DATE NAME 1-8 Student Edition Pages 51–55 Practice Commutative and Associative Properties Name the property illustrated by each statement. 1. x 1 y 5 y 1 x 2. 5(m ? n) 5 (5 ? m)n 3. k 1 0 5 k 4. 3t 1 2r 5 2r 1 3t 5. 6(u 1 2v) 5 6u 1 12v 6. 0 5 100 ? 0 7. (2a 1 3b) 1 4c 5 2a 1 (3b 1 4c) 8. pq 1 n 5 qp 1 n 9. gx 5 xg 10. 15(c 1 d) 5 15(d 1 c) Simplify. 11. 2x 1 5y 1 9x 12. a 1 9b 1 6a 13. 2p 1 3q 1 5p 1 2q 14. 4 x 1 z 1 4 x 15. 3j 1 4k 1 2l 1 6k 16. 5m2 1 3m 1 m2 17. 6 1 3xz 1 4(xz 1 y) 18. 3(2pq 1 3r) 1 4pq 1 1 1 3 1 2 4 19. 3x 1 5y 1 2z 1 5y 20. 0.5x 1 0.2y 1 x 21. 2(2e 1 f) 1 3f 1 1 22. 3 1 2(r 1 s) 1 2r 23. r 1 3s 1 5r 1 s 24. 6k2 1 6k 1 k2 1 9k 25. 4p 1 3(3p 1 5) 1 5 26. 9 1 3(xz 1 2y) 1 xz 27. 5(0.6m 1 0.4n) 1 m 28. 4(2a 1 b) 1 2(a 1 2b) © Glencoe/McGraw-Hill 8 Algebra 1 DATE NAME 1-8 Student Edition Pages 51–55 Practice Commutative and Associative Properties Name the property illustrated by each statement. 1. x 1 y 5 y 1 x 2. 5(m ? n) 5 (5 ? m)n 3. k 1 0 5 k 4. 3t 1 2r 5 2r 1 3t 5. 6(u 1 2v) 5 6u 1 12v 6. 0 5 100 ? 0 7. (2a 1 3b) 1 4c 5 2a 1 (3b 1 4c) 8. pq 1 n 5 qp 1 n Commutative prop. of add. Associative prop. of mult. Additive identity prop. Commutative prop. of add. Distributive prop. Multiplicative prop. of zero Associative prop. of add. Commutative prop. of mult. 9. gx 5 xg 10. 15(c 1 d) 5 15(d 1 c) Commutative prop. of mult. Commutative prop. of add. Simplify. 11. 2x 1 5y 1 9x 12. a 1 9b 1 6a 13. 2p 1 3q 1 5p 1 2q 14. 4 x 1 z 1 4 x 15. 3j 1 4k 1 2l 1 6k 16. 5m2 1 3m 1 m2 11x 1 5y 7a 1 9b 3 7p 1 5q x1z 2 3j 1 10k 1 2l 2 5 1 m2 1 3m 17. 6 1 3xz 1 4(xz 1 y) 18. 3(2pq 1 3r) 1 4pq 7xz 1 4y 1 6 1 1 1 10pq 1 9r 4 19. 3x 1 5y 1 2z 1 5y 1 x 3 1 20. 0.5x 1 0.2y 1 x 1.5x 1 0.2y 1 2 1y1 z 21. 2(2e 1 f ) 1 3f 1 1 22. 3 1 2(r 1 s) 1 2r 23. r 1 3s 1 5r 1 s 24. 6k2 1 6k 1 k2 1 9k 25. 4p 1 3(3p 1 5) 1 5 26. 9 1 3(xz 1 2y) 1 xz 27. 5(0.6m 1 0.4n) 1 m 28. 4(2a 1 b) 1 2(a 1 2b) 4e 1 5f 1 1 3 1 4r 1 2s 6r 1 4s 7k2 1 15k 13p 1 20 9 1 4xz 1 6y 4m 1 2n © Glencoe/McGraw-Hill 10a 1 8b T8 Algebra 1
© Copyright 2026 Paperzz