Pergamon 9031-9422(94)00493-5 Phymchem~rry, Vol. 37, No. 6, pp. 1517-1575, 1994 copyright 8 1994 lilseti ScienceLtd Printed in Great Britain.Al1rights mrvcd 0031~9422/!%$24M) t 0.00 REVIEW ARTICLE NUMBER 98 13C NMR SPECTRA OF PENTACYCLIC TRITERPENOIDS-A AND SOME SALIENT FEATURES SHASHI B. MAHATO* COMPILATION and ASISH P. KUNDU Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India (Received31 May 1994) Key Word Inde~--‘~C NMR da&g pentacyclic triterpenoids; signal assigmnent techniques; substituent effects. Abstract-A compilation of the “C NMR data of a selected variety of naturally occurring pentacyclic triterpenoids, arranged skeletonwise, is provided. A brief account of the newer signal assignment techniques and a discussion on the substituent effects on the i3C shieldings of the triterpenoids, are also included. Triterpenoids are ubiquitous non-steroidal secondary metabolites of terrestrial and marine flora and fauna, occurring in the free form as well as in the forms of ether, ester and glycoside. Although medicinal uses of this class of compounds have been limited, considerable recent work [l] strongly indicates their great potential. As the name implies, triterpenoids are isopentenoids composed of thirty carbon atoms and may possess acyclic, mono-, di-, tri-, tetra- or pentacyclic carbon skeletons. Pentacyclit triterpenoids are dominant constituents of this class and have been widely investigated. Spectroscopic techniques are now routinely employed for structure elucidation of natural products. Of all the physical methods, the NMR technique has changed greatly during the last two decades, first with the ~troduction of the Fourier transform (FT) method and more recently the growth of multiple pulse and 2DNMR. Perhaps more importantly have been developments consequent on the pulse technique which permit enormously greater control and manipulation of the sample’s magnetization. Consequently, the structural information which is gleaned through pulse NMR is probably greater and more readily obtained than by any other single technique. A large number of pentacyclic triterpenoids have been examined by 1%ZNMR spectroscopy and considerable 13C chemical shift data have accumulated. These data are scattered in the literature, although compilations of i3C data for a number of compounds [2] and oleanane triterpenoids [S] are available. The assignment of carbon signals of a new compound by comparison with the data *Author to whom correspondence should be addressed. of known compounds is simple and str~gh~o~ard provided, of course, the 13C data of appropriate model compounds are available. It would appear to be of value to provide an easy access to an extensive list of i3C data of pentacyclic triterpenoids and this paper reports the skeletonwise compilation of the data of these compounds. A brief description of the newer signal assignment techniques and a discussion on the substituent effects on the r3C shieldings, to illustrate their utility, as well as limitations, are also included. 13CSiGNALASSIGNMFJ'I'CTECHNIQUES The assignment of i3CNMR signals begins with an inspection of the proton noise (broad band) decoupling spectra taking into ~nsideration the chemical shift values and usually backed up by 13C multiplicity data. The off-resonance decoupled spectra were previously used for the determination of quaternary, methine, methylene and methyl carbons appearing as singlets, doublets, triplets and quartets, respectively. ffowever, in such spectra, severe signal overlap and second order effects f~quently prohibit un~biguo~ interpretation. Several techniques such as APT (attached proton test) [4], DEPT (distortionless enhancement by polarization transfer) [S] and INEPT (insensitive nuclei enhanced by polarization transfer) [6-81, are now widely used for distinguishing carbon types. Although the polarization transfer techniques, DEPT and INEPT are now used for the multiplicity determination, the polarization pulse sequences were originally devised for the purpose of sensitivity enhan~ment. The DEPT sequence is usually preferred for editing purposes because it has some advantages and is less susceptible to errors. The multiplicity 1517 1518 S. B. MAHATO and dependence rests on the delay A for INEPT and the flip angle 0 for DEPT experiment. By performing three experiments with different values of A or 0, it is possible to distinguish unambiguously between the three types of protonated 13C. The quaternary carbons do not receive polarization from protons and disappear from INEPT and DEPT spectra. For example, a DEPT experiment with a flip angle 0 of 45” will show positive signals for all three multiplicities; with 0= 90” only methine signals should appear, while with 0 = 135” methylene signals will appear negative and methine and methyl signals remain positive [9]. The techniques of derivatization, usually acylation of hydroxy groups, use of shift reagents and isotope labelling have sometimes been used for definitive signal assignments of natural products, including pentacyclic triterpenoids. The ‘%NMR spectra of some derivatives of bryonolic acid (D : C-friedoolean-8-en-3B-ol-29-oic acid) were assigned by means of 13C-enrichment, lanthanideinduced shifts (LIS) and comparison of the chemical shift data of the derivatives [lo]. Lanthanide induced shifts associated with the addition of Eu(Fod)J have been used for the determination of conformation of bryonolic acid and its derivatives in CDCls solution [ll]. 2D-NMR Spectroscopy The above mentioned techniques are found to be inadequate for unambiguous assignment of the 13C resonances of compounds possessing complex structural features. In such cases, 2D-NMR techniques provide a useful solution to the problem. ZD-NMR techniques have been reviewed in several monographs [12-171. There are many variants for the techniques of 2D-NMR and it is rather difficult to keep abreast with the acronyms of so many variants. However, it is perhaps pertinent to mention that no new interactions or parameters are involved in the newer techniques and the increase in experimental complexity stems rather from instrumental developments and from the necessity to interpret the spectra of increasingly complex samples. Sensitivity problems are inherent in NMR spectroscopy and acceptability of a technique largely depends on its sensitivity and the minimum time requirement. A few of the techniques e.g. J-resolved experiment [IS, 191, SECSY (spin echo correlated spectroscopy) [20] are now rarely used, because of their limited sensitivity. The techniques and their applications which are useful today and have the potential of being used tomorrow are briefly dealt with in the following paragraphs. Homonuclear correlation spectroscopy. Homonuclear ‘H-‘HCOSY [21] is now one of the most widely used 2D-NMR experiments for ‘H assignment. Once the definitive ‘H NMR assignments are achieved by homonuclear COSY or its variants, these can be correlated via ‘H-13C COSY spectrum to assign 13C signals. As such, ‘H-‘HCOSY not only provides information for unambiguous ‘HNMR assignments but also helps in 13CNMR assignments. The phase sensitive COSY (PS- A. P. KUNDU COSY) is useful for establishing remote connectivities [22], as the COSY cross-peaks display the entire coupling information concerning the protons involved. The great strength of PS-COSY is the resolution obtainable of the fine structure of cross-peaks. This technique is very useful for the accurate measurement of chemical shifts and coupling constants from cross-peaks, when the parent signals are buried in the one dimensional spectrum. Thus, a cross-peak obtained at frequency Fz (horizontal axis) of a proton and frequency F, (vertical axis) of another proton not only shows the coupling betweeen themselves (active couplings) but also coupling between these and other protons (passive couplings). Doublequantum filtered COSY (DQF-COSY) [23] spectra are used for visualization of cross-peaks, which are close to diagonal. All the spin systems that contain less than three or more mutually coupled spins are eliminated in a triplequantum filtered COSY (TQF-COSY) [24]. LR-COSY (long range-COSY) [21] and DQF-COSY sequences were used for elucidation of the structure of achilleol B, a new tricyclic triterpene from Achilles odorate L. [25]. The DQF-COSY sequence was selected in order to avoid the methyl group crowd on the diagonal. PS-COSY experiments were performed for complete assignments of the 13C and ‘HNMR signals of 12a-acetoxyfern-9(11)en-3/I-01 [26], a lichen triterpenoid of established structure. The phase sensitive heteronuclear correlated (PSHCOR) and phase sensitive double quantum COSY (PSDQFC) spectra of 22-hydroxyhopan-6-one (339) and 6a-acetoxyhopan-22-01 (340) were acquired and processed for assignment of their i3C resonances [27]. The PSDQFC spectra of methyl aipolate (350) were also used for complete assignment of the 13C signals [27j. Homonuclear Hartmann-Hahn spectroscopy (HOHAHA). The HOHAHA spectroscopy [28,29] is related to TOCSY (total correlation spectroscopy) [30]. From a HOHAHA spectrum, ‘J-network’ can be determined, where a ‘J-network’ is defined as a group of protons that are serially linked via ‘H-‘H J (scalar) coupling. The HOHAHA spectrum of stelliferin A, a new antineoplastic isomalabaricane triterpene from the Okinawan marine sponge Jaspis stellifera was used by Tsuda et al. [31] to elucidate the partial structure of the side chain of the compound. The HOHAHA spectrum of achelleol B [25] proved to be very useful for structural elucidation of the acyclic moiety of the molecule, allowing unambiguous assignments of some ‘H signals. 2D Incredible natural abundance double quantum transfer experiment (INADEQUATE). The 2D INADEQUATE experiment [32,33] provides direct information on carboncarbon connectivity and therefore, can be used to trace the entire carbon skeleton of the molecule. The presence of a pair of double quantum peaks generally indicates the presence of a bond. However, this may be absent from carbon atoms with long relaxation times, strongly coupled carbons and if the chemical shift difference is large. Nevertheless this technique is only applicable to limited problems, because of its extremely low sensitivity. The structure of odolactone (188), a triterpenoid of D : A-friedooleanane skeleton was revised and 1520 S. B. MAHATO and A. P. KUNDU A modification of the proton-detected heteronuclear chemical shift correlation experiments was proposed by Zuiderweg [55] to improve both resolution and sensitivity. In these heteronuclear single-and multiple-quantum coherence (HSMQC) experiments, both single- and multiple-quantum coherence pathways contribute to the observed signal, thereby intermixing the narrow line characteristics of the heteronuclear single-quantum coherence (HSQC) experiment originally described by Bodenhausen and Ruben [57], into the signal obtained from the HMQC experiment. HMBC. Although modified long-range heteronuclear correlation experiments were devised to overcome the problem of low sensitivity, these experiments met with limited success. However, a successful solution was provided by using proton-detected heteronuclear multiple bond correlation (HMBC) [54]. In HMBC experiments, the first 90” proton pulse creates transverse proton magnetization in the XY plane. The low pass J-filter is optimized as a function of the one-bond coupling to bring the components of proton magnetization, driven by iJcH, antiphase at the end of the interval, A. The 90” carbon pulse applied at this point creates one-bond multiplequantum coherence. By cycling the phase of the first 90” carbon pulse as 02022020 . . . , the undesired one-bond component of magnetization is ultimately added and then subtracted (filtrated) from the FID. After a further period of time, AU, a second 90” carbon pulse is applied to create multiple-quantum coherence from the desired long-range protoncarbon couplings. This magnetization is manipulated as in the HMQC experiment, reconverted to observable proton single-quantum coherence, and recorded [56]. Application of HMQC and HMBC techniques The techniques of HMQC and HMBC were successfully used for elucidation of the structure of stelliferin A, a new isomalabaricane triterpene by Tsuda et al. [31]. Fame et al. [58] employed HMQC and HMBC experiments for complete i3C signal assignments of isomultiflorenyl acetate (159). Carbon-hydrogen pairings of the methyl groups were readily determined from an HMQC contour plot. The structure of abrisapogenol G (106), a triterpenoid sapogenol isolated from Abrus precatorious, has been established by the use of HMBC specrroscopy [59]. The HMBC NMR spectroscopy was successfully used to elucidate the structure of chiratenol (364), a novel triterpene possessing a rearranged hopane skeleton 160-J The two- and three-bond correlation between methyl protons and carbon of the ketone of chiratenol led to the elucidation of the structure 364. Three friedelane triterpenes isolated from the stem-bark of Caloncoba glauca were characterized as trichadonic acid (195X caloncobalactone (174) and 21/I-hydroxycaloncobalactone (175) by considerable use of long-range C-H coupling studies [61]. For example, the methyl doublet of trichadonic acid (195) was found by means of the proton detected direct C-H coupling (HMQC) study, to be highly shielded, which is typical for the 23-Me reson- ance of a 3-oxo-friedelane. Assuming this resonance assignable to C23, the application of the HMBC technique led to the elucidation of the structure and 13C assignments of the triterpene (1%) by identifying ‘J and 3J connectivities associated with the methyl proton resonances. Thus HMBC, using the protons from only the seven methyl resonances, allows unambiguous assignment of C3, C4, C5, C6, C8, C9, ClO, Cll, C13, C14, C15, C17, C18, C20 and C23 to C30 of the triterpene (195) and assignment of C19/C21 and C16/C22 without distinguishing between these pairs. Parsons et al. [62] described the assignments of different ‘H and “C signals using HMBC experiments for the elucidation of the structure of D-friedoolean-14-ene-38,7a-diol (152). The hybrid methods e.g. HMQC-COSY ‘[63, 641, HMQC-TOCSY [65] and HMQC-NOESY [66] are powerful alternatives for obtaining further connectivity information, specially when the ‘H spectrum is highly congested. The application of these techniques in the field of triterpenoid is still very limited. Ont dimensional analogues of proton detected ZD-NMR experiments. The 2D-NMR experiments usually yield some information which is not always required. In such cases, selective 1D analogues of the 2D experiments would be highly desirable. Two such techniques are selective inverse correlation (SELINCOR) reported by .Berger 1671 and selective one dimensional HMQC-TOCSY [68]. A selective inverse multiple bond analysis (SIMBA) which is a 1D analogue of the 2D HMBC experiment has recently been described by Crouch and Martin [69]. The authors are of the opinion that the future for application of 1D analogues of ZD-NMR experiments is quite bright, as they can provide vital structural information with minimum investment in time, compared to the acquisition of full 2D-NMR experiments. “C NMBSHIELDINGDATAOF PENTACYCLIC TEITEEPENES ANDSUESTITUENTEFFECTS 13CNMR shielding data of a large number of pentacyclic triterpenes have been published. A compilation of the 13CNMR data of selected varieties of naturally occurring pentacyclic triterpenes is given in Table 1. The triterpenes have been arranged skeletonwise and according to increasing number of hydroxy substituents. The olean-12-enes have been listed first, followed *by oleanenes with other double bonds and more than one double bond, friedooleananes, urs- 12-enes, Ursa-dienes, taraxastanes, pseudotaraxastanes, friedoursanes, gammaceranes, serratanes, swertanes, kairatane, stictanes, flavicanes, lupanes, hopanes, fernanes, adiananes, arboranes, bicadinane, friedomadeiranes and pachanane. Hydroxyl substituent eflects Inspection of the “C data of various mono- and polyhydroxy triterpenes (Table l), reveals that introduction of a hydroxyl group results in downfield shifts of 34-50 ppm for cc-carbons and 2-10 ppm for p-carbons and upfield shifts of O-9 ppm for y-carbons. These values 13CNMR spectra of pentacyclic triterpenoids closely resemble those observed for cyclopentanols and cyclohexanols [70]. Eggert et al.’ [71] determined the ‘“CNMR spectra of thirty one mono-hydroxylated androstanes and cholestanes and assigned the individual resonances. The effects of the hydroxyl groups were quantified by empirical rules. However, Van Antwerp et al. [72] observed that there are significant differences between the found chemical shifts of compounds with 1,2- or l$-dihydroxy groups and those calculated, assuming additivity of the substituent effects of the mono substituted compounds. Similarly, for triterpenes which are closely related to steroids, the substituent effect on chemical shifts of the carbinyl carbon atom, is not primarily dependent on the stereochemistry of hydroxyl groups. It also depends on the number of y-gauche carbon atoms possessing hydrogens able to interact with the hydroxyl group, as well as the number of 1,3-diaxial interactions of the hydroxyl group with carbon atoms. However, where l$-diaxial interactions are absent the carbinyl carbon is less shielded in the equatorial epimer than in the axial one. In triterpenes 31-34 and 65, the carbinyl carbons, C6, C16, C19, C21 and C2, each containing an axial hydroxyl groups, are less shielded than their equatorial counterparts, because of 1,3-diaxial interactions. Location and conJgurationa1 determination of hydroxyl groups The location of the primary hydroxyl group at C23, C24, C29 and C30 in oleanenes may be determined from the chemical shifts of the hydroxymethylene carbons, as the equatorial hydroxymethylenes (C23 and C29) are less shielded than their axial counterparts (C24 and C30). Configurational determination of 2,3-dihydroxy and 2,3,23- and 2,324~trihydroxy substituents in oleanenes and ursenes by ‘H NMR spectroscopy has been reported [73]. However, “CNMR data of these triterpenes are also extremely useful for the determination of configurations of 2,3-; 3,23-; 3,24- diiydroxy and 2,3,23- and 2,3,24trihydroxy substituents. Comparison of the i3C data of triterpenes 1 and 5, containing equatorial and axial hydroxyl groups at C3, reveals that not only the carbinyl carbon’of the equatorial isomer is less shielded (679.0) than the axial one (a 76.4), but also the axial C4 methyl and Cl methylene groups in 1 are shifted by about 6.5 ppm and 2.0 ppm, respectively, in comparison to that of triterpene 5 due to y-gauche interaction. It should be mentioned that the 13C data reported by Gupta and Singh [74,75] for two triterpenes, 3g16a,21a,22a,28-pentahydroxy-olean-12-ene and 3a,16a,21~,22a,28-pentahydroxyolean-12-ene are not in conformity with the structures and a reinvestigation of these triterpenes seems necessary. In triterpenes 28, 29, 215 and 217 containing 2a,3/I-, 2a,3a-, 2fi,3a- and 2&3/Lhydroxyl groups, the C2 and C3 carbons resonate at S 68.8,83.8; 66.5,78.9; 68.9,78.2; 71.0 and 78.4 ppm, respectively. Evidently the hydroxyl bearing C2 or C3 is less deshielded by the adjacent axial 1521 hydroxyl than by the equatorial one. In triterpenes 38 and 39 bearing 3/3,24 and 3a,24 hydroxyls the C3 of the former is only slightly affected but the latter is shielded by about 6 ppm. Comparison of the r3C data of triterpenes 28,29,37 and 66 indicates that the C3 carbon containing the equatorial hydroxyl is shielded by about 5 ppm by the 23-hydroxyl group but for the axial hydroxyl, it remains more or less unaffected. In 27 containing laJ/?hydroxyls, C3 is shielded by about 7 ppm and in 102 bearing lp,3/&hydroxyls, the C25 methyl carbon is shielded by about 3 ppm due to y-gauche interaction. In 31 and 226 containing axial and equatorial hydroxyl groups, respectively, the C6 carbons resonate at 668.9 and 67.3 ppm i.e. the axial bearing carbon is less shielded than the equatorial counterpart. As already mentioned, this may be attributed to the 1,3-syn diaxial interaction. Although no oleanene or ursene triterpene containing a 15/?-(axial) hydroxyl group appears to have been isolated so far, the 13C data of triterpene 17 containing a 15a-(equatorial) hydroxyl, show the Cl5 resonance at 668.2 ppm, as expected. For 55 and 77 with 16a-OH configurations, the Cl6 resonance is found at a significantly lower field than for the epimers 54 and 76 with 16/I-OH configurations. For the analogous structural situation in arjungenin (&I) and tomentosic acid @I), a similar downfield shift is observed for the Cl9 resonance of 86 where the 19a-OH is axial, compared with that of 85, where the 19/I-OH is equatorial. These results for carbinyl carbons are ascribed to the strong 1,3diaxial Me . . . . . OH interaction. The strong dependence of “C chemical shifts upon a steric factor is illustrated by the results for the triterpene, 3fl,16u,22a,23,28+entahydroxyolean-12-ene (93). It is evident that the close spatial approach of the 22a-OH to the 168-H, gives rise to an upfield shift of 5.4 ppm for C16, as compared to that in cyclamiretin D, 3/?,16a,28-trihydroxyolean-12-en-3O-a1 (68). For yunganogenin C (57), with a 21a (axial)-OH configuration, the C21 resonance is found at a lower field (674.5) than for the epimer kudzusapogenol C (58) (672.8), with the C21fi (equatorial)-OH configuration. A similar low field is observed for the C21 resonance of triterpene 34 with 21a-OH compared with that of 35 with alp-OH. These results are in conformity with other cases having a 1,3-diaxial Me . . . . OH interaction. For soyasapogenol B (3/$22/W-trihydroxyolean-12ene) (59), the C22 resonates at 675.8. In triterpene 38,22a,28trihydroxyolean-12-ene (60), the C22 resonance is also observed at 675.8. However, in case of the latter there exists a y-gauche effect on C22 due to the presence of 28-OH. In soyasapogenol A (3/$21/&22~,24_tetrahydroxyolean-12-ene) (73), the C21 and C22 resonate at 674.6 and 79.6, respectively, the former being less deshielded due to the fi-effect of C22b(axial)-OH, than the latter, which is more &shielded due to the p-effect of the equatorial 21-OH. For the triterpene 3fl,16a,21fi,22a,24,28hexahydroxyolean-12-ene (99), the C21 and C22 resonances are observed at 678.6 and 77.1, respectively. While there is j-effect of C22 (equatorial)-OH on C21, the C22 is influenced by the /?-effect of C21 (equatorial)-OH as well as the y-effect of 28-OH. 1522 S. B. MAHATO and A. P. KUNDU Table 1. “C NMR data of pentacyclic triterpenes* C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 References 1 2 3 4P 5 6 7 8 Y 38.7 27.3 79.0 38.8 55.3 18.5 32.8 38.8 47.7 37.6 23.6 121.8 145.1 41.8 26.2 27.0 32.5 47.4 46.9 31.1 34.8 37.2 28.2 15.5 15.6 16.9 26.0 28.4 33.3 23.7 [ 1131 38.5 27.4 78.1 38.7 55.2 18.3 32.6 39.3 47.6 37.0 23.1 122.1 143.4 41.6 27.7 23.4 46.6 41.3 45.8 30.6 33.8 32.3 28.1 15.6 15.3 16.8 26.0 181.0 33.1 23.6 39.1 34.1 217.6 47.4 55.3 19.6 32.2 39.3 46.0 36.7 23.0 122.1 143.8 41.8 21.7 23.5 46.7 41.4 45.8 30.6 33.8 32.3 26.4 21.4 14.9 16.7 25.8 33.0 23.6 36.Y 27.8 78.8 40.2 55.5 18.3 33.5 37.3 49.2 38.8” 23.0 125.5 137.5 56.1 22.3 21.3 32.9 47.5 44.0 30.9 34.3 36.8 28.3 15.7 16.4 18.1 176.1 28.2 33.2 23.5 36.7 27.6 76.4 39.9 48.8 18.0 32.9 36.7 48.8 36.7 23.6 126.0 137.6 56.0 22.7 26.2 32.9 47.0 44.2 31.0 34.2 36.2 28.2 22.1 15.8 18.0 179.0 28.2 32.9 23.6 38.4 23.6 81.1 37.8 55.4 18.3 32.7 39.9 47.6 37.0 23.6 123.0 144.4 41.7 26.6 27.0 32.5 46.1 40.6 42.8 29.1 36.0 28.3 16.8 15.6 16.8 26.0 28.2 179.6 19.4 38.6 27.2 78.8 38.6 55.1 18.4 32.7 39.7 47.6 36.9 23.4 122.2 143.9 41.5 26.1 27.0 31.9 48.1 42.8 44.1 31.3 38.3 28.1 15.3 15.5 16.8 25.9 28.1 28.4 176.9 38.8 27.2 78.6 38.7 55.2 18.3 33.1 39.5 47.2 36.8 23.2 117.2 141.5 43.6 26.3 38.1 34.9 39.3 36.0 42.8 32.4 28.7 28.1 15.2 15.7 15.8 23.2 17.4 20.9 178.7 38.4 27.0 71.6 56.2 48.0 21.0 32.5 40.0 47.7 36.2 23.8 122.2 144.8 42.2 28.2 23.8 46.6 41.9 46.5 30.9 34.2 23.1 207.1 9.6 15.7 17.3 26.1 180.0 33.2 23.8 Cl141 Cl151 Cl161 Cl161 Cl171 C761 C761 Cl 181 1523 13C NMR spectra of pentacyclic triterpenoids Table 1. Continued 10 11 12p 13 14p 15 16 17 18 19p 2op 21P 36.7 27.5 76.0 39.6 48.5 18.0 32.9 36.7 46.8 37.0 22.6 126.8 136.1 55.6 21.8 25.3 32.7 47.1 35.1 46.6 24.6 34.6 28.0 21.9 15.8 17:7 178.5 28.0 206.0 15.8 36.2 27.3 75.8 39.9 48.5 18.0 32.7 37.0 47.9 37.0 22.5 126.8 135.8 55.5 21.7 25.2 32.7 46.4 38.1 42.0 21.2 35.1 28.2 22.3 16.1 17.9 185.5 27.8 183.0 19.3 37.6 26.2 74.0 53.0 50.5 20.2 31.5 38.6 46.9 35.3 22.3 122.4 143.3 40.7 26.8 22.2 45.1 40.5 45.0 29.5 32.7 31.5 179.2 10.7 14.5 15.9 24.7 178.7 31.8 22.3 39.2 25.3 77.8 39.1 55.7 18.7 37.4 39.8 47.5 37.3 23.4 125.9 138.1 56.5 28.1 24.9 47.7 44.2 44.0 30.9 34.0 32.8 28.5 16.5 16.4 18.7 178.5 180.2 33.1 23.1 38.9 28.0 78.1 39.4 55.8 18.8 33.2 39.7 48.0 37.4 23.8 122.2 144.3 42.5 28.3 23.8 46.6 41.1 41.1 42.2 29.4 32.4 28.3 16.6 15.5 17.4 26.1 180.0 181.2 20.0 38.4 27.1 78.1 38.7 55.2 18.3 32.6 39.2 47.5 36.9 23.3 122.9 142.9 41.4 27.6 23.3 46.0 42.5 42.0 43.6 30.3 33.4 27.9 15.6 15.3 16.7 25.9 176.4 28.1 177.3 39.5 27.4 78.7 39.0 55.1 18.4 32.9 43.3 49.7 31.9 81.7 121.2 153.2 41.8 26.4 27.4 32.3 46.9 46.9 31.2 34.7 31.0 28.0 15.5 18.3 16.8 24.1 28.5 33.3 23.1 38.7 27.2 78.8 38.7 54.8 18.6 36.8 41.1 47.7 37.0 23.6 123.0 146.1 47.4 68.2 36.0 33.0 47.6 46.2 31.0 34.6 37.4 28.1 15.6 15.6 17.5 20.2 28.9 33.3 23.6 38.5 27.1 78.8 38.7 55.1 18.2 32.6 39.8 46.8 37.2 23.4 122.2 143.4 43.7 35.5 65.9 36.8 49.0 46.5 30.8 34.1 30.5 28.0 15.4 15.3 16.7 27.0 21.3 33.1 23.8 39.2 28.2 78.1 39.4 55.9 18.9 33.3 40.1 48.1 37.3 23.9 122.5 144.9 42.5 26.5 28.7 38.0 45.4 46.9 30.9 42.3 75.6 28.8 15.9 16.6 17.3 25.8 28.8 33.3 21.2 39.1 28.1 78.0 39.4 55.7 18.7 32.9 39.9 47.8 31.2 23.9 124.9 141.1 42.0 25.3 21.3 48.2 46.7 41.1 44.4 45.9 214.1 28.7 15.6 16.6 16.9 25.4 21.3 176.6 20.9 39.1 28.1 78.0 39.4 55.1 18.7 33.0 39.9 47.9 31.2 23.8 124.7 141.5 42.0 25.3 28.1 47.5 48.5 44.1 45.7 46.8 213.0 28.7 15.8 16.6 16.9 25.3 21.3 26.2 176.8 Cl161 Cl161 Cl191 cw Cl211 Cl221 ~1231 cl241 cl251 Cl261 ~1271 ~1271 PHYTO 37-6-D S. B. MAHATO and A. P. KUNDU 1524 Table 1. Continued 22 23 24 25 26p 27” 28 29 30 31 38.3 21.6 80.7 42.1 55.8 18.4 32.9 39.8 47.7 36.7 23.8 121.6 -145.2 41.7 26.9 26.1 32.5 47.2 46.8 31.1 34.7 37.1 22.4 64.4 16.1 16.7 26.0 28.4 33.3 23.1 38.6 27.2 79.0 38.8 55.2 18.4 32.6 39.8 47.6 36.9 23.6 122.3 144.2 41.7 25.6 22.0 36.9 42.3 46.5 31.0 34.1 31.0 28.1 15.5 15.5 16.7 25.9 69.7 33.2 23.6 38.5 27.2 78.8 38.7 55.1 18.4 32.7 39.7 47.6 36.8 23.5 122.1 144.4 41.7 26.1 27.3 32.4 46.7 41.9 35.5 29.6 36.5 28.1 15.5 15.5 16.8 25.9 28.1 29.6 66.6 38.2 27.3 78.8 38.7 55.2 18.3 34.1 39.5 47.2 36.8 23.1 116.9 141.9 43.6 26.3 38.8 35.0 39.6 36.3 36.2 32.3 28.5 28.1 15.2 15.7 15.8 23.1 17.4 20.6 74.9 38.9 28.4 80.1 43.2 56.4 19.1 33.6 39.8 48.1 37.1 24.1 123.7 142.8 42.8 25.7 26.5 38.6 45.2 46.1 40.0 39.3 85.8 23.6 64.6 16.2 17.0 25.1 23.5 72.6 76.4 72.8 35.9 71.9 40.1 48.6 17.4 33.0 39.8 38.4 42.7 23.8 123.7 144.7 41.7 26.7 27.5 33.0 46.8 41.8 43.0 30.0 36.7 28.6 16.8 16.6 16.6 26.3 29.0 181.4 18.9 46.4 68.8 83.8 39.1 55.3 18.3 32.6 39.1 47.5 38.3 23.1 122.0 143.6 41.7 27.6 23.5 46.6 41.3 45.8 30.7 33.8 32.3 28.6 16.8 16.8 16.8 26.0 178.0 33.1 23.5 41.7 66.5 78.9 38.5 48.1 18.1 32.5 39.7 47.4 38.3 23.2 122.1 143.8 41.9 27.7 23.2 46.8 41.3 46.0 30.7 34.0 32.5 28.5 21.9 16.4 17.0 26.2 178.1 33.2 23.6 40.6 27.4 79.1 39.5 55.6 68.7 40.7 38.6 47.9 36.5 23.3 122.7 142.9 42.2 27.7 23.0 46.7 41.3 45.8 30.7 33.9 32.4 27.9 17.0 16.8 18.2 26.0 178.2 33.1 23.6 35.2 25.1 77.4 38.1 49.1 68.9 40.5 38.5 47.5 36.6 23.1 122.7 142.8 42.2 27.5 23.0 46.7 41.2 45.8 30.7 33.8 32.3 28.3 24.4 16.5 18.1 26.1 178.3 33.1 23.6 cl241 WI C761 cl291 Cl301 Cl311 cl321 I91 c501 C761 13C NMR spectra of pentacyclic triterpenoids 1525 Table 1. Continued 32’ 33p 38.9 28.0 78.0 39.3 55.8 18.8 33.3 39.8 47.2 37.3 23.7 122.4 144.9 42.0 36.0 74.6 48.8 41.3 47.2 30.9 36.0 32.7 28.7 16.5 15.6 17.4 27.1 179.8 33.5 24.7 38.8 28.1 78.2 39.4 56.0 19.0 33.3 40.0 48.3 37.5 24.1 123.8 144.3 42.0 29.0 28.1 46.4 44.7 81.0 35.6 29.0 33.3 28.8 16.5 15.5 17.3 24.7 178.7 28.8 24.9 Cl341 Cl311 41 35 36p 37 3&v 39e 40 38.6 27.1 77.8 38.6 55.3 18.3 32.8 39.1 47.5 36.9 23.3 122.1 143.8 41.8 27.9 26.4 46.6 41.2 40.8 35.0 72.9 39.0 28.3 15.9 15.3 16.8 27.6 177.6 25.3 24.8 38.4 27.0 76.9 38.4 54.9 18.0 32.3 38.9 47.2 36.6 23.0 122.1 142.7 41.3 27.3 24.0 47.9 40.6 46.2 35.7 70.8 40.6 28.2 16.0 15.1 16.6 25.5 176.1 29.1 17.1 39.2 28.8 78.1 39.4 55.8 18.8 33.2 40.1 48.1 37.3 23.9 123.0 144.1 42.4 26.4 28.5 37.9 44.3 41.1 42.7 37.3 75.0 28.2 15.9 16.6 17.2 25.7 21.0 18.8 38.9 27.6 73.7 42.9 48.8 18.7 33.6 39.8 48.2 37.3 23.8 122.7 145.0 42.2 28.4 23.8 46.7 42.0 46.5 31.0 34.3 33.3 68.2 13.1 16.0 17.5 26.2 180.4 33.3 23.8 38.8 28.5 80.3 43.3 56.5 19.1 33.6 39.8 48.3 37.3 24.1 122.7 145.1 42.2 28.5 23.8 46.8 42.1 46.6 31.0 34.3 33.3 23.7 64.6 16.0 17.3 26.2 180.4 33.3 23.8 33.9 26.4 70.0 43.9 50.1 19.1 33.6 39.9 48.1 37.5 24.0 123.0 144.1 42.0 28.1 23.5 47.0 41.9 46.1 30.8 34.0 32.8 23.4 65.8 15.9 17.1 26.1 177.9 33.1 23.7 33.6 27.5 78.8 38.5 55.1 17.8 32.7 39.3 48.2 41.1 22.9 122.7 143.3 41.6 28.0 24.8 46.5 41.1 45.7 30.4 33.1 32.2 28.6 15.6 61.0 17.0 26.1 178.1 32.9 23.3 38.1 27.1 78.8 38.7 54.8 18.2 32.4 39.7 48.3 37.1 24.1 129.7 137.7 47.5 24.5 22.4 46.0 40.4 44.9 30.7 33.4 32.3 28.0 15.7 15.5 18.5 63.0 183.0 33.0 23.8 Cl351 Cl361 Cl371 Cl381 Cl381 Cl391 Cl361 Cl141 34 S. B. MAHATO and A. P. 1526 KIJNDU Table 1. Continued SOD 51p 52 53p 39.0 27.7 74.0 43.0 49.1 18.8 33.2 40.0 48.4 37.4 24.0 123.4 144.6 42.3 28.6 24.0 46.4 43.5 43.0 44.3 31.1 34.6 68.4 13.1 16.1 17.6 26.3 179.8 28.6 177.3 33.2 25.3 70.6 42.7 49.6 18.7 33.0 40.0 47.1 36.9 23.7 122.4 143.9 41.2 27.8 23.2 45.9 42.7 41.3 44.0 30.6 33.6 21.7 66.5 15.6 16.7 25.4 178.9 27.9 176.5 38.6 28.0 78.0 39.4 55.9 18.9 32.8 39.8 47.8 37.6 23.8 122.4 141.1 42.2 24.0 26.6 44.1 40.2 30.2 38.6 80.4 36.6 28.6 16.4 15.6 16.3 23.5 181.9 22.1 68.0 33.0 27.4 78.2 39.0 48.3 18.5 30.5 46.9 79.0 44.8 67.2 123.2 149.0 43.3 27.7 26.8 32.9 46.8 45.3 31.0 34.8 36.9 28.2 15.5 20.2 19.6 27.6 28.7 33.3 23.6 39.1 28.5 80.2 43.2 56.2 19.5 37.2 41.6 48.3 37.1 24.3 123.7 146.9 48.2 66.9 37.1 33.3 48.3 46.7 31.2 34.9 38.7 23.8 64.7 16.4 17.7 20.9 21.3 33.5 23.6 Cl451 Cl391 Cl461 Cl471 El241 42p 43 44 45 46 41P 48p 49p 38.9 28.1 78.1 39.4 55.9 18.8 33.3 39.8 48.2 37.4 23.8 122.5 144.9 42.2 28.2 23.8 47.2 41.4 41.4 36.6 29.1 32.1 28.8 16.5 15.5 17.4 26.2 180.2 73.9 19.8 35.7 27.6 73.6 39.3 48.0 18.0 32.9 36.7 48.0 36.8 23.6 124.8 137.5 55.3 22.7 26.2 32.9 46.3 40.5 35.7 29.0 38.7 28.0 22.2 15.9 17.7 176.9 28.5 73.1 19.0 38.7 27.0 78.9 38.7 55.3 18.5 32.8 39.3 47.7 37.2 23.4 122.8 143.2 41.7 27.7 23.4 46.8 40.3 40.3 35.2 32.8 32.1 28.1 15.7 15.4 16.9 26.0 178.5 28.9 65.8 38.9 27.2 78.0 39.3 56.0 18.7 32.6 40.4 47.4 37.3 23.8 124.6 140.2 43.4 38.0 66.6 49.9 41.7 42.8 34.1 83.4 28.0 28.6 15.7 16.3 16.4 28.6 181.0 28.7 24.3 38.1 26.0 71.7 55.2 48.1 20.7 32.3 39.7 46.7 35.9 23.2 122.2 142.8 41.7 35.4 74.7 48.7 40.5 46.4 30.3 35.4 30.3 207.0 9.0 15.7 16.9 27.0 177.2 32.7 24.6 39.0 27.9 75.1 52.2 54.6 21.9 33.3 40.5 48.7 37.1 24.3 123.4 145.0 42.2 28.4 29.3 46.1 44.9 81.4 35.5 29.2 33.7 181.0 12.3 16.0 17.5 25.0 180.7 29.0 25.0 38.7 27.6 73.5 42.7 48.6 18.6 32.9 39.7 48.1 37.2 23.8 123.2 144.4 42.1 28.4 23.8 46.1 43.3 42.7 44.2 30.8 34.5 68.0 13.1 15.9 17.4 26.1 179.1 177.1 28.4 Cl403 Cl161 Cl411 ~1421 I3411 Cl431 Cl441 “C NMR spectra of pentacyclic triterpenoids 1527 Table 1. Continued 54p sp 38.8 26.8 78.8 38.9 55.2 18.3 32.6 39.8 46.9 37.0 23.5 122.3 143.2 43.7 36.0 67.5 40.2 44.7 46.9 30.7 33.8 26.2 28.0 16.0 15.6 16.7 26.8 70.8 33.0 23.9 39.2 28.1 78.1 39.4 55.8 18.8 33.3 40.1 47.2 37.3 23.9 122.4 145.2 42.1 34.7 74.2 40.9 42.5 48.3 30.5 37.1 31.3 28.7 16.6 15.9 17.2 27.3 70.2 33.4 24.9 Cl481 Cl491 fsp s7p 58p 59p 60 61 62 63p 64p 39.2 28.1 78.1 39.4 55.7 18.8 32.9 40.3 48.0 37.3 23.9 122.6 144.5 42.1 26.6 27.5 39.2 44.0 47.3 36.6 74.6 79.6 28.8 15.8 16.5 17.1 26.7 22.3 31.5 21.3 39.0 28.2 80.1 43.1 56.5 19.1 33.6 40.6 48.2 37.1 24.2 122.4 145.4 42.4 26.7 31.0 33.3 47.6 42.9 36.0 74.5 44.6 23.5 64.5 16.2 17.1 25.6 28.8 28.1 25.5 38.9 28.4 80.1 43.2 56.3 19.1 33.3 40.1 48.1 37.0 24.1 122.7 144.3 41.9 26.5 28.6 35.1 47.2 46.5 36.9 72.8 47.7 23.5 64.5 16.2 16.9 26.0 28.7 29.9 17.7 39.2 28.5 80.4 43.4 56.5 19.3 33.8 40.3 48.4 37.3 24.2 122.6 144.7 42.5 26.6 28.8 38.0 45.6 47.0 30.8 42.7 75.8 23.6 64.6 16.2 17.0 25.8 28.8 33.2 21.0 39.9 27.0 78.8 39.0 55.6 18.6 32.8 40.2 47.9 37.1 23.8 123.0 143.2 41.5 25.3 14.7 43.0 42.4 46.0 31.5 42.2 75.8 28.2 15.6 15.6 16.7 26.4 70.1 33.4 24.8 38.3 26.0 76.7 41.8 49.8 18.5 32.4 39.8 47.6 36.9 23.6 122.3 144.2 41.8 25.6 22.0 36.9 42.4 46.5 31.0 34.1 31.0 72.0 11.4 15.9 16.8 26.8 69.7 33.2 23.6 47.1 67.2 82.2 38.8 54.8 16.9 32.4 38.9 47.2 38.5 23.0 122.6 143.4 41.9 28.4 24.0 46.6 43.1 80.0 36.9 28.4 34.8 27.1 16.8 16.1 16.9 28.7 179.0 28.7 24.4 47.1 68.9 78.7 43.5 48.4 18.6 33.1 40.1 48.5 38.5 23.8 123.5 144.1 42.4 28.3 23.9 47.0 43.5 46.3 30.7 34.2 33.0 67.2 14.0 17.6 17.2 26.1 178.6 32.9 23.7 41.1 28.3 73.3 44.0 49.3 67.5 41.1 39.2 48.7 36.9 23.7 122.9 144.2 42.7 28.3 23.9 46.6 42.0 46.4 30.9 34.2 33.2 67.1 14.7 17.4 18.6 26.2 180.2 23.7 33.2 L-1261 Cl501 Cl261 Cl511 Cl411 cl521 Cl531 Cl541 Cl551 S. B. MAHATOand A. P. KUNDU 1528 Table 1. Continued 65’ 66 67 68 44.8 71.5 73.1 42.3 48.5 18.3 33.0 39.9 48.2 37.2 23.9 122.7 144.8 42.3 28.2 23.7 46.6 42.0 46.4 30.9 34.2 33.1 67.8 14.4 17.2 17.5 26.2 180.1 33.1 23.7 41.7 66.7 78.8 41.1 42.6 18.0 32.6 39.7 47.7 38.2 23.2 122.4 144.4 42.0 27.9 23.6 47.0 41.6 46.2 30.8 34.1 32.4 71.5 17.5 16.8 17.1 26.2 178.7 33.2 23.8 41.4 66.2 73.3 41.4 48.6 18.2 32.7 39.3 47.4 38.0 23.4 121.9 143.7 41.6 27.5 22.9 46.6 41.1 45.7 30.6 33.7 32.2 22.0 65.5 16.6 16.6 25.9 178.2 33.0 23.5 38.9 27.5 77.8 38.9 55.4 18.3 32.8 39.6 47.0 36.8 23.4 122.5 144.0 41.4 34.3 73.3 40.0 43.2 30.7 46.7 29.5 27.5 28.3 15.4 16.1 16.6 27.2 69.7 23.8 207.6 Cl561 Cl571 Cl581 Cl591 7op 71P 72’ 73p 7@ 75p 38.9 28.4 80.1 43.2 56.3 19.1 33.4 39.9 48.0 37.1 24.1 124.0 142.2 42.1 25.5 27.4 47.8 47.5 43.0 38.9 47.0 216.0 23.6 64.6 16.2 16.9 25.4 21.3 27.0 68.3 45.0 71.6 75.8 54.0 52.3 21.6 34.1 40.9 49.5 37.1 24.0 127.6 139.7 46.5 24.7 24.1 46.5 41.8 45.5 31.0 33.5 33.2 180.2 13.7 17.5 18.8 64.4 180.6 33.2 23.2 44.8 71.5 73.0 42.4 48.1 18.2 33.0 39.8 48.5 37.2 23.9 123.3 144.4 42.2 28.4 23.9 46.1 43.3 42.7 44.1 30.8 34.5 67.7 14.5 17.4 17.2 26.2 179.7 28.4 177.1 39.4 28.0 78.0 39.4 55.8 18.5 33.8 40.5 48.6 37.4 23.6 127.9 138.2 45.9 80.1 34.6 46.5 41.7 42.5 41.0 74.5 36.7 28.7 16.5 16.3 19.8 25.3 179.5 25.1 63.2 38.9 28.4 80.1 43.2 56.3 19.1 33.2 40.3 48.1 37.0 24.2 122.5 144.5 42.1 26.6 27.5 39.2 44.0 47.3 36.6 74.6 79.6 23.6 64.6 16.2 17.0 26.7 22.3 31.5 21.3 44.8 71.8 73.4 42.9 50.5 18.9 32.2 40.8 48.9 37.6 24.5 124.1 142.1 42.3 35.9 66.3 73.5 50.2 49.3 31.4 36.8 81.8 67.2 14.5 18.1 17.5 27.1 33.1 24.6 38.8 28.3 80.0 43.1 56.3 19.0 33.2 39.9 47.9 37.0 24.0 123.9 142.0 41.9 25.4 27.2 48.1 47.4 41.4 39.7 46.3 216.2 23.5 64.5 16.2 16.8 25.4 21.2 71.9 21.1 cl291 cw Cl211 Cl611 Cl261 Cl621 cl271 w W NMR spectra of pentacyclic triterpenoids 1529 Table 1. Continued 76’ 77p 78p 79p 80° 81’ 82’ 83’ SIM 85’ 8ap 87’ 38.4 26.5 76.5 41.9 49.2 18.5 32.6 40.0 47.1 37.0 23.6 122.6 143.2 43.8 36.3 67.5 40.5 44.6 47.0 30.9 33.8 26.0 71.3 11.4 16.0 16.7 26.8 70.0 33.1 24.1 38.9 27.4 74.1 42.7 48.9 18.6 33.0 40.1 47.2 37.1 23.8 122.3 145.2 42.0 34.7 73.9 40.9 42.6 48.2 31.1 37.1 30.2 68.6 12.9 16.2 17.1 27.3 70.2 33.3 24.9 39.0 28.4 80.0 43.1 56.3 19.1 33.5 39.9 48.1 37.0 24.0 122.4 144.9 42.3 26.4 28.9 38.2 44.8 41.5 36.5 37.3 75.6 23.5 64.5 16.3 17.1 25.5 21.1 73.0 24.4 39.0 28.5 80.2 43.2 56.4 19.2 33.6 40.1 48.2 37.1 24.1 122.8 144.7 42.4 26.5 28.7 38.1 45.2 42.2 35.9 38.8 75.2 23.6 64.6 16.3 17.1 25.9 21.3 28.6 70.3 48.9 67.4 75.6 43.1 47.4 66.0 39.6 38.1 46.7 36.9 22.6 121.7 143.3 41.8 27.1 22.9 45.5 40.9 45.7 30.4 33.3 32.1 63.7 14.9 17.8 18.1 25.7 178.6 32.9 23.3 48.5 68.9 78.9 43.0 48.8 28.1 67.4 39.5 50.1 38.2 24.2 123.3 144.1 41.9 28.3 23.8 46.0 44.7 46.8 31.0 34.3 32.3 66.0 15.7 19.1 18.7 26.3 180.1 33.3 23.6 47.4 71.8 73.0 43.6 49.1 67.0 41.0 39.3 49.0 37.1 24.1 123.1 144.2 42.9 28.2 23.8 46.7 42.1 46.5 31.0 34.2 33.3 67.5 16.2 18.5 19.0 26.4 180.2 33.3 23.8 41.3 28.6 73.4 43.9 49.7 67.9 40.8 39.3 49.0 37.1 24.7 123.8 144.7 42.6 28.7 27.9 46.3 45.0 81.6 35.7 29.2 33.9 67.3 14.6 17.3 18.4 24.8 180.0 25.0 28.8 45.6 72.6 73.9 43.2 48.2 19.2 34.1 41.0 48.5 38.1 24.9 123.8 145.5 43.0 36.5 75.6 48.8 42.4 48.0 31.7 36.9 33.0 67.9 14.4 18.2 17.8 27.7 181.6 33.8 25.3 47.7 68.8 78.3 43.5 48.0 18.5 33.0 39.9 48.0 38.3 25.2 126.5 139.5 42.5 28.2 24.0 48.5 49.5 75.0 35.7 32.7 35.0 66.7 14.2 17.5 17.3 24.8 179.2 30.6 17.8 47.4 68.9 78.4 43.6 48.2 18.8 33.6 40.1 48.5 38.6 28.8 123.5 144.9 42.2 29.2 24.3 46.0 44.8 81.3 35.7 28.4 33.1 66.8 14.2 17.7 17.3 24.9 180.8 29.2 24.9 39.0 27.6 73.6 42.9 48.8 18.9 33.4 40.5 47.9 37.3 24.2 128.6 140.2 42.3 29.6 27.4 49.2 54.6 74.9 50.6 67.6 48.0 68.0 13.2 16.1 17.4 24.7 180.4 27.8 11.5 Cl481 Cl631 Cl641 Cl291 Cl541 Cl651 Cl661 Cl551 Cl671 PO1 Cl681 Cl431 1530 S. B. MAHATO and A. P. KUNDU Table 1. Continued 88 w 90 91P 92 93 94 95 %p 97 !w 47.9 69.0 80.0 41.7 48.4 19.3 33.2 40.0 48.9 38.3 24.3 122.4 144.9 42.4 28.4 23.9 46.7 42.1 46.7 31.0 34.4 33.2 64.1 63.8 17.4 17.2 26.2 180.0 33.5 23.9 38.6 27.6 73.7 42.7 49.0 18.7 33.4 40.4 48.8 37.4 24.1 127.7 140.1 48.0 24.4 23.8 46.9 41.2 40.4 36.6 28.9 32.7 68.8 12.9 16.3 18.8 64.4 180.3 74.0 19.8 38.9 28.4 80.1 43.2 56.3 19.1 33.1 40.3 48.0 37.0 24.2 123.8 143.6 42.0 26.5 27.4 38.9 42.7 42.4 49.9 70.5 79.1 23.5 64.5 16.2 16.9 26.5 22.1 178.7 16.5 39.4 28.0 78.0 37.2 55.9 18.5 33.8 40.6 48.7 37.2 23.6 128.1 138.1 46.5 80.2 27.8 52.4 41.6 42.0 41.4 79.6 69.7 28.7 16.5 16.3 19.8 25.4 178.9 25.3 63.8 38.4 26.4 78.3 38.4 55.0 18.0 32.4 39.3 46.9 36.5 23.1 123.0 141.6 41.0 32.7 66.7 45.9 40.6 46.3 35.1 78.2 77.4 27.5 15.2 15.1 16.2 26.4 69.5 28.9 17.9 38.5 26.3 76.0 41.8 49.3 18.4 32.6 39.8 46.7 36.9 23.5 122.9 142.7 41.8 33.4 67.9 43.9 42.4 47.2 31.4 44.8 75.5 70.8 11.7 16.0 16.8 27.0 71.1 33.2 24.9 38.6 28.4 80.1 43.2 56.3 19.1 33.2 40.3 48.1 37.0 24.1 122.5 144.6 42.0 26.6 27.4 39.0 43.2 41.1 41.0 70.5 79.7 23.5 64.5 16.2 17.0 26.7 22.3 71.7 17.5 38.9 28.4 80.0 43.2 56.3 19.1 33.4 39.9 48.0 37.0 24.0 124.0 142.3 42.1 25.5 27.0 48.1 47.1 37.6 44.1 42.4 216.8 23.6 64.6 16.2 16.9 25.3 21.6 68.3 65.0 47.9 69.0 79.8 47.9 48.7 19.5 33.3 40.1 48.2 38.1 24.3 123.4 144.8 41.9 29.0 28.0 46.1 44.9 80.8 35.6 28.5 33.2 64.3 63.2 17.5 17.2 24.9 180.9 28.9 24.8 47.5 71.9 73.4 43.5 49.1 67.9 41.4 39.5 48.3 37.2 24.2 123.0 144.6 42.9 36.3 74.9 49.5 41.7 47.4 31.0 36.2 32.7 67.8 16.0 19.0 18.7 27.5 180.1 33.3 24.9 39.3 28.2 78.1 39.4 55.7 19.2 36.8 41.5 47.5 37.4 24.1 124.5 144.7 47.5 67.5 72.4 48.2 42.1 47.9 36.4 78.4 77.2 28.8 16.6 16.0 17.7 21.1 67.8 30.6 19.4 Cl681 Cl691 Cl261 Cl611 Cl701 ~1521 W61 cl271 Cl651 [I711 ~1721 13CNMR spectra of pentacyclic triterpenoids 1531 Table 1. Continued w 100 101 10ZP 103 104 105 106 38.8 28.2 80.1 43.0 56.3 18.9 33.4 39.9 41.1 36.8 23.9 123.1 144.1 41.8 34.1 67.8 47.2 41.0 48.1 36.3 18.6 77.1 23.3 64.5 16.0 16.6 21.2 66.2 30.4 19.3 38.5 21.4 79.0 39.0 55.1 18.3 34.7 40.8 51.3 31.3 21.2 26.2 39.0 43.4 27.6 31.7 34.4 142.8 129.8 32.3 33.4 37.4 28.0 15.4 16.1 16.7 14.6 25.3 31.3 29.2 38.8 21.3 78.3 38.8 55.4 18.2 34.5 40.6 51.1 37.1 20.9 25.9 41.2 42.5 29.3 33.5 48.1 136.9 132.3 32.0 33.5 33.5 27.9 16.6 15.4 15.9 14.9 176.8 30.3 29.1 75.7 39.0 79.5 38.4 53.4 18.0 34.6 41.4 52.4 43.8 23.9 26.2 38.1 43.5 27.5 37.8 34.4 142.7 129.7 32.4 33.5 31.5 28.0 15.1 12.5 16.5 14.5 25.4 31.3 29.3 39.0 21.3 78.9 38.9 56.4 18.5 36.3 41.2 53.4 38.4 67.4 36.3 32.8 43.3 21.6 31.6 34.5 142.5 130.0 32.4 33.3 37.4 28.2 15.5 20.0 18.1 14.7 25.2 31.3 29.2 38.5 27.4 79.1 39.0 55.7 18.4 34.5 40.8 51.3 37.4 21.3 26.7 39.1 42.8 34.1 76.7 39.6 141.7 129.4 31.9 33.7 37.4 28.1 15.5 16.3 16.9 14.8 21.4 31.9 30.0 38.1 23.8 81.1 37.7 55.4 18.4 34.8 41.0 50.6 37.2 21.7 26.5 134.2 44.7 25.0 36.7 34.6 133.3 39.4 33.4 35.4 38.5 28.0 17.7 16.4 16.6 21.3 24.1 32.4 23.8 77.7 38.9 54.9 33.2 42.7 63.4 36.9 132.8 43.8 25.4 33.3 40.2 133.5 31.9 32.2 43.5 78.8 28.1 15.6 16.3 18.8 20.4 16.7 32.2 25.1 Cl731 Cl741 Cl751 Cl741 Cl741 Cl761 Cl771 c591 107 108 109 38.8 21.2 78.9 38.8 55.2 18.2 32.9 41.0 50.3 37.4 20.7 25.1 123.5 42.1 26.9 20.7 43.0 139.7 34.8 81.0 31.2 37.5 28.1 16.3 15.5 17.9 25.9 175.9 25.3 38.4 26.3 70.9 55.4 47.2 20.7 33.7 44.3 50.3 36.2 22.0 25.1 126.3 42.2 35.9 69.3 52.8 135.6 41.5 32.5 35.5 27.0 206.8 8.8 16.6 18.2 24.6 177.3 33.0 24.6 38.0 27.1 18.9 38.9 54.2 18.4 32.4 40.2 54.8 36.7 125.3 125.8 138.1 42.4 35.3 24.4 34.7 133.4 38.9 33.1 36.1 38.0 27.8 15.1 16.6 17.9 20.2 25.3 24.1 32.5 Cl781 II781 Cl791 1532 S. B. MAHATOand A. P. KUNDU Table 1. Continued llop lllP 112p l13p l14p 1lSP 116 117p l18p 119 38.6 28.1 78.2 39.5 55.4 18.8 32.7 40.5 54.6 37.1 127.6 126.1 136.1 42.3 24.7 36.6 48.5 136.0 38.3 41.2 43.6 74.3 29.6 15.8 18.3 17.0 26.8 20.5 25.0 177.8 37.8 28.0 78.5 39.7 55.6 18.9 33.0 40.2 54.5 37.0 127.1 125.8 136.6 44.4 35.1 76.3 44.4 133.4 38.7 32.6 35.3 30.2 27.8 15.9 18.3 17.2 22.1 64.0 25.0 32.3 39.0 28.1 78.0 39.5 55.4 18.9 32.6 41.1 53.9 37.0 126.2 126.2 136.1 41.9 31.9 67.7 45.3 133.1 38.6 32.6 35.5 24.5 28.5 16.0 18.4 17.3 21.9 64.7 25.1 32.6 38.9 29.0 80.1 39.8 56.4 19.6 34.0 40.7 54.8 39.8 127.3 126.3 138.3 40.8 25.0 35.6 42.0 135.0 38.4 43.2 43.3 75.6 23.3 64.5 18.3 16.9 25.4 23.6 25.0 29.1 38.4 27.6 73.1 43.1 48.2 18.6 32.4 40.5 54.5 36.8 127.1 125.7 136.4 44.4 34.8 76.5 44.4 133.3 38.4 32.7 35.1 29.9 67.4 12.6 18.6 17.1 22.0 64.0 24.8 32.3 38.4 27.6 73.3 43.0 48.4 18.7 31.9 41.0 54.0 36.8 126.2 126.2 136.0 41.9 32.8 67.6 45.3 133.0 39.0 326 35.4 24.4 64.7 12.6 18.7 17.3 21.9 64.4 25.1 32.4 38.8 27.9 78.6 38.9 51.2 18.4 32.2 37.0 154.3 40.7 115.8 120.8 147.1 42.8 25.7 27.3 32.2 45.6 46.9 31.1 34.7 37.2 28.8 15.1 20.1 21.0 25.3 28.3 23.7 33.2 37.8 28.7 77.8 39.6 51.8 18.6 32.6 43.1 154.9 39.0 116.1 121.2 145.3 43.2 36.1 668 40.6 42.6 47.0 31.0 34.1 26.2 28.8 16.6 21.0 21.3 25.5 69.4 33.2 24.0 37.6 28.4 73.0 43.2 44.6 18.5 32.2 43.2 155.0 39.0 116.1 121.2 145.4 43.2 36.2 66.8 40.6 42.7 47.0 31.0 34.2 26.1 67.7 13.2 21.1 21.3 26.1 69.4 33.2 24.1 39.1 28.1 78.2 39.5 56.0 19.0 33.5 40.4 47.9 37.8 23.7 123.0 141.7 44.8 129.9 134.9 44.0 42.9 47.9 30.8 35.2 33.5 28.9 16.4 15.5 17.9 25.1 178.4 33.5 23.5 Cl491 c791 Cl801 Cl491 Cl811 Cl811 Cl801 c791 Cl811 C801 ‘“C NMR spectra of pentacyclic triterpenoids 1533 Table 1. Continued 1w 121P 122p lUP 124 125 12Cip 127 41.7 67.4 68.4 40.3 140.8 115.6 34.6 40.5 47.6 41.4 20.9 117.6 144.4 41.9 28.2 21.5 35.8 42.8 43.1 31.8 34.8 36.3 71.2 16.8 16.8 19.5 22.3 22.3 31.0 21.3 43.2 70.8 73.0 45.5 148.7 120.9 33.2 37.5 46.0 38.5 24.1 123.4 145.1 43.1 27.7 23.6 47.0 42.5 45.8 31.0 34.2 33.1 69.4 21.3 23.0 23.8 26.2 180.2 33.3 23.8 38.8 28.0 78.0 39.5 55.3 18.3 31.3 41.9 52.9 36.8 131.9 131.9 84.9 43.6 36.8 77.1 45.4 51.4 38.5 31.9 36.8 31.9 28.4 15.9 18.2 19.5 18.2 77.8 33.8 24.4 38.5 26.6 78.5 39.1 54.4 17.9 31.7 41.8 52.7 36.3 132.5 130.1 84.0 45.9 35.7 64.3 46.2 51.8 37.9 31.5 34.2 25.2 27.6 15.7 17.8 19.5 20.6 72.3 33.8 23.7 38.0 26.2 75.9 41.9 49.3 17.7 31.1 41.6 53.3 36.3 132.5 130.7 85.2 43.9 25.7 25.3 41.6 51.1 37.2 31.7 34.9 30.9 70.7 11.1 18.2 19.3 19.3 77.1 33.7 23.6 38.0 26.1 75.6 42.0 49.2 17.7 31.1 41.4 52.5 36.3 132.6 130.5 85.1 43.0 34.7 77.3 44.9 50.6 38.0 31.7 36.5 30.5 70.3 11.1 18.3 19.0 17.9 77.3 33.4 24.2 38.3 25.8 75.3 42.1 48.8 17.6 31.4 41.9 52.8 36.2 133.0 129.8 84.2 45.3 35.3 64.5 46.4 52.0 37.5 31.5 34.5 25.3 69.8 11.3 18.4 19.5 20.7 72.6 33.5 23.8 38.2 26.2 75.2 42.2 49.0 17.8 321.2 41.8 52.8 36.4 133.2 130.3 85.5 43.8 34.3 70.5 47.5 50.4 37.4 33.2 45.7 74.3 69.6 11.3 18.4 19.1 18.1 16.9 33.2 25.2 CW rwl IT301 Cl481 ~1521 ~1521 Cl481 cl521 1W 39.9 28.8 78.1 39.6 55.8 18.3 31.9 42.6 50.7 37.3 19.3 34.6 86.5 44.7 37.0 77.2 44.7 51.6 39.1 31.9 36.9 33.0 28.7 16.6 16.4 18.7 19.6 78.0 33.8 24.8 Cl831 1W 39.1 28.3 78.0 39.5 55.7 18.6 32.9 42.5 47.8 37.3 19.3 31.8 86.4 44.7 34.6 77.2 44.7 50.6 37.0 48.0 37.0 33.8 28.7 16.6 16.6 18.2 19.6 78.0 24.8 207.2 Cl841 1534 S. B. MAHATOand A. P. KUND~J Table 1. Continued 130p 38.0 28.3 78.2 39.6 55.8 18.3 32.7 42.9 47.6 37.3 19.2 31.8 86.1 44.6 34.4 73.2 46.5 50.6 36.8 47.6 30.1 74.1 28.8 16.6 16.4 18.7 20.1 70.3 24.2 205.3 Cl841 131 38.8 27.2 76.2 42.8 49.5 18.5 33.3 42.0 50.1 36.8 18.5 32.8 86.4 44.4 34.4 77.4 44.7 51.4 39.4 31.7 36.8 29.8 69.2 13.1 16.9 17.6 18.6 77.8 24.6 33.5 Cl851 132 38.7 27.0 76.2 42.7 49.6 18.6 33.4 42.0 50.0 36.6 17.8 31.6 86.2 49.7 45.4 213.3 56.1 54.5 40.0 31.6 35.2 24.8 71.6 11.3 16.3 17.8 21.7 75.1 23.6 33.3 Cl851 133 39.3 26.6 79.1 39.8 55.8 18.0 33.0 42.7 50.5 37.0 19.3 34.5 86.4 45.1 36.7 70.7 48.9 51.4 38.1 33.3 42.2 75.8 28.2 16.7 16.5 18.6 19.8 76.8 33.4 25.6 CW 134p 39.6 28.4 78.2 39.6 55.7 18.3 34.5 42.8 50.6 33.2 19.4 33.5 87.5 44.2 36.8 69.8 52.9 47.4 38.7 37.3 46.7 68.1 28.7 16.4 16.6 18.8 19.8 98.6 33.8 26.0 Cl871 139 136 45.5 68.1 79.0 42.6 47.6 17.3 34.1 40.4 50.4 33.0 27.5 75.1 37.0 48.6 17.3 31.5 40.9 49.8 37.0 52.9 57.4 88.0 41.9 27.0 21.7 44.1 51.1 38.0 31.6 34.4 27.7 29.1 22.2 17.3 18.8 20.5 180.0 33.6 23.5 52.4 56.9 87.4 41.2 26.5 21.1 43.7 49.4 37.6 30.6 26.8 37.3 68.1 12.3 18.6 18.7 19.9 179.3 33.0 23.4 cl231 w31 137 39.8 21.5 36.6 30.6 54.4 21.0 33.1 40.5 48.6 37.1 21.2 25.0 43.0 41.6 31.1 29.7 43.8 37.9 43.9 31.1 39.2 30.4 20.5 __ 14.1 15.8 14.9 25.4 33.7 Cl891 138 13M 140 141 39.1 34.1 217.9 47.4 55.3 19.7 32.5 39.1 47.0 36.8 23.4 120.8 146.0 42.5 26.5 21.5 15.1 17.4 24.9 - 39.0 28.1 78.2 39.4 55.9 18.9 33.5 40.0 48.3 37.5 24.0 122.7 145.7 42.1 28.1 26.4 71.0 48.8 49.0 31.2 37.1 38.8 28.9 16.6 15.6 17.9 25.8 ._ 38.1 23.7 80.8 31.7 55.4 18.2 32.6 39.9 47.2 37.0 23.7 125.4 140.7 47.2 43.0 213.3 76.5 52.5 47.2 30.8 32.3 37.7 28.1 15.4 16.7 17.3 27.0 37.7 23.0 74.5 40.7 48.3 18.1 32.4 39.2 47.1 37.0 23.3 118.3 143.0 42.4 33.3 74.6 39.8 35.8 44.8 34.7 78.2 32.8 65.5 12.9 15.8 16.8 26.2 __ 33.6 23.8 33.0 24.0 32.6 23.7 18.9 19.3 31.2 __ tml ~1231 Cl911 C781 1535 13C NMR spectra of pentacyclic triterpenoids Table 1. Continued 142 143 144p 145o 146 147p 14V 149 l!W 151 152 37.6 22.4 73.3 54.1 48.0 20.5 32.3 39.0 47.1 36.1 23.2 118.1 141.5 42.6 43.7 212.1 38.7 27.1 78.7 38.7 55.3 18.2 33.4 38.7 46.1 36.8 24.1 126.8 139.1 44.9 40.4 200.4 128.9 146.8 44.1 29.2 33.4 20.6 28.1 15.6 15.6 17.9 28.1 - 45.1 71.6 72.8 42.5 48.2 18.1 33.5 39.1 46.8 37.0 24.6 127.5 139.3 45.2 40.3 199.2 129.1 146.2 44.4 29.2 34.6 21.2 67.5 14.6 17.4 18.0 28.1 38.1 26.9 78.1 41.9 55.1 19.6 32.7 39.3 46.1 41.1 22.1 19.8 38.8 43.2 22.2 125.6 140.2 42.1 66.9 35.2 133.2 123.2 65.2 16.9 18.2 16.9 27.1 28.6 23.1 28.6 23.3 62.1 16.1 39.4 26.5 78.1 39.4 55.9 18.7 34.0 39.4 48.1 37.4 23.7 122.9 143.4 43.2 28.2 23.4 46.2 45.6 129.5 130.4 33.2 39.2 28.8 16.6 15.9 17.7 23.6 179.9 23.0 39.1 28.2 78.2 39.5 55.9 18.9 33.4 39.9 47.5 37.4 24.0 122.8 143.8 44.6 38.6 64.9 50.4 43.5 46.2 68.2 34.2 27.2 28.9 16.7 15.7 17.8 27.2 181.3 32.3 38.3 24.0 80.7 38.2 55.6 18.3 31.8 42.8 46.5 37.5 39.2 210.3 83.1 45.4 23.1 34.0 34.2 51.3 35.5 30.0 34.7 39.7 28.1 16.7 15.9 20.1 18.4 31.5 32.1 25.9 38.4 24.0 80.6 38.0 55.2 18.6 38.2 44.9 46.2 37.9 39.2 210.4 85.8 51.1 66.7 44.0 35.1 51.6 35.2 31.8 34.5 39.6 28.0 16.7 15.9 20.4 14.4 32.0 32.3 24.8 38.1 24.1 80.9 37.9 55.7 18.7 33.7 40.0 48.2 37.4 23.9 123.2 144.9 42.2 28.4 29.2 46.1 44.8 81.3 35.7 29.2 33.2 28.2 16.9 15.3 17.5 24.9 180.9 28.8 24.9 38.1 27.3 79.2 39.1 55.7 19.0 35.3’ 38.9 48.9 37.9 17.7 35.9 37.9 158.1 117.0 36.9 38.1 49.4 41.4’ 29.0 33.9 33.2 28.1 15.6 15.6 30.1 26.0 30.1 33.5 21.5 37.7 27.4 79.1 38.5 46.5 23.9 71.6 45.7 42.1 38.6 17.1 34.1 37.5 155.2 118.7 36.9 36.0 49.0 37.2 29.3 33.2 35.2 27.9 15.8 15.6 26.7 21.1 29.6 33.1 29.8 Cl911 Cl911 ~1921 [l?s] Cl931 Cl941 Cl941 Cl941 C811 48.0 36.1 42.8 34.5 78.1 27.7 203.9 9.4 15.4 16.8 25.7 28.8 19.3 C781 C621 1536 S. B. MAHATO and A. P. KUNDU Table 1. Conti~d 153 154 155 156 157 158 159 160 161 162 163 144 37.8 28.0 78.2 41.4 56.0 19.2 36.3” 39.3 45.6b 37.8 17.9 31.2’ 38.3 158.7 116.8 33.2’ 38.3 49.6b 41.7” 28.8 33.8 28.7 28.4 16.5 15.7 30.1 26.2 64.6 33.8 22.0 32.6 25.0 76.2 37.5 48.8 18.7 41.2 40.3 49.2 37.3 17.3 32.2 38.0 159.3 115.5 30.8 39.2 44.7 35.8 28.6 33.5 27.9 28.2 22.2 15.2 29.9 26.2 65.5 21.5 33.5 38.3 34.0 217.2 47.5 55.7 19.9 35.8” 39.0 48.6 37.5 17.3 30.7b 37.7 158.5 116.0 32.6b 40.3 44.9 40.6” 28.5 33.3 27.9 26. I 21.6 14.8 29.8 25.7 65.4 33.5 21.4 38.4 34.1 217.3 47.5 55.7 21.5 35.41 38.9 48.6 37.3 17.3 31.3 37.8 162.1 117.1 30.7 51.5 41.4 40.38 29.3 33.7 31.9 26.1 20.0 15.0 28.7 25.9 184.7 33.2 22.6 37.4 23.4 80.8 37.6 55.5 18.7 40.7 39.0 49.0 37.9 17.2 33.2 37.2 160.5 116.8 31.3 51.4 41.3 35.2 29.2 33.6 30.6 27.9 16.5 15.6 26.1 22.4 184.2 31.8 28.6 36.6 24.2 81.1 37.7 50.2 24.0 117.5 147.6 48.7 35.1 17.1 34.6 37.0 41.6 31.7 36.1 30.9 46.9 36.1 28.2 33.9 36.8 27.6 16.0 13.2 27.1 26.1 31.7 34.1 33.7 34.9 24.4 81.1 37.9 51.1 19.3 27.5 135.4 133.6 37.7 20.9 31.0 37.5 41.1 26.6 37.1 31.0 44.3 34.3 28.4 43.0 36.9 28.1 16.8 20.0 18.9 25.0 31.6 34.7 33.2 36.9 19.2 41.8 33.3 51.7 19.6 21.2 135.0 134.2 37.9 20.8 30.9 37.6 40.1 26.8 36.4 31.2 43.1 28.8 33.3 29.1 37.6 33.3 21.8 19.9 25.9 18.0 31.4 72.9 27.6 36.9 19.3 41.8 33.3 51.5 19.5 27.8 133.3 134.8 37.9 20.8 30.2 36.9 42.1 25.6 37.1 31.0 44.7 30.5 40.5 29.6 34.3 33.0 21.9 19.9 21.8 18.0 31.3 185.3 32.7 34.7 24.2 80.9 37.7 50.8 19.1 27.3 135.4 133.2 37.5 20.8 30.7 37.6 40.6 26.7 36.3 31.1 43.0 28.0 33.1 28.9 37.6 28.0 16.7 19.8 25.9 17.9 31.3 12.6 27.6 35.0 27.9 78.9 38.8 50.5 19.2 27.6 133.9 134.2 37.5 20.7 30.3 37.1 41.8 25.0 37.0 30.9 44.7 30.8 40.5 29.9 34.4 28.0 15.6 19.9 22.1 17.1 31.2 179.2 32.9 21.6 38.1 215.4 50.0 142.4 121.3 23.6 47.0 35.1 50.7 34.1 30.3 39.3 37.9 31.9 35.9 30.1 43.1 35.1 28.2 33.1 38.9 24.4” 28.5’ 15.6 19.3 18.4 32.0 34.5 32.4 1811 Cl951 fl961 Dll PI II821 L581 Cl11 Cl11 WI Cl01 cw ‘“C NMR spectra of pentacyclic triterpenoids 1537 Table 1. Continued 165 166 167 168 169 31.9 24.7 84.4 43.3 53.1 19.8 20.0 41.9 36.7 93.6 30.6 30.0 39.2 39.3 31.8 35.9 30.1 43.6 35.0 28.3 33.4 38.7 24.4 23.0 m.5 19.3 18.5 31.9 34.1 328 31.9 24.8 84.0 43.5 51.8 31.5 68.4 48.0 36.9 93.3 31.1 30.0 39.3 40.4 31.8 36.0 29.8 44.2 34.6 28.3 33.9 38.1 23.9 228 21.7 19.8 18.8 33.5 34.0 324 31.9 24.7 84.4 43.4 53.1 19.8 20.0 423 36.6 93.5 30.3 30.9 38.9 39.4 31.2 32.0 41.6 45.2 34.5 34.7 41.5 75.4 24.4 23.0 20.4 20.0 18.7 23.3 34.9 31.9 17.8 35.0 72.7 49.0 37.3 41.4 15.8 53.2 37.9 61.2 37.9 27.8 54.8 39.3 32.8 35.6 36.7 43.3 35.7 28.5 32.5 38.2 11.6 16.4 18.8 22.5 179.4 31.1 30.6 35.3 20.8 27.4 36.9 46.0 37.7 42.6 M.6 53.1 37.1 61.2 35.4 23.7 42.2 39.8 30.1 35.7 30.4 43.5 35.4 28.3 32.9 39.1 13.4 15.1 19.6 18.0 64.1 31.7 - D51 C851 C851 Cl971 im 171 172 173 174 175 176 21.1 27.0 30.2 46.3 44.1 58.0 212.4 63.9 43.5 60.6 35.7 32.2 39.4 37.6 30.7 36.2 30.2 42.0 35.1 28.1 33.0 38.9 13.8 15.1 19.6 18.4’ 19.6’ 32.3 31.7 20.7 27.4 30.9 46.1 37.6 41.5 18.1 53.5 37.0 60.7 35.5 30.7 39.9 38.3 32.6 35.9 30.5 41.8 29.1 33.1 27.8 39.5 15.1 13.5 18.1 18.4’ 20.7’ 321 74.8 25.8 20.7 27.4 30.9 46.1 37.5 41.5 18.1 53.1 37.0 60.8 35.4 30.7 39.7 38.4 32.1 36.0 30.0 42.7 29.3 33.4 28.2 38.1 15.1 13.5 18.2 18.6* 19.9 321 28.9 72.0 22.3 41.5 213.2 58.2 421 41.3 18.2 53.1 37.4 59.4 35.6 30.5 39.1 38.3 32.4 36.0 30.0 42.8 35.3 28.1 32.7 39.2 6.8 14.6 17.9 20.2 18.6 32.1 35.0 31.8 22.1 41.3 212.5 57.8 41.9 40.0 19.9 47.9 36.6 58.2 35.7 21.6 50.9 46.7 81.0 39.7 31.4 44.7 30.8 145.3 29.2 36.8 6.8 14.6 16.3 13.3 179.3 30.1 109.1 22.1 41.3 212.4 57.8 41.9 40.0 19.9 47.9 36.6 58.2 35.6 21.4 51.0 46.6 81.0 39.8 31.6 44.8 28.3 141.1 70.1 45.9 6.8 14.6 16.3 13.3 179.3 32.6 110.0 31.9 20.7 21.4 30.9 46.1 37.5 41.4 18.1 525 37.1 60.7 35.3 30.2 39.3 38.2 31.2 29.2 34.2 39.5 34.5 28.1 328 33.4 15.1 13.5 18.3 19.2 19.0 68.0 31.3 35.1 Cl981 C871 C871 C871 c461 c611 c611 , 1538 S. B. MAHATOand A. P. KUNDU Table 1. Continued 177 178 179 180 22.8 41.5 213.0 58.1 42.0 39.5 21.5 46.6 40.5 57.1 37.0 34.9 39.0 142.3 116.1 30.9 33.7 46.1 39.6 31.0 34.4 37.9 6.8 14.4 14.7 16.5 35.3 72.7 49.0 37.8 39.9 20.9 46.8 40.4 59.1 36.8 35.1 39.0 143.0 115.5 30.9 33.8 46.2 39.6 31.0 34.4 37.9 11.6 16.0 14.8 24.1 31.8 33.7 24.4 24.1 31.8 33.8 24.5 20.8 27.5 31.1 46.3 37.6 41.5 18.2 51.9 37.2 61.0 35.6 30.2 38.7 39.6 30.4 27.2 45.1 48.1 34.8 31.4 49.7 217.3 13.6 15.1 18.0 18.4 18.5 34.0 31.1 35.1 22.2 27.5 30.6 47.0 38.8 41.4 18.1 53.1 48.3 60.0 32.5 31.4 37.6 39.8 33.3 36.1 30.0 42.8 35.5 28.1 32.8 39.4 15.1 11.9 173.9 20.5 18.9 31.7 35.1 32.1 26.6 69.6 73.2 45.6 37.8 41.0 17.8 52.9 36.4 51.3 35.2 30.5 39.6 38.2 32.3 35.9 29.9 42.7 35.2 28.0 32.7 39.2 9.6 13.4 17.8 18.6” 20.1’ 32.0 31.6 34.9 PW C871 Cl991 cw C861 181 182 183 184 185 186 187 188 16.8 34.7 72.0 48.8 43.4 58.2 210.3 63.9 43.4 61.1 35.6 30.1 38.8 37.6 31.6 36.3 30.1 41.9 35.0 28.1 32.9 39.4 11.6 16.3 18.3 19.5 19.5 32.1 31.9 34.9 22.4 41.5 213.1 58.2 42.0 41.3 20.0 53.5 37.8 59.4 35.8 31.2 40.6 44.1 74.6 48.4 30.2 41.6 35.6 28.2 31.9 38.9 6.8 14.5 18.0 14.1 18.8 32.6 30.9 35.7 22.3 41.6 212.5 58.3 42.3 41.4 18.6 53.5 37.6 59.7 35.8 30.8 39.3 40.1 44.4 75.6 32.1 44.8 35.8 28.0 32.1 36.0 6.8 14.7 18.2 20.1 21.5 24.9 30.8 35.5 22.1 41.3 212.6 57.8 41.9 41.0 18.1 52.2 37.3 59.1 35.3 29.9 39.1 38.0 31.3 29.0 35.1 39.2 34.4 27.9 31.4 33.2 6.7 14.5 18.0 18.9 19.1 67.0 32.9 34.2 22.4 41.6 212.9 58.3 42.2 41.3 18.0 49.9 37.8 59.7 34.5 27.8 39.8 22.3 41.6 212.2 58.3 42.2 41.4 18.3 53.5 37.5 59.6 35.7 29.8 40.0 38.3 32.8 36.0 29.8 42.0 30.6 33.2 27.9 39.6 6.8 14.7 17.9 18.4’ 20.8” 32.1 25.9 74.8 22.1 41.3 212.5 57.7 41.9 39.9 19.9 48.0 36.6 58.2 35.6 22.4 51.0 47.9 80.7 40.3 30.5 44.2 34.3 28.2 34.2 35.8 6.8 14.5 16.4 13.6 180.1 29.6 34.3 31.1 C871 c511 C871 C871 27.8 33.2 82.8 43.4 32.1 30.8 27.2 35.7 6.8 14.6 16.5 15.5 19.5 33.4 25.4 C871 C871 WI ‘jC NMR spectra of pentacyclic triterpenoids 1539 Table 1. Continued 189 17.8 32.8 75.1 50.0 38.3 41.3 17.8 52.1 37.0 59.9 35.3 30.4 39.2 38.5 31.1 36.4 31.9 43.3 35.8 33.5 76.4 43.7 9.9 14.5 18.2 18.8 19.0 32.8 30.8 26.2 IPll 1% 15.7 34.9 72.5 49.0 37.7 41.6 17.4 522 37.0 61.2 35.2 30.3 39.1 38.5 31.0 36.2 31.8 43.2 35.8 33.4 76.6 43.6 11.5 16.2 18.3 18.6 18.9 32.5 30.7 26.1 WI PHYTO 37-6-E 191 192 193 194 1% 1% 197 1% 199 w 21.6 40.8 210.6 57.8 47.0 56.9 210.2 63.4 42.4 59.0 35.5 29.8 39.4 37.5 31.6 36.3 30.1 41.8 34.9 28.0 32.8 38.6 6.8 15.1 18.2 19.2 19.4 32.1 31.8 34.6 223 41.4 213.1 58.2 42.0 40.5 21.3 45.3 37.2 59.3 34.4 29.4 42.4 54.2 214.1 54.0 33.5 44.0 34.9 27.9 33.8 38.6 6.8 15.0 17.4 14.7 18.9 32.2 33.3 33.4 22.2 41.4 212.5 58.2 42.1 41.0 18.6 52.4 37.7 59.4 35.4 29.1 39.2 40.5 50.2 218.8 45.3 44.0 35.5 27.6 31.7 30.8 6.8 14.7 17.3 20.3 16.2 27.4 31.1 35.2 22.3 41.5 212.6 58.3 42.1 41.3 18.1 51.8 37.6 59.7 35.7 30.2 38.6 39.7 30.4 27.1 45.0 48.1 34.8 31.5 49.5 217.3 6.8 14.7 18.1 18.3 18.5 34.0 31.1 35.1 22.3 41.4 213.0 58.1 42.2 40.9 18.5 53.0 38.3 59.4 37.6 27.8 54.8 39.2 33.0 35.9 30.7 43.3 35.7 28.4 32.4 37.6 6.8 14.7 18.4 22.7 181.1 31.0 30.5 35.4 22.2 42.1 213.3 58.2 44.7 41.5 18.0 53.0 37.8 59.2 35.9 31.0 41.1 38.9 29.3 326 37.6 37.6 35.4 28.4 34.8 32.6 6.8 14.6 17.5 20.6 18.5 185.0 29.7 34.5 22.2 41.5 213.3 58.2 42.1 41.3 18.2 50.7 37.4 59.8 35.3 30.2 39.1 39.2 29.7 36.1 30.1 44.2 29.5 40.4 29.5 36.6 6.2 14.6 18.0 18.4 16.3 31.8 184.5 31.6 22.3 44.5 212.6 58.3 42.1 41.3 18.2 53.2 37.5 59.5 35.5 30.3 39.7 38.1 32.8 35.5 29.5 42.5 31.4 40.5 28.6 38.3 6.8 14.6 17.6 17.6= 20.Y 31.9 179.4 31.8 22.3 41.4 213.0 58.1 42.2 42.4 20.7 51.2 37.5 59.9 35.4 30.0 39.6 42.7 23.4 36.3 32.9 44.9 36.0 34.5 74.3 46.6 6.7 14.4 17.9 63.2 20.2 32.7 24.9 32.0 22.4 41.6 211.8 58.0 42.1 41.2 18.4 53.2 37.5 59.2 35.7 30.5 40.1 38.3 29.5 32.6 36.6 39.0 29.8 33.6 29.2 33.0 7.2 14.7 18.0 20.1 19.0 67.1 73.6 27.5 WI WI c200) PW C871 C87l I371 c511 C871 P321 S. B. MAHATOand A. P. KUNDU 1540 Table 1. Continued 201 202 203 204 2osp 20@ 207 208 209 210 22.3 41.5 212.9 58.3 42.1 41.4 18.3 52.5 37.5 59.7 35.5 30.0 39.6 38.4 31.1 29.2 35.2 38.9 31.5 33.3 30.2 28.3 6.8 14.7 18.2 18.7 19.1 69.0 73.4 28.6 202.1 60.7 204.1 59.1 37.7 40.7 19.7 52.6 37.6 71.9 34.7 30.8 40.6 44.0 74.7 48.6 30.2 41.6 35.5 28.2 31.9 38.9 7.3 15.8 18.1 14.1 18.9 32.7 31.0 35.6 22.6 41.3 211.6 57.9 42.2 40.9 18.9 54.1 43.7 59.3 56.1 211.4 62.3 43.7 33.1 37.2 30.4 37.6 36.3 28.7 33.3 40.4 7.3 14.6 18.3 223 62.5 30.6 35.6 31.9 202.6 60.5 203.7 59.2 37.5 38.5 17.0 45.2 37.1 69.0 35.8 26.5 38.1 40.0 34.7 36.8 30.8 44.0 35.4 28.3 32.5 38.9 6.8 15.7 67.1 19.3 69.9 30.0 31.4 35.1 29.4 68.5 74.7 46.6 41.1 31.0 30.3 39.4 133.7 133.7 29.0 121.7 144.7 41.6 27.6 24.0 47.0 41.5 47.3 31.0 34.3 33.1 67.3 16.0 27.9 24.0 26.2 179.9 33.1 23.8 24.9 61.3 78.0 43.8 50.2 32.1 29.0 40.3 149.1 85.0 120.7 120.3 139.8 41.2 27.8 23.8 45.7 40.6 46.6 30.7 34.6 33.8 73.4 14.2 18.6 20.3 21.4 178.3 33.0 23.6 38.7 27.2 78.3 38.7 55.2 18.3 32.9 40.0 47.7 36.9 23.3 124.3 139.3 42.0 28.7 26.6 33.7 58.9 39.6 39.6 31.2 41.5 28.1 15.6 15.6 16.8 23.3 28.1 17.4 21.3 40.1 35.6 207.8 56.6 57.2 19.6 32.0 38.9 45.6 36.2 22.7 123.1 138.9 41.3 25.6 27.1 32.8 58.2 38.7 38.6 30.2 40.5 20.0 173.2 12.4 15.9 22.1 27.8 16.5 20.3 38.8 27.3 78.8 38.8 55.4 18.4 33.0 39.6 47.5 37.0 23.3 125.5 138.0 42.0 28.2 24.3 48.1 52.8 39.1 38.8 30.7 36.7 28.2 15.5 15.7 16.9 23.6 177.7 16.9 21.2 39.4 34.2 217.8 47.4 55.4 19.7 32.6 39.1 46.8 36.6 23.6 125.4 138.4 42.2 28.1 24.3 48.2 53.0 39.0 38.9 30.7 36.7 26.6 21.5 15.2 16.9 23.5 178.0 17.1 21.2 1511 cm31 WI Pw PO41 c2051 c391 cl321 Cl151 II871 1“C NMR spectraof pentacyclictriterpenoids 1541 Table 1. Continued 211 212 213 214 215 216 217 218’ 219 22v 39.4 26.5 78.1 39.4 55.9 19.0 37.7 40.2 47.4 37.5 23.5 129.1 134.2 56.9 28.3 25.6 48.9 55.1 39.5 37.8 30.7 37.2 28.7 16.8 16.8 18.4 178.2 180.2 19.1 21.7 33.5 25.4 76.0 37.5 48.8 18.2 35.2 43.5 55.8 38.2 68.4 128.7 142.9 42.2 27.9 27.7 33.6 58.1 39.4 39.3 31.1 41.3 28.7 22.4 16.6 18.0 23.3 28.6 17.5 21.3 38.8 27.3 79.0 38.8 55.4 18.4 32.9 39.4 47.8 37.2 23.4 125.0 138.0 42.8 29.2 22.6 36.8 54.1 38.9 39.4 30.7 30.6 28.1 15.4 15.6 16.9 23.4 69.7 16.2 21.3 46.8 68.9 83.8 39.1 55.4 18.4 32.9 39.6 47.5 38.3 23.4 125.3 138.1 42.1 28.0 24.3 48.1 52.8 39.1 38.9 30.7 36.7 28.7 17.0 17.0 17.0 23.7 177.9 17.0 21.2 47.2 68.9 78.2 37.5 51.0 19.8 32.4 39.7 48.2 37.3 23.3 125.6 138.1 42.2 27.9 24.2 48.2 53.0 39.0 38.8 30.7 36.6 23.8 23.2 21.1 16.7 23.6 178.1 17.0 21.1 42.2 66.7 79.2 39.3 48.3 18.2 33.0 40.0 47.6 38.4 23.4 125.8 138.7 42.2 28.2 24.4 48.3 53.2 39.1 38.5 30.8 36.8 28.6 22.0 16.5 17.1 23.9 178.4 17.1 21.2 44.3 71.0 78.4 38.0 55.2 18.1 32.9 39.6 47.9 36.6 23.4 125.6 138.1 42.1 27.9 24.2 48.1 52.9 39.0 38.8 30.6 36.6 29.7 17.3 16.4 16.9 23.6 178.0 17.0 21.1 38.7 28.0 78.2 39.3 55.8 18.9 33.6 40.3 47.7 37.3 24.0 128.1 139.9 42.1 29.2 26.6 48.2 54.5 72.7 42.3 27.0 37.4 28.7 16.7 15.5 17.1 24.6 180.6 26.8 16.4 38.8 27.3 79.0 38.8 55.4 18.4 33.2 39.5 47.7 37.1 23.4 125.9 137.9 423 28.5 27.1 48.2 53.7 32.0 42.8 71.8 428 28.2 15.5 15.7 16.8 23.2 177.6 17.0 17.2 38.5 26.9 77.4 38.5 54.8 18.2 32.3 39.6 47.2 38.4 23.0 124.8 138.0 42.2 25.5 20.3 36.4 57.2 33.6 49.7 33.1 76.7 28.0 15.4 15.7 16.4 23.1 24.3 18.0 177.0 WI VW 12071 ~1321 c731 Cl571 c731 PO81 Cl351 P-3 1542 S. B. MAHATOand A. P. KUNDU Table 1. Continued 221P 222 223’ 2rMp 225 22iiM 227 228 229 230 39.0 26.3 74.2 43.8 48.0 18.3 33.0 40.0 48.5 37.1 24.2 125.5 139.2 43.0 27.3 24.0 47.5 52.2 39.2 30.9 37.0 33.0 64.6 12.7 15.6 17.5 24.2 179.7 17.1 21.1 38.2 27.5 80.7 42.5 55.7 18.3 33.0 39.3 47.4 36.5 23.4 125.2 137.6 41.8 29.9 24.0 47.9 52.7 38.9 38.7 30.5 36.5 22.4 64.4 15.8 16.7 23.4 177.9 16.9 21.1 38.5 26.9 73.3 52.2 49.6 19.5 34.5 39.8 45.9 36.8 24.1 125.6 137.6 40.0 31.1 25.4 45.7 52.3 70.4 39.8 24.8 36.1 178.2 9.8 13.8 14.4 24.6 178.3 26.9 14.8 39.8 29.1 78.3 49.2 56.9 20.9 33.9 40.2 47.2 37.9 24.5 128.1 139.9 42.2 29.1 26.5 48.3 54.7 72.7 42.2 27.0 38.4 24.2 180.6 13.9 17.1 24.5 180.6 27.0 16.8 42.9 66.1 79.3 38.7 48.8 18.6 33.5 40.6 47.6 38.8 24.1 128.0 139.9 42.9 29.2 26.4 48.3 54.6 72.7 42.4 26.9 38.5 29.4 22.3 16.6 17.3 24.7 180.1 27.1 16.8 39.4 27.4 80.2 41.4 55.3 67.3 42.7 42.9 47.8 38.3 24.4 129.5 140.2 42.9 28.0 26.6 47.8 55.3 73.9 43.1 26.8 39.0 17.6 29.1 16.8 22.4 24.9 179.2 27.3 16.5 41.7 28.4 78.8 39.7 56.4 67.8 41.3 40.5 48.3 37.1 24.1 128.4 139.3 42.6 29.3 26.5 48.5 54.7 72.8 42.4 27.0 38.5 17.1 28.6 16.8 18.0 24.7 180.7 27.2 16.8 46.7 69.0 79.9 42.9 48.8 18.4 32.8 39.8 47.7 38.3 23.5 125.7 138.7 42.3 28.2 24.4 48.3 53.1 39.3 39.1 30.9 36.8 69.3 13.1 17.1 17.1 23.9 178.4 17.3 21.2 41.6 66.6 78.6 41.1 42.1 17.8 32.4 39.6 47.9 37.9 23.3 125.2 138.4 42.1 28.0 24.2 48.1 52.9 39.0 38.9 30.6 36.6 71.3 17.5 16.8 16.9 23.7 178.1 17.0 21.2 41.8 66.2 73.3 43.8 48.5 18.2 33.0 39.5 47.3 37.9 23.3 125.1 138.1 41.9 27.8 24.1 47.9 52.7 38.9 38.7 30.5 36.5 22.0 65.5 16.7 16.7 23.6 178.0 16.9 21.1 Pm c2111 c-w cw c2131 c2141 c2151 Cl571 c731 Cl581 13C NMR spectra of pentacyclic triterpenoids 1543 Table 1. Continued UP 232p 233 234p usM 236 237 2w 239 w 241P 38.9 27.1 73.1 42.9 48.8 18.9 33.4 40.4 47.9 31.3 24.1 128.1 140.0 42.2 29.4 26.5 48.3 54.7 12.1 42.4 21.0 38.5 68.2 l3.1 17.3 16.8 24.9 180.7 21.2 16.0 38.8 28.5 80.3 43.2 56.5 19.3 34.0 40.4 41.9 31.2 24.3 127.9 140.0 42.1 29.1 26.5 48.4 54.7 728 424 27.0 38.6 23.7 64.6 17.2 16.8 24.1 180.8 21.2 16.1 33.1 25.2 70.6 42.1 49.5 18.7 32.9 40.0 47.1 36.8 23.7 129.1 137.9 41.1 28.2 25.5 41.9 53.2 73.1 41.1 26.0 37.4 21.6 65.5 15.6 16.5 24.6 178.2 27.4 16.1 48.1 68.6 80.9 54.1 52.2 21.4 33.3 40.5 48.1 38.5 24.2 121.1 139.9 42.0 29.1 26.3 48.6 54.1 72.1 42.0 27.1 38.5 180.6 13.4 17.3 17.1 24.1 180.0 27.1 16.8 40.5 26.2 121 56.4 49.6 70.8 40.5 39.1 41.1 35.9 23.1 128.6 137.8 42.0 28.4 25.6 41.9 53.6 73.2 41.5 26.2 31.7 209.3 10.1 17.0 11.1 24.5 181.2 27.1 16.1 14.6 14.9 19.9 40.6 53.2 17.9 32.8 41.8 48.0 37.4 24.5 130.0 137.3 41.8 29.8 26.1 48.5 52.6 13.2 42.9 21.0 38.1 28.3 16.1 11.4 16.9 25.6 178.3 21.4 17.1 14.7 11.0 19.9 40.6 53.2 17.9 32.8 41.8 48.0 31.4 24.6 130.1 137.2 41.8 29.8 26.1 48.5 52.6 13.2 42.9 26.9 38.1 28.3 16.1 11.4 16.9 25.6 178.4 21.4 17.1 50.3 69.6 84.7 38.8 51.4 68.8 41.8 41.2 49.1 40.3 24.1 129.6 139.4 421 29.5 27.8 49.1 55.1 13.6 43.1 26.6 39.0 29.0 16.6 18.5 18.8 24.8 182.2 27.1 18.5 48.4 61.7 82.9 41.2 53.3 21.7 66.9 39.2 41.4 38.4 22.8 127.6 137.5 41.2 28.7 25.4 41.9 55.3 71.8 41.1 24.8 37.1 25.2 16.6 16.8 16.6 21.0 180.6 22.9 14.6 48.2 69.0 78.5 43.1 48.6 67.6 39.0 39.5 48.9 38.0 25.0 126.0 138.6 44.3 28.7 26.0 48.0 53.3 38.1 39.1 31.0 37.5 66.6 15.5 17.2 18.6 23.8 179.8 24.0 21.3 47.8 68.6 78.2 43.6 48.2 18.6 33.0 40.3 48.2 38.2 24.1 128.1 139.4 42.1 28.9 26.8 48.2 54.4 725 42.1 21.2 38.2 66.5 14.3 17.3 17.3 24.6 178.4 21.2 16.6 WI cm C’M C2l7l C2181 ~2191 ~2191 c2201 cm I?221 C2l7-l S. B. MAHATO and A. P. KIJNDU 1544 Table 1. Continued 242p 243 SUP 245 246 247 248P 249 250 zslP zszp 47.8 68.7 85.8 44.0 56.6 19.4 33.8 40.4 47.9 38.3 24.4 127.9 140.0 42.1 29.3 26.9 48.3 54.6 72.7 42.4 26.4 38.5 24.2 65.7 17.3 17.1 24.6 180.7 27.1 16.8 32.7 24.6 67.0 45.3 46.4 18.4 32.7 39.8 46.9 36.6 23.8 128.9 138.0 41.2 28.2 25.5 47.9 53.3 73.1 41.1 26.0 37.5 70.3 66.0 14.9 16.6 24.6 178.5 27.4 16.1 48.1 69.0 78.4 43.7 48.1 18.7 33.0 41.0 48.1 38.2 24.4 127.6 140.2 42.0 27.6 25.7 38.8 55.7 73.5 42.8 27.1 36.3 66.7 14.4 17.6 17.1 24.4 69.4 27.1 17.1 48.2 67.8 76.6 42.8 47.2 27.9 67.0 38.3 47.1 36.7 23.8 126.7 138.5 41.4 28.7 25.5 47.9 54.0 72.4 41.1 25.3 37.7 64.5 17.1 22.3 14.8 25.9 178.4 23.0 13.3 528 87.5 177.2 48.5 61.9 18.9 33.0 40.9 46.8 43.3 25.4 129.4 137.9 42.0 28.0 18.6 58.8 53.5 72.8 38.9 33.4 73.6 27.3 21.0 16.0 16.9 25.1 177.3 27.0 15.8 528 87.4 177.2 48.5 61.8 19.0 35.8 41.9 46.7 43.3 25.4 130.3 139.2 46.9 68.2 35.4 47.0 53.7 73.0 41.0 25.8 37.0 27.3 21.0 15.6 17.4 19.2 177.8 27.2 16.0 68.8 156.7 134.0 42.1 63.7 17.7 34.7 42.1 42.4 51.0 26.9 128.3 140.2 42.3 29.7 27.0 48.3 54.8 72.8 43.7 26.4 38.4 30.1 21.7 18.9 16.6 25.3 180.5 27.2 16.6 62.8 148.9 137.5 42.6 63.0 17.2 37.4 47.9 42.9 41.3 26.5 129.2 138.4 41.7 28.7 25.5 50.8 53.3 73.1 41.2 26.1 33.9 21.3 29.6 18.6 18.6 25.2 25.2 27.4 16.1 37.0 24.3 80.6 38.6 51.2 18.2 32.0 40.7 154.2 37.9 115.1 123.0 141.4 43.1 28.2 26.1 33.7 57.3 39.0 39.5 31.2 41.4 28.2 17.4 17.6 22.2 25.5 28.7 16.8 21.5 48.5 68.7 83.8 39.4 56.1 18.8 35.1 39.9 48.4 38.4 23.6 125.9 139.5 45.1 29.2 27.1 49.8 134.7 - 48.9 68.3 78.9 41.6 49.4 24.0 34.5 39.5 47.7 38.4 23.5 125.8 139.5 45.1 29.1 27.1 49.8 134.7 34.8 31.9 35.6 29.4 17.8 17.7 18.4 22.1 178.7 19.7 18.9 34.8 31.9 35.6 11.1 18.1 18.4 22.2 178.7 19.7 18.9 c2231 CW c217l iwl P241 c2241 r2251 l-2261 ~2271 i?‘W C-W “C NMR spectra of pentacyclic triterpenoids 1545 Table 1. Continued 259 254 25s 256 251 258 259 41.9 71.9 82.3 31.5 52.2 21.0 34.2 39.2 46.1 31.9 24.0 126.1 139.7 45.2 29.0 27.1 49.8 134.7 - 15.9 18.5 22.1 178.7 19.7 18.9 42.0 66.4 78.8 38.2 48.0 17.9 32.6 39.5 47.2 38.1 23.2 125.7 137.8 41.8 27.8 24.2 48.1 54.1 37.2 152.8 321 38.6 28.4 21.7 16.3 16.8 23.6 177.2 16.0 105.0 41.6 66.1 13.2 43.8 48.5 18.1 32.9 39.5 47.3 37.9 23.3 125.5 137.8 41.9 27.7 24.1 48.1 54.6 37.1 152.7 32.1 38.6 22.0 65.7 16.7 16.6 23.5 177.2 16.0 105.0 38.8 27.4 79.0 38.8 55.4 18.3 34.1 40.9 50.5 37.1 21.4 26.2 39.2 42.0 26.6 38.3 34.5 48.7 39.4 154.6 25.6 38.9 28.0 15.4 16.8 15.9 14.8 19.5 25.5 107.2 38.8 27.4 79.0 38.9 55.3 18.3 34.3 41.1 50.4 37.1 21.6 21.6 39.2 42.3 27.0 36.7 34.4 48.7 36.3 139.8 118.9 42.2 28.0 15.4 16.3 16.1 14.8 17.7 22.5 21.7 36.5 24.2 81.1 37.8 50.0 24.0 116.2 145.4 48.2 35.1 16.9 32.5 37.8 41.3 28.9 31.5 32.1 55.0 35.4 38.0 29.2 37.8 21.5 15.8 13.0 23.6 22.7 32.1 25.6 22.5 34.8 24.2 80.9 37.8 50.6 19.0 25.3 134.0 134.5 37.4 20.5 33.1 38.2 41.1 27.3 29.6 31.8 52.4 35.9 38.2 29.1 37.8 21.9 15.6 19.9 22.1 16.2 32.0 25.2 22.4 12281 Cl581 Cl561 34.8 31.9 35.6 15.9 - II441 [441 c911 c911 260 38.7 27.3 79.0 38.8 55.2 18.7 33.1 41.9 50.2 37.1 21.1 21.3 50.3 41.7 33.1 18.7 56.3 37.3 40.3 18.7 42.1 33.2 28.0 15.4 15.9 16.5 15.9 15.9 21.5 33.4 E931 Ml 262 38.3 25.4 76.0 37.5 49.0 18.7 33.4 41.5 50.2 31.2 21.2 227 46.5 39.5 33.4 117.9 147.7 37.6 41.5 18.1 41.8 36.1 28.3 22.2 16.0 16.9 17.7 29.9 20.7 33.5 38.7 27.4 79.1 38.9 55.3 18.7 33.5 41.3 50.5 37.1 21.4 22.7 46.5 39.4 33.4 117.8 147.7 37.1 41.5 18.2 41.8 36.1 28.1 15.5 16.2 16.9 17.6 29.9 20.6 33.5 38.7 27.4 79.0 38.8 55.1 18.4 33.1 41.7 50.2 37.0 21.2 21.2 50.2 41.7 33.1 18.4 55.1 37.0 38.7 21.4 79.0 38.8 28.0 15.4 16.0 16.5 16.5 16.0 15.4 28.0 38.6 25.2 78.8 38.2 55.7 18.9 45.1 39.0 57.1 36.1 25.4 27.6 62.8 138.2 122.2 24.0 49.5 38.9 29.2 27.2 19.2 37.1 15.7 19.8 28.1 15.4 56.0 13.4 27.5 14.6 c931 1931 r941 [951 263 264 S. B. MAHATO and A. P. KUNDU 1546 Table 1. Continued MS 266 267 268 2459 270 271 272 273 274 275 38.6 25.2 78.8 38.2 55.7 18.9 45.2 39.0 56.8 36.0 25.4 27.2 62.9 138.5 122.0 24.0 43.4 37.1 31.2 27.5 76.2 37.4 15.7 19.8 28.1 15.4 56.2 13.3 27.7 21.8 38.6 25.2 76.1 37.7 49.4 18.8 44.9 38.2 56.9 35.9 25.4 28.4 62.7 138.6 122.0 24.0 43.4 37.3 31.2 27.1 76.2 37.4 15.6 19.8 30.0 13.5 56.3 13.3 21.8 27.7 38.5 22.4 88.5 38.2 56.3 18.8 45.2 38.9 57.2 36.1 25.3 27.7 62.9 138.3 122.1 24.1 49.5 38.9 29.7 27.2 79.2 37.1 15.7 19.8 28.1 16.2 56.1 13.4 27.5 14.6 38.4 22.3 88.4 38.2 56.2 18.7 45.1 38.9 55.0 36.6 25.7 27.2 62.6 138.6 120.8 24.6 53.6 37.1 38.7 37.1 209.4 63.2 15.7 19.8 28.1 16.2 55.8 12.7 16.3 201.9 38.9 22.4 88.4 38.5 56.4 18.8 37.1 38.9 57.4 36.1 25.7 27.3 62.8 138.6 121.6 29.5 45.7 56.1 38.3 37.9 212.9 49.4 15.7 19.8 28.2 16.2 45.2 11.5 11.0 - 38.6 22.5 88.6 38.3 56.1 18.9 37.0 41.1 57.1 35.9 24.5 27.3 63.0 138.3 121.8 25.6 50.6 56.4 37.2 21.8 80.3 39.0 15.8 19.9 28.2 16.2 45.3 13.8 24.3 64.0 36.9 27.8 79.3 39.0 50.7 24.2 116.2 145.0 47.9 35.3 16.7 34.1 36.5 41.0 29.1 27.9 38.2 43.4 23.3 21.3 27.2 39.0 27.6 14.6 12.9 23.8 22.2 16.1 25.3 23.0 38.3 34.8 216.5 47.8 52.3 24.5 116.1 145.1 47.4 35.3 16.8 33.9 36.5 41.0 29.1 27.9 38.1 43.4 23.2 21.5 37.0 39.0 24.5 21.4 12.5 23.8 22.2 16.0 25.3 22.9 31.7 23.0 78.3 36.6 45.6 24.0 116.1 145.3 47.5 35.0 16.6 34.0 36.5 41.1 29.1 27.9 38.2 43.4 23.2 21.6 37.1 39.0 27.2 21.3 12.8 23.7 22.2 16.1 25.3 23.0 37.2 24.7 81.1 37.6 44.6 17.4 19.0 40.3 150.2 37.3 116.7 39.1 37.2 38.2 28.1 27.9 38.2 41.2 23.3 21.8 37.6 39.3 27.4 16.2 25.3 15.2 16.5 16.4 25.3 23.0 37.9 27.2 79.1 38.8 55.7 18.7 32.4 39.4 48.4 36.6 23.2 117.5 146.7 41.8 24.6 29.2 37.4 41.7 23.9 21.9 36.2 37.7 28.0 15.3 15.4 16.3 21.5 21.3 25.5 22.2 c951 c951 c951 c951 ~2291 c2291 c911 c911 c2301 c911 WI 13C NMR spectra of pentacyclic triterpenoids 1547 Table 1. Continued 276 277 278 34.6 20.2 41.5 33.7 49.1 19.5 34.5 42.0 46.0 37.2 22.7 21.8 48.6 43.3 32.1 25.9 42.8 36.6 34.8 36.0 30.6 42.1 33.9 22.0 23.1 22.6 17.2 12.1 33.5 23.0 34.4 20.2 41.5 33.8 49.2 19.4 34.4 421 45.9 37.2 22.6 22.2 48.6 43.5 30.4 17.7 55.1 42.5 35.7 36.9 43.8 217.7 33.9 22.0 23.1 22.5 16.8 13.7 25.6 26.5 33.2 29.2 79.3 39.2 48.0 19.1 34.5 41.9 45.8 36.9 22.6 21.5 48.6 42.8 31.8 19.4 49.0 38.5 34.9 35.0 35.8 76.5 29.1 16.1 22.7 22.7 17.3 13.5 29.9 18.6 ml1 [loll Poll 279 33.2 29.2 79.3 39.2 48.0 19.1 34.6 41.9 46.2 36.9 22.5 21.3 49.8 43.4 32.6 23.5 45.9 36.5 35.6 30.2 34.8 81.3 29.1 16.1 22.7 22.5 17.3 15.9 27.8 26.0 cw 280 281 31.7 33.9 220.5 47.0 43.4 20.6 33.9 42.0 47.5 36.1 22.1 21.3 48.6 42.3 31.7 19.3 48.9 38.6 34.8 35.0 35.8 76.5 29.4 19.6 23.4 221 17.2 13.6 29.9 18.5 31.6 33.8 220.1 47.2 43.3 20.6 33.8 42.0 47.4 36.2 220 22.2 48.6 43.3 30.4 17.6 55.0 42.2 35.6 36.8 43.8 217.3 29.3 19.6 23.3 22.0 16.5 13.7 25.5 26.4 WI cw 282 41.4 70.8 84.3 38.7 47.9 18.8 34.3 41.7 46.1 37.4 22.7 21.4 48.7 42.5 31.4 19.6 46.5 38.9 34.8 34.8 35.2 78.4 29.6 17.2 23.8 22.5 17.1 13.4 29.3 19.6 cw 283 41.6 71.2 84.7 39.1 48.0 19.0 34.3 41.9 46.5 37.7 22.9 21.6 48.9 426 31.9 19.4 48.7 38.5 35.1 35.1 35.9 76.6 29.8 17.3 24.0 22.6 17.2 13.6 29.8 18.6 WI 284 39.0 71.8 81.0 38.7 47.5 18.7 34.0 41.7 46.1 37.3 22.7 21.4 48.6 42.5 31.6 19.5 46.5 39.0 34.8 34.8 35.2 78.3 29.4 17.9 23.6 22.4 17.0 13.3 29.4 19.5 cw 285 286 23.9 25.7 82.5 38.3 33.4 20.2 32.7 40.3 46.7 44.9 20.8 21.7 48.5 42.8 31.6 19.2 49.0 38.5 34.9 35.0 35.8 76.5 26.4 20.2 178.2 22.1 17.1 13.5 29.8 18.5 39.2 71.9 81.0 39.1 47.6 18.9 34.4 41.6 46.5 37.5 227 24.1 48.9 43.3 32.7 20.6 54.2 44.2 40.0 27.4 47.9 148.1 29.4 18.0 23.7 22.6 17.1 15.1 109.3 19.6 Wll cw 1548 S. B. MAHATO and A. P. KUNDU Table 1. Contimred 287 288 289 290 291 292 293 294 295 296 39.0 71.8 81.8 39.0 47.6 18.7 34.4 41.4 46.6 37.5 22.8 24.0 49.4 43.0 31.8 19.5 139.7 49.8 41.4 27.4 136.2 26.3 29.3 17.9 23.6 22.5 15.0 18.7 21.2 21.8 40.3 18.7 42.1 33.2 56.3 18.7 34.3 41.0 50.5 37.5 20.8 25.2 38.0 42.8 27.4 35.6 43.0 48.3 47.9 150.6 29.9 40.0 33.4 21.6 16.1 16.1 14.6 18.0 109.2 19.3 38.7 27.4 78.9 38.8 55.3 18.3 34.2 40.8 50.4 37.1 20.9 25.1 38.0 42.8 27.4 35.5 43.0 ’ 48.2 47.9 150.9 29.8 40.0 28.0 15.4 16.1 15.9 14.5 18.0 109.3 19.3 40.2 18.6 42.1 33.2 56.3 18.6 34.2 41.1 50.4 37.4 20.7 25.3 37.2 42.7 27.0 29.2 47.7 48.7 47.7 150.2 29.8 33.9 33.3 21.5 16.0 16.0 14.8 60.4 109.4 19.1 40.2 18.6 42.0 33.2 56.3 18.6 34.2 40.8 50.6 37.4 20.7 25.5 38.2 42.3 29.6 32.1 56.5 49.4 46.9 150.3 30.6 36.9 33.3 21.5 16.0 16.0 14.7 176.3 109.4 19.3 38.7 27.4 78.9 38.8 55.3 18.3 34.3 40.7 50.5 37.2 20.8 25.5 38.4 42.4 30.5 32.1 56.3 46.8 49.2 150.3 29.7 37.0 27.9 15.3 16.0 16.1 14.7 180.5 109.6 19.4 34.0 23.2 75.5 j9.0 49.3 18.6 34.8 41.2 50.7 37.7 21.0 26.1 38.5 42.9 31.2 32.8 56.6 47.7 49.7 151.2 29.9 37.5 29.2 22.5 16.4 16.4 14.9 178.7 109.8 19.4 39.5 27.3 77.9 38.4 55.2 17.9 33.9 40.3 51.0 37.1 20.3 27.0 38.4 59.5 25.8 37.5 55.8 51.7 46.5 149.3 30.0 36.5 27.7 15.3 16.4 16.8 175.3 176.1 109.5 18.6 38.7 27.3 78.9 38.8 55.5 18.2 34.3 40.8 50.4 37.1 20.7 25.5 38.7 42.5 29.2 28.8 59.3 48.0 47.5 149.7 29.8 33.2 27.9 15.4 15.9 16.1 14.2 205.6 110.1 19.0 33.6 25.9 76.4 37.5 49.9 18.4 34.4 41.0 50.5 37.3 20.8 25.6 38.7 42.6 29.5 28.8 59.3 48.0 47.5 149.8 30.0 33.2 28.2 222 15.9 16.1 14.2 205.6 110.1 19.0 WI c1021 PO21 PO21 c2311 ~2321 Iwl PW WI Cal 1549 ‘“C NMR spectra of pentacyclic tritcrpenoids Table 1. Continued 297 298 299 300 301 302 303 304 305 306 307p 39.0 27.5 78.6 39.4 55.6 18.1 35.3 41.1 55.7 37.7 70.5 27.7 37.7 42.6 27.5 35.5 43.0 47.7 47.7 150.2 29.9 39.9 28.3 15.6 16.1 17.3 14.5 18.1 109.8 19.4 38.9 27.4 78.9 38.8 54.9 18.5 37.8 42.5 51.0 37.4 21.0 25.2 37.6 47.9 69.7 46.5 43.0 48.1 47.4 150.4 30.1 39.7 27.9 15.4 16.1 16.6 8.0 19.2 109.7 19.4 38.9 27.4 78.8 38.9 55.4 18.3 34.3 41.0 50.0 37.1 20.9 24.9 37.3 44.1 36.9 76.9 48.6 47.7 47.6 149.8 30.0 37.8 28.0 15.4 16.1 16.1 16.1 11.8 109.6 19.4 38.5 27.8 80.9 42.8 55.9 18.4 34.9 40.9 50.5 38.0 21.2 25.1 36.9 42.8 27.4 35.6 43.0 48.0 48.3 150.9 29.9 40.0 224 64.5 15.9 16.7 14.6 18.0 109.4 19.3 38.8 27.2 78.9 38.9 55.3 18.3 34.3 40.9 50.4 37.2 20.9 25.3 37.3 427 27.0 29.2 47.8 48.8 47.8 150.6 29.8 34.0 28.0 15.4 16.1 16.0 14.8 60.2 109.6 19.1 39.6 34.1 218.3 47.3 54.9 19.7 33.6 40.8 49.7 36.9 21.6 26.7 38.1 42.9 27.4 35.4 43.0 48.8 43.8 154.7 31.8 39.8 26.7 21.0 16.0 15.8 14.5 17.7 106.8 65.0 421 66.6 78.9 38.3 51.2 17.9 34.0 40.8 49.4 38.5 20.8 25.8 38.1 42.4 29.6 32.1 56.6 48.1 46.9 150.5 30.5 36.9 28.4 21.6 17.1 15.9 14.7 176.6 109.6 19.3 39.2 27.9 73.6 42.9 48.9 18.6 34.6 41.2 49.8 37.6 21.3 26.2 38.7 42.9 30.3 32.9 56.7 47.8 49.7 151.4 31.8 37.6 68.2 12.9 16.5 19.5 14.9 178.9 109.9 19.5 ~2371 C2381 Cl021 cl241 c491 c491 P391 c2401 79.0 37.5 75.7 38.9 53.1 18.0 34.1 41.3 51.4 43.5 23.8 25.0 38.0 42.8 27.4 35.5 42.9 48.3 47.9 150.8 29.7 39.9 27.8 14.9 11.9 16.2 14.4 18.0 109.4 19.2 55.7 49.1 46.8 150.4 30.4 37.0 15.6 27.3 16.0 15.9 14.5 177.6 109.3 19.2 38.7 27.5 78.9 37.3 52.5 27.5 74.7 46.9 50.5 37.3 20.9 25.3 38.7 42.8 29.4 36.1 42.8 48.3 48.2 151.0 30.0 40.2 28.0 15.4 15.1 10.2 15.8 17.9 109.3 19.4 CW PW I2361 39.0 28.1 78.5 38.7 55.2 18.1 34.2 40.5 50.4 37.9 20.7 25.4 79.0 42.2 29.5 S. B. MAHATO and A. P. KUNDU 1550 Table I. Continued 308 309 31op 311P 312 313p 314 31sp 316’ 317p 39.2 25.5 77.9 39.2 55.9 18.6 35.8 41.8 50.2 37.6 21.3 27.7 39.4 46.6 28.0 33.7 56.3 50.0 47.5 151.1 31.0 37.6 28.3 15.4 16.6 17.0 59.9 178.8 109.5 19.3 35.4 26.6 72.8 52.8 45.2 22.1 35.9 42.9 56.6 39.6 69.9 38.5 37.7 43.4 30.2 32.9 56.6 49.5 47.6 150.9 31.3 37.5 179.7 18.1 18.3 17.2 14.8 178.8 110.1 19.6 35.4 27.1 73.1 53.0 44.2 21.3 35.5 42.8 56.0 39.0 69.8 38.3 37.6 43.3 30.1 32.8 56.5 49.5 47.5 150.8 31.3 37.4 209.9 17.8 15.0 16.8 14.8 178.8 110.0 19.5 41.5 28.9 78.7 40.6 56.7 67.8 42.6 40.7 51.4 37.3 21.6 25.7 37.1 44.5 37.7 76.3 49.4 48.4 48.3 150.9 30.5 38.5 27.9 17.3 17.9 16.8 16.7 12.0 109.9 19.4 39.9 34.1 218.3 47.2 54.5 19.8 36.9 42.4 50.3 37.1 21.5 25.2 37.0 47.8 69.0 40.3 47.9 48.3 47.2 149.9 30.0 33.9 26.6 21.0 16.1 16.3 8.1 61.5 110.0 19.1 66.6 36.2 75.1 40.0 58.2 18.8 35.9 42.7 53.5 46.3 76.5 35.1 36.2 43.1 30.2 38.0 43.2 48.7 48.2 150.6 28.0 40.1 28.7 14.4 15.7 17.8 14.3 18.3 110.3 19.4 38.2 30.6 82.3 40.9 59.5 22.0 37.5 42.7 54.5 32.2 24.7 30.8 41.3 44.8 33.0 38.0 46.4 53.3 47.4 150.7 35.4 33.1 31.2 19.3 18.6 19.2 17.8 62.9 109.8 67.8 66.7 37.7 75.2 42.8 58.3 18.8 35.8 43.0 53.5 46.4 76.6 35.1 36.3 43.3 32.4 38.1 43.3 49.1 44.0 156.3 28.1 40.0 28.7 14.4 15.7 17.8 14.3 18.1 106.6 64.4 38.6 28.0 78.0 39.4 55.9 18.9 32.8 39.8 47.8 37.6 23.8 122.4 141.1 42.2 24.0 26.6 44.1 40.2 30.0 38.6 80.4 36.6 28.6 16.4 15.6 16.3 23.5 181.9 22.1 39.2 28.2 78.0 39.4 55.7 18.6 34.9 41.5 50.3 37.3 21.3 28.5 40.1 44.7 37.0 68.2 59.0 42.5 56.4 69.2 81.6 42.5 28.6 16.3 16.3 16.4 15.6 177.0 30.7 31.0 c2421 C2431 P441 C2451 c2441 c351 ~2411 c491 Cl461 318 40.5 18.8 42.3 33.3 56.5 18.8 34.6 41.3 50.4 37.6 21.0 27.1 38.1 43.2 27.5 35.8 43.2 47.8 44.9 29.5 22.0 40.5 33.4 21.7 16.1 16.2 14.6 18.2 15.2 23.0 cw ‘“C NMR spectra of pentacyclic triterpenoids 1551 Table 1. Continued 319 38.7 27.4 78.8 38.8 55.2 18.3 34.4 40.8 50.1 37.1 20.9 26.8 37.8 43.0 27.4 35.5 43.1 47.5 44.6 29.3 21.9 40.4 28.0 15.4 16.0 16.0 14.4 18.0 15.1 23.0 rP1 320 40.2 18.6 42.0 33.2 56.1 18.6 34.5 41.5 50.2 37.4 21.2 29.1 37.4 43.5 27.5 35.5 44.6 48.2 49.9 73.3 28.7 40.2 33.3 21.5 16.1 16.2 14.8 19.2 24.8 31.4 IN21 321 322 40.5 18.6 42.1 33.3 56.5 18.7 35.0 41.0 51.2 37.5 21.5 28.4 40.3 43.7 28.3 37.7 48.4 139.0 138.7 26.4 28.7 39.2 33.3 21.5 16.6 16.7 15.4 23.7 21.4 21.9 40.5 18.7 42.1 33.3 56.6 18.7 34.8 40.9 51.3 37.5 21.2 28.2 39.5 43.5 27.0 39.7 48.3 141.4 135.7 145.3 37.4 36.8 33.3 21.5 16.0 16.3 15.4 16.7 111.7 23.6 Cl021 Cl021 323 38.7 27.3 78.7 38.8 55.2 18.2 34.4 41.0 49.1 37.1 21.0 26.6 38.1 43.1 34.2 74.2 47.4 40.4 43.8 29.3 21.3 33.2 27.9 15.4 16.0 16.0 17.2 19.1 15.2 22.9 WI 324 325 326 327 328 329 - - - - - 38.8 27.3 79.1 38.0 55.2 18.4 32.9 40.1 47.7 36.9 23.4 125.1 138.8 421 23.4 26.0 38.8 54.4 39.5 39.4 30.7 35.2 28.2 16.8 15.6 15.7 69.9 23.3 21.3 17.3 40.7 38.9 37.8 61.6 18.8 34.7 41.4 50.0 45.6 23.6 25.1 38.3 43.0 27.8 35.7 42.9 48.4 48.0 150.7 29.9 40.1 32.7 26.2 16.1 16.3 14.7 18.0 109.2 19.4 55.4 224.5 45.7 59.2 18.1 33.8 41.2 48.7 41.6 23.7 24.8 38.1 42.9 27.5 35.5 429 48.2 47.9 150.4 29.8 39.9 27.7 21.0 17.5 16.2 14.6 18.0 109.3 19.3 51.5 82.3 44.4 61.8 18.6 34.4 41.4 49.9 43.4 23.6 24.9 38.2 42.9 27.6 35.6 428 48.3 47.9 150.5 29.8 40.0 31.8 19.0 17.2 16.1 14.6 18.0 109.2 19.3 51.3 81.2 41.9 61.1 19.0 34.4 41.4 49.7 40.9 23.6 24.9 38.2 42.9 27.6 32.1 42.8 48.3 47.9 150.5 29.8 40.0 25.4 25.2 17.4 16.2 14.6 18.0 109.2 19.3 65.3 84.6 43.2 56.4 19.4 33.9 41.6 44.5 49.3 23.5 25.4 38.5 42.8 29.8 32.1 56.5 49.3 46.8 150.1 30.6 36.8 30.7 18.4 18.4 16.5 14.7 176.4 109.4 19.1 c2461 Cl021 cw w21 c1021 c1021 330 40.4 18.8 42.2 33.3 56.2 18.8 33.4 41.9 50.5 37.5 21.0 24.0 49.4 41.8 33.7 22.7 54.7 44.4 41.7 27.7 48.0 32.0 33.4 21.6 15.9 16.6 16.7 15.9 22.9 23.9 W’l S. B. MAHATO and A. P. KUNDU 1552 Table 1. Continued 331 40.4 18.8 42.2 33.3 56.5 18.8 33.2 42.2 51.1 37.6 21.7 23.8 39.1 41.5 26.8 222 49.4 44.2 41.7 25.0 47.7 31.0 33.5 21.7 16.1 16.4 16.7 22.1 18.4 24.1 C2471 332 40.4 18.8 42.2 33.3 56.2 18.8 33.4 42.0 50.5 37.5 21.0 22.8 48.6 42.4 32.8 21.6 53.3 44.5 39.9 23.9 45.5 28.9 33.4 21.6 15.9 16.8 16.8 15.2 17.5 221 P481 333 40.4 18.9 42.2 33.3 56.6 18.6 33.0 42.4 51.2 37.5 21.6 24.3 43.1 40.7 33.0 20.1 51.2 44.4 44.4 26.7 48.3 28.9 33.5 21.7 16.0 22.0 16.6 227 21.7 26.7 CW 334 40.2 18.6 42.0 33.0 56.0 18.6 32.9 41.6 50.4 37.2 20.8 23.8 49.5 41.8 34.2 21.7 53.8 43.9 43.4 26.5 50.9 73.9 33.2 21.4 15.6 16.4 16.5 22.7 28.7 30.8 PW 335 40.4 18.7 42.2 33.2 56.2 18.7 33.4 41.9 50.5 37.5 21.0 24.0 493 41.8 33.6 22.0 54.2 44.5 41.6 26.3 41.0 38.7 33.4 21.6 15.8 16.7 16.2 15.9 68.1 21.6 C2491 336 337 40.5 18.7 42.2 33.2 56.3 18.8 33.4 41.9 50.6 37.5 21.1 24.1 49.5 41.9 33.8 22.6 54.4 44.5 41.8 27.2 42.8 39.6 33.4 21.6 15.7 16.6 16.5 15.9 18.1 67.7 40.4 18.5 43.8 33.6 61.1 69.3 45.5 42.9 49.5 39.4 21.1 24.0 49.8 41.9 34.3 21.9 54.0 44.0 41.3 26.6 51.1 73.9 36.8 22.1 17.1 18.3 17.1 16.1 28.7 30.9 C2491 c2501 338 339 39.6 34.2 218.1 47.3 54.9 19.8 32.7 41.7 49.6 36.8 21.6 24.1 50.0 41.9 34.4 21.9 54.0 44.1 41.3 26.6 51.0 73.9 26.6 21.1 15.7 16.5 16.9 16.2 28.7 41.1 18.6 42.8 32.6 66.5 214.0 51.7 48.5 50.9 44.1 21.6 24.0 49.8 42.4 34.5 22.0 54.2 44.1 41.5 26.8 51.2 73.8 32.7 22.0 17.2 17.0 17.8 16.3 29.0 31.2 c271 340 40.2 18.4 43.5 33.2 58.5 72.0 41.0 42.8 49.4 39.6 21.1 24.0 49.9 42.1 34.3 21.9 54.0 44.0 41.3 26.6 51.1 73.8 36.3 22.2 17.1 18.1 17.1 16.1 28.9 31.0 c271 341 40.2 18.6 41.8 33.0 53.1 29.6 73.3 47.6 50.5 37.4 20.7 24.1 50.0 43.4 38.3 22.2 53.5 44.1 41.4 26.5 51.5 73.8 33.2 21.4 15.5 11.2 17.7 16.2 28.6 13C NMR spectra of pentacyclic triterpenoids 1553 Table 1. Continued 342 40.4 18.7 420 33.2 55.8 18.9 36.8 43.5 50.5 37.6 20.8 24.1 48.9 47.1 74.8 32.6 50.5 44.2 40.9 26.9 50.5 73.7 33.3 21.6 15.8 17.4 11.8 15.8 28.7 343 39.3 17.7 36.7 47.7 51.1 21.6 32.8 42.3 50.5 36.7 20.6 23.5 49.0 44.0 41.5 66.8 60.6 45.8 43.7 27.8 49.8 74.1 179.3 16.6 16.1 16.3 18.3 17.1 26.6 34P 73.1 25.8 36.7 33.8 48.4 19.1 35.6 43.3 47.7 43.3 68.6 33.8 49.2 42.4 34.7 22.4 54.7 44.2 41.6 27.0 51.5 72.4 33.7 21.7 18.1 17.4 17.5 16.2 29.9 31.5 W’l 345 73.4 25.5 36.3 33.6 47.7 18.8 35.0 43.0 47.0 43.3 69.9 33.5 48.8 42.1 33.8 22.7 54.5 44.3 41.6 27.3 42.8 39.7 33.4 21.5 17.8 17.2 16.8 15.6 18.2 67.8 W’l 346 40.7 18.4 38.6 38.6 56.6 19.2 35.7 43.6 50.9 37.6 21.2 24.2 492 47.2 74.9 32.8 50.6 44.3 41.0 26.9 50.6 73.8 26.9 65.5 16.4 17.3 11.7 15.8 28.7 31.0 ~2511 347 40.3 18.5 43.8 33.7 61.0 68.7 44.7 43.0 49.1 39.5 21.2 23.7 49.4 41.8 33.7 21.5 53.0 43.9 47.7 78.1 56.9 72.8 36.8 21.8 17.1 18.9 16.9 17.4 28.3 348 349 350 351 38.5 26.8 80.8 37.1 54.6 21.2 34.9 43.1 50.2 37.6 20.8 23.6 49.0 45.8 76.7 28.5 50.1 43.9 40.8 23.6 50.4 73.4 28.5 21.9 15.7 15.8 12.7 16.4 27.9 31.0 40.6 20.5 38.0 43.7 56.3 19.2 35.1 43.1 50.4 37.8 21.1 23.9 49.1 45.9 76.9 28.6 49.7 43.9 40.8 26.8 50.2 73.5 28.6 178.0 13.6 17.1 12.7 15.8 28.6 31.0 38.4 19.4 42.5 33.7 57.9 71.5 40.2 42.2 49.2 51.2 21.9 24.1 49.9 42.2 34.8 21.9 53.9 44.0 41.3 26.6 50.9 73.6 35.7 23.5 175.5 15.7 16.7 16.3 28.8 31.0 38.5 26.7 78.2 39.0 60.1 67.8 42.7 42.6 49.1 38.9 20.6 23.0 47.2 43.4 45.4 67.3 57.3 46.5 39.5 25.9 51.9 70.9 30.0 16.1 15.9 16.7 17.5 17.9 30.8 22.6 c2521 ~2511 [571 C2531 S. B. MAHATO and A. P. KUNDU 1554 Table 1. Continued 352 353 354 355 356 357 358 359 360 361 45.4 24.6 49.9 32.5 51.3 20.0 32.1 42.1 50.5 38.0 22.1 24.6 49.0 42.2. 34.6 22.1 54.2 44.3 41.5 26.6 51.1 73.9 31.1 21.8 17.0 16.3 16.3 23.2 29.0 30.9 40.4 18.8 77.2 33.4 56.2 18.8 34.4 41.9 50.5 37.5 21.0 24.0 49.4 41.8 33.7 22.1 54.7 44.4 43.3 81.8 48.8 32.1 33.5 21.7 63.2 16.6 16.7 16.0 21.6 23.7 40.3 18.7 42.1 33.2 56.1 18.5 33.5 41.4 50.6 37.4 20.9 24.2 44.8 40.5 34.0 119.4 147.6 43.6 43.2 27.0 51.3 35.0 33.4 21.6 16.0 16.9 18.0 19.3 21.5 22.0 40.4 18.7 42.2 33.3 56.2 18.8 33.3 41.9 50.5 37.4 21.0 23.8 48.1 41.5 32.9 23.3 56.0 44.4 39.1 28.4 135.6 120.6 33.4 21.6 15.9 16.7 16.6 14.7 19.4 22.8 40.4 18.8 42.2 33.3 56.6 18.6 33.2 41.7 51.0 31.6 21.5 24.6 42.8 42.1 32.2 25.8 49.4 44.3 41.4 28.4 140.4 122.7 33.5 21.7 16.1 20.7 16.6 23.0 21.0 21.5 40.4 18.7 42.1 33.2 56.2 18.7 33.3 41.8 50.9 37.4 21.2 24.0 49.2 41.9 31.8 19.8 135.7 49.7 41.6 27.4 139.8 26.3 33.3 21.6 16.2 16.3 14.9 19.1 21.2 21.9 40.4 18.7 42.2 33.3 56.2 18.7 33.3 41.9 50.4 37.4 21.0 24.0 49.5 42.1 33.7 21.7 54.9 44.8 41.9 27.4 46.5 148.7 33.4 21.6 15.9 16.7 16.8 16.1 110.7 25.0 39.6 34.2 218.1 47.4 54.9 19.7 32.6 41.6 49.7 36.8 21.5 23.9 48.7 42.3 32.6 20.8 53.8 44.2 40.2 21.3 47.9 148.1 26.6 21.3 15.8 16.5 16.5 15.2 109.6 19.7 40.4 18.8 42.2 33.3 56.2 18.7 33.4 42.3 50.5 37.5 21.0 24.0 48.7 42.0 32.7 20.9 53.9 44.3 40.2 27.4 48.0 148.2 33.4 21.6 15.9 16.7 16.8 15.1 109.4 19.7 40.3 18.7 42.1 33.2 56.1 18.7 33.2 41.9 50.3 37.4 20.8 24.8 49.2 42.0 33.2 20.2 54.4 45.3 41.7 26.1 39.1 144.0 33.4 21.6 15.6 15.8 16.1 16.7 122.3 169.7 c2541 I2551 C2481 c2481 WV C2481 C2481 Cl961 C2481 C2561 13CNMR spectra of pentacyclic triterpenoids 1555 Table 1. Continued 362 363 364 365 366 361 368 369 370 371 372 39.5 18.2 40.7 33.0 58.2 71.9 40.0 42.5 49.1 39.3 20.7 23.2 49.6 41.9 33.3 20.2 64.1 44.4 43.3 37.0 83.5 149.1 36.1 22.0 16.9 17.7 16.4 15.2 112.0 38.5 27.0 78.7 39.4 60.8 68.9 40.2 42.5 50.0 39.2 21.6 222 46.7 46.0 119.8 134.5 138.7 47.9 45.7 28.2 140.8 26.5 30.9 16.7 15.5 18.8 17.5 20.4 21.6 21.3 38.8 27.4 79.0 38.8 55.3 18.2 33.7 40.4 50.7 36.8 21.4 23.3 45.2 41.0 32.1 120.0 139.2 37.1 38.3 35.2 32.5 46.2 28.1 15.4 16.2 16.8 17.5 16.3 32.4 24.6 38.7 19.1 42.5 33.2 48.1 24.6 116.3 145.4 51.6 35.6 16.1 32.5 36.1 41.6 30.4 36.4 42.9 54.2 20.1 28.3 59.7 30.7 32.9 21.2 12.9 24.1 21.1 14.1 22.1 23.0 38.7 19.2 42.5 33.2 48.1 24.7 116.9 144.9 51.6 35.6 16.3 31.8 36.5 41.6 29.8 33.1 54.1 56.3 21.7 30.9 60.2 31.7 33.0 21.3 13.0 24.5 19.5 176.2 22.2 23.0 37.3 19.3 41.8 33.3 51.1 18.9 27.0 134.9 133.7 37.8 20.4 27.0 36.7 41.1 30.4 36.0 43.0 52.8 19.4 28.4 59.8 30.8 33.3 21.8 20.3 22.1 15.8 14.6 22.1 23.0 35.5 28.0 79.0 38.9 50.5 20.4 27.2 134.3 134.3 37.6 19.1 30.3 41.1 36.7 27.0 35.9 42.9 52.8 18.9 28.4 59.8 30.8 28.1 15.5 22.1 22.1 15.8 14.6 22.8 22.1 37.2 19.3 41.8 33.4 51.2 19.3 26.8 134.7 133.4 37.8 22.2 28.4 37.0 41.0 29.1 32.7 54.1 54.6 22.1 30.0 60.3 31.8 33.3 21.8 20.2 19.4 14.0 176.5 22.1 22.9 34.1 27.9 78.6 38.4 45.2 28.6 64.2 158.0 142.6 38.6 199.9 50.8 43.3 37.5 27.3 35.8 42.7 51.9 20.3 28.0 59.5 30.7 28.2 16.1 18.0 23.9 19.7 13.9 22.9 22.1 33.7 27.2 78.3 39.0 48.0 36.9 200.7 142.2 160.2 39.5 65.9 42.1 39.4 40.5 25.6 35.7 42.3 51.1 20.2 28.0 59.6 30.6 27.4 15.0 20.0 23.7 16.9 14.6 22.8 21.9 34.4 27.4 78.1 38.6 48.0 36.7 199.9 151.9 156.0 38.2 201.1 51.1 38.5 41.6 26.4 35.8 42.6 50.8 20.4 28.9 59.5 30.7 27.5 14.9 17.9 21.8 20.8 14.0 22.9 22.0 CW c591 C2581 C2581 C2581 W’l C2581 C2591 II2591 C2591 PHYTO 37-6-F 1556 S. B. MAHATO and A. P. KIJNDU Table 1. Continued 373 374 375 376 377 378 379 380 381 382 41.5 19.6 42.5 33.6 44.9 18.0 19.6 40.0 151.7 37.7 115.7 36.8 36.8 38.1 29.4 36.3 43.0 52.1 20.2 28.3 59.7 30.8 32.8 21.7 25.1 15.9 15.4 14.0 22.2 23.0 40.5 20.6 42.2 34.1 45.9 20.7 18.9 39.5 142.9 48.5 121.2 36.6 36.7 38.0 29.3 36.0 42.9 51.9 20.1 28.2 59.6 30.8 31.4 19.8 176.1 15.6 15.5 14.0 22.1 23.0 41.5 19.6 42.5 33.7 44.9 18.1 19.6 40.2 151.6 31.7 115.5 35.5 37.1 38.1 29.7 33.2 54.2 54.0 21.9 31.1 60.3 31.7 32.8 21.7 25.0 15.5 14.1 171.0 22.1 22.9 39.1 28.0 79.0 39.3 44.1 19.0 17.8 39.8 153.4 40.6 120.9 75.9 42.2 37.6 29.5 35.9 43.6 51.4 23.6 28.7 58.9 30.8 27.5 15.7 25.1 15.1 11.3 14.2 22.2 23.1 36.3 28.0 71.4 36.9 52.0 36.4 75.1 47.9 117.0 39.2 121.1 24.5 43.9 57.0 33.0 31.9 40.9 39.4 74.5 30.3 57.3 27.8 21.9 15.4 22.9 15.5 21.7 16.8 16.1 16.5 46.9 68.7 79.9 53.0 41.8 20.2 17.6 39.6 149.6 39.3 117.3 36.7 36.8 37.8 29.3 36.2 43.0 52.0 20.2 28.2 59.7 30.8 177.1 11.8 26.6 16.0 15.4 14.0 22.2 23.0 23.8 21.9 40.9 34.8 145.6 117.6 34.3 51.8 35.7 44.3 25.9 29.2 38.7 39.4 29.2 35.5 42.9 51.9 20.0 28.4 60.1 30.8 30.0 29.8 16.1 17.9 15.1 15.8 22.0 22.9 23.8 21.8 40.8 34.9 145.4 117.4 34.6 51.5 35.7 44.3 26.0 28.2 38.8 39.3 29.9 30.9 54.1 54.0 21.8 31.8 60.7 31.7 29.8 29.7 16.2 17.6 13.6 176.8 221 22.9 36.6 34.8 217.1 47.6 53.2 26.3 22.6 41.0 147.4 39.3 115.6 36.1 36.7 38.2 29.6 35.8 42.8 52.0 20.1 28.2 59.6 30.7 22.v 25.5” 21.6 16.9 15.3 13.9 22.1 23.0 42.5 74.1 79.5 40.2 48.9 33.8 71.9 49.1 146.6 41.0 117.5 37.2 38.3 39.9 32.1 37.2 43.8 59.2 70.3 41.9 57.8 30.7 29.0 17.4 22.6 17.1 17.0 15.9 22.2 23.2 66.9 84.8 39.4 48.7 33.6 71.8 49.2 146.7 40.8 117.6 37.3 38.3 39.9 32.1 37.2 43.8 59.2 70.4 41.9 57.8 30.7 28.7 18.0 23.0 17.1 17.0 15.9 22.2 23.2 C2581 mu C2581 WI C2471 C2581 P581 E2621 iI ~271 14’51 383 46.6 ‘“C NMR spectra of pentacyclic triterpenoids 1557 Table 1. Continued 3w 38!F 3w 387p 388 389 390 31.0 28.8 78.0 39.5 49.1 33.9 12.2 49.5 147.6 39.9 117.1 31.3 38.3 39.9 32.1 31.2 43.8 59.3 70.4 41.9 57.8 30.7 28.1 16.4 22.1 17.1 17.0 16.0 22.2 23.2 46.0 69.2 83.6 39.7 49.1 33.9 721 49.2 147.2 41.0 117.3 31.3 38.4 40.0 32.1 31.2 43.8 59.3 70.4 41.9 57.8 30.7 29.3 17.5 23.1 17.1 17.0 15.9 22.2 23.2 31.0 28.7 78.0 39.4 48.5 33.9 72.1 49.4 147.7 39.8 117.3 37.6 38.4 40.2 33.0 33.3 49.0 60.0 10.1 43.4 58.1 30.7 28.7 16.4 22.0 17.2 16.7 62.9 23.4 23.4 46.0 69.2 83.6 39.1 49.1 33.9 72.1 49.3 147.4 41.0 117.5 31.1 38.5 40.3 33.1 33.4 49.1 60.1 70.1 43.5 58.2 30.8 29.3 17.5 23.2 17.3 16.6 63.0 23.5 23.6 33.4 29.3 79.3 39.2 46.5 22.1 30.5 41.5 48.2 37.2 19.0 26.4 130.8 42.6 26.5 35.0 42.7 142.0 27.5 37.6 59.2 29.8 29.1 16.1 18.0 23.0 26.1 25.1 23.0 37.1 33.8 220.0 46.9 44.1 22.3 30.4 41.6 47.1 36.4 20.4 26.2 131.3 42.3 26.4 34.4 42.8 141.8 21.5 31.1 59.1 29.7 29.3 19.7 17.9 23.5 26.1 23.5 23.0 23.0 30.8 28.8 76.6 41.4 140.6 121.5 22.1 44.5 34.5 37.2 30.6 30.7 39.3 39.6 29.4 32.1 39.9 54.5 48.2 36.0 21.9 424 21.3 25.4 28.8 15.4 16.8 33.4 21.3 23.4 C2621 w21 P521 W21 C2631 iF41 391 39.4 31.3 39.4 49.4 19.0 421 50.3 37.9 41.9 24.3 36.1 37.9 33.9 23.3 26.4 15.2 21.6 18.7 26.4 15.2 21.5 20.4 37.O(C3a) 33.7(C6a) 37.3(C7a) 44.1 (C8a) 49.7(C12a) 49.5(C13a) 40.3(C13b) 54.1(C13c) Me CHz CH C v-w *The data are for CDCl, solns unless indicated by supercripts D@MSO-d,& a, b, c within a vertical column may be reversed. P(C,DsN) 392 394 3w’ 15.3 15.5 16.8 19.0 19.6 24.4 25.2 28.0 17.2 18.8 27.2 30.4 32.5 33.4 37.8 38.5 41.8 34.1 34.5 49.5 55.5 63.5 79.1 118.3 29.7 38.0 38.8 39.1 50.3 157.5 13.1 14.7 17.0 17.3 23.0 24.2 25.8 27.6 16.8 22.2 24.2 27.1 28.5 31.1 35.3 35.9 37.0 33.6 35.2 48.6 50.3 56.7 19.3 116.9 35.2 37.0 38.5 40.5 46.8 145.4 39.1 28.3 71.9 39.2 54.5 19.5 41.1 40.4 55.4 38.1 22.9 124.0 1320 140.0 125.4 42.4 45.2 39.3 29.0 38.7 80.2 33.0 28.6 16.4 16.6 19.0 23.8 180.3 21.8 68.9 Cl051 Cl051 [X51 and M(CDsOD). S. 1558 B. MAHATO and A. P. 3&OH, p-amyrin 36-OH. 28-COOH. oleanolic acid 310x0.iS_COQG 3p-OH. 27-COOMe 3a-OH. 27-COOH 3fSOAc. 29-COOMe 3p-OH. 30-COOMe 3@-OH, 30-COOMe. 18a-H 3fhOH. 23-CHO. 28-COOH 30 31 32 33 gypsogenin 10 11 12 3a-OH. 29-CHO, 27-COOH 3a-OH. 27.29~COOH 3@OH. 23. 28-COOH, gypsogenic acid 38-OH, 27, 28-COOH. cincholic 40 acid 41 14 3&OH. 28,29-COOH, serratagenic 42 acid 43 15 38-OH.28. 30-COOMe, methylserjanate 44 16 38, lla-OH 17 3&15a-OH 45 18 38, 16fkOH. maniladiol 19 38,22@OH, sophoradiol 203B-OH, 2%oxo.29-COOMe, subprogenin 046 213B-OH, 22-oxo,3O-COOMe, snbprogenin C 22 38.24-08 47 23 38,28-OH, erythrodiol 24 38.30-OH 48 25 38.30-OH. 18a-H 49 26 38.24-OH, 228: 30 epoxy 50 27 la, 38-OH. 29-COOH, imberic acid 51 28 2a, 38-OH, 28-COOMe, methylmaslinate 52 29 2a, 3a-OH, 28-COOMe, 53 methylepimaslinate 54 55 13 Acetylation shifts Acetylation of the hydroxyl group accentuates the a-effect and diminishes the B-effect, the latter being attributed to the y-effect of the acetyl moiety; the y-effects, however, remain more or less unaltered. For example, in triterpenes 2 and 6, C3, C2 and C4 resonate respectively at 78.7, 27.4, 38.7 and 81.1 (+2.4), 23.6 (-3.8), 37.7 (- 1.1). It is a general tendency that the substituent effects depend somewhat on the degree of substitution of the carbon under consideration, e.g. methine carbons show smaller effects than methylene carbons, while quaternary carbons are even less affected. However, there are some exceptions to this generai observation. KUNDU 3/3,6fbOH, 28-COOMe. methylsumaresinolate 3a. 68-OH, 28-COOMe. methyl-3-episumaresinolate 38. 16a-OH. 28-COOH. echinocystic acid 38, 19a-OH. 28-COOMe, methylsiaresinolate 38,21a-OH, 28-COOMe 38.21 f&OH, 28-COOMe. methylmachaerinate 3&22@-OH, 29-COOMe 38,23-OH, 28-COOH, hederagenin 38.24-OH, 28-COOH, epihedaragenin 3a, 24-OH. 28-COOMe 38.25OH. 28-COOMe 38,27-OH, 28-COOH 38.29-OH. 28-COOH 3;; 29-OH; 27-COOH 38,30-OH, 28-COOMe. methylqueretaroate 38, 16fSOH, 28 --w 218lactone, acacic acid lactone 38. 16a-OH. 23-CHO, 28-COOMe, methylquillalate 38, 19c+OH, 23, 28-COOH, ilexolic acid B 38.23-OH, 28-COOH, 29-COOMe 38,23-OH, 28.3~COOH 3a, 24OH, 28.3~COOMe 3f4,30-OH, 28 + 218lactone. macherogenin 38,9a, 1 la-OH 38, 15a, 24-OH 38, 168, 28-OH, longispinogenin 38, 16o. 28-OH, primulagenin A Cl8 Conjiguration The configuration at Cl8 in an oleanene triterpene, namely whether the oleanene triterpene belongs to the 18cr- or 18/Gseries, can be recognized by inspecting the chemical shift of some characteristic carbons [76]. The geometry of the D/E ring junction does not cause a significant alteration in the shielding of carbons in the A and B rings. In ring C (cf. triterpenes 7,8,24,25), Cl2 and Cl3 of the 18a-series exhibit diagnostically valuable upfield shifts of about 5 and 2.5 ppm, respectively, with respect to the corresponding carbons of the 18B-series. For C12, the upfield shift is attributed to the strong steric interaction with C19. In ring D, Cl6 exhibits a significant 13CNMR spectra of pentacyclic triterpenoids 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 88 81 82 83 84 85 3g. 21&22p-OH, cantoniensistriol 3&21a, 24-OH, yunganogenin C 3g. 2 l&24-OH. kudzusapogenol C 3g. 22s. 24-OH, soyasapogenol B 3&22a. 28-OH [email protected],28-OH Pa, 38. 19a-OH, 28-COOH, arjunic acid 2a, 3&23-O& 28-COOH, arjunolic acid 38.68.23-OH, 28-COOH 2&3@, 23-OH, 28-COOH. bayogcnin 2a. 3a. 23-OH. 28-COOMe 2a; 3a; 24-O< 28-COOMe 38, 16a, 28-OH, 30-CHO. cyclamiretin D 36.24.3O-OH. 22-0~0. wistariasatmnenol A 28,3fl. 27-OH. 23.28-COOH, p&enegenin 26.38.23-OH. 28-COOH. 3O-COOMe 3’8; 2i &30-OH, 28 4.15f3lactone. bridgesigenin A 38.2 1p. 226.24-OH. soyasapogenol A 28.38. 168,23-OH, 17-WHO. viscogenin 3g. 24.29-OH. 22-0~0, subprogenin A 38. 16&23.28-OH 3&16a, 23.28-OH 3&22fJ,24.29-OH 3&228,24.30-OH. wistariasapogenol B 2a, 3@,6@. 23-OH, 28-COOH, terminolic acid Pa, 38,7a, 23-OH, 28-COOH. bellericagenin A 2&3&6& 23-OH, 28-COOH. protobassic acid 38,6j3,19a, 23-OH, 28-COOH 2f3.38. 16a. 23-OH. 28-COOH, polygalacic acid 2a. 38. 19B. 23-OH, 28-COOH, tomentosic acid downfield shift (N 11 ppm) caused by the absence of two y-gauche interactions with Cl9 and C21 in the triterpenes of 181x-series.The chemical shift of Cl8 is also sensitive to the change of absolute configuration at C18. The signals appear at about 7-8 ppm higher field in the 18a-series than in the l@-series. This is ascribed to a new y-gauche interaction with the C27 methyl group. The C28 signals in the 18a-series appear at a higher field of about 11 ppm, in comparison to those of the 18gseries, due to two y-gauche interactions with the axial hydrogens at Cl9 and C21. Olean-12-enes Except for those cases having substituents in close proximity to a 12 : 13 double bond, the chemical shifts of Cl2 and Cl3 of olean-l2-enes are N 122 and 145 ppm, respectively. The presence of a carboxyl group at Cl4 (y and 6 to Cl3 and C12, respectively), has a pronounced effect on the olefinic carbon resonances. The chemical shifts of Cl2 and Cl3 in olean-12-enes e.g. cincholic acid (13), appear at 125.9 and 138.1 ppm, respectively, i.e. Cl2 is deshielded by 3.8 and Cl3 is shielded by 5.3 ppm. The corresponding resonances for quinovic acid (211), be- 92 93 94 95 96 97 98 !J9 2a. 36.19a. 23-OH, 28-COOH. arjungenin 38, 19a. 2 l&23-OH. 28-COOH, ilexolic acid A 2a. 3&23.24-OH, 28-COOH. belleric acid 38.23,27,29-OH, 28-COOH 3&21~.22& 24-OH, 29-COOMe. kudzusapogenol B methyl ester 38,21& 224~.JO-OH, 28 W 15p lactone, bridgesigenin B 38, 16a, 2 1p. 22a. 28-OH, barringtogenol C 38, 16a. 22a, 23,28-OH 38.2 1f3,22fJ, 24.29-OH, kudzusapogenol A 38, 24,29,3O_OH. 22-0~0. subprogenin B 2;. 3&19a. 23.24-OH, 28-C&DK bellericagenin B 2g, 3&6f3,16a, 23-OH. 28-COOH 38.15a. 16a. 21&22a, 28-OH 38, 16a, 2 1B. 22a. 24.28-OH. protoaescigenin 100 101 102 103 104 3p-OH. germanicol 3@OH. 28-COOMe, methylmorolate 1p, S@-Oq anagadiol 38, 1l&OH 3&16@OH 86 87 88 89 90 91 1559 longing to the urs-1Zene series, appear at 129.1 and 134.2 ppm, i.e. Cl2 is deshielded by 3.6 and Cl3 is shielded by 3.8 ppm. Dawidar et al. [77] reported “C data of methylmanevalate and methylazizate containing carbomethoxy group at C14. The chemical shifts of Cl2 and C13. however, have normal values of the oleanolic acid type and show no shielding effect of a carboxyl group. Evidently a reinvestigation on the structures of these two triterpene acids appear to be necessary. The presence of a hydroxyl group at C27 can also be detected by the characteristic downfield ( - 6 ppm) and upfield shifts (- 5 ppm) for the olefinic Cl2 and C13, respectively (cf. triterpenes 41 and 70). Olean-18- and 13(18)-ems In olean-18-ene-triterpenes, e.g. in germanicol(100) the Cl8 and Cl9 olefinic carbons resonate at 142.8 and 129.8 ppm, respectively. The presence of a C28 carbomethoxy group, as in triterpene (lOl),which is y to Cl8 and 6 to C19, shields the former by 5.9 ppm and deshields the latter by 2.5 ppm. The 13C resonances of abrisapogenol G (106) have been assigned by the use of HMBC spectroscopy [59]. S. B. MAHATOand A. P. KUNDU 1tX 38- OCHO. 106 3f3,22f3iOH, abrisapogenolG 107 3/3-OH. 28 + 208 lactone, 30-nor. larreageninA 108 3&16cc-OH. 23-CHO. 28-COOH 109 110 111 112 113 114 115 119 3g-OH. 28-COOH 120 121 28.3@,23-OH, 28.38,23-OH, butyraceol 28-COOH, bassic acid 3fl-OH 3&228-OH, 29-COOH. yunganogcninF 38, 16&28-OH. saikogeninC 38,16a, 28-OH 3&22~.24_OH. yuaganogeninD 38. 168,23,28-OH. saikogenia A 38. 16a. 23.28-OH ‘\ / 116 117 118 3f3-OH 38.168.28-OH. saikogenio B 38, N&23.28-OH The olefinic Cl3 and Cl8 resonate at 132.8 and 133.5 ppm, respectively. Where a 28-COOH is present, as in triterpene (108) [78], the Cl3 and Cl8 resonances am observed at S 126.3, 135.6 ppm, respectively. 122 38. 16a-OH. At’, rotundiogeninA 123 3$ 16&OH A” ’ saikogeninE 124 38: 23-OH. htt 125 38, 16a. 23-OH, A”, saikogeninG 126 38. 16@,23-OH. A”, saikogeninF 127 38. 16a. 22~. 23-OH, A” 128 38. 16a-OH, protoprimulageninA 129 38. 16~OH, 3OCHO. cyclamiretinA 130 38, 16a-OH. 22@OAc, 30-CHO. androsacenol 131 38,16a, 23-OH, anagalligeninB 132 3&23-OH. 16-0x0 133 38,16a-OH. 22a-OAc 134 38, 16a. 2la,22a-OH Okana-11, 13(18)-; 9(11), 125 5,12-&nes Although the presence of oleana-11,13(18)-diene (heteroannular) and oleana-9( 1l), 12-diene (homoannular) systems may be detected from their characteristic UV “C NMR spectra of pentacyclic triterpenoids absorptions, they also display characteristic olefinic i3C resonances. For example, saikogenin C (111) [79], containing the heteroannular diene skeleton, exhibit Cll, C12, Cl3 and Cl8 resonances at 127.1, 125.8, 136.6 and 133.4 ppm, respectively. In saikogenin B (117) [79], which contains a homoannular diene system, the resonances of C9, Cll, Cl2 and Cl3 appear at 154.9, 116.1, 121.2 and 145.3 ppm, respectively. In oleana-12, 15diene triterpenes, as in 119 [SO], C12, C13, Cl5 and Cl6 resonate at 123.0,141.7,129.9 and 134.9 ppm, respectively. The chemical shifts of C5, C6, Cl2 and Cl3 in oleana5,12-diene, e.g. in bassic acid (121),are observed at 148.7, 120.9, 123.4 and 145.1 ppm, respectively. Consequently, after identification of the oleanene skeleton, e.g. by determination of the number of quaternary carbon atoms (six for oleanene) by the application of spectral editing techniques, it is possible to tentatively locate the position of the double bond. 13B,28-Epoxy oleanenes There are some triterpenes which contain a 13/?,28epoxy-ll-ene system (triterpenes 122-127) and some others which possess the 13&28-epoxy oleanane skeleton (triterpenes 128-134). The discernible “C resonances for the former are those of olefinic Cl 1 ( N 133.0 ppm) and Cl2 (- 130.0 ppm) and quatemary Cl3 (~85.0 ppm), attached to an oxygen atom. The fingerprint resonance of the latter type of triterpenes is exhibited by the quaternary Cl3 at about 86.5 ppm. Taraxeranes (D-fiiedooleananes) Assignment of 13C signals of a number of triterpenes e.g. 151-157 have been reported. All of these triterpenes contain a 14: 15 double bond. While Cl4 and Cl5 olefinic resonances of taraxerol appear at 6 158.1 and 117.0, respectively, these resonances in myricadiol (153) and acetyl aleuritolic acid (157) appear at 158.7, 116.8 and 160.5, 116.8, because of 6 and y-effects of the 28-OH and 28-COOH, respectively. Sakuri et al. [Sl] first assigned the “C resonances of taraxerol (151) and myricadiol(l53). However, Merfort et al. [82] subsequently partly reassigned the signal of 153 using a standard and an inverse H, C-COSY experiment. According to their reassignment, the values bearing the same superscripts under 151, 153 and 156 (Table 1) should be reversed. Inspection of the 13C values of acid IS6 reveals that the values for C7 and Cl9 should be reversed in the light of the above reassignments. D: C-Friedooleananes Some triterpenes of this series, all containing an 8 : 9 double bond, have been assigned “C resonances. The 13C values of a few representatives (159-163) are shown in Table 1. Although multiflorenol (3B-hydroxy D: Cfriedooleanane-7-ene), a triterpene of this series containing a 7 : 8 double bond, has been isolated long ago [83], 1561 the 13C resonances of its acetate (158) have recently been assigned (Table 1). D : B-Friedooleanane triterpenes Dendropanoxide (165) is a triterpene oxide having a D: B-friedooleanane skeleton, isolated from Dendropanax trifidas [84]. The 13C NMR signals of 165-167 (Table 1) were assigned by 2DNMR techniques, including H-H-C relayed r3C--lH correlation spectra [SS]. Friedelane (D : A fiiedooleanane) triterpenes The occurrence of a number of triterpenes of this series has been reported and several groups of workers have assigned the 13C resonances of a variety of triterpene derivatives of this series, making use of various recent assignment techniques. The 13C values of some representatives (168-204) are shown in Table 1. It may be pointed out that in the earlier publications there were severe inconsistencies in the assignments of the “C signals of friedelin (173). Subsequently Gunatilaka et al. [86], Patra et al. [87] and Gottlieb et al. [88] reassigned the “C values of friedelin (173) and several of its derivatives. Inspection of their new data reveals a difference in the 13C values of C26 and C27. While Patra et al. [87] assigned the higher field signal to C26, Gottlieb et al. [88] assigned this signal to C27. It is evident from the assignments of the signals of dendropanoxide (165), which have been carried out by 2DNMR techniques, that the higher field value should be assigned to C27. Accordingly, the values bearing the same supercripts under the triterpenes 171, 172, 176, 181, 187 and 198 should be reversed. As mentioned earlier, the 13C resonances of three friedelane triterpenes (174, 175 and 195) from Caloncoba glauca were assigned by the use of HMQC and HMBC techniques. Mimusopanes (5,10-fifedooleananes) Two triterpene acids (205 and 206) possessing this rearranged oleanane triterpene skeleton have recently been isolated from the seeds of Mimusops elengi and their 13C resonances assigned (Table 1). Urs-12-enes The olean-12-ene and urs-12-ene triterpenes may be distinguished by inspection of the resonances of the olefinic carbons alone. It is evident from Table I that Cl2 is deshielded by about 2 ppm and Cl3 is shielded by 5 ppm in urs-12-enes, in comparison to those of corresponding carbons in olean-12-enes. The difference between the two values has been rationalized by the presence of a lgjI(equatorial)-methyl group which is in close proximity to the double bond (7 and 6 to Cl3 and C12, respectively), in urs-12-enes L-891.However, if an olean-12-ene triterpene contains a 19/I(equatorial)-hydroxyl group, e.g. tomentosic acid (85) [90], resembling 19b-methyl in urs-lZenes, the resonances of Cl2 and Cl3 in the former S. 1562 B. MAHATO and A. P. K~JNDU 152 38,7a-OH 153 38.28-OH. 154 3;; 28-OH; mvricadiol is~myricadiol 155 3-0x0.28-OH 156 3-0x0,28-COOH 157 3p-OAc, 28-OH. aeetyl aleuritolic acid 135 3a-OH, 136 137 138 139 140 141 142 143 144 145 146 147 lla: 12a-epoxy, 28 --t 136 &tone 2a, 38,23-OH. 1la: 12a-epoxy, 28 ---) 138 &tone 24,28-dinor, 18a-H 3-0~0, 28-nor. Al2 3#l, 17fSOH.28-m, Al2 3&OAc. 17&OH, 16-0x0.28-nor, Al2 38. l&x, Zig, 23-09 28-nor, Al2 38.21 &oAc, 16-0x0.23-CHO.28-1~. Al2 3&oH. 16-0x0.28-nor, Afiz17,marageninII 2&3fl, 23-OH. A‘2’7, 28-nor, dchyahsapogenin 3a. 19a. 23.29-OH. A1621,28-nor 3~&128-bOOH,30-nor, Ar2*lg 3f%,l6f3,2Of&OH, 28-COOH.Ai2, 30-1~~9 158 3@OAc. A7, multiflorenyl acetate 159 3fLOAc, An. isomultiflorenyl acetate 160 29-OH. A* 161 29-COOMe, As 162 3&OAc. 29-09 A* 163 3p-OH. 29-COOMe.A*, pfameric acid methylbryonolatc 148 3@OAc. 13p-OH, 12-0~0, rubiprasin B 149 3&OAc, 13fl.15a-OH. 12-0~0,rubiprasin A 150 3p-OAc. 19a-OH, 28-COOH,Nbiprasin C 164 165 166 167 151 3-0~0.As, glutinone 3: lo-epoxy. delldrqmoxide 3: 10 epoxy. 7a-OH 3: 10 epoxy, 22p-OH 3p-OH. taraxerol are comparable to those of the latter. Moreover, the ring E carbon atom, which shows the highest difference in chemical shifts between the two series, is C18, whose resonance is upfield shifted ca 11.5 in olean-1Zenes due to a shielding effect from the 208 (axial)-methyl group, which is y-gauche disposed to C18. Friedoursanes The 13C resonances of two friedoursanes e.g. 3/?acetoxy-D : C-friedours-7-ene (bauerenyl acetate) (258) and 3B-acetoxy-D : C-friedours-8-ene (isobauerenyl acetate) (259) have recently been assigned [91] (Table 1). Ursa-dienes Gammaceranes Triterpenes containing Ursa-9(11),12-,12,18- and 12,20diene systems have been isolated and rheir 13C resonantes assigned. The presence of such systems is indicated by the characteristic olefinic 13C resonances (cf. triterpenes 250, 251 and 254). Gammacerane triterpenoids occur very rarely in plants. Tetrahymanol (260) was first reported from the Protozoan Tetrahymena pyrijbrmis [92]. Recently, some gammacerane derivatives have been isolated from the roots of Picris hieracioides subsp. japonica by Shiojima et 13C NMR spectra of pentacyclic triterpenoids 199 200 201 202 203 204 1563 3-oxo,21a, 26-OH 3-0x0,28,29-OH 3-0x0,28,30-OH, maytenfoliol 1,3-dioxo, 15~OH 3. 12-dioxo, 27-OH. pristimeronol 1, Jdioxo. 25:26 epoxy 23 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 1% 191 192 193 194 195 1% 197 1% 3&oH, 27CoOH. trichadenic S5dB 27-OH 28-OH 29-OH 3O-OH 3-0x0, friedelin 3-0x0,27 --t 15~ lactone, 30-nor, Am @“. caloncoba lmone 3-0x0, il H,27-+15a1actone, 30-nor.A P GCJ) 7-0x0 3-0x0,26-nor, Al4 3fSOH, 26-nor, A*’ 22-0x0 25-COOMe 2a. 3a-OH 3f3XX-I.7-0x0 3-oxo.lSa-OH 3-oxo,16@OH. pachysonol 3-0x0,28-OH, canophyllol 3-oxo.17a-OH. 28-1~. maytensifolin A 3-oxo. 29-OH 3-oxq 27 --t 15a dide.. odoktone 3a. 21 a-OAc 3&oH, Zla-OAc 3.7dioxo 3.15-dioxo 3. E-dioxo, maytensifolii B 3,224iioxo 3-oxo,27-COOH, trichadonii acid 3-oxo.28-COOH 3-oxo,2!XOOH, polpunonic acid 3-oxo.3wXXX4e al. [93] and from the stem-bark of Abies ueitchii by Tanaka and Matsunaga [94]. The 13C assignments of four triterpenes (260-263), including two containing 16: 17 double bond, are shown in Table 1. Serratanes Serratane [8(14-+27) abeo gammacerane] triterpenes are biogenetically related to a-onocerane. The characteristic features of these triterpenes include seven tertiary methyls (instead of eight methyls in common pentacyclic triterpenes), a seven membered C ring and a double bond between Cl4 and Cl5 Fang et al. [95] isolated some 205 2~,[email protected], 28-COOH. A9*Iz, 206 mimusapic acid 28.3 -OH, 23:lO epoxy, 28-COOMe, 6901 f 12 ti usopsic acid . M 3&OI-& a-amyrin 3ixo. 24-cohe Z 211 212 213 214 215 216 217 36-OH. 2E-COOIble. mcthvlursobte &x0, i8-cooMe.inethyi3&OH, 27,~COOH, quinovic acid 3a. 1 la-OH 38.2s-OH. uvaol 2a, 3fGOH+28-COOMe 26.3a-OH. 28-cOOMe ii 3a-Ol-i 28-COOMe 28.313-oH. 28-COOMe triterpenes (264-26g) of this group and assigned their 13C resonances. The characteristic 13C resonance of these triterpenes is that of the 27-methylene which appears between 49.9 to 56.3 ppm. Three new triterpenes have been characterized as bridged 148 : 26-epoxyserratanes [96]. However, their reported 13C assignments are confusing and are not included here. Swertanes and kairaterwl Four swertane(l7,18-friedogammacerane) triterpenes have so far been isolated and their 13C resonances assigned. Some of the discrepancies in the assigned reson- S. B. MAHATOand A. P. KUNDU 1564 218 219 228 221 222 223 224 225 226 227 228 229 238 231 232 233 234 235 236 237 238 239 248 241 242 243 244 245 3R.19a-0n 28-Coon pomolicacid 38,2la-On 28-COOMe 3&22a-OH, 3O-COOH 3&23-On 28-COOH 3$,24-On 28-COOMe 38,19a-On 23.28COOn mttmdioic acid 38, Wa-OH. 24,28-COOH, ikxageainA 2~.3fS,19a-On 28-COOH 3&6a, 19a-On 28-COOH 38,68, IS-OH, 28-COOH 2a. 38,23-On 28-COOMe. methylmhtatc 2a. 3~. 23-On 28-COOMe 2a, 3a, 24-OH, 2&COOMe 38, Not. 23-OI-t 28-COOMe. methylroamdate 3$.19a, 24-On 28-COOH 3~. 1%. 24-0n 28-~00Me, meth~ibarbi~rvate 2c4.38. won 23,28COOH 38.68.19a-On 23-CHO, 28-COOH 1s. &. 38,19a-OH, 28-COOMe 16.26.38.19a-0n 28-COOMe 2;; 3i3;6’8; W-OH; 28COOH 2~. 38,7a. 19a-OH. 28-COOH 2a, 38.68.23OH, 28-COOH 2a. 3$,19a. 23-OH. 28COOMe 2a, 38,19a, 24-OH. 28COOH. hyptatic acid B 3a, 19a, 23,24-OH. 2&COOMe, methylcktkate 2u. 3&19a, 23,28-OH 2a. 38,7a. 19a, 23-OH. 28COOH 246 247 23 24 248 249 Rt=CH$DH. R2=OH, R3=COOH, hyptadienicacid Rt=CH20Ac, R2=OH, R3=COOH, coleonic acid monoacetate 250 38-OH antes [97,98), have recently been revised by Chakravarty et al. [91]. The structure of kairatenol(275), the first representative of a new class of migrated gammacerane triterpenoid, has been established with assignment of its r3C resonances [99] (Table 1). Stictane R=R2JeOH,Rt=R4=COOMe, R3=H, mcthylmusancropate A R=R2~R%On R1=R4=COOMe, methylmusaacropate B and flavicanes Wilkins and Corbett [lOOJ reported from dehydration, isomerization and spectroscopic studies, that stictane and the related flavicane triterpenes have an 8a-methyl group and a boat structure for ring B rather than the usual @-methyl group and chair ring B, hitherto found in pentacyclic triterpenes. Subsequently, Wilkins et al. [loll also assigned 13C resonances of stictane triterpenes (276-285) and flavicanes (2% and 287) (Table I), by the use of, in selected cases, the phase sensitive two-dimensional 13C-‘H heteronuclear correlated and doublequantum filtered COSY NMR techniques. Lupanes and hopanes The 13CNMR spectra of a large number of lupeol derived substances and some hopane derivatives were 13CNMR spectra of pentacyclic triterpenoids 2a. 3p-oH. 28-COOH. go~ishic iwidI 252. 2~_3pOH, 28-COOH, 23-nor. 231 253 goleishicacidII 2u. 3pOK 28400~ ~Qor, goreishicacidxII 260 261 262 263 3fbOH, tetrahymmol 3a-OH, Al6 3fbOH. Al6 3$,21a-OH 264 265 266 267 268 269 270 3fL21a-OH 3&21&oH 3a,21&oH 3@-OMe, 21a-OH 3fbOMe. Ila-OAc. 3SCHO 3fWMe, 21a.3bOAc 3p-OMe, 21-oxo. 30-m 254 2a, 3a-OH, 28-COOMe 255 2a, 3a. 24-O& 28-COOMe 256 Tamxasterol i HO 257 Pseudocaraxasterol 1565 S. B. MAHATO and A. P. KUNDU 1.566 271 272 273 274 3~4.JH.A’. swertenol 3-0~0. A’, swertanonc 3a-OAc, A’*episwettextylacetate Jg-oAc, A9(’ 1,pichieenyl xetatc 275 Kairatenol 276 277 278 279 280 281 282 283 284 285 Hydmcarbon 22-0x0 38,224~OH 3fS,22/3-OH 3-oxo,22a-OH 3,22-dioxo 2a, 3@OH, 22a-OAc 2a, 38.22a-OH 2a, 3@22a-OAc 3g. lactone 22a-OH, 25 --_) recorded and their carbon chemical shifts assigned by Wenlcert et al. [102]. The shift assignments were made by utilizing off-resonance decoupling techniques, functionality manipulation causing predictable shift variations, shift assessment utilizink 13C NMR data for carbocyclic systems of known stereochemistry and conformation and lanthanide-induced shift measurements. 286 287 2~. 3&oAc, A= (29) 2~. 3@-OAc, LI” @‘) 248 289 290 291 292 293 294 295 2% 297 298 299 300 301 302 303 304 305 306 307 308 Hydmarbon 3P-OKlupad 28-OH 28-COOMe 3&OH, 28-COOH. be.tulinicacid 3a-OH. 28-COOH 3fbOH. 27.2II-COOMe 3&OH, 28-CHO. betulinaldehyde 3a-06 28-CHO 1&3fbOH 38,13p-OH, 28-COOH, term& acid 3fS,7@OH 38.1 la-OH, nepiticin 3fJ.l5a-OH 3&16~-OH 3fS.24-OH 38.28-OH. bctldm 3-oxo,3O-OH 2u. 3a-tx-L 28-COOMe 38.23-OH. 2%COOH 38,27-OH, 28-COOH. cykodiscic acid The removal of the three-carbon side chain from the vicinity of Cl2 and the transplantation of the ring E angular methyl group on to C18, shields Cl2 in the hopanes, in comparison to the lupanes and deshields dramatically Cl3 in the former. The C27 is deshielded in the hopanes in comparison to the lupanes, due to the loss of the y-effect from Cl8 and the gain of a &effect from 13CNMR spectra of pentacyclic triterpenoids 309 310 311 312 313 314 315 316 317 3~. 1la-OH, 23,28-COOH 3a. 1la-OH, 23-CHO,28-COOH 38.68, W-OH 3-oxo.15a. 28-OH l&38, lla-OH 3~.28,3O-OH 1s. 38.1 la, 3O-OH 3&2o_oH, 28 ---) 218 lactonc, stellatogenin 3g. lq3,2@OH, 28 -21p lactone 318 319 Hydrocakm 3p-OH 320 321 322 323 324 2oB,-oH ‘A AIs+@) 38,16@-OH 3&27-OH, Atz, obtusalin 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 325 326 327 328 329 Hydrocarbon 17a-H, hopane 21a-H hopane 17a-H, 2la-H hopane 22-OH, diploterol 29-OH 3O-OH,drycerassol 6a, 22-OH, zeorin 3-0x0.22-OH 6+x0.22-OH, zeorinone 6a-OAc, 22-OH 7f3.22-OH 15~. 22-OH. dust&n 16g.22-0~ U-COOMe la, 1 la, 22-OH la, 1la, 3O-OH 1Sa. 22 24-OH 6a. 22-OH, 20u-OAc 3f3,15a-OAe. 22-OH 1Su-OAc, 22-OH, 24-COOMe 6a-OAc, 22-OH. 25-COOMe, methyl aijmlate 38,&x, lw,22-OH, mollugogenol A ZMe, 22-OH 38.25-epoxy. 2of%OAc. pauciflorol acetate A’6 d’ 17a-H. A*’ A17 (21) Aa@) di letene 3-oxo. AJ@) Hydmcarbn 3-0x0 3&OH 3a-OH 3$-O& 1.28-cOOMe C28. The neopentyl nature of Cl9 and the y-effects of the side chain on C20, allowed these methylenes to be distinguished from each other. The r3C data of a number of pentacyclic triterpenes of these two series have subsequently been assigned and the data of selected representatives (288-363) are shown in Table 1. The assignments of “C resonances of chiratenol(364), a triterpene possessing a rearranged hopane skeleton, have recently been made using the HMBC techniques cm 1567 Fernanes, adiananes and arboranes A number of triterpenes of these series have been isolated and their r3C signal assignments have been made in recent years and the assignments of some triterpenes (365-387) are shown in Table 1. Two rearranged arborane type triterpenes, boehmerol (388) and boehmerone (389) and a new skeleton triterpene hancokinol (390), have recently been isolated and their structures established by X-ray crystallography. Their 13C assignments are shown in Table 1. S. B. MAHATO and A. P. KUNDU 1568 360 2lu-H, Ap(ss) 361 3O-COOMe,AZ ‘29!tuherosicmethylester 362 6a-OAc. 2l&oH. A= 0, missoariensin moBugogew1B 363 3B.6a-OH. At” 17(21), I ‘\ 379 Hydmcarben 380 28-COOMe 381 382 383 384 385 386 387 365 366 z 369 370 371 372 373 374 375 376 377 378 A’ 28-COOMe..A’ As 313-0H As 2gcoOMe. A8 38.7~OH, 11-0x0,As. supinenolone A 38.11 B-OH, 7-0~0,A*.supiaenolone B 3fSOH, 7.11 -dioxo, As, supinewlone C A901) 2%COOH A901) 28-COOh;e, A9(“) 38, 12a-OH A9(‘r) 3f3,7a, l%-OH, A9(“), rubiatricl 2a, 3fGOH,23-COOMe,A9(I’) 3-0~0,arborinoae 2a-OAc. 3&19a-oH, Nhiil C 2a, l%-OH, 3$-OAc. rubiarbonel D 3g,7f3,1%-OH, rubiol B 2a.3&7$, 19a_OH,ruhiiol E 3$,7$.19a. 28-OH. rubiarbonofA Za, 3g,7fS,19a, 28-OH rubiarbonol F 388 3fLOH lxlehnleml 389 3-0~0, bcehmerone Bicadinane Friedomadeiranes This structure of a representative triterpene of a completely new family of Csc pentacyclic triterpenoids has been reported [103]. The structure has been established as 2,6a,12-trimethyl-4,9-diisopropylperhydrobenzo[de] naphthacene, or bicadinane (391), by the application of MS, NMR and X-ray diffraction techniques. Two-dimensional ‘H and “C shift correlated NMR experiments have been used for the unambiguous assignment of all protons and carbon chemical shifts [104]. The 13C assignments of this novel bicadinane (391) are shown in Table 1. The pentacyclic triterpenes (392-395) have been isolated from extracts of Euphorbia mellfera AlT and their structures determined by X-ray crystallography [105]. The skeleton of these triterpenes differs from that of representatives of the lupane or hopane class by (i) an unusual arrangement of the substituents in the cyclopentane ring E, the Me group being on Cl9 and the isopropyl group in an angular position Cl7 and (ii) a cis D/E ring junction. The name of the unknown pentacyclic parent skeleton has been proposed to be madeirane. Thus 392 and 393 are o-friedomadeir-l4-ene and 394 and 13CNMR spectra of pentacyclic triterpenoids 1569 394 3p-OH 395 3-0x0 16 2i ie 391 Bicadinane 3% 392 393 Pachannol A 3p-OH 34x0 3% are D : C-friedomadeir-7-ene derivatives. The 13C data of methyl, methylene, methine and quaternary carbons of 392 and 394 have been reported (Table 1) but the individual resonances have not been assigned. GLYCOSYLATION SHIFTS Many of the pentacyclic triterpenoids occur as sugar conjugates, called glycosides. The sugar moiety of these glycosides are generally oligosaccharide, linear or branched, attached to a hydroxyl or a carboxyl group or both. The site of attachment may be one (monodesmoside), two (bisdesmoside) or three (tridesmoside). The glycosylation of a hydroxyl group, depending upon its nature (alcoholic and carboxylic), causes a change in chemical shifts at the a- and p-carbons and, rarely, y-carbons to the OH group, in which the glycosylation takes place. These glycosylation shifts, i.e. chemical shift changes from aglycone and methylglycoside to triterpene glycoside, are characteristic of chemical and steric environments of the hydroxyl group in which the glycosylation takes place. The cr-effectfor sterically unhindered secondary alcoholic glycosides varies from 5 to 10 ppm and shows dependence upon its stereochemical relationship to the pyranose 1570 S. B. MAHATO and A. P. KUNDU ring oxygen. The /?-effect is always larger (ca 4 ppm) for the anti-related /&resonance, in comparison to syn-related p-resonance, which shows an upfield shift of ca 2 ppm. For the sterically hindered secondary alcoholic glycosides, the r-effect is usually greater (8-12 ppm) and the p upfield shift effect is relatively lower (l-3 ppm), or almost negligible, depending upon the magnitude of substitution. The quaternary /?-carbons/either show little or negligible upfield shift and in some cases, small downfield shifts. The downfield shifts of a-resonances and upfield shifts of /3-CH2 resonances are useful for determination of the glycosylation sites [lo&109-j. Glycosylation of a carboxyl group causes a downfield shift (2-5 ppm) of the resonance of the carboxyl carbon, along with an upfield shift (05-2.0 ppm) of the B-carbon resonance. The anomeric carbon of the sugar linked to the carboxyl group resonates at a remarkably upfield position (93-97 ppm). These characteristics are helpful in identifying the sugars involved in glycosylation of the carboxyl group [ 110, 1111.The literature information on ‘%NMR of various triterpene glycosides is available [112]. BEFEUENCES 1. Mahato, S. B., Nandy, A. K. and Roy, G. (1993) Phytochemistry 31, 2199. 2. Wehrli, F. W. and Nishida, T. (1979) in Progress in the Chemistry of Organic Natural Products (Herz, W., Grisebach, H. and Kirby, G. W., eds), Vol. 36, p. 1. Springer, New York. 3. Agarwal, P. K. and Jain, D. C. (1992) Progress in NMR Spectroscopy 24, 1. 4. Patt, S. L. and Shoolery, J. N. (1982) J. Magn. Reson. 46, 535. 5. Doddrell, D. M., Pegg, D. T. and Bendall, M. R. (1982) J. Magn. Reson. 48, 323. 6. Morris, G. A. (1980) J. Am. Chem. Sot. 102, 428. 7. Doddrell, D. M. and Pegg, D. T. (1980) J. Am. Chem. Sot. 102, 6388. 8. Kowalewski, J. and Morris, G. A. (1982) J. Magn. Reson. 47, 331. 9. Morris, G. A. (1986) Magn. Reson. Chem. 24, 371. 10. Kamisako, W., Suwa, K., Morimoto, K. and Isoi, K. (1984) Org. Magn. Reson. 22, 93. 11. Kamisako, W., Suwa, K., Honda, C., Isoi, K., Nakai, H., Shiro, M. and Machida, K. (1987) Magn. Reson. Chem. 25, 848. 12. Derome, A. E. (1987) Modern NMR Techniques for Chemistry Research. Pergamon Press, New York. 13. Martin, G. E. and Zektzer, A. S. (1988) Two-Dimensional NMR Methods for Establishing Molecular Connectivity: a Chemist’s Guide to Experiment Selection, Performance and Interpretation. VCH, New York. 14. Bax, A. (1982) Two-Dimensional Nuclear Magnetic Resonance in Liquids. Delft University Press, Delft, The Netherlands. 15. Sanders, J. K. M. and Hunter, B. K. (1987) Modern NMR Spectroscopy: A Guide for Chemists. Oxford University Press, Oxford. 16. Ernst, R. R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford. 17. Brey, W. S. (ed.) (1988) Pulse Methods in 1D and 20 Liquid-Phase NMR. Academic Press, San Diego. 18. Bodenhausen, G., Freeman, R. and Turner, D. L. (1976) J. Chem. Phys. 65, 839. 19. Bodenhausen, G., Freeman, R., Morris, G. A. and Turner, D. L. (1978) J. Magn. Reson. 28, 17. 20. Nagayama, K., Wiithrich, K. and Ernst, R. R. (1979) Biochem. Biophys. Res. Commun. 90, 305. 21. Bax, A. and Freeman, R. (1981) J. Magn. Reson. 44, 542. 22. Aue, W. P., Bartholdi, E. and Ernst, R. R. (1975) J. Chem. Phys. 64, 2229. 23. Rance, M., Sorensen, 0. W., Bodenhausen, G., Wagner, G., Ernst, R. R. and Wuthrich, K. (1988) Biochem. Biophys. Res. Commun. 117, 479. 24. Piantini, U., Sorensen, 0. W. and Ernst, R. R. (1982) J. Am. Chem. Sot. 104, 6800. 25. Barrero, A. F., Manzaneda, R. E. A., Manzaneda, R. R. A., Arseniyadis, S. and Guittel, E. (1990) Tetrahedron 46, 8 16 1. 26. Wilkins, A. L., Elix, J. A,, Gonzalez, A. G. and Parez, C. (1989) Aust. J. Chem. 42, 1185. 27. Wilkins, A. L., Elix, J. A., Gaul, K. L. and Moberg, R. (1989) Aust. J. Chem. 42, 1415. 28. Davis, D. G. and Bax, A. (1985) J. Am. Chem. Sot. 107,282O. 29. Bax, A., Davies, D. G. and Sarkar, S. K. (1985) J. Magn. Reson. 63, 230. 30. Braunschweiler, L. and Ernst, R. R. (1983) J. Magn. Reson. 53, 521. 31. Tsuda, M., Ishibashi, M., Agemi, K., Sasaki, T. and Kobayashi, J. (1991) Tetrahedron 47, 2181. 32. Bax, A., Freeman, R. and Frenkiel, T. A. (1981) J. Am. Chem. Sot. 103, 2102. 33. Bax, A., Freeman, R., Frenkiel, T. A. and Levitt, M. H. (1982) J. Magn. Reson. 44,409. 34. Pradhan, B. P., Hassan, A. and Shoolery, J. N. (1990) Indian J. Chem. Sect. B 29, 797. 35. Tchivounda, H. P., Koudogbo, B., Besace, Y. and Casadevall, E. (1990) Phytochemistry 29, 3255. 36. Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R. and Hufford, C. D. (1993) Phytochemistry 32, 411. 37. Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979) J. Chem. Phys. 71, 4546. 38. Kumar, A., Ernst, R. R. and Wuthrich, K. (1980) Biochem. Biophys. Res. Commun. 95, 1. 39. Loganathan, D., Trivedi, G. K. and Chary, K. V. R. (1990) Magn. Reson. Chem. 28, 925. 40. Maudsley, A. A., Miiller, L. and Ernst, R. R. (1977) J. Magn. Reson. 28, 463. 41. Freeman, R. and Morris, G. A. (1978) J. Chem. Sot. Chem. Commun. 684. “C NMR spectraof pentacyciictriterpenaids 42. Bax, A. and Morris, G. A. (1981) J. Magn. Resota, 42, 43. 44. 45. 46. 47. 501. Reynolds, W. F., Hughes, D. W., Pe~ick~~umount, M. and Enriquez, R. G, (1985) J, &fag@.&son, 63_ 413. Reynolds, W. F., McLean, S., Popiawski, J., Enriquez, R. G., Escobar, L. I, and Leon, 1. (1986) Te~a~~o~ 42, 3419. Kessler, H., Griesinger, C., Zarbock, J. and Loo&, H. R. (1984) .Z. Nagn. Reson, 57, 331. Akihisa, T., Yamamoto, K., Tamura, T,, Kumura, Y., Iida, T., Nambara, T, and Chang, F. C. (1992) &hem. Pharm. Bull. 40, 789. Reynolds, W. F., McLean, S., Pe~i~k-Dumount~ M. and Enriquez, R. G. (1989) Map. Reson. Chem. 71. 72. 73. 74. 75. 76. 27, 162. Garbow, J. R., We~ek~p, D. P. and Pines, A. (1982) Chem. Phys. Lett. 93, 504. 49. Tinto, W. F., Blair, L. C., Ah, A., Reynolds, W. F. and McLean, S. (1992) f. Nat. Prod. 55, 395. 50. Ghan, W. R., Sheppard, V., Medford, K. A., Tinto, W. F., Reynolds, W. F. and McLean, S. (1992) f. Nat. Prod. 35, 963. 51. Kfass, J., Tinto, W. F., McLean, S. and Reynolds, W. F, (1992) J. Nat. Prod. 55, 1626. 52. Muller, L. (1979) J, Am. Chem. Sot. 101,4481. 53. E&m,A. and Subrama~an, S. (1986) J. EAagn. Z&son. 67, 56.5. 54. Bax, A. and Summers, M. F. (1986) J, Am. Chem, Sot. IaS, 2093. 55. Zuiderweg, E. R. P. (1990) 1. Magn, Reson. 86, 346. 56. Martin, G. E. and Crouch, R. C. (1991) 3. Nat. Prod. 54, 1. 57. Bodenhauseu, G. and Ruben, D. (1980) C/tern. Phys. L&t. 69, 185. 58. Faure, R., Gaydou, E. M. and Wolle~we~r, E. (1991) J. Nat. Prod. 54, 1564. 59. Kinjo, J., Matsumoto, R., Inoue, M., Takeshita, T. and Nohara, T. (1991) Chem. Pharm. Bull. 39,116. 60. Chakravarty, A. K., Das, B., Masuda, K. and Ageta, H. (1990) Tetrahedron Letters 31, 7649. 61. Giner-Pons, R. M., Gray, A. I., Lavaud, C., Massiot, G., Gibbons, S. and Wate~an, P. G. (1992) Phytochemistry 31, 223. 62. Parsons, I. C., Gray, A. f., Wate~an, P. G. and Hartley, T, G. (1993) J. Nat. Prod. 56,46. 63. Gronenborn, A. M., Bax, A., Wingfield, P. T. and Clore, G. M. (1989) FEBS LRtrers 243, 93. 64. Torchia, D. A., Sparks, S, W, and Bax, A. (1989) Biochemistry %, 5509. 65. Davis, D. G. (1989) J. Mryrrr. Reson. 84,417. 66. Soha, K. and Opella, S, J. (1989) J. n”ltzgn.Reson. 82, 193. 67. Berger, S. (1989) J. Magn. Reson. 81, 561. 68. Crouch, R. C., Shockcor, J. P. and Martin, G. B. (1990) Tetrahedron Letters 31, 5273. 69. Crouch, R. C. and Martin, G. E. (1991) J. Mug% R&son. 92, 189. 70. Breitmeir, E. and Voelter, W. (1974) 13CZ%%fR 48, 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 1571 S~&~~os~o~~. Verlag Chemie, W~nhe~~r~tr., Germany. Eggert, MI.,VanA~twerp, C, L., Bhacca, N. S. and Djerassi, C. (19%) J. Org. Gem. 41, 71. VanAntwerp, C. L., Eggert, H., Meakins, G. D., Miners, J. 0. and Djerassi, C. (1977) J. Org. Chem. 42, 789, Kojima, H. and Ogura, H. (1989) Phytochem~stry 28, 1703. Gupta, D. and Singh, J. (1989) Phytochemistry 28, 1197. Gupta, D. and Singh, J. (1990) Indian .Z.Gem. Sect. B 29B, 34. Duddeck, Ii., Elgamoi, M. H. A., R&a, G. S., Danieli, 18. and Palmisano, G. (1978) Org. Magn. Reson. II, 130. Dawidar, A. A., Reiseh, J. and Amer, M. (1979) C&em Pharm. Bull. 27,2938. Chang, I. S., Han, Y. B., Woo, W. S., Kang S. S., Lotter, H. and Wagner, H. (1989) Piurrra Me&. 55, 544. Mahato, S, B., Pal, B. C!. and Sarkar, S. K. (1988) Phyto~~mistr~l 27, 1433. Bhattacharyya, J. and Cur&a, E. V. L. (1992) Phytochemistry 31, 2546. Sakuri, N., Yaguchi, Y. and fnoue, T. (1987) Ph y~och~~is~r~ 26, 2 17. Merfort, I., Buddrus, J., Nawwar, M, A. M. and Lambert, J. (1992) Phytochemistry 31,403l. Khastgir, H. N. and Sengupta, P. (1961) Chem. and Ind. 1077. Kumura, K., Hashimoto, Y. and Agata, I. (1960) Chem. Phffrm. Bult. 8, 1145. Tori, M., Matsunaga, R., Sano, M. and Asakawa, Y. (1988) Magn. Reson. Chem. 26, 581. Gunatilaka, A. A. L., Nanayak~r~ N. P. D. and Wazzeer, M. 1. M. (1983) Ph~~rQe~rn~stry22, 991, Patra, A. and Chaudhuri, S. K. (1987) Magn. Reson. Chem. 25,95. Gottfieb, H. E., Ramaiah, P. A. and Lavie, D. (1985) Magn. Reson. Chem. 23,616. Levy, G. C., Lichter, R. L. and Nelson, G. L. (1980) Carbon- 13 Nuclear Magnetic Resource Spectrascopy, p. 29. Wiley Interscience, New York, Mahato, S. B., Nandy, A. K., Luger, P. and Weber, M, ~1990) f. CZtem.Sot. Perk& Trans if 1445. Chakravarty, A. K., Das, B. and Mukhopadhyay, S. (1991) Tetrahedron 47,2337. Mallory, F. B, Gordon, J. T. and Corner, R. L. (1963) J. Am. Ckem. Sot. 85, 1362. Shiojima, K., Masuda, K,, Lin, “I’., Suzuki, H., Ageta, H., Inoue, M. and Ishida, T. (1989) Tetruhedran Letters 30,4977. Tanaka, R. and Matsunaga, S. (1992) Phytochemistry 31, 3535. Fang, J., Tsai, W. and Cheng, Y. (1991) Ph~~~rnistry 30, 1333. Bhutani, K. K., Kapoor, R, and $tal, C. K. (1984) Phytoc~emistry 23, 403. S. B. MAHATOand 1572 97. Chakravarty, A. K., Das, B., Pakrashi, S. C., McPhail, D. R. and McPhail, A. T. (1989) J. Chem. Sot. Chem. Commun. 438. 98. Shiojima, K., Masuda, K., Ooishi, Y., Suzuki, H. and Ageta, H. (1989) Tetrahedron Letters 30, 6873. 99. Chakravarty, A. K., Mukhopadhyay, S., Masuda, K. and Ageta, H. (1992) Tetrahedron Letters 33, 125. 100. Wilkins. A. L. and Corbett, R. E. (1976) J. Chem. A. P. KUNDU 123. Ikuta, A. and Morikawa, A. (1992) J. Nat. Prod. 55, 1230. 124. Tanaka, R., Tabuse, M. and Matsunaga, S. (1988) Phytachemistry 27, 3563. 125. Guang-Yi, L., Gray, A. I. and Waterman P. G. (1988) Phytochemistry 27, 2283. 126. Kinjo, J., Miyamoto, I., Miurakami, K., Kida, K., Sot. Perkin Trans I 857. 101. Wilkins, A. L., Bremer, J., Ralph, J., Holland, P. T., Ronaldson, K. J., Jager, P. M. and Bird, P. W. (1989) Aust. J. Chem. 42, 243. 102. Wenkert, E., Baddeley, G. V., Burfit, I. R. and Moreno, L. N. (1978) Org. Magn. Reson. 11, 337. 103. Cox, H. C., de Leeuw, J. W., Schenck, P. A., van Koningsveld, H., Jansen, J. C., van de Graaf, B., van Geerestein, V. J., Kanters, J. A., Kruk, C. and Jans, A. W. H. (1986) Nature (London) 319, 316. 104. Krok, C., Cox, H. C. and de Leeuw, J. W. (1988) Magn. Reson. Chem. 26, 228. 105. Ferreira, M. U., Lobo, A. M., O’Mahoney, C. A., Williams, D. J. and Wyler, H. (1991) Helo. Chim. Acta 74, 1329. 106. Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, 0. (1977) Tetrahedron Letters 175. 107. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1977) Tetrahedron Letters 179. 108. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, 0. (1979) Tetrahedron 35, 1427. 109. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1978) .I. Am. Chem. Sot. 100, 3331. 110. Sung, T. V., Steglich, W. and Adam, G. (1991) Phytochemistry 30, 2319. 111. Mahato, S. B., Sahu, N. P., Luger, P. and Miiller, E. (1987) J. Chem. Sot. Perkin Trans II 1509. 112. Mahato, S. B. and Nandy, A. K. (1991) Phytochemistry 30, 1357. 113. Knight, S. A. (1974) Org. Magn. Reson. 6, 603. 114. Maillard, M., Adewunmi, C. 0. and Hostettman, K. (1992) Phytochemistry 31, 1321. 115. Johns, S. R.. Lamberton, J. A., Morton, T. C., Suares, H. and Willing, R. I. (1983) Aust. J. Chem. 36,2537. 116. Chen, T. K., Ales, D. C., Baewziger, N. C. and Wiemer, D. F. (1983) J. Org. Chem. 48, 3525. 117. Ricca, G. S., Danieli, B., Palmisano, G., Duddeck, H. and Elgamol, M. H. A. (1978) Org. Magn. Reson. 11, 163. 118. Nie, R., Tanaka, T., Miyakoshi, M., Kasai, R., Morita, T., Zhou, 3. and Tanaka, 0. (1989) Phytochemistry 28, 1711. 119. Hidaka, K., Ito, M., Matsuda, Y., Kohda, H., Yamasaki, K. and Yamahara, J. (1987) Phytochemistry 26, 2023. 120. Rumbero-Sanchez, A. and Vazquez, P. (1991) Phytochemistry 30, 623. 121. Kasai, R., Oinaka, T., Yang, C. R., Zhou, J. and Tanaka, 0. (1987) Chem. Pharm. Bull. 35, 1486. 122. Alvarado, M., Moreno, M. and Rodriguez, V. M. (1981) Phytochemistry 20, 2436. 127. 128. 129. 130. Tomimatsu, T., Yamasaki, M. and Nohara, T. (1985) Chem. Pharm. Bull. 33, 1293. Takeshita, T., Yokoyama, K., Yi, D., Kinjo, J. and Nohara, T. (1991) Chem. Pharm. Bull. 39, 1908. Xue, H. Z., Lu, Z. Z., Konno, C., Soejarto, D. D., Cordell, G. A., Fong, H. H. S. and Hodgson, W. (1988) Phytochemistry 27, 233. Konoshima, T., Kozuka, M., Haruna, M., Ito, K. and Kimura, T. (1989) Chem. Pharm. Bull. 37, 1550. Rogers, C. B. and Subramony, G. (1988) Phytochem- istry 27, 531. 131. Seo, S., Tomita, Y. and Tori, K. (1975) Tetrahedron Letters 7. 132. Seo, B. S., Tomita, Y. and Tori, K. (1975) J. Chem. Sot. Chem. Commun. 954. 133. Akai, E., Takeda, T., Kobayashi, Y. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 3715. 134. Inada, A., Kobayashi, M., Murata, H. and Nakanishi, T. (1987) Chem. Pharm. Bull. 35, 841. 135. Piozzi, F., Paternostro, M., Passannanti, S. and Gaes-Baitz, E. (1986) Phytochemistry 25, 539. 136. Patra, A., Mitra, A. K., Ghosh, S., Ghosh, A. and Barua, A. K. (1981) Org. Magn. Reson. 15, 399. 137. Yahara, S., Emura, S., Feng, H. and Nohara, T. (1989) Chem. Pharm. Bull. 37, 2136. 138. Kizu, H. and Tomimori, T. (1982) Chem. Pharm. Bull. 30, 3340. 139. Pareda-Miranda, R., Delgado, G. and Vivar, A. R. D. (1986) J. Nat. Prod. 49, 225. 140. Shao, C. J., Kasai, R., Xu, J. D. and Tanaka, 0. (1989) Chem. Pharm. Bull. 37, 42. 141. Tori, K., Seo, S., Shimaoka, A. and Tomita, Y. (1974) Tetrahedron Letters 4227. 142. Mahato, S. B., Pal, B. C. and Price, K. R. (1989) Phytochemistry 28, 207. 143. “Amimoto, K., Yoshikawa, K. and Arihara, S. (1993) Phytochemistry 33, 1475. 144. Mizui, F., Kasai, R., Ohtani, K. and Tanaka, 0. (1988) Chem. Pharm. Bull. 36, 1415. 145. Kang, S. S. and Woo, W. S. (1987) Planta Med. 53, 338. 146. Koyama, K., Yama, T., Kinoshita, K., Takahashi, K., Kondo, N. and Yuasa, H. (1983) J. Nat. Prod. 56,220l. 147. Tanaka, R. and Matsunaga, S. (1989) Phytochemistry 28, 1699. 148. Mahato, S. B. and Pal, B. C. (1987) J. Chem. Sot. Perkin Trans I 629. 149. Akai, E., Takeda, T., Kobayashi, Y., Chen, Y. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 4685. 150. Ohtani, K., Ogawa, K., Kasai, R., Yang, C., Yamasaki, K., Zhou, J. and Tanaka, 0. (1992) Phytochemistry 31, 1747. ‘“C NMR spectra of pentacyclic triteqmoids 151. Mahato, S. B. (1991) Phytochemistry 30, 3389. 152. Tori, K., Yosbimura, Y., Seo, S., Sakarawi, K., Tomita, Y. and Ishii, H. (1976) Tetrahedron Letters 4163. 153. Delgado, M. C. C., Da Silva, M. S. and Fo, R. B. (1984) Phytochemistry 23, 2289. 154. Kundu, A. P. and Mahato, S. B. (1993) Phytochemistry 32, 999. 155. Khan, I. A., Sticher, 0. and Ralli, T. (1993) J. Nut. Prod. 56, 2163. 156. Fujioka, T., Iwamoto, M., Iwase, Y., Hachiyama, S., Okabe, H., Yamuchi, T. and Mihasbi, K. (1989) Chem. Pharm Bull. 37, 2355. 157. Kojima, H. and Ogura, H. (1986) Phytochemistry 25, 729. 158. Kojima, H., Tominaga, H., Sate, S. and Ogura, H. (1987) Phytochemistry 26, 1107. 159. Pal, B. C., Roy, G. and Mahato, S. B. (1984) Phytochemistry 23, 1475. 160. Sakuma, S. and Shoji, J. (1982) Chem. Phurm Bull. 30, 810. 161. Konoshita, K., Koyama, K., Takahashi, K., Kondo, N. and Yuasa, H. (1992) J. Nat. Prod. 55, 953. 162. Vasantb, S., Kundu, A. B. and Patra, A. (1992) J. Nat. Prod. 55, 1149. 163. Amoros, M. and Girre, R. L. (1987) Phytochemistry 26,787. 164. Sun, R. Q. and Zia, Z. J. (1990) Phytochemistry 29, 2032. 165. Mahato, S. B., Nandy, A. K. and Kundu, A. P. (1992) Tetrahedron 48,2483. 166. Toyota, M., Msonthi, J. D. and Hostettman, K. (1990) Phytochemistry 29, 2849. 167. Asada, Y., Ueoka, T. and Furuya, T. (1989) Chem. Pharm. Bull. 37, 2139. 168. Nandy, A. K., Podder, G., Sahu, N. P. and Mahato, S. B. (1989) Phytochemistry 28, 2769. 169. Hamburger, M. 0. and Hostettman, K. (1986) Helu. Chino. Acta 69, 221. 170. Massiot, G., Chen, X., Lavaud, C., Men-Olivier, L. L., Delaude, C., Vivari, A., Vigny, P. and Duval, J. (1992) Phytochemistry 31, 3571. 171. Nigam, S. K., Li, X., Wang, D., Misra, G. and Yang, C. (1992) Phytochemistry 31, 3169. 172. Konoshima, T. and Lee, K. H. (1986) J. Nat. Prod. 49, 650. 173. Agarwal, P. K., Tbakur, R. S. and Shoolery, J. N. (1991) J. Nat. Prod. 54, 1394. 174. Gonzalez, A. G., Fraga, B. M., Gonzalez, P., Hernandez, M. G. and Ravelo, A. G. (1981) Phytochemistry 20, 1919. 175. Majumder, P. L., Maiti, R. N., Panda, S. K., Mal, D., Raju, M. S. and Wenkert, E. (1979) J. Org. Chem 44, 2811. 176. Gonzalez, A. G., Mendoza, J. J., Ravelo, A. G., Luis, J. G. and Dominguez, X. A. (1989) J. Nat. Prod. 52, 567. 177. Tanaka, R. and Matsunaga, S. (1988) Phytochemistry 27, 3579. 178. Wang, H. B., Yu, D. Q.. Liang, X. T., Watanabe, N., 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 1573 Tamai, M. and Omura, S. (1989) Planta Med. 55, 303. Tanaka, R. and Matsunaga, S. (1988) Phytochemistry 27, 2273. Kobayashi, Y., Takeda, T. and Ogihara, Y. (1981) Chem. Pharm. Bull. 29, 2222. Sbimizu, K., Amagaya, S. and Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 3349. Misra, G., Banerjee, R. and Nigam, S. K. (1991) Phytochemistry 30, 2087. Kohda, H., Takeda, 0. and Tanaka, S. (1989) Chem. Pharm. Bull. 37, 3304. Waltho, J. P., Williams, D. H., Mahato, S. B., Pal, B. C. and Barna, J. C. J. (1986) J. Chem. Sot. Perkin Trans I 1527. Mahato, S. B., Sahu, N. P., Roy, S. K. and Sen, S. (1991) Tetrahedron 47, 5215. Gomblitza, K. W. and Kurth, H. (1987) Plunta Med. 53, 548. Aliotta, G., Napoli, L. D., Giordano, F., Picialli, G., Picialli, V. and Santacroce, C. (1992) Phytochemistry 31, 929. Jayasingbe, L., Wannigama, G. P. and Macleod, J. K. (1993) Phytochemistry 34, 1111. Trendel, J. M., Graff, R., Albrecht, P. and Riva, A. (1991) Tetrahedron Letters 32, 2959. Mamer, F., Freyer, A. and Lex, J. (1991) Phytochemistry 30, 3709. Rowan, D. D. and Newman, R. H. (1984) Phytochemistry 23, 639. Kumar, R., Bban, S., Kalla, A. K. and Dhar, K. L. (1992) Phytochemistry 31, 2797. Nisbimoto, N., Oliveira, F. D., Akisue, G., Akisue, M. K. and Hashimoto, G. (1993) Phytochemistry 32, 1527. Itokawa, H., Qiao, Y., Takeya, K. and Iitaka, Y. (1989) Chem. Pharm. Bull. 37, 1670. Carpenter, R. C., Sotheesaran, S., Sultanbawa, M. U. S. and Ternai, B. (1980) Org. Magn. Reson. 14, 462. McLean, S., William, M. P., Reynolds, F., Jacobs, H., Sing, L. and Sing, S. (1987) Can. J. Chem. 65, 2519. Tanaka, R., Matsunaga, S. and Isbida, T. (1988) . Tetrahedron Letters 29,475l. Gunatilaka, A. A. L., Nanayakhara, N. P. D.,Uvais, M., Sultanbawa, M. V. S. and Waizeer, y. I. M. (1982) Org. Magn. Reson. 18 53. Rahmani, M. and Ismail, H. B. M. ’ (1993) Phytochemistry 32, 165. 200. Prakasb, O., Roy, R., Garg, H. S. and Bhakuni, D. S. (1987) Magn. Reson. Chem. 25, 39. 201. Anjaneyulu, V., Babu, J. S., Babu, B. H., Ravi, K. and Connolly, J. D. (1993) Phytochemistry 33, 647. 202. Nozaki, H., Matsuura, Y., Hirono, S.,Kasai, R., Chang, J. and Lee, K. (1990) J. Nat:Pred. !53,1039. 203. Rao, R. B., Sukumar, E., Kundu, A. B. and Patra, A. (1990) Phytochemistry 29,2027. 204. Sen, S., Sabu, N. P. and Mabato, S. B. (1993) Tetrahedron 49, 9031. 1574 S. B. MAHATO and 205. Seo, S., Tomita, Y. and Tori, K. (1981) J. Am. Chem. Sot. 103, 2075. 206. Torre, M. C., Bruno, M., Piozzi, F., Savona, G., Rodriguez, B. and Arnold, N. A. (1990) Phytochemistry 29, 668. 207. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui, B. S. (1986) J. Nat. Prod. 49, 1086. 208. Kakuno, T., Yoshikawa, K. and Arihara, S. (1992) Phytochemistry 31, 3553. 209. Zhang, D. M. and Yu, D. Q. (1990) Planta Med. 56, 98. 210. Srivastava, S. K. and Jain, D. C. (1989) Phytochemistry 28, 644. 211. Duh, C. Y., Pezzuto, J. M., Kinghom, A. D., Leung, S. L. and Farnsworth, N. R. (1987) J. Nut. Prod. 50, 63. 212. Nakatani, M., Miyazaki, Y., Iwashita, T., Naoki, H. and Hase, T. (1989) Phytochemistry 28, 1479. 213. Cheng, D. and Cao, X. (1992) Phytochemistry 31, 1317. 214. Liang Z. Z., Aquino, R., Feo, V. D., Simone, F. D. and Pizza, C. (1990) Planta Med. 56, 330. 215. Aimi, N., Likhitwitayawuid, K., Goto, J., Ponglux, D., Haginiwa, J. and Sakai, S. (1989) Tetrahedron 45, 4125. 216. Takahasi, K. and Takani, M. (1978) Chem. Pharm. Bull. 26, 2689. 217. Gao, F., Chen, F., Tanaka, T., Kasai, R., Sato, T. and Tanaka, 0. (1985) Chem. Pharm. Bull. 33, 37. 218. Aquino, R., Simone, F. D., Vincieri, F. F., Pizza, C. and Gacs-Baitz, E. (1990) J. Nut. Prod. 53, 559. 219. Kouno, I., Baba, N., Ohni, Y. and Kawano, N. (1988) Phytochemistry 27, 297. 220. Gopalsamy, N., Vargas, D., Gueho, J., Ricaud, C. and Hostettman, K. (1988) Phytochemistry 27,3593. 221. Houghton, P. J. and Lian, L. M. (1986) Phytochemistry 25, 1939. 222. Sahu, N. P., Roy, S. K. and Mahato, S. B. (1989) Phytochemistry 28, 2852. 223. Zhou, X., Kasai, R., Ohtani, K., Tanaka, O., Nie, R., Yang, C., Zhou, J. and Yamasaki, K. (1992) Phytochemistry 31, 3642. 224. Lontsi, D., Sondengam, B. L., Martin, M. T. and Bodo, B. (1991) Phytochemistry 30, 2361. 225. Rao, K. V. R., Rao, L. J. M. and Rao, N. S. P. (1990) Phytochemistry 29, 1326. 226. Roy, R., Vishwakarma, R. A., Varma, N. and Tandon, J. S. (1990) Tetrahedron Letters 31, 3467. 227. Matsunaga, S., Tanaka, R. and Akagi, M. (1988) Phytochemistry 27, 535. 228. Numata, A., Takahashi, C., Miyamoto, T., Yoneda, M. and Yang, P. (1990) Chem. Pharm. Bull. 38,942. 229. Conner, A. H., Nagasampangi, B. A. and Rowe, J. W. (1984) Tetrahedron 40, 4217. 230. Chakravarty, A. K., Mukhopadhyay, S. and Das, B. (1991) Phytochemistry 30, 4087. 231. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui, B. S. (1988) J. Nat. Prod. 51, 229. 232. Kitajima, J., Shindo, M. and Tanaka, Y. (1990) Chem. Pharm. Bull. 38, 714. A. P. KUNDU 233. Monaco, P. and Previtera, L. (1984) J. Nat. Prod. 47, 673. 234. Savona, G., Bruno, M., Rodriguez, B. and Marco, J. L. (1987) Phytochemistry 26, 3305. 235. Anjaneyulu, A. S. R. and Prasad, A. V. R. (1983) Phytochemistry 22, 993. 236. Anaya, J., Caballero, M. C., Grande, M., Navarro, J. J., Tapia, I. and Almeida, J. F. (1989) Phytochemistry 28, 2206. 237. Ahmed, V. U., Bano, S., Voelter, W. and Fuchs, W. (1981) Tetrahedron Letters 22, 1715. 238. Tanaka, R., Masuda, K. and Matsunaga, S. (1993) Phytochemistry 32, 472. 239. Kumar, N. S., Muthukuda, P. M. and Wazzeer, M. I. M. (1986) Phytochemistry 24, 1337. 240. Ikuta, A. and Itokawa, H. (1988) Phytochemistry 27, 2813. 241. Lischewski, M., Ty, P. D., Schmidt, J., Preiss, A,, Phiet, H. V. and Adam, G. (1984) Phytochemistry 23, 1695. 242. Ty, P. D., Lischewski, M., Phiet, H. V., Priess, A., Naguyen, P. V. and Adam, G. (1985) Phytochemistry 24, 867. 243. Facundo, V. A., Andrade, C. H. S., Silveira, E. R., Braz-Filho, R. and Hufford, C. D. (1993) Phytochemistry 32, 411. 244. Ahmad, V. U. and Mahammad, F. V. (1986) J. Nut. Prod. 49, 524. 245, Gonzalez, A. G., Jimenez, I. A. and Ravelo, A. G. (1992) Phytochemistry 31, 2069. 246. Siddiqui, S., Siddiqui, B. S., Naeed, A. and Begum, S. (1989) Phytochemistry 28, 3143. 247. Wilkins, A. L., Bird, P. W. and Jager, P. M. (1987) Magn. Resort. Chem. 25, 503. 248. Shiojima, K. and Ageta, H. (1990) Chem. Pharm. Bull. 38, 347. 249. Kamaya, R., Tanaka, Y., Hiyama, R. and Ageta, H. (1990) Chem. Pharm. Bull. 38, 2130. 250. Elix, J. A., Whitton, A. A. and Jones, A. L. (1982) Aust. J. Chem. 35, 641. 251. Wilkins, A. L., Ronaldson, K. J., Jager, P. M. and Bird, P. W. (1987) Aust. J. Chem. 40, 1713. 252. Van Eijk, G. W., Roeijmans, H. J. and Seykens, D. (1986) Tetrahedron Letters 27, 2533. 253. Hamburger, M., Dudan, G., Nair, A. G. R., JayaR. and Hostettman, K. (1989) prakasam, Phytochemistry 28, 1767. 254. Babadjamian, A., Faure, R., Laget, M., Dumenil, G. and Padien, P. (1984) J. Chem. Sot. Chem. Commun. 1657. 255. Ayatollahi, S. A. M., Ahmed, Z., Afza, N. and Malik, A. (1992) Phytochemistry 31, 2899. 256. Murasaki, C., Kakinuma, K. and Fujimoto, Y. (1993) Phytochemistry 33, 240. 257. Wong, S. M., Pezzuto, J. M., Fang, H. H. S. and Farnsworth, N. R. (1986) J. Nut. Prod. 49, 330. 258. Masuda, K., Kamaya, R., Ikegami, S., Ikeshima, Y. and Ageta, H. (1989) Chem. Pharm. Bull. 37, 1673. 259. Tanaka, R. and Matsunaga, S. (1989) Phytochemistry 28, 3149. ‘%ZNMR spectra of pentacyclic triterpenoids 260. Banerjee, J., Datta, G., Dutta, C. P., Eguchi, T., Fujimoto, Y. and Kakinuma, K. (1991) Phytochemistry 30, 3478. 261. Arisawa, M., Ueno, H., Nimura, M., Hayashi, T. and Morita, N. (1986) J. Nat. Prod. 49, 1114. 262. Itokawa, H., Qiao, Y. and Takeya, K. (1990) Chem. Pharm. Bull. 38, 1435. 263. Oyarzum, M. L., Garbarino, J. A., Gambaro, V., Guilhem, J. and Pascard, C. (1987) Phytochemistry 26,221. 1575 264. Konda, Y., Iguchi, M., Harigaya, Y., Takayanagi, H., Ogura, H., Li, X., Lou, H. and Onda, M. (1990) Tetrahedron Letters 31, 5315. 265. Takigawa, T., Kinoshita, K., Koyama, K., Takahashi, K., Kondo, N., Yuasa, H. and Kawai, K. (1993) J. Nat. Prod. 56, 2183. 266. Bendall, D. M., Doddrell, D. M. and Pegg, D. T. (1981) J. Magn. Reson. 44, 238.
© Copyright 2025 Paperzz