2 M2 Fourier Series answers in Mathematica
Note the function HeavisideTheta is 1 for x>0 and 0 for x<0 and is handy for
making the kind of function we need in a way mathematica knows how to integrate
I have plotted the Fourier series (at least afew terms) even though this was not asked for as this gives you an idea how
accurate the series is. Even if you don’t want to use Mathematica to check your integration please have a look at the graphs
Q1a
f = HeavisideTheta@-xD
HeavisideTheta@-xD
Plot@f, 8x, -Pi, Pi<D
1.0
0.8
0.6
0.4
0.2
-3
-2
-1
1
2
3
a0 = H1 PiL Integrate@f , 8x, -Pi, Pi<D
1
an = H1 PiL Integrate@f Cos@ n Pi x PiD, 8x, -Pi, Pi<D
Sin@n ΠD
nΠ
Simplify@%, n Î IntegersD
0
bn = H1 PiL Integrate@f Sin@ n Pi x PiD, 8x, -Pi, Pi<D
-1 + Cos@n ΠD
nΠ
Simplify@%, n Î IntegersD
n
-1 + H-1L
nΠ
2
FourierAnswers.nb
Plot@ a0 2 + Sum@ an Cos@n xD + bn Sin@n xD, 8n, 1, 20<D, 8x, -Pi, Pi<D
1.0
0.8
0.6
0.4
0.2
-3
-2
1
-1
2
3
Q1b
f = HeavisideTheta@xD HeavisideTheta@Pi 2 - xD
Π
HeavisideThetaB - xF HeavisideTheta@xD
2
Plot@f, 8x, -Pi, Pi<D
1.0
0.8
0.6
0.4
0.2
-3
-2
-1
1
2
3
a0 = H1 PiL Integrate@f , 8x, -Pi, Pi<D
1
2
an = H1 PiL Integrate@f Cos@ n Pi x PiD, 8x, -Pi, Pi<D
nΠ
SinA
E
2
nΠ
Simplify@%, n Î IntegersD
nΠ
SinA
E
2
nΠ
bn = H1 PiL Integrate@f Sin@ n Pi x PiD, 8x, -Pi, Pi<D
nΠ
2
2 SinA
E
4
nΠ
FourierAnswers.nb
Plot@ a0 2 + Sum@ an Cos@n xD + bn Sin@n xD, 8n, 1, 20<D, 8x, -Pi, Pi<D
1.0
0.8
0.6
0.4
0.2
-3
-2
1
-1
2
3
Q1c
f = 3 HeavisideTheta@xD
3 HeavisideTheta@xD
Plot@f, 8x, -5, 5<D
3.0
2.5
2.0
1.5
1.0
0.5
-4
-2
2
4
a0 = H1 5L Integrate@f , 8x, -5, 5<D
3
an = H1 5L Integrate@f Cos@ n Pi x 5D, 8x, -5, 5<D
3 Sin@n ΠD
nΠ
Simplify@%, n Î IntegersD
0
bn = H1 5L Integrate@f Sin@ n Pi x 5D, 8x, -5, 5<D
3 H-1 + Cos@n ΠDL
-
nΠ
Simplify@%, n Î IntegersD
n
3 I-1 + H-1L M
-
nΠ
3
4
FourierAnswers.nb
Plot@ a0 2 + Sum@ an Cos@n Pi x 5D + bn Sin@n Pi x 5D, 8n, 1, 20<D, 8x, -5, 5<D
3.0
2.5
2.0
1.5
1.0
0.5
-4
2
-2
4
Q1d
f=x
x
a0 = H1 H1 2LL Integrate@f , 8x, 0, 1<D
1
an = H1 H1 2LL Integrate@f Cos@ 2 n Pi xD, 8x, 0, 1<D
-1 + Cos@2 n ΠD + 2 n Π Sin@2 n ΠD
2 n2 Π2
Simplify@%, n Î IntegersD
0
bn = H1 H1 2LL Integrate@f Sin@ 2 n Pi xD, 8x, 0, 1<D
-2 n Π Cos@2 n ΠD + Sin@2 n ΠD
2 n2 Π2
Simplify@%, n Î IntegersD
1
-
nΠ
Plot@ a0 2 + Sum@ an Cos@2 n Pi xD + bn Sin@2 n Pi xD, 8n, 1, 20<D, 8x, 0, 1<D
1.0
0.8
0.6
0.4
0.2
0.2
Q1e
0.4
0.6
0.8
1.0
FourierAnswers.nb
f = x^2
x2
a0 = H1 H1 2LL Integrate@f , 8x, -1 2, 1 2<D
1
6
an = H1 H1 2LL Integrate@f Cos@ 2 n Pi xD, 8x, -1 2, 1 2<D
1
I2 n Π Cos@n ΠD + I-2 + n2 Π2 M Sin@n ΠDM
2 n3 Π3
Simplify@%, n Î IntegersD
n
H-1L
n2 Π2
bn = H1 H1 2LL Integrate@f Sin@ 2 n Pi xD, 8x, -1 2, 1 2<D
0
Plot@ a0 2 + Sum@ an Cos@2 n Pi xD + bn Sin@2 n Pi xD, 8n, 1, 3<D, 8x, -1 2, 1 2<D
0.20
0.15
0.10
0.05
-0.4
0.2
-0.2
0.4
Plot@ a0 2 + Sum@ an Cos@2 n Pi xD + bn Sin@2 n Pi xD, 8n, 1, 10<D, 8x, -1, 1<D
0.20
0.15
0.10
0.05
-1.0
-0.5
Q1f
f = Abs@ Sin@ w tDD
Abs@Sin@t wDD
0.5
1.0
5
6
FourierAnswers.nb
a0 = H1 HPi wLL Integrate@f , 8t, -Pi w, Pi w<D
1
Π
4
Π Π
w IfBw Î Reals, , IntegrateBAbs@Sin@t wDD, :t, - , >, Assumptions ® Im@wD < 0 ÈÈ Im@wD > 0FF
w
w w
Simplify@%, w > 0D
4
Π
an = H1 HPi wLL Integrate@f Cos@ Pi n t HPi wLD, 8t, -Pi w, Pi w<D
1
2 H1 + Cos@n ΠDL
w IfBw Î Reals, ,
Π
w - n2 w
Π Π
IntegrateBAbs@Sin@t wDD Cos@n t wD, :t, - , >, Assumptions ® Im@wD < 0 ÈÈ Im@wD > 0FF
w w
Simplify@%, w > 0D
2 H1 + Cos@n ΠDL
Π - n2 Π
bn = H1 HPi wLL Integrate@f Sin@ Pi n t HPi wLD, 8t, -Pi w, Pi w<D
1
w IfBw Î Reals, 0,
Π
Π Π
IntegrateBAbs@Sin@t wDD Sin@n t wD, :t, - , >, Assumptions ® Im@wD < 0 ÈÈ Im@wD > 0FF
w w
Simplify@%, w > 0D
0
w=2
2
2
2 H1 + Cos@n ΠDL
PlotB + SumB Cos@n w xD , 8n, 2, 10<F, 8x, -Pi 2, Pi 2<F
Π
Π - n2 Π
1.0
0.8
0.6
0.4
0.2
-1.5
-1.0
Extra
f = Abs@xD
Abs@xD
-0.5
0.5
1.0
1.5
FourierAnswers.nb
a0 = H1 1L Integrate@f , 8x, -1, 1<D
1
an = H1 1L Integrate@f Cos@ Pi n x H1LD, 8x, -1, 1<D
2 H-1 + Cos@n ΠD + n Π Sin@n ΠDL
n2 Π2
Plot@ a0 2 + Sum@ an Cos@n Pi xD , 8n, 1, 10<D, 8x, -1, 1<D
1.0
0.8
0.6
0.4
0.2
-1.0
0.5
-0.5
1.0
Plot@ 8a0 2 + Sum@ an Cos@n Pi xD, 8n, 1, 20<D,
Sum@ H2 PiL H-H-1L ^ n nL Sin@n Pi xD , 8n, 1, 20<D<, 8x, -1, 1<D
1.0
0.5
-1.0
0.5
-0.5
-0.5
-1.0
Sum@N@1 n ^ 2D, 8n, 1, 10 000<D
1.64483
Sum@N@H-1L ^ 8n + 1< nD, 8n, 1, 1000<D
80.692647<
Q2a
f = Sign@xD
Out[5]=
Sign@xD
1.0
7
8
FourierAnswers.nb
In[7]:=
Plot@f, 8x, -Pi, Pi<D
1.0
0.5
Out[7]=
-3
-2
1
-1
2
3
-0.5
-1.0
It is odd
In[9]:=
bn = H1 PiL Integrate@f Sin@ n xD, 8x, -Pi, Pi<D
Out[9]=
2 H-1 + Cos@n ΠDL
-
nΠ
In[11]:=
Plot@ Sum@ bn Sin@n xD, 8n, 20<D, 8x, -Pi, Pi<D
1.0
0.5
Out[11]=
-3
-2
1
-1
-0.5
-1.0
Q2b
In[12]:=
Out[12]=
f = Abs@xD
Abs@xD
2
3
FourierAnswers.nb
In[14]:=
Plot@f, 8x, -Pi 2, Pi 2<D
1.5
1.0
Out[14]=
0.5
-1.5
-1.0
0.5
-0.5
1.0
1.5
It is even
In[29]:=
Out[29]=
In[32]:=
an = Simplify@H2 PiL Integrate@f Cos@ 2 n xD, 8x, -Pi 2, Pi 2<DD
-1 + Cos@n ΠD + n Π Sin@n ΠD
n2 Π
Plot@ Pi 4 + Sum@ an Cos@2 n xD, 8n, 30<D, 8x, -Pi, Pi<D
1.5
1.0
Out[32]=
0.5
-3
-2
-1
1
2
3
Q3
In[57]:=
Out[57]=
In[54]:=
Out[54]=
In[55]:=
Out[55]=
fp = x HeavisideTheta@xD + Hx + 1L HeavisideTheta@-xD
H1 + xL HeavisideTheta@-xD + x HeavisideTheta@xD
fs = x
x
fc = Abs@xD
Abs@xD
9
10
FourierAnswers.nb
In[58]:=
Plot@8fp, fs, fc<, 8x, -1, 1<D
1.0
0.5
Out[58]=
-1.0
0.5
-0.5
1.0
-0.5
-1.0
In[66]:=
Out[66]=
In[65]:=
bpn = Simplify@ H2 1L Integrate@ fp Sin@2 n Pi xD, 8x, 0, 1<D, Element@n, IntegersDD
1
-
nΠ
bsn = Simplify@ H2 2L Integrate@ fs Sin@ n Pi xD, 8x, -1, 1<D, Element@n, IntegersDD
n
Out[65]=
2 H-1L
-
nΠ
In[77]:=
acn = Simplify@ H2 2L Integrate@ fc Cos@ n Pi xD, 8x, -1, 1<D, Element@n, IntegersDD
n
Out[77]=
In[80]:=
2 I-1 + H-1L M
n2 Π2
Plot@ 81 2 + Sum@ bpn Sin@2 n Pi xD, 8n, 1, 20<D,
Sum@ bsn Sin@n Pi xD, 8n, 1, 20<D, 1 2 + Sum@acn Cos@n Pi xD, 8n, 1, 20<D< , 8x, -1, 1<D
1.0
0.5
Out[80]=
-1.0
0.5
-0.5
-0.5
-1.0
Q4
In[83]:=
f = HeavisideTheta@x - 1D
Out[83]=
HeavisideTheta@-1 + xD
1.0
FourierAnswers.nb
In[85]:=
Plot@f, 8x, 0, 2<D
1.0
0.8
0.6
Out[85]=
0.4
0.2
0.5
In[89]:=
Out[89]=
In[90]:=
1.0
1.5
2.0
fc = HeavisideTheta@x - 1D + HeavisideTheta@-1 - xD
HeavisideTheta@-1 - xD + HeavisideTheta@-1 + xD
Plot@fc, 8x, -2, 2<D
1.0
0.8
0.6
Out[90]=
0.4
0.2
-2
In[93]:=
1
-1
2
fs = HeavisideTheta@x - 1D - HeavisideTheta@-1 - xD ; Plot@fs, 8x, -2, 2<D
1.0
0.5
Out[93]=
-2
1
-1
2
-0.5
-1.0
In[94]:=
bpn = Simplify@ H2 2L Integrate@ f Sin@ n Pi xD, 8x, 0, 2<D, Element@n, IntegersDD
n
Out[94]=
In[96]:=
-1 + H-1L
nΠ
acn = Simplify@ H2 4L Integrate@ fc Cos@ n Pi x 2D, 8x, -2, 2<D, Element@n, IntegersDD
nΠ
Out[96]=
2 SinA
E
2
-
nΠ
11
12
FourierAnswers.nb
In[97]:=
bsn = Simplify@ H2 4L Integrate@ fs Sin@ n Pi x 2D, 8x, -2, 2<D, Element@n, IntegersDD
n
Out[97]=
In[109]:=
nΠ
2 I-H-1L + CosA
EM
2
nΠ
Plot@8 1 2 + Sum@bpn Sin@n Pi xD, 8n, 1, 10<D,
1 2 + Sum@acn Cos@n Pi x 2D , 8n, 1, 10<D, Sum@bsn Sin@n Pi x 2D , 8n, 1, 10<D<, 8x, -2, 2<D
1.0
0.5
Out[109]=
-2
1
-1
2
-0.5
-1.0
Q5
In[36]:=
Out[36]=
In[37]:=
Out[37]=
In[38]:=
Out[38]=
In[50]:=
Out[50]=
In[40]:=
Out[40]=
2 H-1 + Cos@n ΠDL
- . n ® 81, 2, 3, 4, 5, 6<
nΠ
4
4
4
: , 0, , 0, , 0>
Π
3Π
5Π
Integrate@Sign@xD ^ 2, 8x, -Pi, Pi<D
2Π
2 H-1 + Cos@n ΠDL
- HPi 4L . n ® 81, 2, 3, 4, 5, 6<
nΠ
1
1
:1, 0, , 0, , 0>
3
5
Integrate@HPi Sign@xD 4L ^ 2, 8x, -Pi, Pi<D Pi
Π2
8
i 2 H-1 + Cos@n ΠDL
y
j- HPi 4Lz
z
SumBj
j
z ^ 2, 8n, 1, Infinity<F
nΠ
k
{
Π2
8
Q6
n
In[41]:=
H-1L
an =
n2 Π2
n
Out[41]=
In[46]:=
Out[46]=
H-1L
n2 Π2
Integrate@x ^ 2, 8x, -1 2, 1 2<D
1
12
FourierAnswers.nb
In[49]:=
Out[49]=
In[44]:=
Out[44]=
Integrate@ H Pi ^ 2 Hx ^ 2 - 1 12LL ^ 2, 8x, -1 2, 1 2<D H1 2L
Π4
90
Sum@ 1 n ^ 4, 8n, 1, Infinity<D
Π4
90
13
© Copyright 2026 Paperzz