Slide 1 ___________________________________ 2.7 Related Rates ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 ___________________________________ Strategy For Solving Related Rates Problems: 1. Read the problem carefully. 2. Draw a picture and name variables and constants. Use t for time. 3. Identify all given quantities and those to be determined. 4. Write an equation involving the variables whose rates of either are given are to be determined. 5. Use the Chain Rule to implicitly differentiate both sides of the equation with respect to time, t. 6. Substitute into the equation in step 5 all known values for the variables and their rates of change. 7. Solve for the required rate of change. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 3 ___________________________________ EXAMPLE 1: A child throws a stone into a still millpond causing a circular ripple to spread. If the radius increases at the constant rate of 0.5 meter per second, how fast is the area of the ripple increasing when the radius of the ripple is 20 meters? ___________________________________ ___________________________________ How fast is the area changing when the radius is 20 meters? r = 20 rate of change of radius: Given: dr/dt = 0.5 Note: rates of change are derivatives. ___________________________________ rate of change of area: Find: dA/dt when r = 20 ___________________________________ ___________________________________ ___________________________________ Slide 4 ___________________________________ We need the formula that connects the radius of the circle with its area. A = πr2 Next, we differentiate both sides of the equation with respect to t: dA d =π (r 2 ) dt dt dA d (π r 2 ) = dt dt note: r’ = dr/dt ___________________________________ dA =π ⋅ 2r r ′ dt ___________________________________ dA dr = π ⋅ 2r dt dt π(2)(20)(0.5) = 20π m 2 /s ___________________________________ or 62.8 m2/s ___________________________________ ___________________________________ ___________________________________ Slide 5 ___________________________________ EXAMPLE 2: Two cars start moving from the same point. One travels south at 60mi/h and the other travels west at 25mi/h. At what rate is the distance between the cars increasing two hours later? Given: dy/dt =60 and dx/dt = 25 25 m/h Find: dz/dt when t = 2h z ___________________________________ ___________________________________ ___________________________________ 60 mi/h ___________________________________ ___________________________________ ___________________________________ Slide 6 ___________________________________ What equation relates the three sides of a right triangle? x2 + y2 = z2 dx dy dz d 2 2x +2y = 2z ( x ) + dtd ( y 2 ) = dtd ( z2 ) dt dt dt dt ___________________________________ After 2 hours: x = 50 and y = 120. z = 502 +1202 =130 ___________________________________ Subst gives: 2(50)(25) + 2(120)(60) = 2(130)(dz/dt) After 2 hours dz 2500 +14400 = = 65m/h dt 2(130) ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 7 EXAMPLE 3 ___________________________________ • A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1 ft/s, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 from the wall? dy/dt 10 ft 6 ft Given: dx/dt = 1 ft/s Find: dy/dt when x = 6 ft x2 + y2 = 102 d 2 d 2 d x + y = (100) dt dt dt dx dy dx/dt = 1 ft/s 2x + 2y = 0 eqa 1 dt dt ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 8 When x = 6: 62 + y2 = 100 ___________________________________ y = 100 − 36 = 8 dy Substitute into eqa 1: (2)(6)(1) + 2(8)( ) = 0 dt 16(dy/dt) = - 12 ___________________________________ dy/dt = -3/4 ft/s ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 9 ___________________________________ Example 4: The altitude of a triangle is increasing at a rate of 1 cm/min while the area of the triangle is increasing at a rate of 2 cm2/min. At what rate is the base of the triangle changing when the altitude is 10 cm and the area is 100 cm2 Given: dh/dt = 1 cm/min dA/dt = 2 cm2/min h = altitude ___________________________________ ___________________________________ Find: db/dt when h = 10cm and A = 100cm2 A = (1/2)bh 100 = (1/2)b(10) b = 20 ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 10 ___________________________________ dA d 1 = ( bh) = 1 d (bh) = 1 ⎛ db ⋅ h+b dh ⎞ dt dt 2 2 dt 2 ⎜⎝ dt dt ⎟⎠ ___________________________________ 1 ⎛ db ⎞ 2= ⎜ ⋅ 10 + 20 ⋅ 1⎟ → 2 = 5 db + 10 → − 8 = 5 db 2 ⎝ dt ⎠ dt dt → − 1.6cm/min = db dt ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 11 ___________________________________ Ex 5: A water tank in the shape of an inverted circular cone has a base radius of 5 ft and height dh/dt = ? r 10 ft. If water is pumped into when h = 6 ft the tank at a rate of 9 ft3/min, h find the rate at which the water level is rising when the water is 6 ft deep. 3 To find a relationship Given: dV/dt = 9 ft /min between r and h, use Find: dh/dt when h = 6 ft similar triangles: 1 V = π r 2 h eqa 1 3 r h = 5 10 r= ___________________________________ ___________________________________ ___________________________________ h 2 ___________________________________ ___________________________________ ___________________________________ Slide 12 ___________________________________ 2 dV d 1 2 d ⎛ 1 ⎛ h ⎞ ⎞ d ⎛ 1 h2 ⎞ = ( πr h) = ⎜ π ⎜ ⎟ h ⎟ → ⎜ π h ⎟ dt dt 3 dt ⎜⎝ 3 ⎝ 2 ⎠ ⎟⎠ dt ⎝ 3 4 ⎠ dV π ⎛ 2 dh ⎞ dV π d 3 = = h → ⎜ 3h ⎟ dt 12 ⎝ dt ⎠ dt 12 dt π⎛ dh ⎞ Substituting gives: 9 = 3 ⋅ 62 12 ⎜⎝ dt ⎟⎠ 108π dh 9(12) dh 9= → = 12 dt 108π dt ___________________________________ ( ) ___________________________________ ___________________________________ dh 1 = ≈ 0.32 ft/min dt π ___________________________________ ___________________________________ ___________________________________ Slide 13 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 14 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
© Copyright 2026 Paperzz