosity conversion factor Cν = CH2 /Ct =⇒ ν̃ 3 identify relaxation time τ from ν̃ = (τ − 12 )/3 4 find remaining conversion factors & check validity Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 24 / 31 Introduction & motivation Example discussion Hands-on experience Alternative routes start with H̃ and ũm 1 choose H̃ and ũm =⇒ CH , Cu 2 find viscosity conversion factor Cν = CH2 /Ct =⇒ ν̃ 3 identify relaxation time τ from ν̃ = (τ − 12 )/3 4 find remaining conversion factors & check validity start with ũm and τ 1 choose ũm and τ =⇒ Cu , ν̃ 2 find viscosity conversion factor Cν from ν̃ 3 find length conversion factor CH = Cν /Cu =⇒ H̃ 4 find remaining conversion factors & check validity Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 24 / 31 Introduction & motivation Example discussion Hands-on experience Alternative routes start with H̃ and ũm 1 choose H̃ and ũm =⇒ CH , Cu 2 find viscosity conversion factor Cν = CH2 /Ct =⇒ ν̃ 3 identify relaxation time τ from ν̃ = (τ − 12 )/3 4 find remaining conversion factors & check validity start with ũm and τ 1 choose ũm and τ =⇒ Cu , ν̃ 2 find viscosity conversion factor Cν from ν̃ 3 find length conversion factor CH = Cν /Cu =⇒ H̃ 4 find remaining conversion factors & check validity and so on. . . Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 24 / 31 Introduction & motivation Example discussion Hands-on experience Outline 1 Introduction & motivation 2 Example discussion 3 Hands-on experience Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 25 / 31 Introduction & motivation Example discussion Hands-on experience Gravity-driven Poiseuille flow with diffusive tracer H relevant input parameters channel height (wall distance) viscosity tracer diffusivity density gravity (force per volume) H ν D ρ f = ρg g um relevant dimensionless parameters Reynolds number: um H gH 3 Re := = ν 8ν 2 Schmidt number: ν Sc := D Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM ρ, ν, D 26 / 31 Introduction & motivation Example discussion Hands-on experience Formulary dimensionless parameters Re = g̃ H̃ 3 ũm H̃ = , ν̃ 8ν̃ 2 Sc = ν̃ D̃ dimensionless viscosity and diffusivity ν̃ = τν − 12 , 3 D̃ = τD − 3 1 2 gravity f̃ = ρ̃g̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 27 / 31 Introduction & motivation Example discussion Hands-on experience Physical parameters and numerical restrictions physical parameters Re = 100, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Sc = 3 Unit conversion in LBM 28 / 31 Introduction & motivation Example discussion Hands-on experience Physical parameters and numerical restrictions physical parameters Re = 100, Sc = 3 numerical restrictions relaxation times τν and τD shall both be at least 0.55 (stability) center velocity shall be ũm ≤ 0.05 (compressibility) system height shall be H̃ ≤ 150 (efficiency) Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 28 / 31 Introduction & motivation Example discussion Hands-on experience Physical parameters and numerical restrictions physical parameters Re = 100, Sc = 3 numerical restrictions relaxation times τν and τD shall both be at least 0.55 (stability) center velocity shall be ũm ≤ 0.05 (compressibility) system height shall be H̃ ≤ 150 (efficiency) task Find a conclusive and valid set of simulation parameters! ρ̃, τν , τD , H̃, ũm , f̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 28 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 1 identify minimum relaxation parameters Sc = ν̃ D̃ =⇒ Sc = τν − τD − 1 2 1 2 τD,min = 0.55, Sc = 3 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany =⇒ =⇒ τν = Sc(τD − 0.5) + 0.5 τν,min = 0.65 Unit conversion in LBM 29 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 1 identify minimum relaxation parameters Sc = ν̃ D̃ =⇒ Sc = τν − τD − 1 2 1 2 τD,min = 0.55, Sc = 3 =⇒ =⇒ τν = Sc(τD − 0.5) + 0.5 τν,min = 0.65 identify minimum resolution Re = ũm H̃ ν̃ =⇒ H̃ = Re τν,min = 0.65, ũm,max = 0.05, Re = 100 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany τν − 0.5 3ũm =⇒ Unit conversion in LBM H̃min = 100 29 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 2 chosen set of simulation parameters τν = 0.65, τD = 0.55, Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany H̃ = 100, ũm = 0.05 Unit conversion in LBM 30 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 2 chosen set of simulation parameters τν = 0.65, τD = 0.55, H̃ = 100, ũm = 0.05 validity and consistency already assured Re = ũm H̃ = 100, ν̃ Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Sc = ν̃ D̃ =3 Unit conversion in LBM X 30 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 2 chosen set of simulation parameters τν = 0.65, τD = 0.55, H̃ = 100, ũm = 0.05 validity and consistency already assured Re = ũm H̃ = 100, ν̃ Sc = ν̃ D̃ =3 X set density ρ̃ = 1 Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany (arbitrary) Unit conversion in LBM 30 / 31 Introduction & motivation Example discussion Hands-on experience Example solution, part 2 chosen set of simulation parameters τν = 0.65, τD = 0.55, H̃ = 100, ũm = 0.05 validity and consistency already assured Re = ũm H̃ = 100, ν̃ Sc = ν̃ D̃ =3 X set density ρ̃ = 1 (arbitrary) set gravity Re = g̃ H̃ 3 8ν̃ 2 =⇒ f̃ = ρ̃g̃ = Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany 8ρ̃ν̃ 2 H̃ 3 Re = 2 × 10−6 Unit conversion in LBM 30 / 31 Introduction & motivation Example discussion Hands-on experience Further comments systems with identical Re and Sc are equivalent =⇒ no explicit conversion factors required at this point! scale can be introduced afterwards, e.g., H = 10−3 m =⇒ CH = 10−5 m all other conversion factors are then obtained as in the example discussion Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany Unit conversion in LBM 31 / 31
© Copyright 2025 Paperzz