Simplifying Expressions

Simplifying Expressions
Combining like terms
πŸ“ + πŸ•= _______
πŸ“π’™ + πŸ•π’™ = _______
πŸ“π’‚ + πŸ•π’‚ = _______
πŸ“
πŸ•
πŸ“
+ =
πŸ•
Example 1:
πŸ•
𝟐
πŸ’
πŸ‘
𝟐
𝟐
+ + =
We can add these terms together because they are like terms.
Example 2:
πŸ‘
πŸ’
𝟐
+ =
πŸ“
These are NOT like terms, so we must make them like terms. We need
to find the least Common Denominator (LCD).
LCD: _______
πŸ‘ πŸ“
𝟐 πŸ’
πŸ’ πŸ“
πŸ“ πŸ’
( )+ ( )
=
πŸπŸ“
=
πŸπŸ‘
𝟐𝟎
𝟐𝟎
+
πŸ–
𝟐𝟎
1
Example 3:
πŸ’π± + πŸ‘ βˆ’ 𝟐
If we rewrite this expression so that everything is being added, we can
add in any order.
πŸ’π± + πŸ‘ βˆ’ 𝟐
= πŸ’π± + πŸ‘ + (βˆ’πŸ)
=πŸ’π± + 𝟏
We cannot combine these two terms since they are NOT like terms.
Example 4:
βˆ’πŸ‘ + 𝟐𝐱 βˆ’ πŸ“ βˆ’ 𝐱
= βˆ’πŸ‘ + πŸπ’™ + (βˆ’πŸ“) + (βˆ’π’™)
= βˆ’πŸ– + 𝒙
OR = 𝒙 βˆ’ πŸ–
At times we must use the distributive property in order t0 simplify.
Example 5:
βˆ’πŸ‘ + πŸ’(𝐱 βˆ’ 𝟐) βˆ’ πŸ•π±
= βˆ’πŸ‘ + πŸ’(𝐱) + πŸ’(𝟐) βˆ’ πŸ•π±
= βˆ’πŸ‘ + πŸ’π± + πŸ– βˆ’ πŸ•π±
= πŸ“ βˆ’ πŸ‘π± OR = βˆ’πŸ‘π± + πŸ“
2
Example 6:
Translate the following phrase into a mathematical expression using
𝐱 as the variable, then simplify the expression.
β€œA number multiplied by βˆ’πŸ‘, subtracted from the sum of πŸ— and πŸ’
times the number.”
(πŸ— + πŸ’π±) βˆ’ 𝐱(βˆ’πŸ‘)
=πŸ— + πŸ’π± + πŸ‘π±
=
πŸ— + πŸ•π±
3
Simplifying Expressions
Practice Problems
Simplifying each expression:
1.
πŸ• βˆ’ πŸ’π± + πŸ‘π± βˆ’ 𝟏𝟎 + 𝟐𝐱
2.
πŸ• βˆ’ πŸ—(𝐱 βˆ’ πŸ’) + 𝟐(𝐱 βˆ’ 𝟏)
3. Translate the following phrase into a mathematical expression
using 𝐱 as the variable, then simplify the expression.
β€œThe sum of πŸ– and πŸ“ times a number subtracted from twice the
number.”
4