review article number 98 13c nmr spectra of pentacyclic

Pergamon
9031-9422(94)00493-5
Phymchem~rry,
Vol. 37, No. 6, pp. 1517-1575, 1994
copyright 8 1994 lilseti ScienceLtd
Printed in Great Britain.Al1rights mrvcd
0031~9422/!%$24M) t 0.00
REVIEW ARTICLE NUMBER 98
13C NMR SPECTRA OF PENTACYCLIC TRITERPENOIDS-A
AND SOME SALIENT FEATURES
SHASHI B. MAHATO*
COMPILATION
and ASISH P. KUNDU
Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Calcutta 700032, India
(Received31 May 1994)
Key Word Inde~--‘~C NMR da&g pentacyclic triterpenoids; signal assigmnent techniques; substituent effects.
Abstract-A compilation of the “C NMR data of a selected variety of naturally occurring pentacyclic triterpenoids,
arranged skeletonwise, is provided. A brief account
of the newer signal assignment techniques and a discussion on the
substituent effects on the i3C shieldings of the triterpenoids, are also included.
Triterpenoids are ubiquitous non-steroidal secondary
metabolites of terrestrial and marine flora and fauna,
occurring in the free form as well as in the forms of ether,
ester and glycoside. Although medicinal uses of this class
of compounds have been limited, considerable recent
work [l] strongly indicates their great potential. As the
name implies, triterpenoids are isopentenoids composed
of thirty carbon atoms and may possess acyclic, mono-,
di-, tri-, tetra- or pentacyclic carbon skeletons. Pentacyclit triterpenoids are dominant constituents of this class
and have been widely investigated. Spectroscopic techniques are now routinely employed for structure elucidation of natural products. Of all the physical methods, the
NMR technique has changed greatly during the last two
decades, first with the ~troduction of the Fourier transform (FT) method and more recently the growth of multiple pulse and 2DNMR. Perhaps more importantly
have been developments consequent on the pulse technique which permit enormously greater control and manipulation of the sample’s magnetization. Consequently,
the structural information which is gleaned through
pulse NMR is probably greater and more readily obtained than by any other single technique.
A large number of pentacyclic triterpenoids have been
examined by 1%ZNMR spectroscopy and considerable
13C chemical shift data have accumulated. These data are
scattered in the literature, although compilations of i3C
data for a number of compounds [2] and oleanane triterpenoids [S] are available. The assignment of carbon
signals of a new compound by comparison with the data
*Author to whom correspondence should be addressed.
of known compounds is simple and str~gh~o~ard
provided, of course, the 13C data of appropriate model
compounds are available. It would appear to be of value
to provide an easy access to an extensive list of i3C data
of pentacyclic triterpenoids and this paper reports the
skeletonwise compilation of the data of these compounds. A brief description of the newer signal assignment techniques and a discussion on the substituent
effects on the r3C shieldings, to illustrate their utility, as
well as limitations, are also included.
13CSiGNALASSIGNMFJ'I'CTECHNIQUES
The assignment of i3CNMR signals begins with an
inspection of the proton noise (broad band) decoupling
spectra taking into ~nsideration
the chemical shift
values and usually backed up by 13C multiplicity data.
The off-resonance decoupled spectra were previously
used for the determination of quaternary, methine,
methylene and methyl carbons appearing as singlets,
doublets, triplets and quartets, respectively. ffowever, in
such spectra, severe signal overlap and second order
effects f~quently prohibit un~biguo~
interpretation.
Several techniques such as APT (attached proton test)
[4], DEPT (distortionless enhancement by polarization
transfer) [S] and INEPT (insensitive nuclei enhanced by
polarization transfer) [6-81, are now widely used for
distinguishing carbon types. Although the polarization
transfer techniques, DEPT and INEPT are now used for
the multiplicity determination, the polarization pulse sequences were originally devised for the purpose of sensitivity enhan~ment. The DEPT sequence is usually preferred for editing purposes because it has some advantages and is less susceptible to errors. The multiplicity
1517
1518
S.
B. MAHATO and
dependence rests on the delay A for INEPT and the flip
angle 0 for DEPT experiment. By performing three experiments with different values of A or 0, it is possible to
distinguish unambiguously between the three types of
protonated 13C. The quaternary carbons do not receive
polarization from protons and disappear from INEPT
and DEPT spectra. For example, a DEPT experiment
with a flip angle 0 of 45” will show positive signals for all
three multiplicities; with 0= 90” only methine signals
should appear, while with 0 = 135” methylene signals will
appear negative and methine and methyl signals remain
positive [9].
The techniques of derivatization, usually acylation of
hydroxy groups, use of shift reagents and isotope labelling have sometimes been used for definitive signal assignments of natural products, including pentacyclic triterpenoids. The ‘%NMR spectra of some derivatives of
bryonolic acid (D : C-friedoolean-8-en-3B-ol-29-oic
acid)
were assigned by means of 13C-enrichment, lanthanideinduced shifts (LIS) and comparison of the chemical shift
data of the derivatives [lo]. Lanthanide induced shifts
associated with the addition of Eu(Fod)J have been used
for the determination of conformation of bryonolic acid
and its derivatives in CDCls solution [ll].
2D-NMR Spectroscopy
The above mentioned techniques are found to be inadequate for unambiguous assignment of the 13C resonances of compounds possessing complex structural features. In such cases, 2D-NMR techniques provide a useful solution to the problem. ZD-NMR techniques have
been reviewed in several monographs [12-171. There are
many variants for the techniques of 2D-NMR and it is
rather difficult to keep abreast with the acronyms of so
many variants. However, it is perhaps pertinent to mention that no new interactions or parameters are involved
in the newer techniques and the increase in experimental
complexity stems rather from instrumental developments
and from the necessity to interpret the spectra of increasingly complex samples. Sensitivity problems are inherent
in NMR spectroscopy and acceptability of a technique
largely depends on its sensitivity and the minimum time
requirement. A few of the techniques e.g. J-resolved experiment [IS, 191, SECSY (spin echo correlated spectroscopy) [20] are now rarely used, because of their limited
sensitivity. The techniques and their applications which
are useful today and have the potential of being used
tomorrow are briefly dealt with in the following paragraphs.
Homonuclear correlation spectroscopy. Homonuclear
‘H-‘HCOSY [21] is now one of the most widely used
2D-NMR experiments for ‘H assignment. Once the definitive ‘H NMR assignments are achieved by homonuclear COSY or its variants, these can be correlated via
‘H-13C COSY spectrum to assign 13C signals. As such,
‘H-‘HCOSY not only provides information for unambiguous ‘HNMR
assignments
but also helps in
13CNMR assignments. The phase sensitive COSY (PS-
A. P. KUNDU
COSY) is useful for establishing remote connectivities
[22], as the COSY cross-peaks display the entire coupling information concerning the protons involved. The
great strength of PS-COSY is the resolution obtainable
of the fine structure of cross-peaks. This technique is very
useful for the accurate measurement of chemical shifts
and coupling constants from cross-peaks, when the parent signals are buried in the one dimensional spectrum.
Thus, a cross-peak obtained at frequency Fz (horizontal
axis) of a proton and frequency F, (vertical axis) of
another proton not only shows the coupling betweeen
themselves (active couplings) but also coupling between
these and other protons (passive couplings). Doublequantum filtered COSY (DQF-COSY) [23] spectra are
used for visualization of cross-peaks, which are close to
diagonal. All the spin systems that contain less than three
or more mutually coupled spins are eliminated in a triplequantum filtered COSY (TQF-COSY) [24]. LR-COSY
(long range-COSY) [21] and DQF-COSY sequences
were used for elucidation of the structure of achilleol B,
a new tricyclic triterpene from Achilles odorate L. [25].
The DQF-COSY sequence was selected in order to avoid
the methyl group crowd on the diagonal. PS-COSY
experiments were performed for complete assignments of
the 13C and ‘HNMR signals of 12a-acetoxyfern-9(11)en-3/I-01 [26], a lichen triterpenoid of established structure. The phase sensitive heteronuclear
correlated
(PSHCOR) and phase sensitive double quantum COSY
(PSDQFC) spectra of 22-hydroxyhopan-6-one (339) and
6a-acetoxyhopan-22-01 (340) were acquired and processed for assignment of their i3C resonances [27]. The
PSDQFC spectra of methyl aipolate (350) were also used
for complete assignment of the 13C signals [27j.
Homonuclear Hartmann-Hahn spectroscopy (HOHAHA).
The HOHAHA spectroscopy [28,29] is related to
TOCSY (total correlation spectroscopy) [30]. From
a HOHAHA spectrum, ‘J-network’ can be determined,
where a ‘J-network’ is defined as a group of protons that
are serially linked via ‘H-‘H J (scalar) coupling. The
HOHAHA spectrum of stelliferin A, a new antineoplastic
isomalabaricane triterpene from the Okinawan marine
sponge Jaspis stellifera was used by Tsuda et al. [31] to
elucidate the partial structure of the side chain of the
compound. The HOHAHA spectrum of achelleol B [25]
proved to be very useful for structural elucidation of the
acyclic moiety of the molecule, allowing unambiguous
assignments of some ‘H signals.
2D Incredible natural abundance double quantum transfer experiment (INADEQUATE).
The 2D INADEQUATE experiment [32,33] provides direct information on carboncarbon
connectivity and therefore, can be
used to trace the entire carbon skeleton of the molecule.
The presence of a pair of double quantum peaks generally indicates the presence of a bond. However, this may
be absent from carbon atoms with long relaxation times,
strongly coupled carbons and if the chemical shift difference is large. Nevertheless this technique is only applicable to limited problems, because of its extremely low
sensitivity. The structure of odolactone (188), a triterpenoid of D : A-friedooleanane skeleton was revised and
1520
S. B. MAHATO
and A. P. KUNDU
A modification of the proton-detected heteronuclear
chemical shift correlation experiments was proposed by
Zuiderweg [55] to improve both resolution and sensitivity. In these heteronuclear single-and multiple-quantum
coherence (HSMQC) experiments, both single- and multiple-quantum coherence pathways contribute to the observed signal, thereby intermixing the narrow line characteristics of the heteronuclear single-quantum coherence (HSQC) experiment originally described by Bodenhausen and Ruben [57], into the signal obtained from the
HMQC experiment.
HMBC. Although modified long-range heteronuclear
correlation experiments were devised to overcome the
problem of low sensitivity, these experiments met with
limited success. However, a successful solution was provided by using proton-detected heteronuclear multiple
bond correlation (HMBC) [54]. In HMBC experiments,
the first 90” proton pulse creates transverse proton magnetization in the XY plane. The low pass J-filter is optimized as a function of the one-bond coupling to bring the
components of proton magnetization, driven by iJcH,
antiphase at the end of the interval, A. The 90” carbon
pulse applied at this point creates one-bond multiplequantum coherence. By cycling the phase of the first 90”
carbon pulse as 02022020 . . . , the undesired one-bond
component of magnetization is ultimately added and
then subtracted (filtrated) from the FID. After a further
period of time, AU, a second 90” carbon pulse is applied
to create multiple-quantum
coherence from the desired
long-range protoncarbon
couplings. This magnetization is manipulated as in the HMQC experiment, reconverted to observable proton single-quantum coherence,
and recorded [56].
Application of HMQC and HMBC techniques
The techniques of HMQC and HMBC were successfully used for elucidation of the structure of stelliferin A,
a new isomalabaricane triterpene by Tsuda et al. [31].
Fame et al. [58] employed HMQC and HMBC experiments for complete i3C signal assignments of isomultiflorenyl acetate (159). Carbon-hydrogen
pairings of the
methyl groups were readily determined from an HMQC
contour plot. The structure of abrisapogenol G (106),
a triterpenoid sapogenol isolated from Abrus precatorious, has been established by the use of HMBC specrroscopy [59]. The HMBC NMR spectroscopy was successfully used to elucidate the structure of chiratenol (364),
a novel triterpene possessing a rearranged hopane skeleton 160-J The two- and three-bond correlation between
methyl protons and carbon of the ketone of chiratenol
led to the elucidation of the structure 364. Three
friedelane triterpenes isolated from the stem-bark of
Caloncoba glauca were characterized as trichadonic acid
(195X caloncobalactone
(174) and 21/I-hydroxycaloncobalactone (175) by considerable use of long-range C-H
coupling studies [61]. For example, the methyl doublet
of trichadonic acid (195) was found by means of the
proton detected direct C-H coupling (HMQC) study, to
be highly shielded, which is typical for the 23-Me reson-
ance of a 3-oxo-friedelane. Assuming this resonance assignable to C23, the application of the HMBC technique
led to the elucidation of the structure and 13C assignments of the triterpene (1%) by identifying ‘J and 3J
connectivities associated with the methyl proton resonances. Thus HMBC, using the protons from only the
seven methyl resonances, allows unambiguous assignment of C3, C4, C5, C6, C8, C9, ClO, Cll, C13, C14, C15,
C17, C18, C20 and C23 to C30 of the triterpene (195) and
assignment of C19/C21 and C16/C22 without distinguishing between these pairs. Parsons et al. [62] described the assignments of different ‘H and “C signals
using HMBC experiments for the elucidation of the
structure of D-friedoolean-14-ene-38,7a-diol (152).
The hybrid methods e.g. HMQC-COSY ‘[63, 641,
HMQC-TOCSY
[65] and HMQC-NOESY
[66] are
powerful alternatives for obtaining further connectivity
information, specially when the ‘H spectrum is highly
congested. The application of these techniques in the field
of triterpenoid is still very limited.
Ont dimensional analogues of proton detected ZD-NMR
experiments. The 2D-NMR experiments usually yield
some information which is not always required. In such
cases, selective 1D analogues of the 2D experiments
would be highly desirable. Two such techniques are selective inverse correlation (SELINCOR) reported by .Berger
1671 and selective one dimensional HMQC-TOCSY
[68]. A selective inverse multiple bond analysis (SIMBA)
which is a 1D analogue of the 2D HMBC experiment has
recently been described by Crouch and Martin [69]. The
authors are of the opinion that the future for application
of 1D analogues of ZD-NMR experiments is quite bright,
as they can provide vital structural information with
minimum investment in time, compared to the acquisition of full 2D-NMR experiments.
“C NMBSHIELDINGDATAOF PENTACYCLIC
TEITEEPENES
ANDSUESTITUENTEFFECTS
13CNMR shielding data of a large number of pentacyclic triterpenes have been published. A compilation
of the 13CNMR data of selected varieties of naturally
occurring pentacyclic triterpenes is given in Table 1. The
triterpenes have been arranged skeletonwise and according to increasing number of hydroxy substituents. The
olean-12-enes have been listed first, followed *by oleanenes with other double bonds and more than one
double bond, friedooleananes, urs- 12-enes, Ursa-dienes,
taraxastanes, pseudotaraxastanes,
friedoursanes, gammaceranes, serratanes, swertanes, kairatane, stictanes,
flavicanes, lupanes, hopanes, fernanes, adiananes, arboranes, bicadinane, friedomadeiranes and pachanane.
Hydroxyl substituent eflects
Inspection of the “C data of various mono- and polyhydroxy triterpenes (Table l), reveals that introduction
of a hydroxyl group results in downfield shifts of
34-50 ppm for cc-carbons and 2-10 ppm for p-carbons
and upfield shifts of O-9 ppm for y-carbons. These values
13CNMR spectra of pentacyclic triterpenoids
closely resemble those observed for cyclopentanols and
cyclohexanols [70]. Eggert et al.’ [71] determined the
‘“CNMR spectra of thirty one mono-hydroxylated androstanes and cholestanes and assigned the individual
resonances. The effects of the hydroxyl groups were
quantified by empirical rules. However, Van Antwerp
et al. [72] observed that there are significant differences
between the found chemical shifts of compounds with
1,2- or l$-dihydroxy groups and those calculated, assuming additivity of the substituent effects of the mono
substituted compounds. Similarly, for triterpenes which
are closely related to steroids, the substituent effect on
chemical shifts of the carbinyl carbon atom, is not primarily dependent on the stereochemistry of hydroxyl
groups. It also depends on the number of y-gauche carbon atoms possessing hydrogens able to interact with the
hydroxyl group, as well as the number of 1,3-diaxial
interactions of the hydroxyl group with carbon atoms.
However, where l$-diaxial interactions are absent the
carbinyl carbon is less shielded in the equatorial epimer
than in the axial one. In triterpenes 31-34 and 65, the
carbinyl carbons, C6, C16, C19, C21 and C2, each containing an axial hydroxyl groups, are less shielded than
their equatorial counterparts, because of 1,3-diaxial interactions.
Location and conJgurationa1 determination of hydroxyl
groups
The location of the primary hydroxyl group at C23,
C24, C29 and C30 in oleanenes may be determined from
the chemical shifts of the hydroxymethylene carbons, as
the equatorial hydroxymethylenes (C23 and C29) are less
shielded than their axial counterparts (C24 and C30).
Configurational determination of 2,3-dihydroxy and
2,3,23- and 2,324~trihydroxy substituents in oleanenes
and ursenes by ‘H NMR spectroscopy has been reported
[73]. However, “CNMR data of these triterpenes are
also extremely useful for the determination of configurations of 2,3-; 3,23-; 3,24- diiydroxy and 2,3,23- and 2,3,24trihydroxy substituents. Comparison of the i3C data of
triterpenes 1 and 5, containing equatorial and axial hydroxyl groups at C3, reveals that not only the carbinyl
carbon’of the equatorial isomer is less shielded (679.0)
than the axial one (a 76.4), but also the axial C4 methyl
and Cl methylene groups in 1 are shifted by about
6.5 ppm and 2.0 ppm, respectively, in comparison to that
of triterpene 5 due to y-gauche interaction. It should be
mentioned that the 13C data reported by Gupta and
Singh [74,75] for two triterpenes, 3g16a,21a,22a,28-pentahydroxy-olean-12-ene
and
3a,16a,21~,22a,28-pentahydroxyolean-12-ene
are not in conformity with the
structures and a reinvestigation of these triterpenes seems
necessary.
In triterpenes 28, 29, 215 and 217 containing 2a,3/I-,
2a,3a-, 2fi,3a- and 2&3/Lhydroxyl groups, the C2 and C3
carbons resonate at S 68.8,83.8; 66.5,78.9; 68.9,78.2; 71.0
and 78.4 ppm, respectively. Evidently the hydroxyl bearing C2 or C3 is less deshielded by the adjacent axial
1521
hydroxyl than by the equatorial one. In triterpenes 38
and 39 bearing 3/3,24 and 3a,24 hydroxyls the C3 of the
former is only slightly affected but the latter is shielded by
about 6 ppm. Comparison of the r3C data of triterpenes
28,29,37 and 66 indicates that the C3 carbon containing
the equatorial hydroxyl is shielded by about 5 ppm
by the 23-hydroxyl group but for the axial hydroxyl, it
remains more or less unaffected. In 27 containing laJ/?hydroxyls, C3 is shielded by about 7 ppm and in 102
bearing lp,3/&hydroxyls, the C25 methyl carbon is shielded by about 3 ppm due to y-gauche interaction. In 31
and 226 containing axial and equatorial hydroxyl
groups, respectively, the C6 carbons resonate at 668.9
and 67.3 ppm i.e. the axial bearing carbon is less shielded
than the equatorial counterpart. As already mentioned,
this may be attributed to the 1,3-syn diaxial interaction.
Although no oleanene or ursene triterpene containing
a 15/?-(axial) hydroxyl group appears to have been isolated so far, the 13C data of triterpene 17 containing
a 15a-(equatorial) hydroxyl, show the Cl5 resonance at
668.2 ppm, as expected. For 55 and 77 with 16a-OH
configurations, the Cl6 resonance is found at a significantly lower field than for the epimers 54 and 76 with
16/I-OH configurations. For the analogous structural
situation in arjungenin (&I) and tomentosic acid @I),
a similar downfield shift is observed for the Cl9 resonance of 86 where the 19a-OH is axial, compared with that
of 85, where the 19/I-OH is equatorial. These results for
carbinyl carbons are ascribed to the strong 1,3diaxial
Me . . . . . OH interaction. The strong dependence of “C
chemical shifts upon a steric factor is illustrated by the
results for the triterpene, 3fl,16u,22a,23,28+entahydroxyolean-12-ene (93). It is evident that the close spatial
approach of the 22a-OH to the 168-H, gives rise to an
upfield shift of 5.4 ppm for C16, as compared to that in
cyclamiretin D, 3/?,16a,28-trihydroxyolean-12-en-3O-a1
(68). For yunganogenin C (57), with a 21a (axial)-OH
configuration, the C21 resonance is found at a lower field
(674.5) than for the epimer kudzusapogenol C (58)
(672.8), with the C21fi (equatorial)-OH configuration.
A similar low field is observed for the C21 resonance of
triterpene 34 with 21a-OH compared with that of 35 with
alp-OH. These results are in conformity with other cases
having a 1,3-diaxial Me . . . . OH interaction.
For
soyasapogenol
B (3/$22/W-trihydroxyolean-12ene)
(59), the C22 resonates at 675.8. In triterpene 38,22a,28trihydroxyolean-12-ene
(60), the C22 resonance is also
observed at 675.8. However, in case of the latter there
exists a y-gauche effect on C22 due to the presence of
28-OH. In soyasapogenol A (3/$21/&22~,24_tetrahydroxyolean-12-ene) (73), the C21 and C22 resonate at
674.6 and 79.6, respectively, the former being less deshielded due to the fi-effect of C22b(axial)-OH, than the latter,
which is more &shielded due to the p-effect of the equatorial 21-OH. For the triterpene 3fl,16a,21fi,22a,24,28hexahydroxyolean-12-ene
(99), the C21 and C22 resonances are observed at 678.6 and 77.1, respectively. While
there is j-effect of C22 (equatorial)-OH on C21, the C22
is influenced by the /?-effect of C21 (equatorial)-OH as
well as the y-effect of 28-OH.
1522
S. B. MAHATO and A. P. KUNDU
Table 1. “C NMR data of pentacyclic triterpenes*
C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
References
1
2
3
4P
5
6
7
8
Y
38.7
27.3
79.0
38.8
55.3
18.5
32.8
38.8
47.7
37.6
23.6
121.8
145.1
41.8
26.2
27.0
32.5
47.4
46.9
31.1
34.8
37.2
28.2
15.5
15.6
16.9
26.0
28.4
33.3
23.7
[ 1131
38.5
27.4
78.1
38.7
55.2
18.3
32.6
39.3
47.6
37.0
23.1
122.1
143.4
41.6
27.7
23.4
46.6
41.3
45.8
30.6
33.8
32.3
28.1
15.6
15.3
16.8
26.0
181.0
33.1
23.6
39.1
34.1
217.6
47.4
55.3
19.6
32.2
39.3
46.0
36.7
23.0
122.1
143.8
41.8
21.7
23.5
46.7
41.4
45.8
30.6
33.8
32.3
26.4
21.4
14.9
16.7
25.8
33.0
23.6
36.Y
27.8
78.8
40.2
55.5
18.3
33.5
37.3
49.2
38.8”
23.0
125.5
137.5
56.1
22.3
21.3
32.9
47.5
44.0
30.9
34.3
36.8
28.3
15.7
16.4
18.1
176.1
28.2
33.2
23.5
36.7
27.6
76.4
39.9
48.8
18.0
32.9
36.7
48.8
36.7
23.6
126.0
137.6
56.0
22.7
26.2
32.9
47.0
44.2
31.0
34.2
36.2
28.2
22.1
15.8
18.0
179.0
28.2
32.9
23.6
38.4
23.6
81.1
37.8
55.4
18.3
32.7
39.9
47.6
37.0
23.6
123.0
144.4
41.7
26.6
27.0
32.5
46.1
40.6
42.8
29.1
36.0
28.3
16.8
15.6
16.8
26.0
28.2
179.6
19.4
38.6
27.2
78.8
38.6
55.1
18.4
32.7
39.7
47.6
36.9
23.4
122.2
143.9
41.5
26.1
27.0
31.9
48.1
42.8
44.1
31.3
38.3
28.1
15.3
15.5
16.8
25.9
28.1
28.4
176.9
38.8
27.2
78.6
38.7
55.2
18.3
33.1
39.5
47.2
36.8
23.2
117.2
141.5
43.6
26.3
38.1
34.9
39.3
36.0
42.8
32.4
28.7
28.1
15.2
15.7
15.8
23.2
17.4
20.9
178.7
38.4
27.0
71.6
56.2
48.0
21.0
32.5
40.0
47.7
36.2
23.8
122.2
144.8
42.2
28.2
23.8
46.6
41.9
46.5
30.9
34.2
23.1
207.1
9.6
15.7
17.3
26.1
180.0
33.2
23.8
Cl141
Cl151
Cl161
Cl161
Cl171
C761
C761
Cl 181
1523
13C NMR spectra of pentacyclic triterpenoids
Table 1. Continued
10
11
12p
13
14p
15
16
17
18
19p
2op
21P
36.7
27.5
76.0
39.6
48.5
18.0
32.9
36.7
46.8
37.0
22.6
126.8
136.1
55.6
21.8
25.3
32.7
47.1
35.1
46.6
24.6
34.6
28.0
21.9
15.8
17:7
178.5
28.0
206.0
15.8
36.2
27.3
75.8
39.9
48.5
18.0
32.7
37.0
47.9
37.0
22.5
126.8
135.8
55.5
21.7
25.2
32.7
46.4
38.1
42.0
21.2
35.1
28.2
22.3
16.1
17.9
185.5
27.8
183.0
19.3
37.6
26.2
74.0
53.0
50.5
20.2
31.5
38.6
46.9
35.3
22.3
122.4
143.3
40.7
26.8
22.2
45.1
40.5
45.0
29.5
32.7
31.5
179.2
10.7
14.5
15.9
24.7
178.7
31.8
22.3
39.2
25.3
77.8
39.1
55.7
18.7
37.4
39.8
47.5
37.3
23.4
125.9
138.1
56.5
28.1
24.9
47.7
44.2
44.0
30.9
34.0
32.8
28.5
16.5
16.4
18.7
178.5
180.2
33.1
23.1
38.9
28.0
78.1
39.4
55.8
18.8
33.2
39.7
48.0
37.4
23.8
122.2
144.3
42.5
28.3
23.8
46.6
41.1
41.1
42.2
29.4
32.4
28.3
16.6
15.5
17.4
26.1
180.0
181.2
20.0
38.4
27.1
78.1
38.7
55.2
18.3
32.6
39.2
47.5
36.9
23.3
122.9
142.9
41.4
27.6
23.3
46.0
42.5
42.0
43.6
30.3
33.4
27.9
15.6
15.3
16.7
25.9
176.4
28.1
177.3
39.5
27.4
78.7
39.0
55.1
18.4
32.9
43.3
49.7
31.9
81.7
121.2
153.2
41.8
26.4
27.4
32.3
46.9
46.9
31.2
34.7
31.0
28.0
15.5
18.3
16.8
24.1
28.5
33.3
23.1
38.7
27.2
78.8
38.7
54.8
18.6
36.8
41.1
47.7
37.0
23.6
123.0
146.1
47.4
68.2
36.0
33.0
47.6
46.2
31.0
34.6
37.4
28.1
15.6
15.6
17.5
20.2
28.9
33.3
23.6
38.5
27.1
78.8
38.7
55.1
18.2
32.6
39.8
46.8
37.2
23.4
122.2
143.4
43.7
35.5
65.9
36.8
49.0
46.5
30.8
34.1
30.5
28.0
15.4
15.3
16.7
27.0
21.3
33.1
23.8
39.2
28.2
78.1
39.4
55.9
18.9
33.3
40.1
48.1
37.3
23.9
122.5
144.9
42.5
26.5
28.7
38.0
45.4
46.9
30.9
42.3
75.6
28.8
15.9
16.6
17.3
25.8
28.8
33.3
21.2
39.1
28.1
78.0
39.4
55.7
18.7
32.9
39.9
47.8
31.2
23.9
124.9
141.1
42.0
25.3
21.3
48.2
46.7
41.1
44.4
45.9
214.1
28.7
15.6
16.6
16.9
25.4
21.3
176.6
20.9
39.1
28.1
78.0
39.4
55.1
18.7
33.0
39.9
47.9
31.2
23.8
124.7
141.5
42.0
25.3
28.1
47.5
48.5
44.1
45.7
46.8
213.0
28.7
15.8
16.6
16.9
25.3
21.3
26.2
176.8
Cl161
Cl161
Cl191
cw
Cl211
Cl221
~1231
cl241
cl251
Cl261
~1271
~1271
PHYTO
37-6-D
S. B. MAHATO and A. P. KUNDU
1524
Table 1.
Continued
22
23
24
25
26p
27”
28
29
30
31
38.3
21.6
80.7
42.1
55.8
18.4
32.9
39.8
47.7
36.7
23.8
121.6
-145.2
41.7
26.9
26.1
32.5
47.2
46.8
31.1
34.7
37.1
22.4
64.4
16.1
16.7
26.0
28.4
33.3
23.1
38.6
27.2
79.0
38.8
55.2
18.4
32.6
39.8
47.6
36.9
23.6
122.3
144.2
41.7
25.6
22.0
36.9
42.3
46.5
31.0
34.1
31.0
28.1
15.5
15.5
16.7
25.9
69.7
33.2
23.6
38.5
27.2
78.8
38.7
55.1
18.4
32.7
39.7
47.6
36.8
23.5
122.1
144.4
41.7
26.1
27.3
32.4
46.7
41.9
35.5
29.6
36.5
28.1
15.5
15.5
16.8
25.9
28.1
29.6
66.6
38.2
27.3
78.8
38.7
55.2
18.3
34.1
39.5
47.2
36.8
23.1
116.9
141.9
43.6
26.3
38.8
35.0
39.6
36.3
36.2
32.3
28.5
28.1
15.2
15.7
15.8
23.1
17.4
20.6
74.9
38.9
28.4
80.1
43.2
56.4
19.1
33.6
39.8
48.1
37.1
24.1
123.7
142.8
42.8
25.7
26.5
38.6
45.2
46.1
40.0
39.3
85.8
23.6
64.6
16.2
17.0
25.1
23.5
72.6
76.4
72.8
35.9
71.9
40.1
48.6
17.4
33.0
39.8
38.4
42.7
23.8
123.7
144.7
41.7
26.7
27.5
33.0
46.8
41.8
43.0
30.0
36.7
28.6
16.8
16.6
16.6
26.3
29.0
181.4
18.9
46.4
68.8
83.8
39.1
55.3
18.3
32.6
39.1
47.5
38.3
23.1
122.0
143.6
41.7
27.6
23.5
46.6
41.3
45.8
30.7
33.8
32.3
28.6
16.8
16.8
16.8
26.0
178.0
33.1
23.5
41.7
66.5
78.9
38.5
48.1
18.1
32.5
39.7
47.4
38.3
23.2
122.1
143.8
41.9
27.7
23.2
46.8
41.3
46.0
30.7
34.0
32.5
28.5
21.9
16.4
17.0
26.2
178.1
33.2
23.6
40.6
27.4
79.1
39.5
55.6
68.7
40.7
38.6
47.9
36.5
23.3
122.7
142.9
42.2
27.7
23.0
46.7
41.3
45.8
30.7
33.9
32.4
27.9
17.0
16.8
18.2
26.0
178.2
33.1
23.6
35.2
25.1
77.4
38.1
49.1
68.9
40.5
38.5
47.5
36.6
23.1
122.7
142.8
42.2
27.5
23.0
46.7
41.2
45.8
30.7
33.8
32.3
28.3
24.4
16.5
18.1
26.1
178.3
33.1
23.6
cl241
WI
C761
cl291
Cl301
Cl311
cl321
I91
c501
C761
13C NMR spectra of pentacyclic triterpenoids
1525
Table 1. Continued
32’
33p
38.9
28.0
78.0
39.3
55.8
18.8
33.3
39.8
47.2
37.3
23.7
122.4
144.9
42.0
36.0
74.6
48.8
41.3
47.2
30.9
36.0
32.7
28.7
16.5
15.6
17.4
27.1
179.8
33.5
24.7
38.8
28.1
78.2
39.4
56.0
19.0
33.3
40.0
48.3
37.5
24.1
123.8
144.3
42.0
29.0
28.1
46.4
44.7
81.0
35.6
29.0
33.3
28.8
16.5
15.5
17.3
24.7
178.7
28.8
24.9
Cl341
Cl311
41
35
36p
37
3&v
39e
40
38.6
27.1
77.8
38.6
55.3
18.3
32.8
39.1
47.5
36.9
23.3
122.1
143.8
41.8
27.9
26.4
46.6
41.2
40.8
35.0
72.9
39.0
28.3
15.9
15.3
16.8
27.6
177.6
25.3
24.8
38.4
27.0
76.9
38.4
54.9
18.0
32.3
38.9
47.2
36.6
23.0
122.1
142.7
41.3
27.3
24.0
47.9
40.6
46.2
35.7
70.8
40.6
28.2
16.0
15.1
16.6
25.5
176.1
29.1
17.1
39.2
28.8
78.1
39.4
55.8
18.8
33.2
40.1
48.1
37.3
23.9
123.0
144.1
42.4
26.4
28.5
37.9
44.3
41.1
42.7
37.3
75.0
28.2
15.9
16.6
17.2
25.7
21.0
18.8
38.9
27.6
73.7
42.9
48.8
18.7
33.6
39.8
48.2
37.3
23.8
122.7
145.0
42.2
28.4
23.8
46.7
42.0
46.5
31.0
34.3
33.3
68.2
13.1
16.0
17.5
26.2
180.4
33.3
23.8
38.8
28.5
80.3
43.3
56.5
19.1
33.6
39.8
48.3
37.3
24.1
122.7
145.1
42.2
28.5
23.8
46.8
42.1
46.6
31.0
34.3
33.3
23.7
64.6
16.0
17.3
26.2
180.4
33.3
23.8
33.9
26.4
70.0
43.9
50.1
19.1
33.6
39.9
48.1
37.5
24.0
123.0
144.1
42.0
28.1
23.5
47.0
41.9
46.1
30.8
34.0
32.8
23.4
65.8
15.9
17.1
26.1
177.9
33.1
23.7
33.6
27.5
78.8
38.5
55.1
17.8
32.7
39.3
48.2
41.1
22.9
122.7
143.3
41.6
28.0
24.8
46.5
41.1
45.7
30.4
33.1
32.2
28.6
15.6
61.0
17.0
26.1
178.1
32.9
23.3
38.1
27.1
78.8
38.7
54.8
18.2
32.4
39.7
48.3
37.1
24.1
129.7
137.7
47.5
24.5
22.4
46.0
40.4
44.9
30.7
33.4
32.3
28.0
15.7
15.5
18.5
63.0
183.0
33.0
23.8
Cl351
Cl361
Cl371
Cl381
Cl381
Cl391
Cl361
Cl141
34
S. B. MAHATO and A. P.
1526
KIJNDU
Table 1. Continued
SOD
51p
52
53p
39.0
27.7
74.0
43.0
49.1
18.8
33.2
40.0
48.4
37.4
24.0
123.4
144.6
42.3
28.6
24.0
46.4
43.5
43.0
44.3
31.1
34.6
68.4
13.1
16.1
17.6
26.3
179.8
28.6
177.3
33.2
25.3
70.6
42.7
49.6
18.7
33.0
40.0
47.1
36.9
23.7
122.4
143.9
41.2
27.8
23.2
45.9
42.7
41.3
44.0
30.6
33.6
21.7
66.5
15.6
16.7
25.4
178.9
27.9
176.5
38.6
28.0
78.0
39.4
55.9
18.9
32.8
39.8
47.8
37.6
23.8
122.4
141.1
42.2
24.0
26.6
44.1
40.2
30.2
38.6
80.4
36.6
28.6
16.4
15.6
16.3
23.5
181.9
22.1
68.0
33.0
27.4
78.2
39.0
48.3
18.5
30.5
46.9
79.0
44.8
67.2
123.2
149.0
43.3
27.7
26.8
32.9
46.8
45.3
31.0
34.8
36.9
28.2
15.5
20.2
19.6
27.6
28.7
33.3
23.6
39.1
28.5
80.2
43.2
56.2
19.5
37.2
41.6
48.3
37.1
24.3
123.7
146.9
48.2
66.9
37.1
33.3
48.3
46.7
31.2
34.9
38.7
23.8
64.7
16.4
17.7
20.9
21.3
33.5
23.6
Cl451
Cl391
Cl461
Cl471
El241
42p
43
44
45
46
41P
48p
49p
38.9
28.1
78.1
39.4
55.9
18.8
33.3
39.8
48.2
37.4
23.8
122.5
144.9
42.2
28.2
23.8
47.2
41.4
41.4
36.6
29.1
32.1
28.8
16.5
15.5
17.4
26.2
180.2
73.9
19.8
35.7
27.6
73.6
39.3
48.0
18.0
32.9
36.7
48.0
36.8
23.6
124.8
137.5
55.3
22.7
26.2
32.9
46.3
40.5
35.7
29.0
38.7
28.0
22.2
15.9
17.7
176.9
28.5
73.1
19.0
38.7
27.0
78.9
38.7
55.3
18.5
32.8
39.3
47.7
37.2
23.4
122.8
143.2
41.7
27.7
23.4
46.8
40.3
40.3
35.2
32.8
32.1
28.1
15.7
15.4
16.9
26.0
178.5
28.9
65.8
38.9
27.2
78.0
39.3
56.0
18.7
32.6
40.4
47.4
37.3
23.8
124.6
140.2
43.4
38.0
66.6
49.9
41.7
42.8
34.1
83.4
28.0
28.6
15.7
16.3
16.4
28.6
181.0
28.7
24.3
38.1
26.0
71.7
55.2
48.1
20.7
32.3
39.7
46.7
35.9
23.2
122.2
142.8
41.7
35.4
74.7
48.7
40.5
46.4
30.3
35.4
30.3
207.0
9.0
15.7
16.9
27.0
177.2
32.7
24.6
39.0
27.9
75.1
52.2
54.6
21.9
33.3
40.5
48.7
37.1
24.3
123.4
145.0
42.2
28.4
29.3
46.1
44.9
81.4
35.5
29.2
33.7
181.0
12.3
16.0
17.5
25.0
180.7
29.0
25.0
38.7
27.6
73.5
42.7
48.6
18.6
32.9
39.7
48.1
37.2
23.8
123.2
144.4
42.1
28.4
23.8
46.1
43.3
42.7
44.2
30.8
34.5
68.0
13.1
15.9
17.4
26.1
179.1
177.1
28.4
Cl403
Cl161
Cl411
~1421
I3411
Cl431
Cl441
“C NMR spectra of pentacyclic triterpenoids
1527
Table 1. Continued
54p
sp
38.8
26.8
78.8
38.9
55.2
18.3
32.6
39.8
46.9
37.0
23.5
122.3
143.2
43.7
36.0
67.5
40.2
44.7
46.9
30.7
33.8
26.2
28.0
16.0
15.6
16.7
26.8
70.8
33.0
23.9
39.2
28.1
78.1
39.4
55.8
18.8
33.3
40.1
47.2
37.3
23.9
122.4
145.2
42.1
34.7
74.2
40.9
42.5
48.3
30.5
37.1
31.3
28.7
16.6
15.9
17.2
27.3
70.2
33.4
24.9
Cl481
Cl491
fsp
s7p
58p
59p
60
61
62
63p
64p
39.2
28.1
78.1
39.4
55.7
18.8
32.9
40.3
48.0
37.3
23.9
122.6
144.5
42.1
26.6
27.5
39.2
44.0
47.3
36.6
74.6
79.6
28.8
15.8
16.5
17.1
26.7
22.3
31.5
21.3
39.0
28.2
80.1
43.1
56.5
19.1
33.6
40.6
48.2
37.1
24.2
122.4
145.4
42.4
26.7
31.0
33.3
47.6
42.9
36.0
74.5
44.6
23.5
64.5
16.2
17.1
25.6
28.8
28.1
25.5
38.9
28.4
80.1
43.2
56.3
19.1
33.3
40.1
48.1
37.0
24.1
122.7
144.3
41.9
26.5
28.6
35.1
47.2
46.5
36.9
72.8
47.7
23.5
64.5
16.2
16.9
26.0
28.7
29.9
17.7
39.2
28.5
80.4
43.4
56.5
19.3
33.8
40.3
48.4
37.3
24.2
122.6
144.7
42.5
26.6
28.8
38.0
45.6
47.0
30.8
42.7
75.8
23.6
64.6
16.2
17.0
25.8
28.8
33.2
21.0
39.9
27.0
78.8
39.0
55.6
18.6
32.8
40.2
47.9
37.1
23.8
123.0
143.2
41.5
25.3
14.7
43.0
42.4
46.0
31.5
42.2
75.8
28.2
15.6
15.6
16.7
26.4
70.1
33.4
24.8
38.3
26.0
76.7
41.8
49.8
18.5
32.4
39.8
47.6
36.9
23.6
122.3
144.2
41.8
25.6
22.0
36.9
42.4
46.5
31.0
34.1
31.0
72.0
11.4
15.9
16.8
26.8
69.7
33.2
23.6
47.1
67.2
82.2
38.8
54.8
16.9
32.4
38.9
47.2
38.5
23.0
122.6
143.4
41.9
28.4
24.0
46.6
43.1
80.0
36.9
28.4
34.8
27.1
16.8
16.1
16.9
28.7
179.0
28.7
24.4
47.1
68.9
78.7
43.5
48.4
18.6
33.1
40.1
48.5
38.5
23.8
123.5
144.1
42.4
28.3
23.9
47.0
43.5
46.3
30.7
34.2
33.0
67.2
14.0
17.6
17.2
26.1
178.6
32.9
23.7
41.1
28.3
73.3
44.0
49.3
67.5
41.1
39.2
48.7
36.9
23.7
122.9
144.2
42.7
28.3
23.9
46.6
42.0
46.4
30.9
34.2
33.2
67.1
14.7
17.4
18.6
26.2
180.2
23.7
33.2
L-1261
Cl501
Cl261
Cl511
Cl411
cl521
Cl531
Cl541
Cl551
S. B. MAHATOand A. P. KUNDU
1528
Table 1. Continued
65’
66
67
68
44.8
71.5
73.1
42.3
48.5
18.3
33.0
39.9
48.2
37.2
23.9
122.7
144.8
42.3
28.2
23.7
46.6
42.0
46.4
30.9
34.2
33.1
67.8
14.4
17.2
17.5
26.2
180.1
33.1
23.7
41.7
66.7
78.8
41.1
42.6
18.0
32.6
39.7
47.7
38.2
23.2
122.4
144.4
42.0
27.9
23.6
47.0
41.6
46.2
30.8
34.1
32.4
71.5
17.5
16.8
17.1
26.2
178.7
33.2
23.8
41.4
66.2
73.3
41.4
48.6
18.2
32.7
39.3
47.4
38.0
23.4
121.9
143.7
41.6
27.5
22.9
46.6
41.1
45.7
30.6
33.7
32.2
22.0
65.5
16.6
16.6
25.9
178.2
33.0
23.5
38.9
27.5
77.8
38.9
55.4
18.3
32.8
39.6
47.0
36.8
23.4
122.5
144.0
41.4
34.3
73.3
40.0
43.2
30.7
46.7
29.5
27.5
28.3
15.4
16.1
16.6
27.2
69.7
23.8
207.6
Cl561
Cl571
Cl581
Cl591
7op
71P
72’
73p
7@
75p
38.9
28.4
80.1
43.2
56.3
19.1
33.4
39.9
48.0
37.1
24.1
124.0
142.2
42.1
25.5
27.4
47.8
47.5
43.0
38.9
47.0
216.0
23.6
64.6
16.2
16.9
25.4
21.3
27.0
68.3
45.0
71.6
75.8
54.0
52.3
21.6
34.1
40.9
49.5
37.1
24.0
127.6
139.7
46.5
24.7
24.1
46.5
41.8
45.5
31.0
33.5
33.2
180.2
13.7
17.5
18.8
64.4
180.6
33.2
23.2
44.8
71.5
73.0
42.4
48.1
18.2
33.0
39.8
48.5
37.2
23.9
123.3
144.4
42.2
28.4
23.9
46.1
43.3
42.7
44.1
30.8
34.5
67.7
14.5
17.4
17.2
26.2
179.7
28.4
177.1
39.4
28.0
78.0
39.4
55.8
18.5
33.8
40.5
48.6
37.4
23.6
127.9
138.2
45.9
80.1
34.6
46.5
41.7
42.5
41.0
74.5
36.7
28.7
16.5
16.3
19.8
25.3
179.5
25.1
63.2
38.9
28.4
80.1
43.2
56.3
19.1
33.2
40.3
48.1
37.0
24.2
122.5
144.5
42.1
26.6
27.5
39.2
44.0
47.3
36.6
74.6
79.6
23.6
64.6
16.2
17.0
26.7
22.3
31.5
21.3
44.8
71.8
73.4
42.9
50.5
18.9
32.2
40.8
48.9
37.6
24.5
124.1
142.1
42.3
35.9
66.3
73.5
50.2
49.3
31.4
36.8
81.8
67.2
14.5
18.1
17.5
27.1
33.1
24.6
38.8
28.3
80.0
43.1
56.3
19.0
33.2
39.9
47.9
37.0
24.0
123.9
142.0
41.9
25.4
27.2
48.1
47.4
41.4
39.7
46.3
216.2
23.5
64.5
16.2
16.8
25.4
21.2
71.9
21.1
cl291
cw
Cl211
Cl611
Cl261
Cl621
cl271
w
W NMR spectra of pentacyclic triterpenoids
1529
Table 1. Continued
76’
77p
78p
79p
80°
81’
82’
83’
SIM
85’
8ap
87’
38.4
26.5
76.5
41.9
49.2
18.5
32.6
40.0
47.1
37.0
23.6
122.6
143.2
43.8
36.3
67.5
40.5
44.6
47.0
30.9
33.8
26.0
71.3
11.4
16.0
16.7
26.8
70.0
33.1
24.1
38.9
27.4
74.1
42.7
48.9
18.6
33.0
40.1
47.2
37.1
23.8
122.3
145.2
42.0
34.7
73.9
40.9
42.6
48.2
31.1
37.1
30.2
68.6
12.9
16.2
17.1
27.3
70.2
33.3
24.9
39.0
28.4
80.0
43.1
56.3
19.1
33.5
39.9
48.1
37.0
24.0
122.4
144.9
42.3
26.4
28.9
38.2
44.8
41.5
36.5
37.3
75.6
23.5
64.5
16.3
17.1
25.5
21.1
73.0
24.4
39.0
28.5
80.2
43.2
56.4
19.2
33.6
40.1
48.2
37.1
24.1
122.8
144.7
42.4
26.5
28.7
38.1
45.2
42.2
35.9
38.8
75.2
23.6
64.6
16.3
17.1
25.9
21.3
28.6
70.3
48.9
67.4
75.6
43.1
47.4
66.0
39.6
38.1
46.7
36.9
22.6
121.7
143.3
41.8
27.1
22.9
45.5
40.9
45.7
30.4
33.3
32.1
63.7
14.9
17.8
18.1
25.7
178.6
32.9
23.3
48.5
68.9
78.9
43.0
48.8
28.1
67.4
39.5
50.1
38.2
24.2
123.3
144.1
41.9
28.3
23.8
46.0
44.7
46.8
31.0
34.3
32.3
66.0
15.7
19.1
18.7
26.3
180.1
33.3
23.6
47.4
71.8
73.0
43.6
49.1
67.0
41.0
39.3
49.0
37.1
24.1
123.1
144.2
42.9
28.2
23.8
46.7
42.1
46.5
31.0
34.2
33.3
67.5
16.2
18.5
19.0
26.4
180.2
33.3
23.8
41.3
28.6
73.4
43.9
49.7
67.9
40.8
39.3
49.0
37.1
24.7
123.8
144.7
42.6
28.7
27.9
46.3
45.0
81.6
35.7
29.2
33.9
67.3
14.6
17.3
18.4
24.8
180.0
25.0
28.8
45.6
72.6
73.9
43.2
48.2
19.2
34.1
41.0
48.5
38.1
24.9
123.8
145.5
43.0
36.5
75.6
48.8
42.4
48.0
31.7
36.9
33.0
67.9
14.4
18.2
17.8
27.7
181.6
33.8
25.3
47.7
68.8
78.3
43.5
48.0
18.5
33.0
39.9
48.0
38.3
25.2
126.5
139.5
42.5
28.2
24.0
48.5
49.5
75.0
35.7
32.7
35.0
66.7
14.2
17.5
17.3
24.8
179.2
30.6
17.8
47.4
68.9
78.4
43.6
48.2
18.8
33.6
40.1
48.5
38.6
28.8
123.5
144.9
42.2
29.2
24.3
46.0
44.8
81.3
35.7
28.4
33.1
66.8
14.2
17.7
17.3
24.9
180.8
29.2
24.9
39.0
27.6
73.6
42.9
48.8
18.9
33.4
40.5
47.9
37.3
24.2
128.6
140.2
42.3
29.6
27.4
49.2
54.6
74.9
50.6
67.6
48.0
68.0
13.2
16.1
17.4
24.7
180.4
27.8
11.5
Cl481
Cl631
Cl641
Cl291
Cl541
Cl651
Cl661
Cl551
Cl671
PO1
Cl681
Cl431
1530
S. B. MAHATO and A. P. KUNDU
Table 1. Continued
88
w
90
91P
92
93
94
95
%p
97
!w
47.9
69.0
80.0
41.7
48.4
19.3
33.2
40.0
48.9
38.3
24.3
122.4
144.9
42.4
28.4
23.9
46.7
42.1
46.7
31.0
34.4
33.2
64.1
63.8
17.4
17.2
26.2
180.0
33.5
23.9
38.6
27.6
73.7
42.7
49.0
18.7
33.4
40.4
48.8
37.4
24.1
127.7
140.1
48.0
24.4
23.8
46.9
41.2
40.4
36.6
28.9
32.7
68.8
12.9
16.3
18.8
64.4
180.3
74.0
19.8
38.9
28.4
80.1
43.2
56.3
19.1
33.1
40.3
48.0
37.0
24.2
123.8
143.6
42.0
26.5
27.4
38.9
42.7
42.4
49.9
70.5
79.1
23.5
64.5
16.2
16.9
26.5
22.1
178.7
16.5
39.4
28.0
78.0
37.2
55.9
18.5
33.8
40.6
48.7
37.2
23.6
128.1
138.1
46.5
80.2
27.8
52.4
41.6
42.0
41.4
79.6
69.7
28.7
16.5
16.3
19.8
25.4
178.9
25.3
63.8
38.4
26.4
78.3
38.4
55.0
18.0
32.4
39.3
46.9
36.5
23.1
123.0
141.6
41.0
32.7
66.7
45.9
40.6
46.3
35.1
78.2
77.4
27.5
15.2
15.1
16.2
26.4
69.5
28.9
17.9
38.5
26.3
76.0
41.8
49.3
18.4
32.6
39.8
46.7
36.9
23.5
122.9
142.7
41.8
33.4
67.9
43.9
42.4
47.2
31.4
44.8
75.5
70.8
11.7
16.0
16.8
27.0
71.1
33.2
24.9
38.6
28.4
80.1
43.2
56.3
19.1
33.2
40.3
48.1
37.0
24.1
122.5
144.6
42.0
26.6
27.4
39.0
43.2
41.1
41.0
70.5
79.7
23.5
64.5
16.2
17.0
26.7
22.3
71.7
17.5
38.9
28.4
80.0
43.2
56.3
19.1
33.4
39.9
48.0
37.0
24.0
124.0
142.3
42.1
25.5
27.0
48.1
47.1
37.6
44.1
42.4
216.8
23.6
64.6
16.2
16.9
25.3
21.6
68.3
65.0
47.9
69.0
79.8
47.9
48.7
19.5
33.3
40.1
48.2
38.1
24.3
123.4
144.8
41.9
29.0
28.0
46.1
44.9
80.8
35.6
28.5
33.2
64.3
63.2
17.5
17.2
24.9
180.9
28.9
24.8
47.5
71.9
73.4
43.5
49.1
67.9
41.4
39.5
48.3
37.2
24.2
123.0
144.6
42.9
36.3
74.9
49.5
41.7
47.4
31.0
36.2
32.7
67.8
16.0
19.0
18.7
27.5
180.1
33.3
24.9
39.3
28.2
78.1
39.4
55.7
19.2
36.8
41.5
47.5
37.4
24.1
124.5
144.7
47.5
67.5
72.4
48.2
42.1
47.9
36.4
78.4
77.2
28.8
16.6
16.0
17.7
21.1
67.8
30.6
19.4
Cl681
Cl691
Cl261
Cl611
Cl701
~1521
W61
cl271
Cl651
[I711
~1721
13CNMR spectra of pentacyclic triterpenoids
1531
Table 1. Continued
w
100
101
10ZP
103
104
105
106
38.8
28.2
80.1
43.0
56.3
18.9
33.4
39.9
41.1
36.8
23.9
123.1
144.1
41.8
34.1
67.8
47.2
41.0
48.1
36.3
18.6
77.1
23.3
64.5
16.0
16.6
21.2
66.2
30.4
19.3
38.5
21.4
79.0
39.0
55.1
18.3
34.7
40.8
51.3
31.3
21.2
26.2
39.0
43.4
27.6
31.7
34.4
142.8
129.8
32.3
33.4
37.4
28.0
15.4
16.1
16.7
14.6
25.3
31.3
29.2
38.8
21.3
78.3
38.8
55.4
18.2
34.5
40.6
51.1
37.1
20.9
25.9
41.2
42.5
29.3
33.5
48.1
136.9
132.3
32.0
33.5
33.5
27.9
16.6
15.4
15.9
14.9
176.8
30.3
29.1
75.7
39.0
79.5
38.4
53.4
18.0
34.6
41.4
52.4
43.8
23.9
26.2
38.1
43.5
27.5
37.8
34.4
142.7
129.7
32.4
33.5
31.5
28.0
15.1
12.5
16.5
14.5
25.4
31.3
29.3
39.0
21.3
78.9
38.9
56.4
18.5
36.3
41.2
53.4
38.4
67.4
36.3
32.8
43.3
21.6
31.6
34.5
142.5
130.0
32.4
33.3
37.4
28.2
15.5
20.0
18.1
14.7
25.2
31.3
29.2
38.5
27.4
79.1
39.0
55.7
18.4
34.5
40.8
51.3
37.4
21.3
26.7
39.1
42.8
34.1
76.7
39.6
141.7
129.4
31.9
33.7
37.4
28.1
15.5
16.3
16.9
14.8
21.4
31.9
30.0
38.1
23.8
81.1
37.7
55.4
18.4
34.8
41.0
50.6
37.2
21.7
26.5
134.2
44.7
25.0
36.7
34.6
133.3
39.4
33.4
35.4
38.5
28.0
17.7
16.4
16.6
21.3
24.1
32.4
23.8
77.7
38.9
54.9
33.2
42.7
63.4
36.9
132.8
43.8
25.4
33.3
40.2
133.5
31.9
32.2
43.5
78.8
28.1
15.6
16.3
18.8
20.4
16.7
32.2
25.1
Cl731
Cl741
Cl751
Cl741
Cl741
Cl761
Cl771
c591
107
108
109
38.8
21.2
78.9
38.8
55.2
18.2
32.9
41.0
50.3
37.4
20.7
25.1
123.5
42.1
26.9
20.7
43.0
139.7
34.8
81.0
31.2
37.5
28.1
16.3
15.5
17.9
25.9
175.9
25.3
38.4
26.3
70.9
55.4
47.2
20.7
33.7
44.3
50.3
36.2
22.0
25.1
126.3
42.2
35.9
69.3
52.8
135.6
41.5
32.5
35.5
27.0
206.8
8.8
16.6
18.2
24.6
177.3
33.0
24.6
38.0
27.1
18.9
38.9
54.2
18.4
32.4
40.2
54.8
36.7
125.3
125.8
138.1
42.4
35.3
24.4
34.7
133.4
38.9
33.1
36.1
38.0
27.8
15.1
16.6
17.9
20.2
25.3
24.1
32.5
Cl781
II781
Cl791
1532
S. B. MAHATOand A. P. KUNDU
Table 1. Continued
llop
lllP
112p
l13p
l14p
1lSP
116
117p
l18p
119
38.6
28.1
78.2
39.5
55.4
18.8
32.7
40.5
54.6
37.1
127.6
126.1
136.1
42.3
24.7
36.6
48.5
136.0
38.3
41.2
43.6
74.3
29.6
15.8
18.3
17.0
26.8
20.5
25.0
177.8
37.8
28.0
78.5
39.7
55.6
18.9
33.0
40.2
54.5
37.0
127.1
125.8
136.6
44.4
35.1
76.3
44.4
133.4
38.7
32.6
35.3
30.2
27.8
15.9
18.3
17.2
22.1
64.0
25.0
32.3
39.0
28.1
78.0
39.5
55.4
18.9
32.6
41.1
53.9
37.0
126.2
126.2
136.1
41.9
31.9
67.7
45.3
133.1
38.6
32.6
35.5
24.5
28.5
16.0
18.4
17.3
21.9
64.7
25.1
32.6
38.9
29.0
80.1
39.8
56.4
19.6
34.0
40.7
54.8
39.8
127.3
126.3
138.3
40.8
25.0
35.6
42.0
135.0
38.4
43.2
43.3
75.6
23.3
64.5
18.3
16.9
25.4
23.6
25.0
29.1
38.4
27.6
73.1
43.1
48.2
18.6
32.4
40.5
54.5
36.8
127.1
125.7
136.4
44.4
34.8
76.5
44.4
133.3
38.4
32.7
35.1
29.9
67.4
12.6
18.6
17.1
22.0
64.0
24.8
32.3
38.4
27.6
73.3
43.0
48.4
18.7
31.9
41.0
54.0
36.8
126.2
126.2
136.0
41.9
32.8
67.6
45.3
133.0
39.0
326
35.4
24.4
64.7
12.6
18.7
17.3
21.9
64.4
25.1
32.4
38.8
27.9
78.6
38.9
51.2
18.4
32.2
37.0
154.3
40.7
115.8
120.8
147.1
42.8
25.7
27.3
32.2
45.6
46.9
31.1
34.7
37.2
28.8
15.1
20.1
21.0
25.3
28.3
23.7
33.2
37.8
28.7
77.8
39.6
51.8
18.6
32.6
43.1
154.9
39.0
116.1
121.2
145.3
43.2
36.1
668
40.6
42.6
47.0
31.0
34.1
26.2
28.8
16.6
21.0
21.3
25.5
69.4
33.2
24.0
37.6
28.4
73.0
43.2
44.6
18.5
32.2
43.2
155.0
39.0
116.1
121.2
145.4
43.2
36.2
66.8
40.6
42.7
47.0
31.0
34.2
26.1
67.7
13.2
21.1
21.3
26.1
69.4
33.2
24.1
39.1
28.1
78.2
39.5
56.0
19.0
33.5
40.4
47.9
37.8
23.7
123.0
141.7
44.8
129.9
134.9
44.0
42.9
47.9
30.8
35.2
33.5
28.9
16.4
15.5
17.9
25.1
178.4
33.5
23.5
Cl491
c791
Cl801
Cl491
Cl811
Cl811
Cl801
c791
Cl811
C801
‘“C NMR spectra of pentacyclic triterpenoids
1533
Table 1. Continued
1w
121P
122p
lUP
124
125
12Cip
127
41.7
67.4
68.4
40.3
140.8
115.6
34.6
40.5
47.6
41.4
20.9
117.6
144.4
41.9
28.2
21.5
35.8
42.8
43.1
31.8
34.8
36.3
71.2
16.8
16.8
19.5
22.3
22.3
31.0
21.3
43.2
70.8
73.0
45.5
148.7
120.9
33.2
37.5
46.0
38.5
24.1
123.4
145.1
43.1
27.7
23.6
47.0
42.5
45.8
31.0
34.2
33.1
69.4
21.3
23.0
23.8
26.2
180.2
33.3
23.8
38.8
28.0
78.0
39.5
55.3
18.3
31.3
41.9
52.9
36.8
131.9
131.9
84.9
43.6
36.8
77.1
45.4
51.4
38.5
31.9
36.8
31.9
28.4
15.9
18.2
19.5
18.2
77.8
33.8
24.4
38.5
26.6
78.5
39.1
54.4
17.9
31.7
41.8
52.7
36.3
132.5
130.1
84.0
45.9
35.7
64.3
46.2
51.8
37.9
31.5
34.2
25.2
27.6
15.7
17.8
19.5
20.6
72.3
33.8
23.7
38.0
26.2
75.9
41.9
49.3
17.7
31.1
41.6
53.3
36.3
132.5
130.7
85.2
43.9
25.7
25.3
41.6
51.1
37.2
31.7
34.9
30.9
70.7
11.1
18.2
19.3
19.3
77.1
33.7
23.6
38.0
26.1
75.6
42.0
49.2
17.7
31.1
41.4
52.5
36.3
132.6
130.5
85.1
43.0
34.7
77.3
44.9
50.6
38.0
31.7
36.5
30.5
70.3
11.1
18.3
19.0
17.9
77.3
33.4
24.2
38.3
25.8
75.3
42.1
48.8
17.6
31.4
41.9
52.8
36.2
133.0
129.8
84.2
45.3
35.3
64.5
46.4
52.0
37.5
31.5
34.5
25.3
69.8
11.3
18.4
19.5
20.7
72.6
33.5
23.8
38.2
26.2
75.2
42.2
49.0
17.8
321.2
41.8
52.8
36.4
133.2
130.3
85.5
43.8
34.3
70.5
47.5
50.4
37.4
33.2
45.7
74.3
69.6
11.3
18.4
19.1
18.1
16.9
33.2
25.2
CW
rwl
IT301
Cl481
~1521
~1521
Cl481
cl521
1W
39.9
28.8
78.1
39.6
55.8
18.3
31.9
42.6
50.7
37.3
19.3
34.6
86.5
44.7
37.0
77.2
44.7
51.6
39.1
31.9
36.9
33.0
28.7
16.6
16.4
18.7
19.6
78.0
33.8
24.8
Cl831
1W
39.1
28.3
78.0
39.5
55.7
18.6
32.9
42.5
47.8
37.3
19.3
31.8
86.4
44.7
34.6
77.2
44.7
50.6
37.0
48.0
37.0
33.8
28.7
16.6
16.6
18.2
19.6
78.0
24.8
207.2
Cl841
1534
S. B. MAHATOand A. P. KUND~J
Table 1. Continued
130p
38.0
28.3
78.2
39.6
55.8
18.3
32.7
42.9
47.6
37.3
19.2
31.8
86.1
44.6
34.4
73.2
46.5
50.6
36.8
47.6
30.1
74.1
28.8
16.6
16.4
18.7
20.1
70.3
24.2
205.3
Cl841
131
38.8
27.2
76.2
42.8
49.5
18.5
33.3
42.0
50.1
36.8
18.5
32.8
86.4
44.4
34.4
77.4
44.7
51.4
39.4
31.7
36.8
29.8
69.2
13.1
16.9
17.6
18.6
77.8
24.6
33.5
Cl851
132
38.7
27.0
76.2
42.7
49.6
18.6
33.4
42.0
50.0
36.6
17.8
31.6
86.2
49.7
45.4
213.3
56.1
54.5
40.0
31.6
35.2
24.8
71.6
11.3
16.3
17.8
21.7
75.1
23.6
33.3
Cl851
133
39.3
26.6
79.1
39.8
55.8
18.0
33.0
42.7
50.5
37.0
19.3
34.5
86.4
45.1
36.7
70.7
48.9
51.4
38.1
33.3
42.2
75.8
28.2
16.7
16.5
18.6
19.8
76.8
33.4
25.6
CW
134p
39.6
28.4
78.2
39.6
55.7
18.3
34.5
42.8
50.6
33.2
19.4
33.5
87.5
44.2
36.8
69.8
52.9
47.4
38.7
37.3
46.7
68.1
28.7
16.4
16.6
18.8
19.8
98.6
33.8
26.0
Cl871
139
136
45.5
68.1
79.0
42.6
47.6
17.3
34.1
40.4
50.4
33.0
27.5
75.1
37.0
48.6
17.3
31.5
40.9
49.8
37.0
52.9
57.4
88.0
41.9
27.0
21.7
44.1
51.1
38.0
31.6
34.4
27.7
29.1
22.2
17.3
18.8
20.5
180.0
33.6
23.5
52.4
56.9
87.4
41.2
26.5
21.1
43.7
49.4
37.6
30.6
26.8
37.3
68.1
12.3
18.6
18.7
19.9
179.3
33.0
23.4
cl231
w31
137
39.8
21.5
36.6
30.6
54.4
21.0
33.1
40.5
48.6
37.1
21.2
25.0
43.0
41.6
31.1
29.7
43.8
37.9
43.9
31.1
39.2
30.4
20.5
__
14.1
15.8
14.9
25.4
33.7
Cl891
138
13M
140
141
39.1
34.1
217.9
47.4
55.3
19.7
32.5
39.1
47.0
36.8
23.4
120.8
146.0
42.5
26.5
21.5
15.1
17.4
24.9
-
39.0
28.1
78.2
39.4
55.9
18.9
33.5
40.0
48.3
37.5
24.0
122.7
145.7
42.1
28.1
26.4
71.0
48.8
49.0
31.2
37.1
38.8
28.9
16.6
15.6
17.9
25.8
._
38.1
23.7
80.8
31.7
55.4
18.2
32.6
39.9
47.2
37.0
23.7
125.4
140.7
47.2
43.0
213.3
76.5
52.5
47.2
30.8
32.3
37.7
28.1
15.4
16.7
17.3
27.0
37.7
23.0
74.5
40.7
48.3
18.1
32.4
39.2
47.1
37.0
23.3
118.3
143.0
42.4
33.3
74.6
39.8
35.8
44.8
34.7
78.2
32.8
65.5
12.9
15.8
16.8
26.2
__
33.6
23.8
33.0
24.0
32.6
23.7
18.9
19.3
31.2
__
tml
~1231
Cl911
C781
1535
13C NMR spectra of pentacyclic triterpenoids
Table 1. Continued
142
143
144p
145o
146
147p
14V
149
l!W
151
152
37.6
22.4
73.3
54.1
48.0
20.5
32.3
39.0
47.1
36.1
23.2
118.1
141.5
42.6
43.7
212.1
38.7
27.1
78.7
38.7
55.3
18.2
33.4
38.7
46.1
36.8
24.1
126.8
139.1
44.9
40.4
200.4
128.9
146.8
44.1
29.2
33.4
20.6
28.1
15.6
15.6
17.9
28.1
-
45.1
71.6
72.8
42.5
48.2
18.1
33.5
39.1
46.8
37.0
24.6
127.5
139.3
45.2
40.3
199.2
129.1
146.2
44.4
29.2
34.6
21.2
67.5
14.6
17.4
18.0
28.1
38.1
26.9
78.1
41.9
55.1
19.6
32.7
39.3
46.1
41.1
22.1
19.8
38.8
43.2
22.2
125.6
140.2
42.1
66.9
35.2
133.2
123.2
65.2
16.9
18.2
16.9
27.1
28.6
23.1
28.6
23.3
62.1
16.1
39.4
26.5
78.1
39.4
55.9
18.7
34.0
39.4
48.1
37.4
23.7
122.9
143.4
43.2
28.2
23.4
46.2
45.6
129.5
130.4
33.2
39.2
28.8
16.6
15.9
17.7
23.6
179.9
23.0
39.1
28.2
78.2
39.5
55.9
18.9
33.4
39.9
47.5
37.4
24.0
122.8
143.8
44.6
38.6
64.9
50.4
43.5
46.2
68.2
34.2
27.2
28.9
16.7
15.7
17.8
27.2
181.3
32.3
38.3
24.0
80.7
38.2
55.6
18.3
31.8
42.8
46.5
37.5
39.2
210.3
83.1
45.4
23.1
34.0
34.2
51.3
35.5
30.0
34.7
39.7
28.1
16.7
15.9
20.1
18.4
31.5
32.1
25.9
38.4
24.0
80.6
38.0
55.2
18.6
38.2
44.9
46.2
37.9
39.2
210.4
85.8
51.1
66.7
44.0
35.1
51.6
35.2
31.8
34.5
39.6
28.0
16.7
15.9
20.4
14.4
32.0
32.3
24.8
38.1
24.1
80.9
37.9
55.7
18.7
33.7
40.0
48.2
37.4
23.9
123.2
144.9
42.2
28.4
29.2
46.1
44.8
81.3
35.7
29.2
33.2
28.2
16.9
15.3
17.5
24.9
180.9
28.8
24.9
38.1
27.3
79.2
39.1
55.7
19.0
35.3’
38.9
48.9
37.9
17.7
35.9
37.9
158.1
117.0
36.9
38.1
49.4
41.4’
29.0
33.9
33.2
28.1
15.6
15.6
30.1
26.0
30.1
33.5
21.5
37.7
27.4
79.1
38.5
46.5
23.9
71.6
45.7
42.1
38.6
17.1
34.1
37.5
155.2
118.7
36.9
36.0
49.0
37.2
29.3
33.2
35.2
27.9
15.8
15.6
26.7
21.1
29.6
33.1
29.8
Cl911
Cl911
~1921
[l?s]
Cl931
Cl941
Cl941
Cl941
C811
48.0
36.1
42.8
34.5
78.1
27.7
203.9
9.4
15.4
16.8
25.7
28.8
19.3
C781
C621
1536
S. B. MAHATO and A. P. KUNDU
Table 1. Conti~d
153
154
155
156
157
158
159
160
161
162
163
144
37.8
28.0
78.2
41.4
56.0
19.2
36.3”
39.3
45.6b
37.8
17.9
31.2’
38.3
158.7
116.8
33.2’
38.3
49.6b
41.7”
28.8
33.8
28.7
28.4
16.5
15.7
30.1
26.2
64.6
33.8
22.0
32.6
25.0
76.2
37.5
48.8
18.7
41.2
40.3
49.2
37.3
17.3
32.2
38.0
159.3
115.5
30.8
39.2
44.7
35.8
28.6
33.5
27.9
28.2
22.2
15.2
29.9
26.2
65.5
21.5
33.5
38.3
34.0
217.2
47.5
55.7
19.9
35.8”
39.0
48.6
37.5
17.3
30.7b
37.7
158.5
116.0
32.6b
40.3
44.9
40.6”
28.5
33.3
27.9
26. I
21.6
14.8
29.8
25.7
65.4
33.5
21.4
38.4
34.1
217.3
47.5
55.7
21.5
35.41
38.9
48.6
37.3
17.3
31.3
37.8
162.1
117.1
30.7
51.5
41.4
40.38
29.3
33.7
31.9
26.1
20.0
15.0
28.7
25.9
184.7
33.2
22.6
37.4
23.4
80.8
37.6
55.5
18.7
40.7
39.0
49.0
37.9
17.2
33.2
37.2
160.5
116.8
31.3
51.4
41.3
35.2
29.2
33.6
30.6
27.9
16.5
15.6
26.1
22.4
184.2
31.8
28.6
36.6
24.2
81.1
37.7
50.2
24.0
117.5
147.6
48.7
35.1
17.1
34.6
37.0
41.6
31.7
36.1
30.9
46.9
36.1
28.2
33.9
36.8
27.6
16.0
13.2
27.1
26.1
31.7
34.1
33.7
34.9
24.4
81.1
37.9
51.1
19.3
27.5
135.4
133.6
37.7
20.9
31.0
37.5
41.1
26.6
37.1
31.0
44.3
34.3
28.4
43.0
36.9
28.1
16.8
20.0
18.9
25.0
31.6
34.7
33.2
36.9
19.2
41.8
33.3
51.7
19.6
21.2
135.0
134.2
37.9
20.8
30.9
37.6
40.1
26.8
36.4
31.2
43.1
28.8
33.3
29.1
37.6
33.3
21.8
19.9
25.9
18.0
31.4
72.9
27.6
36.9
19.3
41.8
33.3
51.5
19.5
27.8
133.3
134.8
37.9
20.8
30.2
36.9
42.1
25.6
37.1
31.0
44.7
30.5
40.5
29.6
34.3
33.0
21.9
19.9
21.8
18.0
31.3
185.3
32.7
34.7
24.2
80.9
37.7
50.8
19.1
27.3
135.4
133.2
37.5
20.8
30.7
37.6
40.6
26.7
36.3
31.1
43.0
28.0
33.1
28.9
37.6
28.0
16.7
19.8
25.9
17.9
31.3
12.6
27.6
35.0
27.9
78.9
38.8
50.5
19.2
27.6
133.9
134.2
37.5
20.7
30.3
37.1
41.8
25.0
37.0
30.9
44.7
30.8
40.5
29.9
34.4
28.0
15.6
19.9
22.1
17.1
31.2
179.2
32.9
21.6
38.1
215.4
50.0
142.4
121.3
23.6
47.0
35.1
50.7
34.1
30.3
39.3
37.9
31.9
35.9
30.1
43.1
35.1
28.2
33.1
38.9
24.4”
28.5’
15.6
19.3
18.4
32.0
34.5
32.4
1811
Cl951
fl961
Dll
PI
II821
L581
Cl11
Cl11
WI
Cl01
cw
‘“C NMR spectra of pentacyclic triterpenoids
1537
Table 1. Continued
165
166
167
168
169
31.9
24.7
84.4
43.3
53.1
19.8
20.0
41.9
36.7
93.6
30.6
30.0
39.2
39.3
31.8
35.9
30.1
43.6
35.0
28.3
33.4
38.7
24.4
23.0
m.5
19.3
18.5
31.9
34.1
328
31.9
24.8
84.0
43.5
51.8
31.5
68.4
48.0
36.9
93.3
31.1
30.0
39.3
40.4
31.8
36.0
29.8
44.2
34.6
28.3
33.9
38.1
23.9
228
21.7
19.8
18.8
33.5
34.0
324
31.9
24.7
84.4
43.4
53.1
19.8
20.0
423
36.6
93.5
30.3
30.9
38.9
39.4
31.2
32.0
41.6
45.2
34.5
34.7
41.5
75.4
24.4
23.0
20.4
20.0
18.7
23.3
34.9
31.9
17.8
35.0
72.7
49.0
37.3
41.4
15.8
53.2
37.9
61.2
37.9
27.8
54.8
39.3
32.8
35.6
36.7
43.3
35.7
28.5
32.5
38.2
11.6
16.4
18.8
22.5
179.4
31.1
30.6
35.3
20.8
27.4
36.9
46.0
37.7
42.6
M.6
53.1
37.1
61.2
35.4
23.7
42.2
39.8
30.1
35.7
30.4
43.5
35.4
28.3
32.9
39.1
13.4
15.1
19.6
18.0
64.1
31.7
-
D51
C851
C851
Cl971
im
171
172
173
174
175
176
21.1
27.0
30.2
46.3
44.1
58.0
212.4
63.9
43.5
60.6
35.7
32.2
39.4
37.6
30.7
36.2
30.2
42.0
35.1
28.1
33.0
38.9
13.8
15.1
19.6
18.4’
19.6’
32.3
31.7
20.7
27.4
30.9
46.1
37.6
41.5
18.1
53.5
37.0
60.7
35.5
30.7
39.9
38.3
32.6
35.9
30.5
41.8
29.1
33.1
27.8
39.5
15.1
13.5
18.1
18.4’
20.7’
321
74.8
25.8
20.7
27.4
30.9
46.1
37.5
41.5
18.1
53.1
37.0
60.8
35.4
30.7
39.7
38.4
32.1
36.0
30.0
42.7
29.3
33.4
28.2
38.1
15.1
13.5
18.2
18.6*
19.9
321
28.9
72.0
22.3
41.5
213.2
58.2
421
41.3
18.2
53.1
37.4
59.4
35.6
30.5
39.1
38.3
32.4
36.0
30.0
42.8
35.3
28.1
32.7
39.2
6.8
14.6
17.9
20.2
18.6
32.1
35.0
31.8
22.1
41.3
212.5
57.8
41.9
40.0
19.9
47.9
36.6
58.2
35.7
21.6
50.9
46.7
81.0
39.7
31.4
44.7
30.8
145.3
29.2
36.8
6.8
14.6
16.3
13.3
179.3
30.1
109.1
22.1
41.3
212.4
57.8
41.9
40.0
19.9
47.9
36.6
58.2
35.6
21.4
51.0
46.6
81.0
39.8
31.6
44.8
28.3
141.1
70.1
45.9
6.8
14.6
16.3
13.3
179.3
32.6
110.0
31.9
20.7
21.4
30.9
46.1
37.5
41.4
18.1
525
37.1
60.7
35.3
30.2
39.3
38.2
31.2
29.2
34.2
39.5
34.5
28.1
328
33.4
15.1
13.5
18.3
19.2
19.0
68.0
31.3
35.1
Cl981
C871
C871
C871
c461
c611
c611
,
1538
S. B. MAHATOand A. P. KUNDU
Table 1. Continued
177
178
179
180
22.8
41.5
213.0
58.1
42.0
39.5
21.5
46.6
40.5
57.1
37.0
34.9
39.0
142.3
116.1
30.9
33.7
46.1
39.6
31.0
34.4
37.9
6.8
14.4
14.7
16.5
35.3
72.7
49.0
37.8
39.9
20.9
46.8
40.4
59.1
36.8
35.1
39.0
143.0
115.5
30.9
33.8
46.2
39.6
31.0
34.4
37.9
11.6
16.0
14.8
24.1
31.8
33.7
24.4
24.1
31.8
33.8
24.5
20.8
27.5
31.1
46.3
37.6
41.5
18.2
51.9
37.2
61.0
35.6
30.2
38.7
39.6
30.4
27.2
45.1
48.1
34.8
31.4
49.7
217.3
13.6
15.1
18.0
18.4
18.5
34.0
31.1
35.1
22.2
27.5
30.6
47.0
38.8
41.4
18.1
53.1
48.3
60.0
32.5
31.4
37.6
39.8
33.3
36.1
30.0
42.8
35.5
28.1
32.8
39.4
15.1
11.9
173.9
20.5
18.9
31.7
35.1
32.1
26.6
69.6
73.2
45.6
37.8
41.0
17.8
52.9
36.4
51.3
35.2
30.5
39.6
38.2
32.3
35.9
29.9
42.7
35.2
28.0
32.7
39.2
9.6
13.4
17.8
18.6”
20.1’
32.0
31.6
34.9
PW
C871
Cl991
cw
C861
181
182
183
184
185
186
187
188
16.8
34.7
72.0
48.8
43.4
58.2
210.3
63.9
43.4
61.1
35.6
30.1
38.8
37.6
31.6
36.3
30.1
41.9
35.0
28.1
32.9
39.4
11.6
16.3
18.3
19.5
19.5
32.1
31.9
34.9
22.4
41.5
213.1
58.2
42.0
41.3
20.0
53.5
37.8
59.4
35.8
31.2
40.6
44.1
74.6
48.4
30.2
41.6
35.6
28.2
31.9
38.9
6.8
14.5
18.0
14.1
18.8
32.6
30.9
35.7
22.3
41.6
212.5
58.3
42.3
41.4
18.6
53.5
37.6
59.7
35.8
30.8
39.3
40.1
44.4
75.6
32.1
44.8
35.8
28.0
32.1
36.0
6.8
14.7
18.2
20.1
21.5
24.9
30.8
35.5
22.1
41.3
212.6
57.8
41.9
41.0
18.1
52.2
37.3
59.1
35.3
29.9
39.1
38.0
31.3
29.0
35.1
39.2
34.4
27.9
31.4
33.2
6.7
14.5
18.0
18.9
19.1
67.0
32.9
34.2
22.4
41.6
212.9
58.3
42.2
41.3
18.0
49.9
37.8
59.7
34.5
27.8
39.8
22.3
41.6
212.2
58.3
42.2
41.4
18.3
53.5
37.5
59.6
35.7
29.8
40.0
38.3
32.8
36.0
29.8
42.0
30.6
33.2
27.9
39.6
6.8
14.7
17.9
18.4’
20.8”
32.1
25.9
74.8
22.1
41.3
212.5
57.7
41.9
39.9
19.9
48.0
36.6
58.2
35.6
22.4
51.0
47.9
80.7
40.3
30.5
44.2
34.3
28.2
34.2
35.8
6.8
14.5
16.4
13.6
180.1
29.6
34.3
31.1
C871
c511
C871
C871
27.8
33.2
82.8
43.4
32.1
30.8
27.2
35.7
6.8
14.6
16.5
15.5
19.5
33.4
25.4
C871
C871
WI
‘jC NMR spectra of pentacyclic triterpenoids
1539
Table 1. Continued
189
17.8
32.8
75.1
50.0
38.3
41.3
17.8
52.1
37.0
59.9
35.3
30.4
39.2
38.5
31.1
36.4
31.9
43.3
35.8
33.5
76.4
43.7
9.9
14.5
18.2
18.8
19.0
32.8
30.8
26.2
IPll
1%
15.7
34.9
72.5
49.0
37.7
41.6
17.4
522
37.0
61.2
35.2
30.3
39.1
38.5
31.0
36.2
31.8
43.2
35.8
33.4
76.6
43.6
11.5
16.2
18.3
18.6
18.9
32.5
30.7
26.1
WI
PHYTO 37-6-E
191
192
193
194
1%
1%
197
1%
199
w
21.6
40.8
210.6
57.8
47.0
56.9
210.2
63.4
42.4
59.0
35.5
29.8
39.4
37.5
31.6
36.3
30.1
41.8
34.9
28.0
32.8
38.6
6.8
15.1
18.2
19.2
19.4
32.1
31.8
34.6
223
41.4
213.1
58.2
42.0
40.5
21.3
45.3
37.2
59.3
34.4
29.4
42.4
54.2
214.1
54.0
33.5
44.0
34.9
27.9
33.8
38.6
6.8
15.0
17.4
14.7
18.9
32.2
33.3
33.4
22.2
41.4
212.5
58.2
42.1
41.0
18.6
52.4
37.7
59.4
35.4
29.1
39.2
40.5
50.2
218.8
45.3
44.0
35.5
27.6
31.7
30.8
6.8
14.7
17.3
20.3
16.2
27.4
31.1
35.2
22.3
41.5
212.6
58.3
42.1
41.3
18.1
51.8
37.6
59.7
35.7
30.2
38.6
39.7
30.4
27.1
45.0
48.1
34.8
31.5
49.5
217.3
6.8
14.7
18.1
18.3
18.5
34.0
31.1
35.1
22.3
41.4
213.0
58.1
42.2
40.9
18.5
53.0
38.3
59.4
37.6
27.8
54.8
39.2
33.0
35.9
30.7
43.3
35.7
28.4
32.4
37.6
6.8
14.7
18.4
22.7
181.1
31.0
30.5
35.4
22.2
42.1
213.3
58.2
44.7
41.5
18.0
53.0
37.8
59.2
35.9
31.0
41.1
38.9
29.3
326
37.6
37.6
35.4
28.4
34.8
32.6
6.8
14.6
17.5
20.6
18.5
185.0
29.7
34.5
22.2
41.5
213.3
58.2
42.1
41.3
18.2
50.7
37.4
59.8
35.3
30.2
39.1
39.2
29.7
36.1
30.1
44.2
29.5
40.4
29.5
36.6
6.2
14.6
18.0
18.4
16.3
31.8
184.5
31.6
22.3
44.5
212.6
58.3
42.1
41.3
18.2
53.2
37.5
59.5
35.5
30.3
39.7
38.1
32.8
35.5
29.5
42.5
31.4
40.5
28.6
38.3
6.8
14.6
17.6
17.6=
20.Y
31.9
179.4
31.8
22.3
41.4
213.0
58.1
42.2
42.4
20.7
51.2
37.5
59.9
35.4
30.0
39.6
42.7
23.4
36.3
32.9
44.9
36.0
34.5
74.3
46.6
6.7
14.4
17.9
63.2
20.2
32.7
24.9
32.0
22.4
41.6
211.8
58.0
42.1
41.2
18.4
53.2
37.5
59.2
35.7
30.5
40.1
38.3
29.5
32.6
36.6
39.0
29.8
33.6
29.2
33.0
7.2
14.7
18.0
20.1
19.0
67.1
73.6
27.5
WI
WI
c200)
PW
C871
C87l
I371
c511
C871
P321
S. B. MAHATOand A. P. KUNDU
1540
Table 1. Continued
201
202
203
204
2osp
20@
207
208
209
210
22.3
41.5
212.9
58.3
42.1
41.4
18.3
52.5
37.5
59.7
35.5
30.0
39.6
38.4
31.1
29.2
35.2
38.9
31.5
33.3
30.2
28.3
6.8
14.7
18.2
18.7
19.1
69.0
73.4
28.6
202.1
60.7
204.1
59.1
37.7
40.7
19.7
52.6
37.6
71.9
34.7
30.8
40.6
44.0
74.7
48.6
30.2
41.6
35.5
28.2
31.9
38.9
7.3
15.8
18.1
14.1
18.9
32.7
31.0
35.6
22.6
41.3
211.6
57.9
42.2
40.9
18.9
54.1
43.7
59.3
56.1
211.4
62.3
43.7
33.1
37.2
30.4
37.6
36.3
28.7
33.3
40.4
7.3
14.6
18.3
223
62.5
30.6
35.6
31.9
202.6
60.5
203.7
59.2
37.5
38.5
17.0
45.2
37.1
69.0
35.8
26.5
38.1
40.0
34.7
36.8
30.8
44.0
35.4
28.3
32.5
38.9
6.8
15.7
67.1
19.3
69.9
30.0
31.4
35.1
29.4
68.5
74.7
46.6
41.1
31.0
30.3
39.4
133.7
133.7
29.0
121.7
144.7
41.6
27.6
24.0
47.0
41.5
47.3
31.0
34.3
33.1
67.3
16.0
27.9
24.0
26.2
179.9
33.1
23.8
24.9
61.3
78.0
43.8
50.2
32.1
29.0
40.3
149.1
85.0
120.7
120.3
139.8
41.2
27.8
23.8
45.7
40.6
46.6
30.7
34.6
33.8
73.4
14.2
18.6
20.3
21.4
178.3
33.0
23.6
38.7
27.2
78.3
38.7
55.2
18.3
32.9
40.0
47.7
36.9
23.3
124.3
139.3
42.0
28.7
26.6
33.7
58.9
39.6
39.6
31.2
41.5
28.1
15.6
15.6
16.8
23.3
28.1
17.4
21.3
40.1
35.6
207.8
56.6
57.2
19.6
32.0
38.9
45.6
36.2
22.7
123.1
138.9
41.3
25.6
27.1
32.8
58.2
38.7
38.6
30.2
40.5
20.0
173.2
12.4
15.9
22.1
27.8
16.5
20.3
38.8
27.3
78.8
38.8
55.4
18.4
33.0
39.6
47.5
37.0
23.3
125.5
138.0
42.0
28.2
24.3
48.1
52.8
39.1
38.8
30.7
36.7
28.2
15.5
15.7
16.9
23.6
177.7
16.9
21.2
39.4
34.2
217.8
47.4
55.4
19.7
32.6
39.1
46.8
36.6
23.6
125.4
138.4
42.2
28.1
24.3
48.2
53.0
39.0
38.9
30.7
36.7
26.6
21.5
15.2
16.9
23.5
178.0
17.1
21.2
1511
cm31
WI
Pw
PO41
c2051
c391
cl321
Cl151
II871
1“C NMR spectraof pentacyclictriterpenoids
1541
Table 1. Continued
211
212
213
214
215
216
217
218’
219
22v
39.4
26.5
78.1
39.4
55.9
19.0
37.7
40.2
47.4
37.5
23.5
129.1
134.2
56.9
28.3
25.6
48.9
55.1
39.5
37.8
30.7
37.2
28.7
16.8
16.8
18.4
178.2
180.2
19.1
21.7
33.5
25.4
76.0
37.5
48.8
18.2
35.2
43.5
55.8
38.2
68.4
128.7
142.9
42.2
27.9
27.7
33.6
58.1
39.4
39.3
31.1
41.3
28.7
22.4
16.6
18.0
23.3
28.6
17.5
21.3
38.8
27.3
79.0
38.8
55.4
18.4
32.9
39.4
47.8
37.2
23.4
125.0
138.0
42.8
29.2
22.6
36.8
54.1
38.9
39.4
30.7
30.6
28.1
15.4
15.6
16.9
23.4
69.7
16.2
21.3
46.8
68.9
83.8
39.1
55.4
18.4
32.9
39.6
47.5
38.3
23.4
125.3
138.1
42.1
28.0
24.3
48.1
52.8
39.1
38.9
30.7
36.7
28.7
17.0
17.0
17.0
23.7
177.9
17.0
21.2
47.2
68.9
78.2
37.5
51.0
19.8
32.4
39.7
48.2
37.3
23.3
125.6
138.1
42.2
27.9
24.2
48.2
53.0
39.0
38.8
30.7
36.6
23.8
23.2
21.1
16.7
23.6
178.1
17.0
21.1
42.2
66.7
79.2
39.3
48.3
18.2
33.0
40.0
47.6
38.4
23.4
125.8
138.7
42.2
28.2
24.4
48.3
53.2
39.1
38.5
30.8
36.8
28.6
22.0
16.5
17.1
23.9
178.4
17.1
21.2
44.3
71.0
78.4
38.0
55.2
18.1
32.9
39.6
47.9
36.6
23.4
125.6
138.1
42.1
27.9
24.2
48.1
52.9
39.0
38.8
30.6
36.6
29.7
17.3
16.4
16.9
23.6
178.0
17.0
21.1
38.7
28.0
78.2
39.3
55.8
18.9
33.6
40.3
47.7
37.3
24.0
128.1
139.9
42.1
29.2
26.6
48.2
54.5
72.7
42.3
27.0
37.4
28.7
16.7
15.5
17.1
24.6
180.6
26.8
16.4
38.8
27.3
79.0
38.8
55.4
18.4
33.2
39.5
47.7
37.1
23.4
125.9
137.9
423
28.5
27.1
48.2
53.7
32.0
42.8
71.8
428
28.2
15.5
15.7
16.8
23.2
177.6
17.0
17.2
38.5
26.9
77.4
38.5
54.8
18.2
32.3
39.6
47.2
38.4
23.0
124.8
138.0
42.2
25.5
20.3
36.4
57.2
33.6
49.7
33.1
76.7
28.0
15.4
15.7
16.4
23.1
24.3
18.0
177.0
WI
VW
12071
~1321
c731
Cl571
c731
PO81
Cl351
P-3
1542
S. B. MAHATOand A. P. KUNDU
Table 1. Continued
221P
222
223’
2rMp
225
22iiM
227
228
229
230
39.0
26.3
74.2
43.8
48.0
18.3
33.0
40.0
48.5
37.1
24.2
125.5
139.2
43.0
27.3
24.0
47.5
52.2
39.2
30.9
37.0
33.0
64.6
12.7
15.6
17.5
24.2
179.7
17.1
21.1
38.2
27.5
80.7
42.5
55.7
18.3
33.0
39.3
47.4
36.5
23.4
125.2
137.6
41.8
29.9
24.0
47.9
52.7
38.9
38.7
30.5
36.5
22.4
64.4
15.8
16.7
23.4
177.9
16.9
21.1
38.5
26.9
73.3
52.2
49.6
19.5
34.5
39.8
45.9
36.8
24.1
125.6
137.6
40.0
31.1
25.4
45.7
52.3
70.4
39.8
24.8
36.1
178.2
9.8
13.8
14.4
24.6
178.3
26.9
14.8
39.8
29.1
78.3
49.2
56.9
20.9
33.9
40.2
47.2
37.9
24.5
128.1
139.9
42.2
29.1
26.5
48.3
54.7
72.7
42.2
27.0
38.4
24.2
180.6
13.9
17.1
24.5
180.6
27.0
16.8
42.9
66.1
79.3
38.7
48.8
18.6
33.5
40.6
47.6
38.8
24.1
128.0
139.9
42.9
29.2
26.4
48.3
54.6
72.7
42.4
26.9
38.5
29.4
22.3
16.6
17.3
24.7
180.1
27.1
16.8
39.4
27.4
80.2
41.4
55.3
67.3
42.7
42.9
47.8
38.3
24.4
129.5
140.2
42.9
28.0
26.6
47.8
55.3
73.9
43.1
26.8
39.0
17.6
29.1
16.8
22.4
24.9
179.2
27.3
16.5
41.7
28.4
78.8
39.7
56.4
67.8
41.3
40.5
48.3
37.1
24.1
128.4
139.3
42.6
29.3
26.5
48.5
54.7
72.8
42.4
27.0
38.5
17.1
28.6
16.8
18.0
24.7
180.7
27.2
16.8
46.7
69.0
79.9
42.9
48.8
18.4
32.8
39.8
47.7
38.3
23.5
125.7
138.7
42.3
28.2
24.4
48.3
53.1
39.3
39.1
30.9
36.8
69.3
13.1
17.1
17.1
23.9
178.4
17.3
21.2
41.6
66.6
78.6
41.1
42.1
17.8
32.4
39.6
47.9
37.9
23.3
125.2
138.4
42.1
28.0
24.2
48.1
52.9
39.0
38.9
30.6
36.6
71.3
17.5
16.8
16.9
23.7
178.1
17.0
21.2
41.8
66.2
73.3
43.8
48.5
18.2
33.0
39.5
47.3
37.9
23.3
125.1
138.1
41.9
27.8
24.1
47.9
52.7
38.9
38.7
30.5
36.5
22.0
65.5
16.7
16.7
23.6
178.0
16.9
21.1
Pm
c2111
c-w
cw
c2131
c2141
c2151
Cl571
c731
Cl581
13C NMR spectra of pentacyclic triterpenoids
1543
Table 1. Continued
UP
232p
233
234p
usM
236
237
2w
239
w
241P
38.9
27.1
73.1
42.9
48.8
18.9
33.4
40.4
47.9
31.3
24.1
128.1
140.0
42.2
29.4
26.5
48.3
54.7
12.1
42.4
21.0
38.5
68.2
l3.1
17.3
16.8
24.9
180.7
21.2
16.0
38.8
28.5
80.3
43.2
56.5
19.3
34.0
40.4
41.9
31.2
24.3
127.9
140.0
42.1
29.1
26.5
48.4
54.7
728
424
27.0
38.6
23.7
64.6
17.2
16.8
24.1
180.8
21.2
16.1
33.1
25.2
70.6
42.1
49.5
18.7
32.9
40.0
47.1
36.8
23.7
129.1
137.9
41.1
28.2
25.5
41.9
53.2
73.1
41.1
26.0
37.4
21.6
65.5
15.6
16.5
24.6
178.2
27.4
16.1
48.1
68.6
80.9
54.1
52.2
21.4
33.3
40.5
48.1
38.5
24.2
121.1
139.9
42.0
29.1
26.3
48.6
54.1
72.1
42.0
27.1
38.5
180.6
13.4
17.3
17.1
24.1
180.0
27.1
16.8
40.5
26.2
121
56.4
49.6
70.8
40.5
39.1
41.1
35.9
23.1
128.6
137.8
42.0
28.4
25.6
41.9
53.6
73.2
41.5
26.2
31.7
209.3
10.1
17.0
11.1
24.5
181.2
27.1
16.1
14.6
14.9
19.9
40.6
53.2
17.9
32.8
41.8
48.0
37.4
24.5
130.0
137.3
41.8
29.8
26.1
48.5
52.6
13.2
42.9
21.0
38.1
28.3
16.1
11.4
16.9
25.6
178.3
21.4
17.1
14.7
11.0
19.9
40.6
53.2
17.9
32.8
41.8
48.0
31.4
24.6
130.1
137.2
41.8
29.8
26.1
48.5
52.6
13.2
42.9
26.9
38.1
28.3
16.1
11.4
16.9
25.6
178.4
21.4
17.1
50.3
69.6
84.7
38.8
51.4
68.8
41.8
41.2
49.1
40.3
24.1
129.6
139.4
421
29.5
27.8
49.1
55.1
13.6
43.1
26.6
39.0
29.0
16.6
18.5
18.8
24.8
182.2
27.1
18.5
48.4
61.7
82.9
41.2
53.3
21.7
66.9
39.2
41.4
38.4
22.8
127.6
137.5
41.2
28.7
25.4
41.9
55.3
71.8
41.1
24.8
37.1
25.2
16.6
16.8
16.6
21.0
180.6
22.9
14.6
48.2
69.0
78.5
43.1
48.6
67.6
39.0
39.5
48.9
38.0
25.0
126.0
138.6
44.3
28.7
26.0
48.0
53.3
38.1
39.1
31.0
37.5
66.6
15.5
17.2
18.6
23.8
179.8
24.0
21.3
47.8
68.6
78.2
43.6
48.2
18.6
33.0
40.3
48.2
38.2
24.1
128.1
139.4
42.1
28.9
26.8
48.2
54.4
725
42.1
21.2
38.2
66.5
14.3
17.3
17.3
24.6
178.4
21.2
16.6
WI
cm
C’M
C2l7l
C2181
~2191
~2191
c2201
cm
I?221
C2l7-l
S. B. MAHATO and A. P. KIJNDU
1544
Table 1. Continued
242p
243
SUP
245
246
247
248P
249
250
zslP
zszp
47.8
68.7
85.8
44.0
56.6
19.4
33.8
40.4
47.9
38.3
24.4
127.9
140.0
42.1
29.3
26.9
48.3
54.6
72.7
42.4
26.4
38.5
24.2
65.7
17.3
17.1
24.6
180.7
27.1
16.8
32.7
24.6
67.0
45.3
46.4
18.4
32.7
39.8
46.9
36.6
23.8
128.9
138.0
41.2
28.2
25.5
47.9
53.3
73.1
41.1
26.0
37.5
70.3
66.0
14.9
16.6
24.6
178.5
27.4
16.1
48.1
69.0
78.4
43.7
48.1
18.7
33.0
41.0
48.1
38.2
24.4
127.6
140.2
42.0
27.6
25.7
38.8
55.7
73.5
42.8
27.1
36.3
66.7
14.4
17.6
17.1
24.4
69.4
27.1
17.1
48.2
67.8
76.6
42.8
47.2
27.9
67.0
38.3
47.1
36.7
23.8
126.7
138.5
41.4
28.7
25.5
47.9
54.0
72.4
41.1
25.3
37.7
64.5
17.1
22.3
14.8
25.9
178.4
23.0
13.3
528
87.5
177.2
48.5
61.9
18.9
33.0
40.9
46.8
43.3
25.4
129.4
137.9
42.0
28.0
18.6
58.8
53.5
72.8
38.9
33.4
73.6
27.3
21.0
16.0
16.9
25.1
177.3
27.0
15.8
528
87.4
177.2
48.5
61.8
19.0
35.8
41.9
46.7
43.3
25.4
130.3
139.2
46.9
68.2
35.4
47.0
53.7
73.0
41.0
25.8
37.0
27.3
21.0
15.6
17.4
19.2
177.8
27.2
16.0
68.8
156.7
134.0
42.1
63.7
17.7
34.7
42.1
42.4
51.0
26.9
128.3
140.2
42.3
29.7
27.0
48.3
54.8
72.8
43.7
26.4
38.4
30.1
21.7
18.9
16.6
25.3
180.5
27.2
16.6
62.8
148.9
137.5
42.6
63.0
17.2
37.4
47.9
42.9
41.3
26.5
129.2
138.4
41.7
28.7
25.5
50.8
53.3
73.1
41.2
26.1
33.9
21.3
29.6
18.6
18.6
25.2
25.2
27.4
16.1
37.0
24.3
80.6
38.6
51.2
18.2
32.0
40.7
154.2
37.9
115.1
123.0
141.4
43.1
28.2
26.1
33.7
57.3
39.0
39.5
31.2
41.4
28.2
17.4
17.6
22.2
25.5
28.7
16.8
21.5
48.5
68.7
83.8
39.4
56.1
18.8
35.1
39.9
48.4
38.4
23.6
125.9
139.5
45.1
29.2
27.1
49.8
134.7
-
48.9
68.3
78.9
41.6
49.4
24.0
34.5
39.5
47.7
38.4
23.5
125.8
139.5
45.1
29.1
27.1
49.8
134.7
34.8
31.9
35.6
29.4
17.8
17.7
18.4
22.1
178.7
19.7
18.9
34.8
31.9
35.6
11.1
18.1
18.4
22.2
178.7
19.7
18.9
c2231
CW
c217l
iwl
P241
c2241
r2251
l-2261
~2271
i?‘W
C-W
“C NMR spectra of pentacyclic triterpenoids
1545
Table 1. Continued
259
254
25s
256
251
258
259
41.9
71.9
82.3
31.5
52.2
21.0
34.2
39.2
46.1
31.9
24.0
126.1
139.7
45.2
29.0
27.1
49.8
134.7
-
15.9
18.5
22.1
178.7
19.7
18.9
42.0
66.4
78.8
38.2
48.0
17.9
32.6
39.5
47.2
38.1
23.2
125.7
137.8
41.8
27.8
24.2
48.1
54.1
37.2
152.8
321
38.6
28.4
21.7
16.3
16.8
23.6
177.2
16.0
105.0
41.6
66.1
13.2
43.8
48.5
18.1
32.9
39.5
47.3
37.9
23.3
125.5
137.8
41.9
27.7
24.1
48.1
54.6
37.1
152.7
32.1
38.6
22.0
65.7
16.7
16.6
23.5
177.2
16.0
105.0
38.8
27.4
79.0
38.8
55.4
18.3
34.1
40.9
50.5
37.1
21.4
26.2
39.2
42.0
26.6
38.3
34.5
48.7
39.4
154.6
25.6
38.9
28.0
15.4
16.8
15.9
14.8
19.5
25.5
107.2
38.8
27.4
79.0
38.9
55.3
18.3
34.3
41.1
50.4
37.1
21.6
21.6
39.2
42.3
27.0
36.7
34.4
48.7
36.3
139.8
118.9
42.2
28.0
15.4
16.3
16.1
14.8
17.7
22.5
21.7
36.5
24.2
81.1
37.8
50.0
24.0
116.2
145.4
48.2
35.1
16.9
32.5
37.8
41.3
28.9
31.5
32.1
55.0
35.4
38.0
29.2
37.8
21.5
15.8
13.0
23.6
22.7
32.1
25.6
22.5
34.8
24.2
80.9
37.8
50.6
19.0
25.3
134.0
134.5
37.4
20.5
33.1
38.2
41.1
27.3
29.6
31.8
52.4
35.9
38.2
29.1
37.8
21.9
15.6
19.9
22.1
16.2
32.0
25.2
22.4
12281
Cl581
Cl561
34.8
31.9
35.6
15.9
-
II441
[441
c911
c911
260
38.7
27.3
79.0
38.8
55.2
18.7
33.1
41.9
50.2
37.1
21.1
21.3
50.3
41.7
33.1
18.7
56.3
37.3
40.3
18.7
42.1
33.2
28.0
15.4
15.9
16.5
15.9
15.9
21.5
33.4
E931
Ml
262
38.3
25.4
76.0
37.5
49.0
18.7
33.4
41.5
50.2
31.2
21.2
227
46.5
39.5
33.4
117.9
147.7
37.6
41.5
18.1
41.8
36.1
28.3
22.2
16.0
16.9
17.7
29.9
20.7
33.5
38.7
27.4
79.1
38.9
55.3
18.7
33.5
41.3
50.5
37.1
21.4
22.7
46.5
39.4
33.4
117.8
147.7
37.1
41.5
18.2
41.8
36.1
28.1
15.5
16.2
16.9
17.6
29.9
20.6
33.5
38.7
27.4
79.0
38.8
55.1
18.4
33.1
41.7
50.2
37.0
21.2
21.2
50.2
41.7
33.1
18.4
55.1
37.0
38.7
21.4
79.0
38.8
28.0
15.4
16.0
16.5
16.5
16.0
15.4
28.0
38.6
25.2
78.8
38.2
55.7
18.9
45.1
39.0
57.1
36.1
25.4
27.6
62.8
138.2
122.2
24.0
49.5
38.9
29.2
27.2
19.2
37.1
15.7
19.8
28.1
15.4
56.0
13.4
27.5
14.6
c931
1931
r941
[951
263
264
S. B. MAHATO and A. P. KUNDU
1546
Table 1. Continued
MS
266
267
268
2459
270
271
272
273
274
275
38.6
25.2
78.8
38.2
55.7
18.9
45.2
39.0
56.8
36.0
25.4
27.2
62.9
138.5
122.0
24.0
43.4
37.1
31.2
27.5
76.2
37.4
15.7
19.8
28.1
15.4
56.2
13.3
27.7
21.8
38.6
25.2
76.1
37.7
49.4
18.8
44.9
38.2
56.9
35.9
25.4
28.4
62.7
138.6
122.0
24.0
43.4
37.3
31.2
27.1
76.2
37.4
15.6
19.8
30.0
13.5
56.3
13.3
21.8
27.7
38.5
22.4
88.5
38.2
56.3
18.8
45.2
38.9
57.2
36.1
25.3
27.7
62.9
138.3
122.1
24.1
49.5
38.9
29.7
27.2
79.2
37.1
15.7
19.8
28.1
16.2
56.1
13.4
27.5
14.6
38.4
22.3
88.4
38.2
56.2
18.7
45.1
38.9
55.0
36.6
25.7
27.2
62.6
138.6
120.8
24.6
53.6
37.1
38.7
37.1
209.4
63.2
15.7
19.8
28.1
16.2
55.8
12.7
16.3
201.9
38.9
22.4
88.4
38.5
56.4
18.8
37.1
38.9
57.4
36.1
25.7
27.3
62.8
138.6
121.6
29.5
45.7
56.1
38.3
37.9
212.9
49.4
15.7
19.8
28.2
16.2
45.2
11.5
11.0
-
38.6
22.5
88.6
38.3
56.1
18.9
37.0
41.1
57.1
35.9
24.5
27.3
63.0
138.3
121.8
25.6
50.6
56.4
37.2
21.8
80.3
39.0
15.8
19.9
28.2
16.2
45.3
13.8
24.3
64.0
36.9
27.8
79.3
39.0
50.7
24.2
116.2
145.0
47.9
35.3
16.7
34.1
36.5
41.0
29.1
27.9
38.2
43.4
23.3
21.3
27.2
39.0
27.6
14.6
12.9
23.8
22.2
16.1
25.3
23.0
38.3
34.8
216.5
47.8
52.3
24.5
116.1
145.1
47.4
35.3
16.8
33.9
36.5
41.0
29.1
27.9
38.1
43.4
23.2
21.5
37.0
39.0
24.5
21.4
12.5
23.8
22.2
16.0
25.3
22.9
31.7
23.0
78.3
36.6
45.6
24.0
116.1
145.3
47.5
35.0
16.6
34.0
36.5
41.1
29.1
27.9
38.2
43.4
23.2
21.6
37.1
39.0
27.2
21.3
12.8
23.7
22.2
16.1
25.3
23.0
37.2
24.7
81.1
37.6
44.6
17.4
19.0
40.3
150.2
37.3
116.7
39.1
37.2
38.2
28.1
27.9
38.2
41.2
23.3
21.8
37.6
39.3
27.4
16.2
25.3
15.2
16.5
16.4
25.3
23.0
37.9
27.2
79.1
38.8
55.7
18.7
32.4
39.4
48.4
36.6
23.2
117.5
146.7
41.8
24.6
29.2
37.4
41.7
23.9
21.9
36.2
37.7
28.0
15.3
15.4
16.3
21.5
21.3
25.5
22.2
c951
c951
c951
c951
~2291
c2291
c911
c911
c2301
c911
WI
13C NMR spectra of pentacyclic triterpenoids
1547
Table 1. Continued
276
277
278
34.6
20.2
41.5
33.7
49.1
19.5
34.5
42.0
46.0
37.2
22.7
21.8
48.6
43.3
32.1
25.9
42.8
36.6
34.8
36.0
30.6
42.1
33.9
22.0
23.1
22.6
17.2
12.1
33.5
23.0
34.4
20.2
41.5
33.8
49.2
19.4
34.4
421
45.9
37.2
22.6
22.2
48.6
43.5
30.4
17.7
55.1
42.5
35.7
36.9
43.8
217.7
33.9
22.0
23.1
22.5
16.8
13.7
25.6
26.5
33.2
29.2
79.3
39.2
48.0
19.1
34.5
41.9
45.8
36.9
22.6
21.5
48.6
42.8
31.8
19.4
49.0
38.5
34.9
35.0
35.8
76.5
29.1
16.1
22.7
22.7
17.3
13.5
29.9
18.6
ml1
[loll
Poll
279
33.2
29.2
79.3
39.2
48.0
19.1
34.6
41.9
46.2
36.9
22.5
21.3
49.8
43.4
32.6
23.5
45.9
36.5
35.6
30.2
34.8
81.3
29.1
16.1
22.7
22.5
17.3
15.9
27.8
26.0
cw
280
281
31.7
33.9
220.5
47.0
43.4
20.6
33.9
42.0
47.5
36.1
22.1
21.3
48.6
42.3
31.7
19.3
48.9
38.6
34.8
35.0
35.8
76.5
29.4
19.6
23.4
221
17.2
13.6
29.9
18.5
31.6
33.8
220.1
47.2
43.3
20.6
33.8
42.0
47.4
36.2
220
22.2
48.6
43.3
30.4
17.6
55.0
42.2
35.6
36.8
43.8
217.3
29.3
19.6
23.3
22.0
16.5
13.7
25.5
26.4
WI
cw
282
41.4
70.8
84.3
38.7
47.9
18.8
34.3
41.7
46.1
37.4
22.7
21.4
48.7
42.5
31.4
19.6
46.5
38.9
34.8
34.8
35.2
78.4
29.6
17.2
23.8
22.5
17.1
13.4
29.3
19.6
cw
283
41.6
71.2
84.7
39.1
48.0
19.0
34.3
41.9
46.5
37.7
22.9
21.6
48.9
426
31.9
19.4
48.7
38.5
35.1
35.1
35.9
76.6
29.8
17.3
24.0
22.6
17.2
13.6
29.8
18.6
WI
284
39.0
71.8
81.0
38.7
47.5
18.7
34.0
41.7
46.1
37.3
22.7
21.4
48.6
42.5
31.6
19.5
46.5
39.0
34.8
34.8
35.2
78.3
29.4
17.9
23.6
22.4
17.0
13.3
29.4
19.5
cw
285
286
23.9
25.7
82.5
38.3
33.4
20.2
32.7
40.3
46.7
44.9
20.8
21.7
48.5
42.8
31.6
19.2
49.0
38.5
34.9
35.0
35.8
76.5
26.4
20.2
178.2
22.1
17.1
13.5
29.8
18.5
39.2
71.9
81.0
39.1
47.6
18.9
34.4
41.6
46.5
37.5
227
24.1
48.9
43.3
32.7
20.6
54.2
44.2
40.0
27.4
47.9
148.1
29.4
18.0
23.7
22.6
17.1
15.1
109.3
19.6
Wll
cw
1548
S. B. MAHATO and A. P. KUNDU
Table 1. Contimred
287
288
289
290
291
292
293
294
295
296
39.0
71.8
81.8
39.0
47.6
18.7
34.4
41.4
46.6
37.5
22.8
24.0
49.4
43.0
31.8
19.5
139.7
49.8
41.4
27.4
136.2
26.3
29.3
17.9
23.6
22.5
15.0
18.7
21.2
21.8
40.3
18.7
42.1
33.2
56.3
18.7
34.3
41.0
50.5
37.5
20.8
25.2
38.0
42.8
27.4
35.6
43.0
48.3
47.9
150.6
29.9
40.0
33.4
21.6
16.1
16.1
14.6
18.0
109.2
19.3
38.7
27.4
78.9
38.8
55.3
18.3
34.2
40.8
50.4
37.1
20.9
25.1
38.0
42.8
27.4
35.5
43.0
’ 48.2
47.9
150.9
29.8
40.0
28.0
15.4
16.1
15.9
14.5
18.0
109.3
19.3
40.2
18.6
42.1
33.2
56.3
18.6
34.2
41.1
50.4
37.4
20.7
25.3
37.2
42.7
27.0
29.2
47.7
48.7
47.7
150.2
29.8
33.9
33.3
21.5
16.0
16.0
14.8
60.4
109.4
19.1
40.2
18.6
42.0
33.2
56.3
18.6
34.2
40.8
50.6
37.4
20.7
25.5
38.2
42.3
29.6
32.1
56.5
49.4
46.9
150.3
30.6
36.9
33.3
21.5
16.0
16.0
14.7
176.3
109.4
19.3
38.7
27.4
78.9
38.8
55.3
18.3
34.3
40.7
50.5
37.2
20.8
25.5
38.4
42.4
30.5
32.1
56.3
46.8
49.2
150.3
29.7
37.0
27.9
15.3
16.0
16.1
14.7
180.5
109.6
19.4
34.0
23.2
75.5
j9.0
49.3
18.6
34.8
41.2
50.7
37.7
21.0
26.1
38.5
42.9
31.2
32.8
56.6
47.7
49.7
151.2
29.9
37.5
29.2
22.5
16.4
16.4
14.9
178.7
109.8
19.4
39.5
27.3
77.9
38.4
55.2
17.9
33.9
40.3
51.0
37.1
20.3
27.0
38.4
59.5
25.8
37.5
55.8
51.7
46.5
149.3
30.0
36.5
27.7
15.3
16.4
16.8
175.3
176.1
109.5
18.6
38.7
27.3
78.9
38.8
55.5
18.2
34.3
40.8
50.4
37.1
20.7
25.5
38.7
42.5
29.2
28.8
59.3
48.0
47.5
149.7
29.8
33.2
27.9
15.4
15.9
16.1
14.2
205.6
110.1
19.0
33.6
25.9
76.4
37.5
49.9
18.4
34.4
41.0
50.5
37.3
20.8
25.6
38.7
42.6
29.5
28.8
59.3
48.0
47.5
149.8
30.0
33.2
28.2
222
15.9
16.1
14.2
205.6
110.1
19.0
WI
c1021
PO21
PO21
c2311
~2321
Iwl
PW
WI
Cal
1549
‘“C NMR spectra of pentacyclic tritcrpenoids
Table 1. Continued
297
298
299
300
301
302
303
304
305
306
307p
39.0
27.5
78.6
39.4
55.6
18.1
35.3
41.1
55.7
37.7
70.5
27.7
37.7
42.6
27.5
35.5
43.0
47.7
47.7
150.2
29.9
39.9
28.3
15.6
16.1
17.3
14.5
18.1
109.8
19.4
38.9
27.4
78.9
38.8
54.9
18.5
37.8
42.5
51.0
37.4
21.0
25.2
37.6
47.9
69.7
46.5
43.0
48.1
47.4
150.4
30.1
39.7
27.9
15.4
16.1
16.6
8.0
19.2
109.7
19.4
38.9
27.4
78.8
38.9
55.4
18.3
34.3
41.0
50.0
37.1
20.9
24.9
37.3
44.1
36.9
76.9
48.6
47.7
47.6
149.8
30.0
37.8
28.0
15.4
16.1
16.1
16.1
11.8
109.6
19.4
38.5
27.8
80.9
42.8
55.9
18.4
34.9
40.9
50.5
38.0
21.2
25.1
36.9
42.8
27.4
35.6
43.0
48.0
48.3
150.9
29.9
40.0
224
64.5
15.9
16.7
14.6
18.0
109.4
19.3
38.8
27.2
78.9
38.9
55.3
18.3
34.3
40.9
50.4
37.2
20.9
25.3
37.3
427
27.0
29.2
47.8
48.8
47.8
150.6
29.8
34.0
28.0
15.4
16.1
16.0
14.8
60.2
109.6
19.1
39.6
34.1
218.3
47.3
54.9
19.7
33.6
40.8
49.7
36.9
21.6
26.7
38.1
42.9
27.4
35.4
43.0
48.8
43.8
154.7
31.8
39.8
26.7
21.0
16.0
15.8
14.5
17.7
106.8
65.0
421
66.6
78.9
38.3
51.2
17.9
34.0
40.8
49.4
38.5
20.8
25.8
38.1
42.4
29.6
32.1
56.6
48.1
46.9
150.5
30.5
36.9
28.4
21.6
17.1
15.9
14.7
176.6
109.6
19.3
39.2
27.9
73.6
42.9
48.9
18.6
34.6
41.2
49.8
37.6
21.3
26.2
38.7
42.9
30.3
32.9
56.7
47.8
49.7
151.4
31.8
37.6
68.2
12.9
16.5
19.5
14.9
178.9
109.9
19.5
~2371
C2381
Cl021
cl241
c491
c491
P391
c2401
79.0
37.5
75.7
38.9
53.1
18.0
34.1
41.3
51.4
43.5
23.8
25.0
38.0
42.8
27.4
35.5
42.9
48.3
47.9
150.8
29.7
39.9
27.8
14.9
11.9
16.2
14.4
18.0
109.4
19.2
55.7
49.1
46.8
150.4
30.4
37.0
15.6
27.3
16.0
15.9
14.5
177.6
109.3
19.2
38.7
27.5
78.9
37.3
52.5
27.5
74.7
46.9
50.5
37.3
20.9
25.3
38.7
42.8
29.4
36.1
42.8
48.3
48.2
151.0
30.0
40.2
28.0
15.4
15.1
10.2
15.8
17.9
109.3
19.4
CW
PW
I2361
39.0
28.1
78.5
38.7
55.2
18.1
34.2
40.5
50.4
37.9
20.7
25.4
79.0
42.2
29.5
S. B. MAHATO and A. P. KUNDU
1550
Table
I. Continued
308
309
31op
311P
312
313p
314
31sp
316’
317p
39.2
25.5
77.9
39.2
55.9
18.6
35.8
41.8
50.2
37.6
21.3
27.7
39.4
46.6
28.0
33.7
56.3
50.0
47.5
151.1
31.0
37.6
28.3
15.4
16.6
17.0
59.9
178.8
109.5
19.3
35.4
26.6
72.8
52.8
45.2
22.1
35.9
42.9
56.6
39.6
69.9
38.5
37.7
43.4
30.2
32.9
56.6
49.5
47.6
150.9
31.3
37.5
179.7
18.1
18.3
17.2
14.8
178.8
110.1
19.6
35.4
27.1
73.1
53.0
44.2
21.3
35.5
42.8
56.0
39.0
69.8
38.3
37.6
43.3
30.1
32.8
56.5
49.5
47.5
150.8
31.3
37.4
209.9
17.8
15.0
16.8
14.8
178.8
110.0
19.5
41.5
28.9
78.7
40.6
56.7
67.8
42.6
40.7
51.4
37.3
21.6
25.7
37.1
44.5
37.7
76.3
49.4
48.4
48.3
150.9
30.5
38.5
27.9
17.3
17.9
16.8
16.7
12.0
109.9
19.4
39.9
34.1
218.3
47.2
54.5
19.8
36.9
42.4
50.3
37.1
21.5
25.2
37.0
47.8
69.0
40.3
47.9
48.3
47.2
149.9
30.0
33.9
26.6
21.0
16.1
16.3
8.1
61.5
110.0
19.1
66.6
36.2
75.1
40.0
58.2
18.8
35.9
42.7
53.5
46.3
76.5
35.1
36.2
43.1
30.2
38.0
43.2
48.7
48.2
150.6
28.0
40.1
28.7
14.4
15.7
17.8
14.3
18.3
110.3
19.4
38.2
30.6
82.3
40.9
59.5
22.0
37.5
42.7
54.5
32.2
24.7
30.8
41.3
44.8
33.0
38.0
46.4
53.3
47.4
150.7
35.4
33.1
31.2
19.3
18.6
19.2
17.8
62.9
109.8
67.8
66.7
37.7
75.2
42.8
58.3
18.8
35.8
43.0
53.5
46.4
76.6
35.1
36.3
43.3
32.4
38.1
43.3
49.1
44.0
156.3
28.1
40.0
28.7
14.4
15.7
17.8
14.3
18.1
106.6
64.4
38.6
28.0
78.0
39.4
55.9
18.9
32.8
39.8
47.8
37.6
23.8
122.4
141.1
42.2
24.0
26.6
44.1
40.2
30.0
38.6
80.4
36.6
28.6
16.4
15.6
16.3
23.5
181.9
22.1
39.2
28.2
78.0
39.4
55.7
18.6
34.9
41.5
50.3
37.3
21.3
28.5
40.1
44.7
37.0
68.2
59.0
42.5
56.4
69.2
81.6
42.5
28.6
16.3
16.3
16.4
15.6
177.0
30.7
31.0
c2421
C2431
P441
C2451
c2441
c351
~2411
c491
Cl461
318
40.5
18.8
42.3
33.3
56.5
18.8
34.6
41.3
50.4
37.6
21.0
27.1
38.1
43.2
27.5
35.8
43.2
47.8
44.9
29.5
22.0
40.5
33.4
21.7
16.1
16.2
14.6
18.2
15.2
23.0
cw
‘“C NMR spectra of pentacyclic triterpenoids
1551
Table 1. Continued
319
38.7
27.4
78.8
38.8
55.2
18.3
34.4
40.8
50.1
37.1
20.9
26.8
37.8
43.0
27.4
35.5
43.1
47.5
44.6
29.3
21.9
40.4
28.0
15.4
16.0
16.0
14.4
18.0
15.1
23.0
rP1
320
40.2
18.6
42.0
33.2
56.1
18.6
34.5
41.5
50.2
37.4
21.2
29.1
37.4
43.5
27.5
35.5
44.6
48.2
49.9
73.3
28.7
40.2
33.3
21.5
16.1
16.2
14.8
19.2
24.8
31.4
IN21
321
322
40.5
18.6
42.1
33.3
56.5
18.7
35.0
41.0
51.2
37.5
21.5
28.4
40.3
43.7
28.3
37.7
48.4
139.0
138.7
26.4
28.7
39.2
33.3
21.5
16.6
16.7
15.4
23.7
21.4
21.9
40.5
18.7
42.1
33.3
56.6
18.7
34.8
40.9
51.3
37.5
21.2
28.2
39.5
43.5
27.0
39.7
48.3
141.4
135.7
145.3
37.4
36.8
33.3
21.5
16.0
16.3
15.4
16.7
111.7
23.6
Cl021
Cl021
323
38.7
27.3
78.7
38.8
55.2
18.2
34.4
41.0
49.1
37.1
21.0
26.6
38.1
43.1
34.2
74.2
47.4
40.4
43.8
29.3
21.3
33.2
27.9
15.4
16.0
16.0
17.2
19.1
15.2
22.9
WI
324
325
326
327
328
329
-
-
-
-
-
38.8
27.3
79.1
38.0
55.2
18.4
32.9
40.1
47.7
36.9
23.4
125.1
138.8
421
23.4
26.0
38.8
54.4
39.5
39.4
30.7
35.2
28.2
16.8
15.6
15.7
69.9
23.3
21.3
17.3
40.7
38.9
37.8
61.6
18.8
34.7
41.4
50.0
45.6
23.6
25.1
38.3
43.0
27.8
35.7
42.9
48.4
48.0
150.7
29.9
40.1
32.7
26.2
16.1
16.3
14.7
18.0
109.2
19.4
55.4
224.5
45.7
59.2
18.1
33.8
41.2
48.7
41.6
23.7
24.8
38.1
42.9
27.5
35.5
429
48.2
47.9
150.4
29.8
39.9
27.7
21.0
17.5
16.2
14.6
18.0
109.3
19.3
51.5
82.3
44.4
61.8
18.6
34.4
41.4
49.9
43.4
23.6
24.9
38.2
42.9
27.6
35.6
428
48.3
47.9
150.5
29.8
40.0
31.8
19.0
17.2
16.1
14.6
18.0
109.2
19.3
51.3
81.2
41.9
61.1
19.0
34.4
41.4
49.7
40.9
23.6
24.9
38.2
42.9
27.6
32.1
42.8
48.3
47.9
150.5
29.8
40.0
25.4
25.2
17.4
16.2
14.6
18.0
109.2
19.3
65.3
84.6
43.2
56.4
19.4
33.9
41.6
44.5
49.3
23.5
25.4
38.5
42.8
29.8
32.1
56.5
49.3
46.8
150.1
30.6
36.8
30.7
18.4
18.4
16.5
14.7
176.4
109.4
19.1
c2461
Cl021
cw
w21
c1021
c1021
330
40.4
18.8
42.2
33.3
56.2
18.8
33.4
41.9
50.5
37.5
21.0
24.0
49.4
41.8
33.7
22.7
54.7
44.4
41.7
27.7
48.0
32.0
33.4
21.6
15.9
16.6
16.7
15.9
22.9
23.9
W’l
S. B. MAHATO and A. P. KUNDU
1552
Table 1. Continued
331
40.4
18.8
42.2
33.3
56.5
18.8
33.2
42.2
51.1
37.6
21.7
23.8
39.1
41.5
26.8
222
49.4
44.2
41.7
25.0
47.7
31.0
33.5
21.7
16.1
16.4
16.7
22.1
18.4
24.1
C2471
332
40.4
18.8
42.2
33.3
56.2
18.8
33.4
42.0
50.5
37.5
21.0
22.8
48.6
42.4
32.8
21.6
53.3
44.5
39.9
23.9
45.5
28.9
33.4
21.6
15.9
16.8
16.8
15.2
17.5
221
P481
333
40.4
18.9
42.2
33.3
56.6
18.6
33.0
42.4
51.2
37.5
21.6
24.3
43.1
40.7
33.0
20.1
51.2
44.4
44.4
26.7
48.3
28.9
33.5
21.7
16.0
22.0
16.6
227
21.7
26.7
CW
334
40.2
18.6
42.0
33.0
56.0
18.6
32.9
41.6
50.4
37.2
20.8
23.8
49.5
41.8
34.2
21.7
53.8
43.9
43.4
26.5
50.9
73.9
33.2
21.4
15.6
16.4
16.5
22.7
28.7
30.8
PW
335
40.4
18.7
42.2
33.2
56.2
18.7
33.4
41.9
50.5
37.5
21.0
24.0
493
41.8
33.6
22.0
54.2
44.5
41.6
26.3
41.0
38.7
33.4
21.6
15.8
16.7
16.2
15.9
68.1
21.6
C2491
336
337
40.5
18.7
42.2
33.2
56.3
18.8
33.4
41.9
50.6
37.5
21.1
24.1
49.5
41.9
33.8
22.6
54.4
44.5
41.8
27.2
42.8
39.6
33.4
21.6
15.7
16.6
16.5
15.9
18.1
67.7
40.4
18.5
43.8
33.6
61.1
69.3
45.5
42.9
49.5
39.4
21.1
24.0
49.8
41.9
34.3
21.9
54.0
44.0
41.3
26.6
51.1
73.9
36.8
22.1
17.1
18.3
17.1
16.1
28.7
30.9
C2491
c2501
338
339
39.6
34.2
218.1
47.3
54.9
19.8
32.7
41.7
49.6
36.8
21.6
24.1
50.0
41.9
34.4
21.9
54.0
44.1
41.3
26.6
51.0
73.9
26.6
21.1
15.7
16.5
16.9
16.2
28.7
41.1
18.6
42.8
32.6
66.5
214.0
51.7
48.5
50.9
44.1
21.6
24.0
49.8
42.4
34.5
22.0
54.2
44.1
41.5
26.8
51.2
73.8
32.7
22.0
17.2
17.0
17.8
16.3
29.0
31.2
c271
340
40.2
18.4
43.5
33.2
58.5
72.0
41.0
42.8
49.4
39.6
21.1
24.0
49.9
42.1
34.3
21.9
54.0
44.0
41.3
26.6
51.1
73.8
36.3
22.2
17.1
18.1
17.1
16.1
28.9
31.0
c271
341
40.2
18.6
41.8
33.0
53.1
29.6
73.3
47.6
50.5
37.4
20.7
24.1
50.0
43.4
38.3
22.2
53.5
44.1
41.4
26.5
51.5
73.8
33.2
21.4
15.5
11.2
17.7
16.2
28.6
13C NMR spectra of pentacyclic triterpenoids
1553
Table 1. Continued
342
40.4
18.7
420
33.2
55.8
18.9
36.8
43.5
50.5
37.6
20.8
24.1
48.9
47.1
74.8
32.6
50.5
44.2
40.9
26.9
50.5
73.7
33.3
21.6
15.8
17.4
11.8
15.8
28.7
343
39.3
17.7
36.7
47.7
51.1
21.6
32.8
42.3
50.5
36.7
20.6
23.5
49.0
44.0
41.5
66.8
60.6
45.8
43.7
27.8
49.8
74.1
179.3
16.6
16.1
16.3
18.3
17.1
26.6
34P
73.1
25.8
36.7
33.8
48.4
19.1
35.6
43.3
47.7
43.3
68.6
33.8
49.2
42.4
34.7
22.4
54.7
44.2
41.6
27.0
51.5
72.4
33.7
21.7
18.1
17.4
17.5
16.2
29.9
31.5
W’l
345
73.4
25.5
36.3
33.6
47.7
18.8
35.0
43.0
47.0
43.3
69.9
33.5
48.8
42.1
33.8
22.7
54.5
44.3
41.6
27.3
42.8
39.7
33.4
21.5
17.8
17.2
16.8
15.6
18.2
67.8
W’l
346
40.7
18.4
38.6
38.6
56.6
19.2
35.7
43.6
50.9
37.6
21.2
24.2
492
47.2
74.9
32.8
50.6
44.3
41.0
26.9
50.6
73.8
26.9
65.5
16.4
17.3
11.7
15.8
28.7
31.0
~2511
347
40.3
18.5
43.8
33.7
61.0
68.7
44.7
43.0
49.1
39.5
21.2
23.7
49.4
41.8
33.7
21.5
53.0
43.9
47.7
78.1
56.9
72.8
36.8
21.8
17.1
18.9
16.9
17.4
28.3
348
349
350
351
38.5
26.8
80.8
37.1
54.6
21.2
34.9
43.1
50.2
37.6
20.8
23.6
49.0
45.8
76.7
28.5
50.1
43.9
40.8
23.6
50.4
73.4
28.5
21.9
15.7
15.8
12.7
16.4
27.9
31.0
40.6
20.5
38.0
43.7
56.3
19.2
35.1
43.1
50.4
37.8
21.1
23.9
49.1
45.9
76.9
28.6
49.7
43.9
40.8
26.8
50.2
73.5
28.6
178.0
13.6
17.1
12.7
15.8
28.6
31.0
38.4
19.4
42.5
33.7
57.9
71.5
40.2
42.2
49.2
51.2
21.9
24.1
49.9
42.2
34.8
21.9
53.9
44.0
41.3
26.6
50.9
73.6
35.7
23.5
175.5
15.7
16.7
16.3
28.8
31.0
38.5
26.7
78.2
39.0
60.1
67.8
42.7
42.6
49.1
38.9
20.6
23.0
47.2
43.4
45.4
67.3
57.3
46.5
39.5
25.9
51.9
70.9
30.0
16.1
15.9
16.7
17.5
17.9
30.8
22.6
c2521
~2511
[571
C2531
S. B. MAHATO and A. P. KUNDU
1554
Table 1. Continued
352
353
354
355
356
357
358
359
360
361
45.4
24.6
49.9
32.5
51.3
20.0
32.1
42.1
50.5
38.0
22.1
24.6
49.0
42.2.
34.6
22.1
54.2
44.3
41.5
26.6
51.1
73.9
31.1
21.8
17.0
16.3
16.3
23.2
29.0
30.9
40.4
18.8
77.2
33.4
56.2
18.8
34.4
41.9
50.5
37.5
21.0
24.0
49.4
41.8
33.7
22.1
54.7
44.4
43.3
81.8
48.8
32.1
33.5
21.7
63.2
16.6
16.7
16.0
21.6
23.7
40.3
18.7
42.1
33.2
56.1
18.5
33.5
41.4
50.6
37.4
20.9
24.2
44.8
40.5
34.0
119.4
147.6
43.6
43.2
27.0
51.3
35.0
33.4
21.6
16.0
16.9
18.0
19.3
21.5
22.0
40.4
18.7
42.2
33.3
56.2
18.8
33.3
41.9
50.5
37.4
21.0
23.8
48.1
41.5
32.9
23.3
56.0
44.4
39.1
28.4
135.6
120.6
33.4
21.6
15.9
16.7
16.6
14.7
19.4
22.8
40.4
18.8
42.2
33.3
56.6
18.6
33.2
41.7
51.0
31.6
21.5
24.6
42.8
42.1
32.2
25.8
49.4
44.3
41.4
28.4
140.4
122.7
33.5
21.7
16.1
20.7
16.6
23.0
21.0
21.5
40.4
18.7
42.1
33.2
56.2
18.7
33.3
41.8
50.9
37.4
21.2
24.0
49.2
41.9
31.8
19.8
135.7
49.7
41.6
27.4
139.8
26.3
33.3
21.6
16.2
16.3
14.9
19.1
21.2
21.9
40.4
18.7
42.2
33.3
56.2
18.7
33.3
41.9
50.4
37.4
21.0
24.0
49.5
42.1
33.7
21.7
54.9
44.8
41.9
27.4
46.5
148.7
33.4
21.6
15.9
16.7
16.8
16.1
110.7
25.0
39.6
34.2
218.1
47.4
54.9
19.7
32.6
41.6
49.7
36.8
21.5
23.9
48.7
42.3
32.6
20.8
53.8
44.2
40.2
21.3
47.9
148.1
26.6
21.3
15.8
16.5
16.5
15.2
109.6
19.7
40.4
18.8
42.2
33.3
56.2
18.7
33.4
42.3
50.5
37.5
21.0
24.0
48.7
42.0
32.7
20.9
53.9
44.3
40.2
27.4
48.0
148.2
33.4
21.6
15.9
16.7
16.8
15.1
109.4
19.7
40.3
18.7
42.1
33.2
56.1
18.7
33.2
41.9
50.3
37.4
20.8
24.8
49.2
42.0
33.2
20.2
54.4
45.3
41.7
26.1
39.1
144.0
33.4
21.6
15.6
15.8
16.1
16.7
122.3
169.7
c2541
I2551
C2481
c2481
WV
C2481
C2481
Cl961
C2481
C2561
13CNMR spectra of pentacyclic triterpenoids
1555
Table 1. Continued
362
363
364
365
366
361
368
369
370
371
372
39.5
18.2
40.7
33.0
58.2
71.9
40.0
42.5
49.1
39.3
20.7
23.2
49.6
41.9
33.3
20.2
64.1
44.4
43.3
37.0
83.5
149.1
36.1
22.0
16.9
17.7
16.4
15.2
112.0
38.5
27.0
78.7
39.4
60.8
68.9
40.2
42.5
50.0
39.2
21.6
222
46.7
46.0
119.8
134.5
138.7
47.9
45.7
28.2
140.8
26.5
30.9
16.7
15.5
18.8
17.5
20.4
21.6
21.3
38.8
27.4
79.0
38.8
55.3
18.2
33.7
40.4
50.7
36.8
21.4
23.3
45.2
41.0
32.1
120.0
139.2
37.1
38.3
35.2
32.5
46.2
28.1
15.4
16.2
16.8
17.5
16.3
32.4
24.6
38.7
19.1
42.5
33.2
48.1
24.6
116.3
145.4
51.6
35.6
16.1
32.5
36.1
41.6
30.4
36.4
42.9
54.2
20.1
28.3
59.7
30.7
32.9
21.2
12.9
24.1
21.1
14.1
22.1
23.0
38.7
19.2
42.5
33.2
48.1
24.7
116.9
144.9
51.6
35.6
16.3
31.8
36.5
41.6
29.8
33.1
54.1
56.3
21.7
30.9
60.2
31.7
33.0
21.3
13.0
24.5
19.5
176.2
22.2
23.0
37.3
19.3
41.8
33.3
51.1
18.9
27.0
134.9
133.7
37.8
20.4
27.0
36.7
41.1
30.4
36.0
43.0
52.8
19.4
28.4
59.8
30.8
33.3
21.8
20.3
22.1
15.8
14.6
22.1
23.0
35.5
28.0
79.0
38.9
50.5
20.4
27.2
134.3
134.3
37.6
19.1
30.3
41.1
36.7
27.0
35.9
42.9
52.8
18.9
28.4
59.8
30.8
28.1
15.5
22.1
22.1
15.8
14.6
22.8
22.1
37.2
19.3
41.8
33.4
51.2
19.3
26.8
134.7
133.4
37.8
22.2
28.4
37.0
41.0
29.1
32.7
54.1
54.6
22.1
30.0
60.3
31.8
33.3
21.8
20.2
19.4
14.0
176.5
22.1
22.9
34.1
27.9
78.6
38.4
45.2
28.6
64.2
158.0
142.6
38.6
199.9
50.8
43.3
37.5
27.3
35.8
42.7
51.9
20.3
28.0
59.5
30.7
28.2
16.1
18.0
23.9
19.7
13.9
22.9
22.1
33.7
27.2
78.3
39.0
48.0
36.9
200.7
142.2
160.2
39.5
65.9
42.1
39.4
40.5
25.6
35.7
42.3
51.1
20.2
28.0
59.6
30.6
27.4
15.0
20.0
23.7
16.9
14.6
22.8
21.9
34.4
27.4
78.1
38.6
48.0
36.7
199.9
151.9
156.0
38.2
201.1
51.1
38.5
41.6
26.4
35.8
42.6
50.8
20.4
28.9
59.5
30.7
27.5
14.9
17.9
21.8
20.8
14.0
22.9
22.0
CW
c591
C2581
C2581
C2581
W’l
C2581
C2591
II2591
C2591
PHYTO 37-6-F
1556
S. B. MAHATO and A. P. KIJNDU
Table 1. Continued
373
374
375
376
377
378
379
380
381
382
41.5
19.6
42.5
33.6
44.9
18.0
19.6
40.0
151.7
37.7
115.7
36.8
36.8
38.1
29.4
36.3
43.0
52.1
20.2
28.3
59.7
30.8
32.8
21.7
25.1
15.9
15.4
14.0
22.2
23.0
40.5
20.6
42.2
34.1
45.9
20.7
18.9
39.5
142.9
48.5
121.2
36.6
36.7
38.0
29.3
36.0
42.9
51.9
20.1
28.2
59.6
30.8
31.4
19.8
176.1
15.6
15.5
14.0
22.1
23.0
41.5
19.6
42.5
33.7
44.9
18.1
19.6
40.2
151.6
31.7
115.5
35.5
37.1
38.1
29.7
33.2
54.2
54.0
21.9
31.1
60.3
31.7
32.8
21.7
25.0
15.5
14.1
171.0
22.1
22.9
39.1
28.0
79.0
39.3
44.1
19.0
17.8
39.8
153.4
40.6
120.9
75.9
42.2
37.6
29.5
35.9
43.6
51.4
23.6
28.7
58.9
30.8
27.5
15.7
25.1
15.1
11.3
14.2
22.2
23.1
36.3
28.0
71.4
36.9
52.0
36.4
75.1
47.9
117.0
39.2
121.1
24.5
43.9
57.0
33.0
31.9
40.9
39.4
74.5
30.3
57.3
27.8
21.9
15.4
22.9
15.5
21.7
16.8
16.1
16.5
46.9
68.7
79.9
53.0
41.8
20.2
17.6
39.6
149.6
39.3
117.3
36.7
36.8
37.8
29.3
36.2
43.0
52.0
20.2
28.2
59.7
30.8
177.1
11.8
26.6
16.0
15.4
14.0
22.2
23.0
23.8
21.9
40.9
34.8
145.6
117.6
34.3
51.8
35.7
44.3
25.9
29.2
38.7
39.4
29.2
35.5
42.9
51.9
20.0
28.4
60.1
30.8
30.0
29.8
16.1
17.9
15.1
15.8
22.0
22.9
23.8
21.8
40.8
34.9
145.4
117.4
34.6
51.5
35.7
44.3
26.0
28.2
38.8
39.3
29.9
30.9
54.1
54.0
21.8
31.8
60.7
31.7
29.8
29.7
16.2
17.6
13.6
176.8
221
22.9
36.6
34.8
217.1
47.6
53.2
26.3
22.6
41.0
147.4
39.3
115.6
36.1
36.7
38.2
29.6
35.8
42.8
52.0
20.1
28.2
59.6
30.7
22.v
25.5”
21.6
16.9
15.3
13.9
22.1
23.0
42.5
74.1
79.5
40.2
48.9
33.8
71.9
49.1
146.6
41.0
117.5
37.2
38.3
39.9
32.1
37.2
43.8
59.2
70.3
41.9
57.8
30.7
29.0
17.4
22.6
17.1
17.0
15.9
22.2
23.2
66.9
84.8
39.4
48.7
33.6
71.8
49.2
146.7
40.8
117.6
37.3
38.3
39.9
32.1
37.2
43.8
59.2
70.4
41.9
57.8
30.7
28.7
18.0
23.0
17.1
17.0
15.9
22.2
23.2
C2581
mu
C2581
WI
C2471
C2581
P581
E2621
iI
~271
14’51
383
46.6
‘“C NMR spectra of pentacyclic triterpenoids
1557
Table 1. Continued
3w
38!F
3w
387p
388
389
390
31.0
28.8
78.0
39.5
49.1
33.9
12.2
49.5
147.6
39.9
117.1
31.3
38.3
39.9
32.1
31.2
43.8
59.3
70.4
41.9
57.8
30.7
28.1
16.4
22.1
17.1
17.0
16.0
22.2
23.2
46.0
69.2
83.6
39.7
49.1
33.9
721
49.2
147.2
41.0
117.3
31.3
38.4
40.0
32.1
31.2
43.8
59.3
70.4
41.9
57.8
30.7
29.3
17.5
23.1
17.1
17.0
15.9
22.2
23.2
31.0
28.7
78.0
39.4
48.5
33.9
72.1
49.4
147.7
39.8
117.3
37.6
38.4
40.2
33.0
33.3
49.0
60.0
10.1
43.4
58.1
30.7
28.7
16.4
22.0
17.2
16.7
62.9
23.4
23.4
46.0
69.2
83.6
39.1
49.1
33.9
72.1
49.3
147.4
41.0
117.5
31.1
38.5
40.3
33.1
33.4
49.1
60.1
70.1
43.5
58.2
30.8
29.3
17.5
23.2
17.3
16.6
63.0
23.5
23.6
33.4
29.3
79.3
39.2
46.5
22.1
30.5
41.5
48.2
37.2
19.0
26.4
130.8
42.6
26.5
35.0
42.7
142.0
27.5
37.6
59.2
29.8
29.1
16.1
18.0
23.0
26.1
25.1
23.0
37.1
33.8
220.0
46.9
44.1
22.3
30.4
41.6
47.1
36.4
20.4
26.2
131.3
42.3
26.4
34.4
42.8
141.8
21.5
31.1
59.1
29.7
29.3
19.7
17.9
23.5
26.1
23.5
23.0
23.0
30.8
28.8
76.6
41.4
140.6
121.5
22.1
44.5
34.5
37.2
30.6
30.7
39.3
39.6
29.4
32.1
39.9
54.5
48.2
36.0
21.9
424
21.3
25.4
28.8
15.4
16.8
33.4
21.3
23.4
C2621
w21
P521
W21
C2631
iF41
391
39.4
31.3
39.4
49.4
19.0
421
50.3
37.9
41.9
24.3
36.1
37.9
33.9
23.3
26.4
15.2
21.6
18.7
26.4
15.2
21.5
20.4
37.O(C3a)
33.7(C6a)
37.3(C7a)
44.1 (C8a)
49.7(C12a)
49.5(C13a)
40.3(C13b)
54.1(C13c)
Me
CHz
CH
C
v-w
*The data are for CDCl, solns unless indicated by supercripts D@MSO-d,&
a, b, c within a vertical column may be reversed.
P(C,DsN)
392
394
3w’
15.3
15.5
16.8
19.0
19.6
24.4
25.2
28.0
17.2
18.8
27.2
30.4
32.5
33.4
37.8
38.5
41.8
34.1
34.5
49.5
55.5
63.5
79.1
118.3
29.7
38.0
38.8
39.1
50.3
157.5
13.1
14.7
17.0
17.3
23.0
24.2
25.8
27.6
16.8
22.2
24.2
27.1
28.5
31.1
35.3
35.9
37.0
33.6
35.2
48.6
50.3
56.7
19.3
116.9
35.2
37.0
38.5
40.5
46.8
145.4
39.1
28.3
71.9
39.2
54.5
19.5
41.1
40.4
55.4
38.1
22.9
124.0
1320
140.0
125.4
42.4
45.2
39.3
29.0
38.7
80.2
33.0
28.6
16.4
16.6
19.0
23.8
180.3
21.8
68.9
Cl051
Cl051
[X51
and M(CDsOD).
S.
1558
B. MAHATO and A. P.
3&OH, p-amyrin
36-OH. 28-COOH. oleanolic acid
310x0.iS_COQG
3p-OH. 27-COOMe
3a-OH. 27-COOH
3fSOAc. 29-COOMe
3p-OH. 30-COOMe
3@-OH, 30-COOMe. 18a-H
3fhOH. 23-CHO. 28-COOH
30
31
32
33
gypsogenin
10
11
12
3a-OH. 29-CHO, 27-COOH
3a-OH. 27.29~COOH
3@OH. 23. 28-COOH, gypsogenic
acid
38-OH, 27, 28-COOH. cincholic
40
acid
41
14 3&OH. 28,29-COOH, serratagenic
42
acid
43
15 38-OH.28. 30-COOMe, methylserjanate
44
16 38, lla-OH
17 3&15a-OH
45
18 38, 16fkOH. maniladiol
19 38,22@OH, sophoradiol
203B-OH, 2%oxo.29-COOMe, subprogenin 046
213B-OH, 22-oxo,3O-COOMe, snbprogenin C
22 38.24-08
47
23 38,28-OH, erythrodiol
24 38.30-OH
48
25 38.30-OH. 18a-H
49
26 38.24-OH, 228: 30 epoxy
50
27 la, 38-OH. 29-COOH, imberic acid
51
28 2a, 38-OH, 28-COOMe, methylmaslinate 52
29 2a, 3a-OH, 28-COOMe,
53
methylepimaslinate
54
55
13
Acetylation
shifts
Acetylation of the hydroxyl group accentuates the
a-effect and diminishes the B-effect, the latter being attributed to the y-effect of the acetyl moiety; the y-effects,
however, remain more or less unaltered. For example, in
triterpenes 2 and 6, C3, C2 and C4 resonate respectively
at 78.7, 27.4, 38.7 and 81.1 (+2.4), 23.6 (-3.8), 37.7
(- 1.1). It is a general tendency that the substituent effects
depend somewhat on the degree of substitution of the
carbon under consideration, e.g. methine carbons show
smaller effects than methylene carbons, while quaternary
carbons are even less affected. However, there are some
exceptions to this generai observation.
KUNDU
3/3,6fbOH, 28-COOMe.
methylsumaresinolate
3a. 68-OH, 28-COOMe.
methyl-3-episumaresinolate
38. 16a-OH. 28-COOH. echinocystic
acid
38, 19a-OH. 28-COOMe, methylsiaresinolate
38,21a-OH, 28-COOMe
38.21 f&OH, 28-COOMe. methylmachaerinate
3&22@-OH, 29-COOMe
38,23-OH, 28-COOH, hederagenin
38.24-OH, 28-COOH, epihedaragenin
3a, 24-OH. 28-COOMe
38.25OH. 28-COOMe
38,27-OH, 28-COOH
38.29-OH. 28-COOH
3;; 29-OH; 27-COOH
38,30-OH, 28-COOMe. methylqueretaroate
38, 16fSOH, 28 --w
218lactone,
acacic acid lactone
38. 16a-OH. 23-CHO, 28-COOMe,
methylquillalate
38, 19c+OH, 23, 28-COOH, ilexolic
acid B
38.23-OH, 28-COOH, 29-COOMe
38,23-OH, 28.3~COOH
3a, 24OH, 28.3~COOMe
3f4,30-OH, 28 +
218lactone. macherogenin
38,9a, 1 la-OH
38, 15a, 24-OH
38, 168, 28-OH, longispinogenin
38, 16o. 28-OH, primulagenin A
Cl8 Conjiguration
The configuration at Cl8 in an oleanene triterpene,
namely whether the oleanene triterpene belongs to the
18cr- or 18/Gseries, can be recognized by inspecting the
chemical shift of some characteristic carbons [76]. The
geometry of the D/E ring junction does not cause a significant alteration in the shielding of carbons in the
A and B rings. In ring C (cf. triterpenes 7,8,24,25), Cl2
and Cl3 of the 18a-series exhibit diagnostically valuable
upfield shifts of about 5 and 2.5 ppm, respectively, with
respect to the corresponding carbons of the 18B-series.
For C12, the upfield shift is attributed to the strong steric
interaction with C19. In ring D, Cl6 exhibits a significant
13CNMR spectra of pentacyclic triterpenoids
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
3g. 21&22p-OH, cantoniensistriol
3&21a, 24-OH, yunganogenin C
3g. 2 l&24-OH. kudzusapogenol C
3g. 22s. 24-OH, soyasapogenol B
3&22a. 28-OH
[email protected],28-OH
Pa, 38. 19a-OH, 28-COOH, arjunic
acid
2a, 3&23-O& 28-COOH, arjunolic
acid
38.68.23-OH, 28-COOH
2&3@, 23-OH, 28-COOH. bayogcnin
2a. 3a. 23-OH. 28-COOMe
2a; 3a; 24-O< 28-COOMe
38, 16a, 28-OH, 30-CHO. cyclamiretin D
36.24.3O-OH. 22-0~0. wistariasatmnenol A
28,3fl. 27-OH. 23.28-COOH, p&enegenin
26.38.23-OH. 28-COOH. 3O-COOMe
3’8; 2i &30-OH, 28 4.15f3lactone.
bridgesigenin A
38.2 1p. 226.24-OH. soyasapogenol A
28.38. 168,23-OH, 17-WHO. viscogenin
3g. 24.29-OH. 22-0~0, subprogenin A
38. 16&23.28-OH
3&16a, 23.28-OH
3&22fJ,24.29-OH
3&228,24.30-OH.
wistariasapogenol B
2a, 3@,6@. 23-OH, 28-COOH, terminolic
acid
Pa, 38,7a, 23-OH, 28-COOH. bellericagenin A
2&3&6& 23-OH, 28-COOH. protobassic
acid
38,6j3,19a, 23-OH, 28-COOH
2f3.38. 16a. 23-OH. 28-COOH, polygalacic acid
2a. 38. 19B. 23-OH, 28-COOH, tomentosic
acid
downfield shift (N 11 ppm) caused by the absence of two
y-gauche interactions with Cl9 and C21 in the triterpenes
of 181x-series.The chemical shift of Cl8 is also sensitive to
the change of absolute configuration at C18. The signals
appear at about 7-8 ppm higher field in the 18a-series
than in the l@-series. This is ascribed to a new y-gauche
interaction with the C27 methyl group. The C28 signals
in the 18a-series appear at a higher field of about 11 ppm,
in comparison to those of the 18gseries, due to two
y-gauche interactions with the axial hydrogens at Cl9
and C21.
Olean-12-enes
Except for those cases having substituents in close
proximity to a 12 : 13 double bond, the chemical shifts of
Cl2 and Cl3 of olean-l2-enes are N 122 and 145 ppm,
respectively.
The presence of a carboxyl group at Cl4 (y and 6 to
Cl3 and C12, respectively), has a pronounced effect on
the olefinic carbon resonances. The chemical shifts of
Cl2 and Cl3 in olean-12-enes e.g. cincholic acid (13),
appear at 125.9 and 138.1 ppm, respectively, i.e. Cl2 is
deshielded by 3.8 and Cl3 is shielded by 5.3 ppm. The
corresponding resonances for quinovic acid (211), be-
92
93
94
95
96
97
98
!J9
2a. 36.19a. 23-OH, 28-COOH. arjungenin
38, 19a. 2 l&23-OH. 28-COOH, ilexolic
acid A
2a. 3&23.24-OH, 28-COOH. belleric
acid
38.23,27,29-OH,
28-COOH
3&21~.22& 24-OH, 29-COOMe.
kudzusapogenol B methyl ester
38,21& 224~.JO-OH, 28 W
15p
lactone, bridgesigenin B
38, 16a, 2 1p. 22a. 28-OH, barringtogenol C
38, 16a. 22a, 23,28-OH
38.2 1f3,22fJ, 24.29-OH, kudzusapogenol A
38, 24,29,3O_OH. 22-0~0. subprogenin B
2;. 3&19a. 23.24-OH, 28-C&DK bellericagenin B
2g, 3&6f3,16a, 23-OH. 28-COOH
38.15a. 16a. 21&22a, 28-OH
38, 16a, 2 1B. 22a. 24.28-OH. protoaescigenin
100
101
102
103
104
3p-OH. germanicol
3@OH. 28-COOMe, methylmorolate
1p, S@-Oq anagadiol
38, 1l&OH
3&16@OH
86
87
88
89
90
91
1559
longing to the urs-1Zene series, appear at 129.1 and
134.2 ppm, i.e. Cl2 is deshielded by 3.6 and Cl3 is shielded by 3.8 ppm. Dawidar et al. [77] reported “C data of
methylmanevalate
and methylazizate containing carbomethoxy group at C14. The chemical shifts of Cl2 and
C13. however, have normal values of the oleanolic acid
type and show no shielding effect of a carboxyl group.
Evidently a reinvestigation on the structures of these two
triterpene acids appear to be necessary. The presence of a
hydroxyl group at C27 can also be detected by the
characteristic downfield ( - 6 ppm) and upfield shifts
(- 5 ppm) for the olefinic Cl2 and C13, respectively (cf.
triterpenes 41 and 70).
Olean-18- and 13(18)-ems
In olean-18-ene-triterpenes, e.g. in germanicol(100) the
Cl8 and Cl9 olefinic carbons resonate at 142.8 and
129.8 ppm, respectively. The presence of a C28 carbomethoxy group, as in triterpene (lOl),which is y to Cl8
and 6 to C19, shields the former by 5.9 ppm and deshields
the latter by 2.5 ppm.
The 13C resonances of abrisapogenol G (106) have
been assigned by the use of HMBC spectroscopy [59].
S. B. MAHATOand A. P. KUNDU
1tX 38- OCHO.
106 3f3,22f3iOH, abrisapogenolG
107 3/3-OH. 28 +
208 lactone, 30-nor.
larreageninA
108 3&16cc-OH. 23-CHO. 28-COOH
109
110
111
112
113
114
115
119
3g-OH. 28-COOH
120
121
28.3@,23-OH,
28.38,23-OH,
butyraceol
28-COOH, bassic acid
3fl-OH
3&228-OH, 29-COOH. yunganogcninF
38, 16&28-OH. saikogeninC
38,16a, 28-OH
3&22~.24_OH. yuaganogeninD
38. 168,23,28-OH. saikogenia A
38. 16a. 23.28-OH
‘\ /
116
117
118
3f3-OH
38.168.28-OH.
saikogenio B
38, N&23.28-OH
The olefinic Cl3 and Cl8 resonate at 132.8 and
133.5 ppm, respectively. Where a 28-COOH is present, as
in triterpene (108) [78], the Cl3 and Cl8 resonances am
observed at S 126.3, 135.6 ppm, respectively.
122 38. 16a-OH. At’, rotundiogeninA
123 3$ 16&OH A” ’ saikogeninE
124 38: 23-OH. htt
125 38, 16a. 23-OH, A”, saikogeninG
126 38. 16@,23-OH. A”, saikogeninF
127 38. 16a. 22~. 23-OH, A”
128 38. 16a-OH, protoprimulageninA
129 38. 16~OH, 3OCHO. cyclamiretinA
130 38, 16a-OH. 22@OAc, 30-CHO. androsacenol
131 38,16a, 23-OH, anagalligeninB
132 3&23-OH. 16-0x0
133 38,16a-OH. 22a-OAc
134 38, 16a. 2la,22a-OH
Okana-11, 13(18)-; 9(11), 125 5,12-&nes
Although the presence of oleana-11,13(18)-diene (heteroannular) and oleana-9( 1l), 12-diene (homoannular)
systems may be detected from their characteristic UV
“C NMR spectra of pentacyclic triterpenoids
absorptions, they also display characteristic olefinic i3C
resonances. For example, saikogenin C (111) [79], containing the heteroannular diene skeleton, exhibit Cll,
C12, Cl3 and Cl8 resonances at 127.1, 125.8, 136.6 and
133.4 ppm, respectively. In saikogenin B (117) [79],
which contains a homoannular diene system, the resonances of C9, Cll, Cl2 and Cl3 appear at 154.9, 116.1,
121.2 and 145.3 ppm, respectively. In oleana-12, 15diene
triterpenes, as in 119 [SO], C12, C13, Cl5 and Cl6
resonate at 123.0,141.7,129.9 and 134.9 ppm, respectively. The chemical shifts of C5, C6, Cl2 and Cl3 in oleana5,12-diene, e.g. in bassic acid (121),are observed at 148.7,
120.9, 123.4 and 145.1 ppm, respectively. Consequently,
after identification of the oleanene skeleton, e.g. by determination of the number of quaternary carbon atoms (six
for oleanene) by the application of spectral editing techniques, it is possible to tentatively locate the position of
the double bond.
13B,28-Epoxy oleanenes
There are some triterpenes which contain a 13/?,28epoxy-ll-ene
system (triterpenes 122-127) and some
others which possess the 13&28-epoxy oleanane skeleton
(triterpenes 128-134). The discernible “C resonances for
the former are those of olefinic Cl 1 ( N 133.0 ppm) and
Cl2 (- 130.0 ppm) and quatemary Cl3 (~85.0 ppm),
attached to an oxygen atom. The fingerprint resonance of
the latter type of triterpenes is exhibited by the quaternary Cl3 at about 86.5 ppm.
Taraxeranes (D-fiiedooleananes)
Assignment of 13C signals of a number of triterpenes
e.g. 151-157 have been reported. All of these triterpenes
contain a 14: 15 double bond. While Cl4 and Cl5 olefinic resonances of taraxerol appear at 6 158.1 and 117.0,
respectively, these resonances in myricadiol (153) and
acetyl aleuritolic acid (157) appear at 158.7, 116.8 and
160.5, 116.8, because of 6 and y-effects of the 28-OH
and 28-COOH, respectively. Sakuri et al. [Sl] first assigned the “C resonances of taraxerol (151) and myricadiol(l53). However, Merfort et al. [82] subsequently
partly reassigned the signal of 153 using a standard and
an inverse H, C-COSY experiment. According to their
reassignment, the values bearing the same superscripts
under 151, 153 and 156 (Table 1) should be reversed.
Inspection of the 13C values of acid IS6 reveals that the
values for C7 and Cl9 should be reversed in the light of
the above reassignments.
D: C-Friedooleananes
Some triterpenes of this series, all containing an 8 : 9
double bond, have been assigned “C resonances. The
13C values of a few representatives (159-163) are shown
in Table 1. Although multiflorenol (3B-hydroxy D: Cfriedooleanane-7-ene), a triterpene of this series containing a 7 : 8 double bond, has been isolated long ago [83],
1561
the 13C resonances of its acetate (158) have recently been
assigned (Table 1).
D : B-Friedooleanane triterpenes
Dendropanoxide (165) is a triterpene oxide having
a D: B-friedooleanane
skeleton, isolated from Dendropanax trifidas [84]. The 13C NMR signals of 165-167
(Table 1) were assigned by 2DNMR techniques, including H-H-C relayed r3C--lH correlation spectra [SS].
Friedelane (D : A fiiedooleanane) triterpenes
The occurrence of a number of triterpenes of this series
has been reported and several groups of workers have
assigned the 13C resonances of a variety of triterpene
derivatives of this series, making use of various recent
assignment techniques. The 13C values of some representatives (168-204) are shown in Table 1. It may be
pointed out that in the earlier publications there were
severe inconsistencies in the assignments of the “C signals of friedelin (173). Subsequently Gunatilaka et al.
[86], Patra et al. [87] and Gottlieb et al. [88] reassigned
the “C values of friedelin (173) and several of its derivatives. Inspection of their new data reveals a difference in
the 13C values of C26 and C27. While Patra et al. [87]
assigned the higher field signal to C26, Gottlieb et al.
[88] assigned this signal to C27. It is evident from the
assignments of the signals of dendropanoxide
(165),
which have been carried out by 2DNMR techniques,
that the higher field value should be assigned to C27.
Accordingly, the values bearing the same supercripts
under the triterpenes 171, 172, 176, 181, 187 and 198
should be reversed. As mentioned earlier, the 13C resonances of three friedelane triterpenes (174, 175 and 195)
from Caloncoba glauca were assigned by the use of
HMQC and HMBC techniques.
Mimusopanes (5,10-fifedooleananes)
Two triterpene acids (205 and 206) possessing this
rearranged oleanane triterpene skeleton have recently
been isolated from the seeds of Mimusops elengi and their
13C resonances assigned (Table 1).
Urs-12-enes
The olean-12-ene and urs-12-ene triterpenes may be
distinguished by inspection of the resonances of the olefinic carbons alone. It is evident from Table I that Cl2 is
deshielded by about 2 ppm and Cl3 is shielded by 5 ppm
in urs-12-enes, in comparison to those of corresponding
carbons in olean-12-enes. The difference between the two
values has been rationalized
by the presence of
a lgjI(equatorial)-methyl group which is in close proximity to the double bond (7 and 6 to Cl3 and C12, respectively), in urs-12-enes L-891.However, if an olean-12-ene
triterpene contains a 19/I(equatorial)-hydroxyl
group,
e.g. tomentosic acid (85) [90], resembling 19b-methyl in
urs-lZenes, the resonances of Cl2 and Cl3 in the former
S.
1562
B. MAHATO and A. P.
K~JNDU
152 38,7a-OH
153 38.28-OH.
154 3;; 28-OH;
mvricadiol
is~myricadiol
155 3-0x0.28-OH
156 3-0x0,28-COOH
157 3p-OAc, 28-OH.
aeetyl aleuritolic
acid
135 3a-OH,
136
137
138
139
140
141
142
143
144
145
146
147
lla: 12a-epoxy, 28 --t
136
&tone
2a, 38,23-OH. 1la: 12a-epoxy, 28 ---) 138
&tone
24,28-dinor, 18a-H
3-0~0, 28-nor. Al2
3#l, 17fSOH.28-m, Al2
3&OAc. 17&OH, 16-0x0.28-nor, Al2
38. l&x, Zig, 23-09 28-nor, Al2
38.21 &oAc, 16-0x0.23-CHO.28-1~. Al2
3&oH. 16-0x0.28-nor, Afiz17,marageninII
2&3fl, 23-OH. A‘2’7, 28-nor, dchyahsapogenin
3a. 19a. 23.29-OH. A1621,28-nor
3~&128-bOOH,30-nor, Ar2*lg
3f%,l6f3,2Of&OH,
28-COOH.Ai2, 30-1~~9
158 3@OAc. A7, multiflorenyl acetate
159 3fLOAc, An. isomultiflorenyl
acetate
160 29-OH. A*
161 29-COOMe, As
162 3&OAc. 29-09 A*
163 3p-OH. 29-COOMe.A*,
pfameric acid
methylbryonolatc
148 3@OAc. 13p-OH, 12-0~0, rubiprasin B
149 3&OAc, 13fl.15a-OH. 12-0~0,rubiprasin A
150 3p-OAc. 19a-OH, 28-COOH,Nbiprasin C
164
165
166
167
151
3-0~0.As, glutinone
3: lo-epoxy. delldrqmoxide
3: 10 epoxy. 7a-OH
3: 10 epoxy, 22p-OH
3p-OH. taraxerol
are comparable to those of the latter. Moreover, the ring
E carbon atom, which shows the highest difference in
chemical shifts between the two series, is C18, whose
resonance is upfield shifted ca 11.5 in olean-1Zenes due
to a shielding effect from the 208 (axial)-methyl group,
which is y-gauche disposed to C18.
Friedoursanes
The 13C resonances of two friedoursanes e.g. 3/?acetoxy-D : C-friedours-7-ene (bauerenyl acetate) (258)
and 3B-acetoxy-D : C-friedours-8-ene (isobauerenyl acetate) (259) have recently been assigned [91] (Table 1).
Ursa-dienes
Gammaceranes
Triterpenes containing Ursa-9(11),12-,12,18- and 12,20diene systems have been isolated and rheir 13C resonantes assigned. The presence of such systems is indicated
by the characteristic olefinic 13C resonances (cf. triterpenes 250, 251 and 254).
Gammacerane
triterpenoids occur very rarely in
plants. Tetrahymanol (260) was first reported from the
Protozoan Tetrahymena pyrijbrmis [92]. Recently, some
gammacerane derivatives have been isolated from the
roots of Picris hieracioides subsp. japonica by Shiojima et
13C NMR spectra of pentacyclic triterpenoids
199
200
201
202
203
204
1563
3-oxo,21a,
26-OH
3-0x0,28,29-OH
3-0x0,28,30-OH,
maytenfoliol
1,3-dioxo, 15~OH
3. 12-dioxo, 27-OH. pristimeronol
1, Jdioxo. 25:26 epoxy
23
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
1%
191
192
193
194
195
1%
197
1%
3&oH, 27CoOH. trichadenic
S5dB
27-OH
28-OH
29-OH
3O-OH
3-0x0, friedelin
3-0x0,27 --t
15~ lactone, 30-nor,
Am @“. caloncoba lmone
3-0x0, il
H,27-+15a1actone,
30-nor.A P GCJ)
7-0x0
3-0x0,26-nor, Al4
3fSOH, 26-nor, A*’
22-0x0
25-COOMe
2a. 3a-OH
3f3XX-I.7-0x0
3-oxo.lSa-OH
3-oxo,16@OH. pachysonol
3-0x0,28-OH, canophyllol
3-oxo.17a-OH. 28-1~.
maytensifolin A
3-oxo. 29-OH
3-oxq 27 --t
15a dide.. odoktone
3a. 21 a-OAc
3&oH, Zla-OAc
3.7dioxo
3.15-dioxo
3. E-dioxo, maytensifolii B
3,224iioxo
3-oxo,27-COOH, trichadonii acid
3-oxo.28-COOH
3-oxo,2!XOOH,
polpunonic acid
3-oxo.3wXXX4e
al. [93] and from the stem-bark of Abies ueitchii by
Tanaka and Matsunaga [94]. The 13C assignments of
four triterpenes (260-263), including two containing
16: 17 double bond, are shown in Table 1.
Serratanes
Serratane [8(14-+27) abeo gammacerane] triterpenes
are biogenetically related to a-onocerane. The characteristic features of these triterpenes include seven tertiary
methyls (instead of eight methyls in common pentacyclic
triterpenes), a seven membered C ring and a double bond
between Cl4 and Cl5 Fang et al. [95] isolated some
205 2~,[email protected], 28-COOH. A9*Iz,
206
mimusapic acid
28.3 -OH, 23:lO epoxy, 28-COOMe,
6901 f 12 ti
usopsic acid
.
M
3&OI-& a-amyrin
3ixo. 24-cohe
Z
211
212
213
214
215
216
217
36-OH. 2E-COOIble. mcthvlursobte
&x0, i8-cooMe.inethyi3&OH, 27,~COOH,
quinovic acid
3a. 1 la-OH
38.2s-OH. uvaol
2a, 3fGOH+28-COOMe
26.3a-OH. 28-cOOMe
ii
3a-Ol-i
28-COOMe
28.313-oH. 28-COOMe
triterpenes (264-26g) of this group and assigned their 13C
resonances. The characteristic 13C resonance of these
triterpenes is that of the 27-methylene which appears
between 49.9 to 56.3 ppm. Three new triterpenes have
been characterized as bridged 148 : 26-epoxyserratanes
[96]. However, their reported 13C assignments are confusing and are not included here.
Swertanes
and kairaterwl
Four swertane(l7,18-friedogammacerane)
triterpenes
have so far been isolated and their 13C resonances assigned. Some of the discrepancies in the assigned reson-
S. B. MAHATOand A. P. KUNDU
1564
218
219
228
221
222
223
224
225
226
227
228
229
238
231
232
233
234
235
236
237
238
239
248
241
242
243
244
245
3R.19a-0n 28-Coon pomolicacid
38,2la-On
28-COOMe
3&22a-OH, 3O-COOH
3&23-On 28-COOH
3$,24-On 28-COOMe
38,19a-On 23.28COOn mttmdioic
acid
38, Wa-OH. 24,28-COOH, ikxageainA
2~.3fS,19a-On 28-COOH
3&6a, 19a-On 28-COOH
38,68, IS-OH, 28-COOH
2a. 38,23-On 28-COOMe. methylmhtatc
2a. 3~. 23-On 28-COOMe
2a, 3a, 24-OH, 2&COOMe
38, Not. 23-OI-t 28-COOMe. methylroamdate
3$.19a, 24-On 28-COOH
3~. 1%. 24-0n 28-~00Me, meth~ibarbi~rvate
2c4.38. won
23,28COOH
38.68.19a-On
23-CHO, 28-COOH
1s. &. 38,19a-OH, 28-COOMe
16.26.38.19a-0n
28-COOMe
2;; 3i3;6’8; W-OH; 28COOH
2~. 38,7a. 19a-OH. 28-COOH
2a, 38.68.23OH, 28-COOH
2a. 3$,19a. 23-OH. 28COOMe
2a, 38,19a, 24-OH. 28COOH. hyptatic
acid B
3a, 19a, 23,24-OH. 2&COOMe, methylcktkate
2u. 3&19a, 23,28-OH
2a. 38,7a. 19a, 23-OH. 28COOH
246
247
23
24
248
249
Rt=CH$DH. R2=OH, R3=COOH, hyptadienicacid
Rt=CH20Ac, R2=OH, R3=COOH, coleonic acid
monoacetate
250
38-OH
antes [97,98), have recently been revised by Chakravarty et al. [91]. The structure of kairatenol(275), the
first representative of a new class of migrated gammacerane triterpenoid, has been established with assignment of its r3C resonances [99] (Table 1).
Stictane
R=R2JeOH,Rt=R4=COOMe, R3=H, mcthylmusancropate
A
R=R2~R%On R1=R4=COOMe, methylmusaacropate
B
and flavicanes
Wilkins and Corbett [lOOJ reported from dehydration,
isomerization and spectroscopic studies, that stictane
and the related flavicane triterpenes have an 8a-methyl
group and a boat structure for ring B rather than the
usual @-methyl group and chair ring B, hitherto found
in pentacyclic triterpenes. Subsequently, Wilkins et al.
[loll also assigned 13C resonances of stictane triterpenes
(276-285) and flavicanes (2% and 287) (Table I), by the
use of, in selected cases, the phase sensitive two-dimensional 13C-‘H heteronuclear correlated and doublequantum filtered COSY NMR techniques.
Lupanes and hopanes
The 13CNMR spectra of a large number of lupeol
derived substances and some hopane derivatives were
13CNMR spectra of pentacyclic triterpenoids
2a. 3p-oH. 28-COOH. go~ishic
iwidI
252. 2~_3pOH, 28-COOH, 23-nor.
231
253
goleishicacidII
2u. 3pOK 28400~
~Qor,
goreishicacidxII
260
261
262
263
3fbOH, tetrahymmol
3a-OH, Al6
3fbOH. Al6
3$,21a-OH
264
265
266
267
268
269
270
3fL21a-OH
3&21&oH
3a,21&oH
3@-OMe, 21a-OH
3fbOMe. Ila-OAc. 3SCHO
3fWMe, 21a.3bOAc
3p-OMe, 21-oxo. 30-m
254 2a, 3a-OH, 28-COOMe
255
2a, 3a. 24-O& 28-COOMe
256
Tamxasterol
i
HO
257
Pseudocaraxasterol
1565
S. B. MAHATO and A. P. KUNDU
1.566
271
272
273
274
3~4.JH.A’. swertenol
3-0~0. A’, swertanonc
3a-OAc, A’*episwettextylacetate
Jg-oAc, A9(’ 1,pichieenyl
xetatc
275
Kairatenol
276
277
278
279
280
281
282
283
284
285
Hydmcarbon
22-0x0
38,224~OH
3fS,22/3-OH
3-oxo,22a-OH
3,22-dioxo
2a, 3@OH, 22a-OAc
2a, 38.22a-OH
2a, 3@22a-OAc
3g. lactone
22a-OH, 25 --_)
recorded and their carbon chemical shifts assigned by
Wenlcert et al. [102]. The shift assignments were made by
utilizing off-resonance decoupling techniques, functionality manipulation
causing predictable shift variations,
shift assessment utilizink 13C NMR data for carbocyclic
systems of known stereochemistry and conformation and
lanthanide-induced
shift measurements.
286
287
2~. 3&oAc, A= (29)
2~. 3@-OAc, LI” @‘)
248
289
290
291
292
293
294
295
2%
297
298
299
300
301
302
303
304
305
306
307
308
Hydmarbon
3P-OKlupad
28-OH
28-COOMe
3&OH, 28-COOH. be.tulinicacid
3a-OH. 28-COOH
3fbOH. 27.2II-COOMe
3&OH, 28-CHO. betulinaldehyde
3a-06 28-CHO
1&3fbOH
38,13p-OH, 28-COOH, term& acid
3fS,7@OH
38.1 la-OH, nepiticin
3fJ.l5a-OH
3&16~-OH
3fS.24-OH
38.28-OH. bctldm
3-oxo,3O-OH
2u. 3a-tx-L 28-COOMe
38.23-OH. 2%COOH
38,27-OH, 28-COOH. cykodiscic
acid
The removal of the three-carbon side chain from the
vicinity of Cl2 and the transplantation
of the ring
E angular methyl group on to C18, shields Cl2 in the
hopanes, in comparison to the lupanes and deshields
dramatically Cl3 in the former. The C27 is deshielded in
the hopanes in comparison to the lupanes, due to the loss
of the y-effect from Cl8 and the gain of a &effect from
13CNMR spectra of pentacyclic triterpenoids
309
310
311
312
313
314
315
316
317
3~. 1la-OH, 23,28-COOH
3a. 1la-OH, 23-CHO,28-COOH
38.68, W-OH
3-oxo.15a. 28-OH
l&38, lla-OH
3~.28,3O-OH
1s. 38.1 la, 3O-OH
3&2o_oH, 28 ---) 218 lactonc, stellatogenin
3g. lq3,2@OH, 28 -21p
lactone
318
319
Hydrocakm
3p-OH
320
321
322
323
324
2oB,-oH
‘A
AIs+@)
38,16@-OH
3&27-OH, Atz, obtusalin
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
325
326
327
328
329
Hydrocarbon
17a-H, hopane
21a-H hopane
17a-H, 2la-H hopane
22-OH, diploterol
29-OH
3O-OH,drycerassol
6a, 22-OH, zeorin
3-0x0.22-OH
6+x0.22-OH, zeorinone
6a-OAc, 22-OH
7f3.22-OH
15~. 22-OH. dust&n
16g.22-0~ U-COOMe
la, 1 la, 22-OH
la, 1la, 3O-OH
1Sa. 22 24-OH
6a. 22-OH, 20u-OAc
3f3,15a-OAe. 22-OH
1Su-OAc, 22-OH, 24-COOMe
6a-OAc, 22-OH. 25-COOMe, methyl aijmlate
38,&x, lw,22-OH, mollugogenol A
ZMe, 22-OH
38.25-epoxy. 2of%OAc.
pauciflorol acetate
A’6
d’
17a-H. A*’
A17 (21)
Aa@) di letene
3-oxo. AJ@)
Hydmcarbn
3-0x0
3&OH
3a-OH
3$-O& 1.28-cOOMe
C28. The neopentyl nature of Cl9 and the y-effects of the
side chain on C20, allowed these methylenes to be distinguished from each other.
The r3C data of a number of pentacyclic triterpenes of
these two series have subsequently been assigned and the
data of selected representatives (288-363) are shown in
Table 1.
The assignments of “C resonances of chiratenol(364),
a triterpene possessing a rearranged hopane skeleton,
have recently been made using the HMBC techniques
cm
1567
Fernanes, adiananes and arboranes
A number of triterpenes of these series have been
isolated and their r3C signal assignments have been
made in recent years and the assignments of some triterpenes (365-387) are shown in Table 1.
Two rearranged arborane type triterpenes, boehmerol
(388) and boehmerone (389) and a new skeleton triterpene hancokinol (390), have recently been isolated and
their structures established by X-ray crystallography.
Their 13C assignments are shown in Table 1.
S. B. MAHATO
and A. P. KUNDU
1568
360 2lu-H, Ap(ss)
361 3O-COOMe,AZ ‘29!tuherosicmethylester
362 6a-OAc. 2l&oH. A= 0, missoariensin
moBugogew1B
363 3B.6a-OH. At” 17(21),
I
‘\
379 Hydmcarben
380 28-COOMe
381
382
383
384
385
386
387
365
366
z
369
370
371
372
373
374
375
376
377
378
A’
28-COOMe..A’
As
313-0H As
2gcoOMe. A8
38.7~OH, 11-0x0,As. supinenolone A
38.11 B-OH, 7-0~0,A*.supiaenolone B
3fSOH, 7.11 -dioxo, As, supinewlone C
A901)
2%COOH A901)
28-COOh;e, A9(“)
38, 12a-OH A9(‘r)
3f3,7a, l%-OH, A9(“), rubiatricl
2a, 3fGOH,23-COOMe,A9(I’)
3-0~0,arborinoae
2a-OAc. 3&19a-oH, Nhiil
C
2a, l%-OH, 3$-OAc. rubiarbonel D
3g,7f3,1%-OH, rubiol
B
2a.3&7$, 19a_OH,ruhiiol
E
3$,7$.19a. 28-OH. rubiarbonofA
Za, 3g,7fS,19a, 28-OH rubiarbonol
F
388 3fLOH lxlehnleml
389 3-0~0, bcehmerone
Bicadinane
Friedomadeiranes
This structure of a representative triterpene of a completely new family of Csc pentacyclic triterpenoids has
been reported [103]. The structure has been established
as 2,6a,12-trimethyl-4,9-diisopropylperhydrobenzo[de]
naphthacene, or bicadinane (391), by the application of
MS, NMR and X-ray diffraction techniques. Two-dimensional ‘H and “C shift correlated NMR experiments
have been used for the unambiguous assignment of all
protons and carbon chemical shifts [104]. The 13C assignments of this novel bicadinane (391) are shown in
Table 1.
The pentacyclic triterpenes (392-395) have been isolated from extracts of Euphorbia mellfera AlT and their
structures determined by X-ray crystallography [105].
The skeleton of these triterpenes differs from that of
representatives of the lupane or hopane class by (i) an
unusual arrangement of the substituents in the cyclopentane ring E, the Me group being on Cl9 and the isopropyl group in an angular position Cl7 and (ii) a cis
D/E ring junction. The name of the unknown pentacyclic
parent skeleton has been proposed to be madeirane.
Thus 392 and 393 are o-friedomadeir-l4-ene and 394 and
13CNMR spectra of pentacyclic triterpenoids
1569
394 3p-OH
395 3-0x0
16
2i
ie
391 Bicadinane
3%
392
393
Pachannol A
3p-OH
34x0
3% are D : C-friedomadeir-7-ene derivatives. The 13C
data of methyl, methylene, methine and quaternary carbons of 392 and 394 have been reported (Table 1) but the
individual resonances have not been assigned.
GLYCOSYLATION
SHIFTS
Many of the pentacyclic triterpenoids occur as sugar
conjugates, called glycosides. The sugar moiety of these
glycosides are generally oligosaccharide, linear or branched, attached to a hydroxyl or a carboxyl group or both.
The site of attachment may be one (monodesmoside), two
(bisdesmoside) or three (tridesmoside). The glycosylation
of a hydroxyl group, depending upon its nature (alcoholic and carboxylic), causes a change in chemical shifts at
the a- and p-carbons and, rarely, y-carbons to the OH
group, in which the glycosylation takes place. These
glycosylation shifts, i.e. chemical shift changes from
aglycone and methylglycoside to triterpene glycoside, are
characteristic of chemical and steric environments of the
hydroxyl group in which the glycosylation takes place.
The cr-effectfor sterically unhindered secondary alcoholic
glycosides varies from 5 to 10 ppm and shows dependence upon its stereochemical relationship to the pyranose
1570
S. B. MAHATO and A. P. KUNDU
ring oxygen. The /?-effect is always larger (ca 4 ppm) for
the anti-related /&resonance, in comparison to syn-related p-resonance, which shows an upfield shift of ca
2 ppm. For the sterically hindered secondary alcoholic
glycosides, the r-effect is usually greater (8-12 ppm) and
the p upfield shift effect is relatively lower (l-3 ppm), or
almost negligible, depending upon the magnitude of substitution. The quaternary /?-carbons/either show little or
negligible upfield shift and in some cases, small downfield
shifts. The downfield shifts of a-resonances and upfield
shifts of /3-CH2 resonances are useful for determination of
the glycosylation sites [lo&109-j.
Glycosylation of a carboxyl group causes a downfield
shift (2-5 ppm) of the resonance of the carboxyl carbon,
along with an upfield shift (05-2.0 ppm) of the B-carbon
resonance. The anomeric carbon of the sugar linked to
the carboxyl group resonates at a remarkably upfield
position (93-97 ppm). These characteristics are helpful in
identifying the sugars involved in glycosylation of the
carboxyl group [ 110, 1111.The literature information on
‘%NMR of various triterpene glycosides is available
[112].
BEFEUENCES
1. Mahato, S. B., Nandy, A. K. and Roy, G. (1993)
Phytochemistry 31, 2199.
2. Wehrli, F. W. and Nishida, T. (1979) in Progress in
the Chemistry of Organic Natural Products (Herz,
W., Grisebach, H. and Kirby, G. W., eds), Vol. 36,
p. 1. Springer, New York.
3. Agarwal, P. K. and Jain, D. C. (1992) Progress in
NMR Spectroscopy 24, 1.
4. Patt, S. L. and Shoolery, J. N. (1982) J. Magn.
Reson. 46, 535.
5. Doddrell, D. M., Pegg, D. T. and Bendall, M. R.
(1982) J. Magn. Reson. 48, 323.
6. Morris, G. A. (1980) J. Am. Chem. Sot. 102, 428.
7. Doddrell, D. M. and Pegg, D. T. (1980) J. Am.
Chem. Sot. 102, 6388.
8. Kowalewski, J. and Morris, G. A. (1982) J. Magn.
Reson. 47, 331.
9. Morris, G. A. (1986) Magn. Reson. Chem. 24, 371.
10. Kamisako, W., Suwa, K., Morimoto, K. and Isoi, K.
(1984) Org. Magn. Reson. 22, 93.
11. Kamisako, W., Suwa, K., Honda, C., Isoi, K.,
Nakai, H., Shiro, M. and Machida, K. (1987) Magn.
Reson. Chem. 25, 848.
12. Derome, A. E. (1987) Modern NMR Techniques for
Chemistry Research. Pergamon Press, New York.
13. Martin, G. E. and Zektzer, A. S. (1988) Two-Dimensional NMR Methods for Establishing Molecular
Connectivity: a Chemist’s Guide to Experiment Selection, Performance and Interpretation. VCH, New
York.
14. Bax, A. (1982) Two-Dimensional Nuclear Magnetic
Resonance in Liquids. Delft University Press, Delft,
The Netherlands.
15. Sanders, J. K. M. and Hunter, B. K. (1987) Modern
NMR Spectroscopy: A Guide for Chemists. Oxford
University Press, Oxford.
16. Ernst, R. R., Bodenhausen, G. and Wokaun, A.
(1987) Principles of Nuclear Magnetic Resonance in
One and Two Dimensions. Clarendon Press, Oxford.
17. Brey, W. S. (ed.) (1988) Pulse Methods in 1D and 20
Liquid-Phase NMR. Academic Press, San Diego.
18. Bodenhausen, G., Freeman, R. and Turner, D. L.
(1976) J. Chem. Phys. 65, 839.
19. Bodenhausen, G., Freeman, R., Morris, G. A. and
Turner, D. L. (1978) J. Magn. Reson. 28, 17.
20. Nagayama, K., Wiithrich, K. and Ernst, R. R. (1979)
Biochem. Biophys. Res. Commun. 90, 305.
21. Bax, A. and Freeman, R. (1981) J. Magn. Reson. 44,
542.
22. Aue, W. P., Bartholdi, E. and Ernst, R. R. (1975)
J. Chem. Phys. 64, 2229.
23. Rance, M., Sorensen, 0. W., Bodenhausen, G.,
Wagner, G., Ernst, R. R. and Wuthrich, K. (1988)
Biochem. Biophys. Res. Commun. 117, 479.
24. Piantini, U., Sorensen, 0. W. and Ernst, R. R. (1982)
J. Am. Chem. Sot. 104, 6800.
25. Barrero, A. F., Manzaneda, R. E. A., Manzaneda, R.
R. A., Arseniyadis, S. and Guittel, E. (1990)
Tetrahedron 46, 8 16 1.
26. Wilkins, A. L., Elix, J. A,, Gonzalez, A. G. and
Parez, C. (1989) Aust. J. Chem. 42, 1185.
27. Wilkins, A. L., Elix, J. A., Gaul, K. L. and Moberg,
R. (1989) Aust. J. Chem. 42, 1415.
28. Davis, D. G. and Bax, A. (1985) J. Am. Chem. Sot.
107,282O.
29. Bax, A., Davies, D. G. and Sarkar, S. K. (1985)
J. Magn. Reson. 63, 230.
30. Braunschweiler, L. and Ernst, R. R. (1983) J. Magn.
Reson. 53, 521.
31. Tsuda, M., Ishibashi, M., Agemi, K., Sasaki, T. and
Kobayashi, J. (1991) Tetrahedron 47, 2181.
32. Bax, A., Freeman, R. and Frenkiel, T. A. (1981) J.
Am. Chem. Sot. 103, 2102.
33. Bax, A., Freeman, R., Frenkiel, T. A. and Levitt,
M. H. (1982) J. Magn. Reson. 44,409.
34. Pradhan, B. P., Hassan, A. and Shoolery, J. N.
(1990) Indian J. Chem. Sect. B 29, 797.
35. Tchivounda, H. P., Koudogbo, B., Besace, Y. and
Casadevall, E. (1990) Phytochemistry 29, 3255.
36. Facundo, V. A., Andrade, C. H. S., Silveira, E. R.,
Braz-Filho,
R. and Hufford, C. D. (1993)
Phytochemistry 32, 411.
37. Jeener, J., Meier, B. H., Bachmann, P. and Ernst,
R. R. (1979) J. Chem. Phys. 71, 4546.
38. Kumar, A., Ernst, R. R. and Wuthrich, K. (1980)
Biochem. Biophys. Res. Commun. 95, 1.
39. Loganathan, D., Trivedi, G. K. and Chary, K. V. R.
(1990) Magn. Reson. Chem. 28, 925.
40. Maudsley, A. A., Miiller, L. and Ernst, R. R. (1977)
J. Magn. Reson. 28, 463.
41. Freeman, R. and Morris, G. A. (1978) J. Chem. Sot.
Chem. Commun. 684.
“C NMR spectraof pentacyciictriterpenaids
42. Bax, A. and Morris, G. A. (1981) J. Magn. Resota, 42,
43.
44.
45.
46.
47.
501.
Reynolds, W. F., Hughes, D. W., Pe~ick~~umount,
M. and Enriquez, R. G, (1985) J, &fag@.&son, 63_
413.
Reynolds, W. F., McLean, S., Popiawski, J., Enriquez, R. G., Escobar, L. I, and Leon, 1. (1986)
Te~a~~o~ 42, 3419.
Kessler, H., Griesinger, C., Zarbock, J. and Loo&,
H. R. (1984) .Z. Nagn. Reson, 57, 331.
Akihisa, T., Yamamoto, K., Tamura, T,, Kumura,
Y., Iida, T., Nambara, T, and Chang, F. C. (1992)
&hem. Pharm. Bull. 40, 789.
Reynolds, W. F., McLean, S., Pe~i~k-Dumount~
M. and Enriquez, R. G. (1989) Map. Reson. Chem.
71.
72.
73.
74.
75.
76.
27, 162.
Garbow, J. R., We~ek~p,
D. P. and Pines, A.
(1982) Chem. Phys. Lett. 93, 504.
49. Tinto, W. F., Blair, L. C., Ah, A., Reynolds, W. F.
and McLean, S. (1992) f. Nat. Prod. 55, 395.
50. Ghan, W. R., Sheppard, V., Medford, K. A., Tinto,
W. F., Reynolds, W. F. and McLean, S. (1992)
f. Nat. Prod. 35, 963.
51. Kfass, J., Tinto, W. F., McLean, S. and Reynolds,
W. F, (1992) J. Nat. Prod. 55, 1626.
52. Muller, L. (1979) J, Am. Chem. Sot. 101,4481.
53. E&m,A. and Subrama~an, S. (1986) J. EAagn. Z&son.
67, 56.5.
54. Bax, A. and Summers, M. F. (1986) J, Am. Chem,
Sot. IaS, 2093.
55. Zuiderweg, E. R. P. (1990) 1. Magn, Reson. 86, 346.
56. Martin, G. E. and Crouch, R. C. (1991) 3. Nat. Prod.
54, 1.
57. Bodenhauseu, G. and Ruben, D. (1980) C/tern. Phys.
L&t. 69, 185.
58. Faure, R., Gaydou, E. M. and Wolle~we~r,
E.
(1991) J. Nat. Prod. 54, 1564.
59. Kinjo, J., Matsumoto, R., Inoue, M., Takeshita, T.
and Nohara, T. (1991) Chem. Pharm. Bull. 39,116.
60. Chakravarty, A. K., Das, B., Masuda, K. and Ageta,
H. (1990) Tetrahedron Letters 31, 7649.
61. Giner-Pons, R. M., Gray, A. I., Lavaud, C., Massiot,
G., Gibbons, S. and Wate~an,
P. G. (1992)
Phytochemistry 31, 223.
62. Parsons, I. C., Gray, A. f., Wate~an,
P. G. and
Hartley, T, G. (1993) J. Nat. Prod. 56,46.
63. Gronenborn, A. M., Bax, A., Wingfield, P. T. and
Clore, G. M. (1989) FEBS LRtrers 243, 93.
64. Torchia, D. A., Sparks, S, W, and Bax, A. (1989)
Biochemistry %, 5509.
65. Davis, D. G. (1989) J. Mryrrr. Reson. 84,417.
66. Soha, K. and Opella, S, J. (1989) J. n”ltzgn.Reson. 82,
193.
67. Berger, S. (1989) J. Magn. Reson. 81, 561.
68. Crouch, R. C., Shockcor, J. P. and Martin, G. B.
(1990) Tetrahedron Letters 31, 5273.
69. Crouch, R. C. and Martin, G. E. (1991) J. Mug%
R&son. 92, 189.
70. Breitmeir, E. and Voelter, W. (1974) 13CZ%%fR
48,
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
1571
S~&~~os~o~~. Verlag Chemie, W~nhe~~r~tr.,
Germany.
Eggert, MI.,VanA~twerp, C, L., Bhacca, N. S. and
Djerassi, C. (19%) J. Org. Gem. 41, 71.
VanAntwerp, C. L., Eggert, H., Meakins, G. D.,
Miners, J. 0. and Djerassi, C. (1977) J. Org. Chem.
42, 789,
Kojima, H. and Ogura, H. (1989) Phytochem~stry
28, 1703.
Gupta, D. and Singh, J. (1989) Phytochemistry 28,
1197.
Gupta, D. and Singh, J. (1990) Indian .Z.Gem. Sect.
B 29B, 34.
Duddeck, Ii., Elgamoi, M. H. A., R&a, G. S.,
Danieli, 18. and Palmisano, G. (1978) Org. Magn.
Reson. II, 130.
Dawidar, A. A., Reiseh, J. and Amer, M. (1979)
C&em Pharm. Bull. 27,2938.
Chang, I. S., Han, Y. B., Woo, W. S., Kang S. S.,
Lotter, H. and Wagner, H. (1989) Piurrra Me&. 55,
544.
Mahato, S, B., Pal, B. C!. and Sarkar, S. K. (1988)
Phyto~~mistr~l 27, 1433.
Bhattacharyya, J. and Cur&a, E. V. L. (1992)
Phytochemistry 31, 2546.
Sakuri, N., Yaguchi, Y. and fnoue, T. (1987)
Ph y~och~~is~r~ 26, 2 17.
Merfort, I., Buddrus, J., Nawwar, M, A. M. and
Lambert, J. (1992) Phytochemistry 31,403l.
Khastgir, H. N. and Sengupta, P. (1961) Chem. and
Ind. 1077.
Kumura, K., Hashimoto, Y. and Agata, I. (1960)
Chem. Phffrm. Bult. 8, 1145.
Tori, M., Matsunaga, R., Sano, M. and Asakawa, Y.
(1988) Magn. Reson. Chem. 26, 581.
Gunatilaka, A. A. L., Nanayak~r~
N. P. D. and
Wazzeer, M. 1. M. (1983) Ph~~rQe~rn~stry22, 991,
Patra, A. and Chaudhuri, S. K. (1987) Magn. Reson.
Chem. 25,95.
Gottfieb, H. E., Ramaiah, P. A. and Lavie, D. (1985)
Magn. Reson. Chem. 23,616.
Levy, G. C., Lichter, R. L. and Nelson, G. L. (1980)
Carbon- 13 Nuclear Magnetic Resource Spectrascopy, p. 29. Wiley Interscience, New York,
Mahato, S. B., Nandy, A. K., Luger, P. and Weber,
M, ~1990) f. CZtem.Sot. Perk& Trans if 1445.
Chakravarty, A. K., Das, B. and Mukhopadhyay, S.
(1991) Tetrahedron 47,2337.
Mallory, F. B, Gordon, J. T. and Corner, R. L.
(1963) J. Am. Ckem. Sot. 85, 1362.
Shiojima, K., Masuda, K,, Lin, “I’., Suzuki, H.,
Ageta, H., Inoue, M. and Ishida, T. (1989) Tetruhedran Letters 30,4977.
Tanaka, R. and Matsunaga, S. (1992) Phytochemistry 31, 3535.
Fang, J., Tsai, W. and Cheng, Y. (1991) Ph~~~rnistry 30, 1333.
Bhutani, K. K., Kapoor, R, and $tal, C. K. (1984)
Phytoc~emistry 23, 403.
S. B. MAHATOand
1572
97. Chakravarty, A. K., Das, B., Pakrashi, S. C.,
McPhail, D. R. and McPhail, A. T. (1989) J. Chem.
Sot. Chem. Commun. 438.
98. Shiojima, K., Masuda, K., Ooishi, Y., Suzuki, H.
and Ageta, H. (1989) Tetrahedron Letters 30, 6873.
99. Chakravarty, A. K., Mukhopadhyay, S., Masuda,
K. and Ageta, H. (1992) Tetrahedron Letters 33, 125.
100. Wilkins. A. L. and Corbett, R. E. (1976) J. Chem.
A. P. KUNDU
123. Ikuta, A. and Morikawa, A. (1992) J. Nat. Prod. 55,
1230.
124. Tanaka, R., Tabuse, M. and Matsunaga, S. (1988)
Phytachemistry 27, 3563.
125. Guang-Yi, L., Gray, A. I. and Waterman P. G.
(1988) Phytochemistry 27, 2283.
126. Kinjo, J., Miyamoto, I., Miurakami, K., Kida, K.,
Sot. Perkin Trans I 857.
101. Wilkins, A. L., Bremer, J., Ralph, J., Holland, P. T.,
Ronaldson, K. J., Jager, P. M. and Bird, P. W.
(1989) Aust. J. Chem. 42, 243.
102. Wenkert, E., Baddeley, G. V., Burfit, I. R. and
Moreno, L. N. (1978) Org. Magn. Reson. 11, 337.
103. Cox, H. C., de Leeuw, J. W., Schenck, P. A., van
Koningsveld, H., Jansen, J. C., van de Graaf, B., van
Geerestein, V. J., Kanters, J. A., Kruk, C. and Jans,
A. W. H. (1986) Nature (London) 319, 316.
104. Krok, C., Cox, H. C. and de Leeuw, J. W. (1988)
Magn. Reson. Chem. 26, 228.
105. Ferreira, M. U., Lobo, A. M., O’Mahoney, C. A.,
Williams, D. J. and Wyler, H. (1991) Helo. Chim.
Acta 74, 1329.
106. Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, 0.
(1977) Tetrahedron Letters 175.
107. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and
Tomita, Y. (1977) Tetrahedron Letters 179.
108. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K.
and Tanaka, 0. (1979) Tetrahedron 35, 1427.
109. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and
Tomita, Y. (1978) .I. Am. Chem. Sot. 100, 3331.
110. Sung, T. V., Steglich, W. and Adam, G. (1991)
Phytochemistry 30, 2319.
111. Mahato, S. B., Sahu, N. P., Luger, P. and Miiller, E.
(1987) J. Chem. Sot. Perkin Trans II 1509.
112. Mahato, S. B. and Nandy, A. K. (1991) Phytochemistry 30, 1357.
113. Knight, S. A. (1974) Org. Magn. Reson. 6, 603.
114. Maillard, M., Adewunmi, C. 0. and Hostettman, K.
(1992) Phytochemistry 31, 1321.
115. Johns, S. R.. Lamberton, J. A., Morton, T. C.,
Suares, H. and Willing, R. I. (1983) Aust. J. Chem.
36,2537.
116. Chen, T. K., Ales, D. C., Baewziger, N. C. and
Wiemer, D. F. (1983) J. Org. Chem. 48, 3525.
117. Ricca, G. S., Danieli, B., Palmisano, G., Duddeck,
H. and Elgamol, M. H. A. (1978) Org. Magn. Reson.
11, 163.
118. Nie, R., Tanaka, T., Miyakoshi, M., Kasai, R.,
Morita, T., Zhou, 3. and Tanaka, 0. (1989)
Phytochemistry 28, 1711.
119. Hidaka, K., Ito, M., Matsuda, Y., Kohda, H.,
Yamasaki, K. and Yamahara, J. (1987) Phytochemistry 26, 2023.
120. Rumbero-Sanchez,
A. and
Vazquez,
P. (1991)
Phytochemistry 30, 623.
121. Kasai, R., Oinaka,
T., Yang, C. R., Zhou, J. and
Tanaka, 0. (1987) Chem. Pharm. Bull. 35, 1486.
122. Alvarado, M., Moreno, M. and Rodriguez, V. M.
(1981) Phytochemistry 20, 2436.
127.
128.
129.
130.
Tomimatsu, T., Yamasaki, M. and Nohara, T.
(1985) Chem. Pharm. Bull. 33, 1293.
Takeshita, T., Yokoyama, K., Yi, D., Kinjo, J. and
Nohara, T. (1991) Chem. Pharm. Bull. 39, 1908.
Xue, H. Z., Lu, Z. Z., Konno, C., Soejarto, D. D.,
Cordell, G. A., Fong, H. H. S. and Hodgson, W.
(1988) Phytochemistry 27, 233.
Konoshima, T., Kozuka, M., Haruna, M., Ito, K.
and Kimura, T. (1989) Chem. Pharm. Bull. 37, 1550.
Rogers, C. B. and Subramony, G. (1988) Phytochem-
istry 27, 531.
131. Seo, S., Tomita, Y. and Tori, K. (1975) Tetrahedron
Letters 7.
132. Seo, B. S., Tomita, Y. and Tori, K. (1975) J. Chem.
Sot. Chem. Commun. 954.
133. Akai, E., Takeda, T., Kobayashi, Y. and Ogihara, Y.
(1985) Chem. Pharm. Bull. 33, 3715.
134. Inada, A., Kobayashi,
M., Murata, H. and
Nakanishi, T. (1987) Chem. Pharm. Bull. 35, 841.
135. Piozzi, F., Paternostro, M., Passannanti, S. and
Gaes-Baitz, E. (1986) Phytochemistry 25, 539.
136. Patra, A., Mitra, A. K., Ghosh, S., Ghosh, A. and
Barua, A. K. (1981) Org. Magn. Reson. 15, 399.
137. Yahara, S., Emura, S., Feng, H. and Nohara, T.
(1989) Chem. Pharm. Bull. 37, 2136.
138. Kizu, H. and Tomimori, T. (1982) Chem. Pharm.
Bull. 30, 3340.
139. Pareda-Miranda, R., Delgado, G. and Vivar, A. R.
D. (1986) J. Nat. Prod. 49, 225.
140. Shao, C. J., Kasai, R., Xu, J. D. and Tanaka, 0.
(1989) Chem. Pharm. Bull. 37, 42.
141. Tori, K., Seo, S., Shimaoka, A. and Tomita, Y.
(1974) Tetrahedron Letters 4227.
142. Mahato, S. B., Pal, B. C. and Price, K. R. (1989)
Phytochemistry 28, 207.
143. “Amimoto, K., Yoshikawa, K. and Arihara, S. (1993)
Phytochemistry 33, 1475.
144. Mizui, F., Kasai, R., Ohtani, K. and Tanaka, 0.
(1988) Chem. Pharm. Bull. 36, 1415.
145. Kang, S. S. and Woo, W. S. (1987) Planta Med. 53,
338.
146. Koyama, K., Yama, T., Kinoshita, K., Takahashi,
K., Kondo, N. and Yuasa, H. (1983) J. Nat. Prod.
56,220l.
147. Tanaka, R. and Matsunaga, S. (1989) Phytochemistry 28, 1699.
148. Mahato, S. B. and Pal, B. C. (1987) J. Chem. Sot.
Perkin Trans I 629.
149. Akai, E., Takeda, T., Kobayashi, Y., Chen, Y. and
Ogihara, Y. (1985) Chem. Pharm. Bull. 33, 4685.
150. Ohtani, K., Ogawa, K., Kasai, R., Yang, C.,
Yamasaki, K., Zhou, J. and Tanaka, 0. (1992)
Phytochemistry 31, 1747.
‘“C NMR spectra of pentacyclic triteqmoids
151. Mahato, S. B. (1991) Phytochemistry 30, 3389.
152. Tori, K., Yosbimura, Y., Seo, S., Sakarawi, K.,
Tomita, Y. and Ishii, H. (1976) Tetrahedron Letters
4163.
153. Delgado, M. C. C., Da Silva, M. S. and Fo, R. B.
(1984) Phytochemistry 23, 2289.
154. Kundu, A. P. and Mahato, S. B. (1993) Phytochemistry 32, 999.
155. Khan, I. A., Sticher, 0. and Ralli, T. (1993) J. Nut.
Prod. 56, 2163.
156. Fujioka, T., Iwamoto, M., Iwase, Y., Hachiyama, S.,
Okabe, H., Yamuchi, T. and Mihasbi, K. (1989)
Chem. Pharm Bull. 37, 2355.
157. Kojima, H. and Ogura, H. (1986) Phytochemistry
25, 729.
158. Kojima, H., Tominaga, H., Sate, S. and Ogura, H.
(1987) Phytochemistry 26, 1107.
159. Pal, B. C., Roy, G. and Mahato, S. B. (1984)
Phytochemistry 23, 1475.
160. Sakuma, S. and Shoji, J. (1982) Chem. Phurm Bull.
30, 810.
161. Konoshita, K., Koyama, K., Takahashi, K., Kondo,
N. and Yuasa, H. (1992) J. Nat. Prod. 55, 953.
162. Vasantb, S., Kundu, A. B. and Patra, A. (1992) J.
Nat. Prod. 55, 1149.
163. Amoros, M. and Girre, R. L. (1987) Phytochemistry
26,787.
164. Sun, R. Q. and Zia, Z. J. (1990) Phytochemistry 29,
2032.
165. Mahato, S. B., Nandy, A. K. and Kundu, A. P.
(1992) Tetrahedron 48,2483.
166. Toyota, M., Msonthi, J. D. and Hostettman, K.
(1990) Phytochemistry 29, 2849.
167. Asada, Y., Ueoka, T. and Furuya, T. (1989) Chem.
Pharm. Bull. 37, 2139.
168. Nandy, A. K., Podder, G., Sahu, N. P. and Mahato,
S. B. (1989) Phytochemistry 28, 2769.
169. Hamburger, M. 0. and Hostettman, K. (1986) Helu.
Chino. Acta 69, 221.
170. Massiot, G., Chen, X., Lavaud, C., Men-Olivier, L.
L., Delaude, C., Vivari, A., Vigny, P. and Duval, J.
(1992) Phytochemistry 31, 3571.
171. Nigam, S. K., Li, X., Wang, D., Misra, G. and Yang,
C. (1992) Phytochemistry 31, 3169.
172. Konoshima, T. and Lee, K. H. (1986) J. Nat. Prod.
49, 650.
173. Agarwal, P. K., Tbakur, R. S. and Shoolery, J. N.
(1991) J. Nat. Prod. 54, 1394.
174. Gonzalez, A. G., Fraga, B. M., Gonzalez, P., Hernandez, M. G. and Ravelo, A. G. (1981) Phytochemistry 20, 1919.
175. Majumder, P. L., Maiti, R. N., Panda, S. K., Mal,
D., Raju, M. S. and Wenkert, E. (1979) J. Org. Chem
44, 2811.
176. Gonzalez, A. G., Mendoza, J. J., Ravelo, A. G., Luis,
J. G. and Dominguez, X. A. (1989) J. Nat. Prod. 52,
567.
177. Tanaka, R. and Matsunaga, S. (1988) Phytochemistry 27, 3579.
178. Wang, H. B., Yu, D. Q.. Liang, X. T., Watanabe, N.,
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
1573
Tamai, M. and Omura, S. (1989) Planta Med. 55,
303.
Tanaka, R. and Matsunaga, S. (1988) Phytochemistry 27, 2273.
Kobayashi, Y., Takeda, T. and Ogihara, Y. (1981)
Chem. Pharm. Bull. 29, 2222.
Sbimizu, K., Amagaya, S. and Ogihara, Y. (1985)
Chem. Pharm. Bull. 33, 3349.
Misra, G., Banerjee, R. and Nigam, S. K. (1991)
Phytochemistry 30, 2087.
Kohda, H., Takeda, 0. and Tanaka, S. (1989) Chem.
Pharm. Bull. 37, 3304.
Waltho, J. P., Williams, D. H., Mahato, S. B., Pal, B.
C. and Barna, J. C. J. (1986) J. Chem. Sot. Perkin
Trans I 1527.
Mahato, S. B., Sahu, N. P., Roy, S. K. and Sen, S.
(1991) Tetrahedron 47, 5215.
Gomblitza, K. W. and Kurth, H. (1987) Plunta Med.
53, 548.
Aliotta, G., Napoli, L. D., Giordano, F., Picialli, G.,
Picialli, V. and Santacroce, C. (1992) Phytochemistry 31, 929.
Jayasingbe, L., Wannigama, G. P. and Macleod,
J. K. (1993) Phytochemistry 34, 1111.
Trendel, J. M., Graff, R., Albrecht, P. and Riva, A.
(1991) Tetrahedron Letters 32, 2959.
Mamer, F., Freyer, A. and Lex, J. (1991) Phytochemistry 30, 3709.
Rowan, D. D. and Newman, R. H. (1984)
Phytochemistry 23, 639.
Kumar, R., Bban, S., Kalla, A. K. and Dhar, K. L.
(1992) Phytochemistry 31, 2797.
Nisbimoto, N., Oliveira, F. D., Akisue, G., Akisue,
M. K. and Hashimoto, G. (1993) Phytochemistry 32,
1527.
Itokawa, H., Qiao, Y., Takeya, K. and Iitaka, Y.
(1989) Chem. Pharm. Bull. 37, 1670.
Carpenter, R. C., Sotheesaran, S., Sultanbawa, M.
U. S. and Ternai, B. (1980) Org. Magn. Reson. 14,
462.
McLean, S., William, M. P., Reynolds, F., Jacobs,
H., Sing, L. and Sing, S. (1987) Can. J. Chem. 65,
2519.
Tanaka, R., Matsunaga, S. and Isbida, T. (1988)
.
Tetrahedron Letters 29,475l.
Gunatilaka, A. A. L., Nanayakhara, N. P. D.,Uvais,
M., Sultanbawa, M. V. S. and Waizeer, y. I. M.
(1982) Org. Magn. Reson. 18 53.
Rahmani, M. and Ismail, H. B. M. ’ (1993)
Phytochemistry 32, 165.
200. Prakasb, O., Roy, R., Garg, H. S. and Bhakuni, D. S.
(1987) Magn. Reson. Chem. 25, 39.
201. Anjaneyulu, V., Babu, J. S., Babu, B. H., Ravi, K.
and Connolly, J. D. (1993) Phytochemistry 33, 647.
202. Nozaki, H., Matsuura, Y., Hirono, S.,Kasai, R.,
Chang, J. and Lee, K. (1990) J. Nat:Pred. !53,1039.
203. Rao, R. B., Sukumar, E., Kundu, A. B. and Patra, A.
(1990) Phytochemistry 29,2027.
204. Sen, S., Sabu, N. P. and Mabato, S. B. (1993) Tetrahedron 49, 9031.
1574
S. B. MAHATO and
205. Seo, S., Tomita, Y. and Tori, K. (1981) J. Am. Chem.
Sot. 103, 2075.
206. Torre, M. C., Bruno, M., Piozzi, F., Savona, G.,
Rodriguez, B. and Arnold, N. A. (1990) Phytochemistry 29, 668.
207. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui,
B. S. (1986) J. Nat. Prod. 49, 1086.
208. Kakuno, T., Yoshikawa, K. and Arihara, S. (1992)
Phytochemistry 31, 3553.
209. Zhang, D. M. and Yu, D. Q. (1990) Planta Med. 56,
98.
210. Srivastava, S. K. and Jain, D. C. (1989) Phytochemistry 28, 644.
211. Duh, C. Y., Pezzuto, J. M., Kinghom, A. D., Leung,
S. L. and Farnsworth, N. R. (1987) J. Nut. Prod. 50,
63.
212. Nakatani, M., Miyazaki, Y., Iwashita, T., Naoki, H.
and Hase, T. (1989) Phytochemistry 28, 1479.
213. Cheng, D. and Cao, X. (1992) Phytochemistry 31,
1317.
214. Liang Z. Z., Aquino, R., Feo, V. D., Simone, F. D.
and Pizza, C. (1990) Planta Med. 56, 330.
215. Aimi, N., Likhitwitayawuid, K., Goto, J., Ponglux,
D., Haginiwa, J. and Sakai, S. (1989) Tetrahedron
45, 4125.
216. Takahasi, K. and Takani, M. (1978) Chem. Pharm.
Bull. 26, 2689.
217. Gao, F., Chen, F., Tanaka, T., Kasai, R., Sato, T.
and Tanaka, 0. (1985) Chem. Pharm. Bull. 33, 37.
218. Aquino, R., Simone, F. D., Vincieri, F. F., Pizza, C.
and Gacs-Baitz, E. (1990) J. Nut. Prod. 53, 559.
219. Kouno, I., Baba, N., Ohni, Y. and Kawano, N.
(1988) Phytochemistry 27, 297.
220. Gopalsamy, N., Vargas, D., Gueho, J., Ricaud, C.
and Hostettman, K. (1988) Phytochemistry 27,3593.
221. Houghton, P. J. and Lian, L. M. (1986) Phytochemistry 25, 1939.
222. Sahu, N. P., Roy, S. K. and Mahato, S. B. (1989)
Phytochemistry 28, 2852.
223. Zhou, X., Kasai, R., Ohtani, K., Tanaka, O., Nie, R.,
Yang, C., Zhou, J. and Yamasaki, K. (1992)
Phytochemistry 31, 3642.
224. Lontsi, D., Sondengam, B. L., Martin, M. T. and
Bodo, B. (1991) Phytochemistry 30, 2361.
225. Rao, K. V. R., Rao, L. J. M. and Rao, N. S. P. (1990)
Phytochemistry 29, 1326.
226. Roy, R., Vishwakarma, R. A., Varma, N. and Tandon, J. S. (1990) Tetrahedron Letters 31, 3467.
227. Matsunaga, S., Tanaka, R. and Akagi, M. (1988)
Phytochemistry 27, 535.
228. Numata, A., Takahashi, C., Miyamoto, T., Yoneda,
M. and Yang, P. (1990) Chem. Pharm. Bull. 38,942.
229. Conner, A. H., Nagasampangi, B. A. and Rowe, J.
W. (1984) Tetrahedron 40, 4217.
230. Chakravarty, A. K., Mukhopadhyay, S. and Das, B.
(1991) Phytochemistry 30, 4087.
231. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui,
B. S. (1988) J. Nat. Prod. 51, 229.
232. Kitajima, J., Shindo, M. and Tanaka, Y. (1990)
Chem. Pharm. Bull. 38, 714.
A. P.
KUNDU
233. Monaco, P. and Previtera, L. (1984) J. Nat. Prod.
47, 673.
234. Savona, G., Bruno, M., Rodriguez, B. and Marco,
J. L. (1987) Phytochemistry 26, 3305.
235. Anjaneyulu, A. S. R. and Prasad, A. V. R. (1983)
Phytochemistry 22, 993.
236. Anaya, J., Caballero, M. C., Grande, M., Navarro,
J. J., Tapia, I. and Almeida, J. F. (1989) Phytochemistry 28, 2206.
237. Ahmed, V. U., Bano, S., Voelter, W. and Fuchs, W.
(1981) Tetrahedron Letters 22, 1715.
238. Tanaka, R., Masuda, K. and Matsunaga, S. (1993)
Phytochemistry 32, 472.
239. Kumar, N. S., Muthukuda, P. M. and Wazzeer,
M. I. M. (1986) Phytochemistry 24, 1337.
240. Ikuta, A. and Itokawa, H. (1988) Phytochemistry 27,
2813.
241. Lischewski, M., Ty, P. D., Schmidt, J., Preiss, A,,
Phiet, H. V. and Adam, G. (1984) Phytochemistry
23, 1695.
242. Ty, P. D., Lischewski, M., Phiet, H. V., Priess, A.,
Naguyen, P. V. and Adam, G. (1985) Phytochemistry 24, 867.
243. Facundo, V. A., Andrade, C. H. S., Silveira, E. R.,
Braz-Filho,
R. and Hufford, C. D. (1993)
Phytochemistry 32, 411.
244. Ahmad, V. U. and Mahammad, F. V. (1986) J. Nut.
Prod. 49, 524.
245, Gonzalez, A. G., Jimenez, I. A. and Ravelo, A. G.
(1992) Phytochemistry 31, 2069.
246. Siddiqui, S., Siddiqui, B. S., Naeed, A. and Begum,
S. (1989) Phytochemistry 28, 3143.
247. Wilkins, A. L., Bird, P. W. and Jager, P. M. (1987)
Magn. Resort. Chem. 25, 503.
248. Shiojima, K. and Ageta, H. (1990) Chem. Pharm.
Bull. 38, 347.
249. Kamaya, R., Tanaka, Y., Hiyama, R. and Ageta, H.
(1990) Chem. Pharm. Bull. 38, 2130.
250. Elix, J. A., Whitton, A. A. and Jones, A. L. (1982)
Aust. J. Chem. 35, 641.
251. Wilkins, A. L., Ronaldson, K. J., Jager, P. M. and
Bird, P. W. (1987) Aust. J. Chem. 40, 1713.
252. Van Eijk, G. W., Roeijmans, H. J. and Seykens, D.
(1986) Tetrahedron Letters 27, 2533.
253. Hamburger, M., Dudan, G., Nair, A. G. R., JayaR. and
Hostettman,
K. (1989)
prakasam,
Phytochemistry 28, 1767.
254. Babadjamian, A., Faure, R., Laget, M., Dumenil, G.
and Padien, P. (1984) J. Chem. Sot. Chem. Commun.
1657.
255. Ayatollahi, S. A. M., Ahmed, Z., Afza, N. and Malik,
A. (1992) Phytochemistry 31, 2899.
256. Murasaki, C., Kakinuma, K. and Fujimoto, Y.
(1993) Phytochemistry 33, 240.
257. Wong, S. M., Pezzuto, J. M., Fang, H. H. S. and
Farnsworth, N. R. (1986) J. Nut. Prod. 49, 330.
258. Masuda, K., Kamaya, R., Ikegami, S., Ikeshima, Y.
and Ageta, H. (1989) Chem. Pharm. Bull. 37, 1673.
259. Tanaka, R. and Matsunaga, S. (1989) Phytochemistry 28, 3149.
‘%ZNMR spectra of pentacyclic triterpenoids
260. Banerjee, J., Datta, G., Dutta, C. P., Eguchi, T.,
Fujimoto, Y. and Kakinuma, K. (1991) Phytochemistry 30, 3478.
261. Arisawa, M., Ueno, H., Nimura, M., Hayashi, T.
and Morita, N. (1986) J. Nat. Prod. 49, 1114.
262. Itokawa, H., Qiao, Y. and Takeya, K. (1990) Chem.
Pharm. Bull. 38, 1435.
263. Oyarzum, M. L., Garbarino, J. A., Gambaro, V.,
Guilhem, J. and Pascard, C. (1987) Phytochemistry
26,221.
1575
264. Konda, Y., Iguchi, M., Harigaya, Y., Takayanagi,
H., Ogura, H., Li, X., Lou, H. and Onda, M. (1990)
Tetrahedron Letters 31, 5315.
265. Takigawa,
T., Kinoshita,
K., Koyama,
K.,
Takahashi, K., Kondo, N., Yuasa, H. and Kawai, K.
(1993) J. Nat. Prod. 56, 2183.
266. Bendall, D. M., Doddrell, D. M. and Pegg, D. T.
(1981) J. Magn. Reson. 44, 238.