Practice - West Ada

DATE
NAME
1-8
Student Edition
Pages 51–55
Practice
Commutative and Associative Properties
Name the property illustrated by each statement.
1. x 1 y 5 y 1 x
2. 5(m ? n) 5 (5 ? m)n
3. k 1 0 5 k
4. 3t 1 2r 5 2r 1 3t
5. 6(u 1 2v) 5 6u 1 12v
6. 0 5 100 ? 0
7. (2a 1 3b) 1 4c 5 2a 1 (3b 1 4c)
8. pq 1 n 5 qp 1 n
9. gx 5 xg
10. 15(c 1 d) 5 15(d 1 c)
Simplify.
11. 2x 1 5y 1 9x
12. a 1 9b 1 6a
13. 2p 1 3q 1 5p 1 2q
14. 4 x 1 z 1 4 x
15. 3j 1 4k 1 2l 1 6k
16. 5m2 1 3m 1 m2
17. 6 1 3xz 1 4(xz 1 y)
18. 3(2pq 1 3r) 1 4pq
1
1
1
3
1
2
4
19. 3x 1 5y 1 2z 1 5y
20. 0.5x 1 0.2y 1 x
21. 2(2e 1 f) 1 3f 1 1
22. 3 1 2(r 1 s) 1 2r
23. r 1 3s 1 5r 1 s
24. 6k2 1 6k 1 k2 1 9k
25. 4p 1 3(3p 1 5) 1 5
26. 9 1 3(xz 1 2y) 1 xz
27. 5(0.6m 1 0.4n) 1 m
28. 4(2a 1 b) 1 2(a 1 2b)
© Glencoe/McGraw-Hill
8
Algebra 1
DATE
NAME
1-8
Student Edition
Pages 51–55
Practice
Commutative and Associative Properties
Name the property illustrated by each statement.
1. x 1 y 5 y 1 x
2. 5(m ? n) 5 (5 ? m)n
3. k 1 0 5 k
4. 3t 1 2r 5 2r 1 3t
5. 6(u 1 2v) 5 6u 1 12v
6. 0 5 100 ? 0
7. (2a 1 3b) 1 4c 5 2a 1 (3b 1 4c)
8. pq 1 n 5 qp 1 n
Commutative prop. of add.
Associative prop. of mult.
Additive identity prop.
Commutative prop. of add.
Distributive prop.
Multiplicative prop. of zero
Associative prop. of add.
Commutative prop. of mult.
9. gx 5 xg
10. 15(c 1 d) 5 15(d 1 c)
Commutative prop. of mult.
Commutative prop. of add.
Simplify.
11. 2x 1 5y 1 9x
12. a 1 9b 1 6a
13. 2p 1 3q 1 5p 1 2q
14. 4 x 1 z 1 4 x
15. 3j 1 4k 1 2l 1 6k
16. 5m2 1 3m 1 m2
11x 1 5y
7a 1 9b
3
7p 1 5q
x1z
2
3j 1 10k 1 2l
2
5
1 m2 1 3m
17. 6 1 3xz 1 4(xz 1 y)
18. 3(2pq 1 3r) 1 4pq
7xz 1 4y 1 6
1
1
1
10pq 1 9r
4
19. 3x 1 5y 1 2z 1 5y
1
x
3
1
20. 0.5x 1 0.2y 1 x
1.5x 1 0.2y
1
2
1y1 z
21. 2(2e 1 f ) 1 3f 1 1
22. 3 1 2(r 1 s) 1 2r
23. r 1 3s 1 5r 1 s
24. 6k2 1 6k 1 k2 1 9k
25. 4p 1 3(3p 1 5) 1 5
26. 9 1 3(xz 1 2y) 1 xz
27. 5(0.6m 1 0.4n) 1 m
28. 4(2a 1 b) 1 2(a 1 2b)
4e 1 5f 1 1
3 1 4r 1 2s
6r 1 4s
7k2 1 15k
13p 1 20
9 1 4xz 1 6y
4m 1 2n
© Glencoe/McGraw-Hill
10a 1 8b
T8
Algebra 1