NAME DATE 1-3 PERIOD Study Guide and Intervention Locating Points and Midpoints Midpoint of a Segment If the coordinates of the endpoints of a segment are x1 and x2, Midpoint on a Number Line x +x 1 2 . then the coordinate of the midpoint of the segment is − 2 If a segment has endpoints with coordinates (x1, y1) and (x2, y2), Midpoint on a Coordinate Plane then the coordinates of the midpoint of the segment are +x , ( x− 2 1 2 y +y ) 1 2 − . 2 −− Find the coordinate of the midpoint of PQ. Example 1 P Q -3 -2 -1 0 1 2 The coordinates of P and Q are -3 and 1. −−− Geo-SG01-03-05-846589 -3 + 1 -2 If M is the midpoint of PQ, then the coordinate of M is − = − or -1. 2 −−− Find the coordinates of M, the midpoint of PQ, for P(-2, 4) and Example 2 Q(4, 1). +x y +y -2 + 4 4 + 1 , − ) = ( − , − ) or (1, 2.5) ( x− 2 2 2 2 1 2 1 2 Exercises Use the number line to find the coordinate of the midpoint of each segment. −−− 1. CE −−− 2. DG −− 3. AF −−− 4. EG −− 5. AB −−− 6. BG −−− 7. BD −−− 8. DE A –10 –8 B –6 C –4 –2 D EF 0 2 G 4 6 8 Geo-SG01-03-06-846589 Find the coordinates of the midpoint of a segment with the given endpoints. 9. A(0, 0), B(12, 8) 10. R(-12, 8), S(6, 12) 11. M(11, -2), N(-9, 13) 12. E(-2, 6), F(-9, 3) 13. S(10, -22), T(9, 10) 14. K(-11, 2), L(-19, 6) Chapter 1 18 Glencoe Geometry Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. M= 2 NAME DATE 1-3 PERIOD Study Guide and Intervention (continued) Locating Points and Midpoints Locate Points The midpoint of a segment is half the distance from one endpoint to the other. Points located at other fractional distances from one endpoint can be found using a similar method. m If the coordinates of the endpoints of a segment are x1 and x2 and the point is − n of the Locating Points on a Number Line distance from x1 to x2, then the coordinate of the point is x1 m If a segment has endpoints A(x1, y1) and B(x2, y2) and the point is − n of the distance from Locating Points on a Coordinate Plane Example 1 m⎪x - x ⎥ 2 1 + − . n ( m⎪x2 - x1⎥ m⎪y2 - y1⎥ ) point A to point B, then the coordinates of the point are x1 + − , y1 + − . n n 1 Find the coordinates of a point − of the distance from A to B. 3 A B -6 -5 -4 -3 -2 -1 0 1 2 3 4 1 The coordinates of A and B are -5 and 2. If P is the point − of the distance from A to B, 3 ⎪2-(-5)⎥ 7 -8 then the coordinate of P is -5 + − = -5 + − = − ≈ -2.7. 3 3 3 Example 2 to B(4, 3). ( 1 Find the coordinates of P, a point − of the distance from A(-2, -4) 4 m⎪x 2 - x 1⎥ m⎪y 2 - y 1⎥ P = x1 + − , y1 + − n n ( ) ( ) = (-2 + ⎪4 - (-2)⎥ 4 ⎪3 - (-4)⎥ 4 − , -4 + − ) Lesson 1-3 Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. P19-001A-890857 ) 6 7 1 1 = -2 + − , -4 + − or about - − , -2 − . 4 4 2 4 Exercises Use the number line to find the coordinate of the point the given fractional distance from A to B. 1 1. − 5 3 4. − 4 A –10 B –8 1 2. − –6 –4 –2 0 2 4 6 8 10 2 3. − P19-002A-890857 3 3 1 5. − 4 2 6. − 5 −−− Find P on NM that is the given fractional distance from N to M. 1 ; N(-3, -2), M(1, 1) 7. − 5 2 9. − ; N(-7, 3), M(5, 2) 3 1 11. − ; N(-2, 5), M(0, -4) 4 Chapter 1 019_GEOCRMC01_715477.indd 19 1 8. − ; N(-2, -4), M(4, 4) 3 3 10. − ; N(-3, 1), M(2, 6) 4 2 12. − ; N(-2, -1), M(8, 3) 5 19 Glencoe Geometry 2nd Pass 8/7/14 5:40 PM NAME 1-3 DATE PERIOD Skills Practice Locating Points and Midpoints Use the number line to find the coordinate of the midpoint of each segment. −−− 1. DE −−− 3. BD A –6 −−− 2. BC −−− 4. AD –4 B –2 C 0 2 D 4 E 6 8 10 12 Geo-SG01-03-04-846589 Find the coordinates of the midpoint of a segment with the given endpoints. 5. T(3, 1), U(5, 3) 6. J(-4, 2), F(5, -2) −−− Find the coordinates of the missing endpoint if P is the midpoint of NQ. 7. N(2, 0), P(5, 2) 8. N(5, 4), P(6, 3) Use the number line to find the coordinate of the point the given fractional distance from A to B. 9. Q(3, 9), P(-1, 5) -3 -2 -1 0 2 11. − 1 12. − 3 13. − 2 14. − 1 15. − 1 16. − 5 17. − 6 4 3 3 2 3 4 5 6 7 Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. 1 10. − 1 4 5 5 6 −−− Find P on NM that is the given fractional distance from N to M. 2 18. − , N(-3, 1), M(2, 6) 2 19. − , N(-2, 5), M(0, -4) 1 , N(-2, -1), M(8, 3) 20. − 3 21. − , N(4, 5), M(-7, 1) 3 4 5 4 A Refer to the graph at the right. −− 22. Find C on AB such that the ratio of AC to CB is 2:3. −− 23. Find C on AB such that the ratio of AC to CB is 1:3. -4 2 -2 O 20 2 4x -2 -4 -6 Chapter 1 y B Glencoe Geometry P20-002A-890857 NAME 1-3 DATE PERIOD Practice Locating Points and Midpoints Use the number line to find the coordinate of the midpoint of each segment. P –10 −−− 2. QR −− 4. PR −− 1. RT −− 3. ST Q –8 –6 R –4 S –2 T 0 2 4 6 Geo-SG01-03-08-846589 Find the coordinates of the midpoint of a segment with the given endpoints. 5. K(-9, 3), H(5, 7) 6. W(-12, -7), T(-8, -4) −− Find the coordinates of the missing endpoint if E is the midpoint of DF. 7. F(5, 8), E(4, 3) 8. F(2, 9), E(-1, 6) 9. D(-3, -8), E(1, -2) Use the number line to find the coordinate of the point the given fractional distance from A to B. 1 11. − 3 3 15. − 5 1 12. − 5 2 16. − 3 A B -8 -7 -6 -5 -4 -3 -2 -1 0 1 13. − 6 5 17. − 6 1 2 3 4 5 6 Lesson 1-3 Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc. 10. PERIMETER The coordinates of the vertices of a quadrilateral are R(-1, 3), S(3, 3), T(5, -1), and U(-2, -1). Find the perimeter of the quadrilateral. Round to the nearest tenth. 1 14. − 4 P21-001A-890857 3 18. − 4 −−− Find P on NM that is the given fractional distance from N to M. 3 , N(1, 7), M(9, -2) 19. − 4 2 , N(-3, -4), M(6, 3) 21. − 5 4 20. − , N(-4, 5), M(2, -6) 5 1 22. − , N(-4, 2), M(7, 9) 3 Refer to the graph at the right. y −− 23. Find C on AB such that the ratio of AC to CB is 1:2. B 4 2 −− 24. Find C on AB such that the ratio of AC to CB is 4:3. -4 -2 O 2 4x -2 A Chapter 1 021_GEOCRMC01_715477.indd 21 21 P21-002A-890857 Glencoe Geometry PDF Pass 7/30/14 5:30 PM
© Copyright 2025 Paperzz