Whyarewenotabletoseebeyondthreedimensions? RogérioMartins1 CentrodeMatemáticaeAplicações(CMA),FCT,UNL DepartamentodeMatemática,FCT,UNL FaculdadedeCiênciaseTecnologiadaUniversidadeNovadeLisboa Abstract:Thisisperhapsaphilosophicalquestionratherthanamathematicalone,wedo notexpecttogiveafullanswer,eventhoughwehopetoclarifysomeideas.Inaddition, wewouldliketoprovideanewperspectiveonthesubject.Wewillfindcuriousanalogies withthewayweperceivecolorandmakesomeimaginaryexperimentsshowingthat, evenlivingimprisonedinthreedimensions…itcouldbedifferent. ——— Didyoueverseeahypersphere?Iguessnot.So…whynot?Thisisthequestionweall, soonerorlaterhaveposedtoourselves.Whydowehavethisblockadewhenpassing fromthreetohigherdimensions?Couldthishavebeendifferent?Istherehopethatinthe futurewecanovercomethiscondition? Letusstartbygivinganattempttoclarifywhatweusuallymeanwhenwesaythatweare “seeing”or“visualizing”ageometricalobject,forexampleasphere. Ononehand,thereisthepuremathematicalobject,thatweallknowasthesphere,this spherehasamathematicalcharacterizationandlivesinanabstractspace,inthePlatonic senseifyouwill.Ontheotherhand,thereisourphysicalexperienceofarealsphere, somethingthatwecanperceivewithoursensesandspacialintuition.Whatdowemean by“seeing”amathematicalsphere?Itis,inmyopinion,thispossibilitytoimaginethe mathematicalsphereinourthreedimensionalphysicalworld,somethingthatcouldhave beenreal,likeasoccerball.Evenasaproductofourimagination,wecanimaginesome physicalinteractionwithit,holdingit,rotatingitorchangingitsposition.Somehow,we canuseourthreedimensionalphysicalintuitiontounderstandthesphere’sproperties andthewayitinteractswithothergeometricalobjects.Weuseourthreedimensional physicalspacetounderstandtheabstractEuclideanthreedimensionalvectorspace. 1 This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações) It’sfunnytothinkthisway,certainly theideaofavectorspace,andthe sphere,wascreateduponthephysical sensibleexperienceofspace.Anyway, theabstractideaofvectorspaceand itsgeometricobjectsgainedalifeof theirownanditspropertieswere generalizedtohigherdimensional spaces.Nowwehaveafourth dimensionalobject,thatwecallan hypersphere,withsimilarproperties tothethreedimensionalcounterpart, andwedonothavethe Figure1:Wecanuseourthreedimensionalphysicalintuitionto correspondentphysicalobjectto understandthemathematicalsphere’sproperties. “see”it. Recentevidencefromneurobiologyshowsthatourbrainseemstohavebeenoriginally createdtomanageourhomeostaticmechanismsandphysicalinteractionwithour surroundings[5][6].Memory,conscience,planninganddecidingseemstobe superimposedonthetopofacerebralstructureoriginallybuildtodealwithsensationand movement.Almosteverypartofourbrain,evenbeingresponsibleforsomeother cognitivefunction,hassomesensoryandmotorsignals.Apparentlywhenweimaginea physicalsensation,forexampleholdingasphere,wearepartiallyactivatingtheverysame tactileresponsesthatwouldbeactivatedifthespherewerereallyinourhands[7][8]. Theseideasarealsosomehowconnectedwithaphilosophicaltheorycalledembodied cognition. Therefore,ourphysicalsensibleintuitionmustbeincomparablystrongerthanour mathematicalintuitioningeneral,thisisprobablywhatgivesusthissensationof“seeing” asphereinoppositiontocomprehendasphere,whenwe“see”weareusingthisstrong spacialintuition.Thisisprobablywhywefeelthispowerlessnesswhenmovingfromthree tofourdimensions. Thisisusuallytheendofthestory,wecannotseeanhyperspheresimplybecausewelive inathreedimensionalphysicalspace.Wewilltrytoconvinceyouthatitcouldbe different. Thisisofcourseaquestionofmathematicalrelevance;thislimitsourdailymathematical activity.So,whynotgiveitatry?Atleastwehopetoclarifysomeideas.Withthisinmind wewilltrytofindoutsomeanalogieswiththewayweperceivecolorandmakesome imaginaryexperimentsthatwehope,willconvinceyouthat,evenimprisonedinathree dimensionalphysicalspace,wecouldhavebeendifferent. Weproposethatthislimitationissimplyacharacteristicofourspecies,itisgivenbyour biology,thatinturnwasshapedinordertosucceedinourenvironment,froman evolutionarypointofview.Adifferentsensorysystemorbodycharacteristicscouldhad equippeduswithotherperceptioncapabilitiesofthemathematicalgeometricobjects. Thehigherdimensions WeallremembertheadventuresofthesquarethatinhabitedtheworldofEdwinAbbott Abbott’snovel,Flatland:ARomanceofmanydimensions[3][4].Thissquare,confinedto itstwodimensionalworld,cannotimaginewhatthethirddimensionis,untilitestablishes someconnectionwithaspherethatshowedhimthethirddimension.Thisspherenotonly offersthesquareanexcursionthroughthethreedimensionalspacebutalsocallsthe attentionforsomerelationsbetweenthetwoandthreedimensions,thatgiveus, inhabitantsofathreedimensionalspace,someintuitiononthefourthdimension.This leavesushumans,wonderingif,likethesquare,wereallyliveinasubspaceofafourth dimensionalworld,andhowweperceiveafourthdimensionalobjectthatcrossesour world. Thereareofcourseseveraltrickstoapprehendthosehigherdimensions.Someadvantage canbetakenfromthetemporaldimension,theuseofprojectionscanalsobehelpful, analogieswithsmallerdimensions,andsoon.ItisworthtorefertheworkofCharles HowardHintoninthisdirection.However,thisdoesnotgiveasatisfactorysolution,we stillcannotseethehyperspherethesamewayweseethesphere.Ofcoursethatafairly goodcomprehensionofthesehigherdimensionalobjectscanbeattained,understanding theirproperties,andmanipulatingthem.But,thisdoesnotmeanthatwehaveaclear visualizationofthosestructures,similartovisualizationwehaveofthecorrespondent threedimensionalones:comprehendisdifferentfrom“seeing”it.Veryoftenwehaveno muchmorethanintuitionbasedonthelowerdimensionalversionthatwecan“see.” Allthesedimensionalquestionshavebecomerecurrentinseveralareasapartfrom mathematics.Thefictionindustry,cinema,theatre,andliterature,recurrentlycastthe issue.Pseudosciencealsousestheideasofhiddendimensionstobaseabunchofideas. Ontheotherhand,thequestionofthenumberofdimensionsisraisedinquantum physics’slasttheorytoexplainthesub-atomicworld,andshowthatafterallweliveina ten,orso,dimensionalworld.However,evenifatendimensionalstringtheoryisvery adequatetogiveamathematicalmodeltotheworldwelivein,theonlythingstheseextra dimensionshaveincommonwiththethreespacialdimensionsweperceiveitsthename andsomemathematicalsimilarities,indeedislikecomparingchalktocheese. Inthispaperwedonotwanttospeculateabouttheexistenceofextradimensionsthatwe cannot“see”.Theproblemisabitdifferent,weareconcernedwiththeproblemthat everystudentfaceswhenlearninghigherdimensionalmathematics,theyfeelthatthereis alimitationonwhattheycanvisualize.Surprisingly,almostnothinghavebeenwritten aboutit. Thewayweperceivecolor Whenwewerekidssomeonetoldusthateverycolorcouldbeobtainedfromthemixing ofthreecolors,theprimariesones.Let’sassumewearedealingwithanadditivecolor system,forexamplebeamsoflight,theprimariescommonlyusedarered,greenandblue, alltheotheronescanbeproducedasacombinationofdifferentintensitiesofthesethree colors. Indeed,experimentalevidenceshowsthat,whilethreecolorsisenough,nosetoftwo colorscanbemixedtoproducethecompletepaletteweperceive.Sinceeverycolorwe candistinguishismadeofacertaincombinationofintensitiesofthesethreecolors,we canexpecttoarrangethefullpaletteofcolorsinathreedimensionalvectorspace.The setofprimarycolorsbeingabasisofthisspace,multiplybyascalarcorrespondingtothe applicationofacertainintensitytoacertaincolorandsummationoftwocolors correspondstothemixtureofthesecolors.Aslongaswekeepourselvesfarfromextreme valuesofluminosities,extremedimorbrightlights,itturnsoutthatourperceptionof colorisconsistentwiththisthreedimensionalvectorspacemodel.Actuallythepositive octantofathreedimensionalvectorspace,sincethereisnorealinterpretationfor multiplicationofacolorbyanegativenumber.ThisisessentiallytheRGBcolormodel. However,thisisjustthewayweperceivecolor, therealityisabitdifferent.Inrealitythereisno purebeamoflight,withjustone electromagneticfrequency.Eachbeamoflight iscompoundedofamixtureofwavelengths andcanbedescribedbyawavelengthdensity distributionfunctiondefinedoverthevisible spectrum.Thesetofrealbeamsoflightcanbe putincorrespondencewiththepositivereal continuousfunctionsdefinedoveraninterval oftherealline.Mathematically,thesetofreal Figure2.Eachbeamoflightiscompoundedofa mixtureofwavelengthsandcanbedescribedbya beamsoflightisaninfinitedimensionalvector wavelengthdensitydistributionfunctiondefinedon thevisiblespectrum. space. Whenabeamoflightreachesourretina,itstimulatesacertaingroupofcells,thesocalledconecells.Anhealthypersonhasthreetypesofconecells,eachtypeismore sensitivetocertainfrequencies.Thesepeaksofsensitivitydonotcorrespondtothe frequenciesoftheprimarycolorsweuse,howeverthefactthatweuseonlythreeprimary colorsisaconsequenceoftheexistenceofonlythreetypesofconecells.Eachbeamof lightstimulateseachtypetoacertaindegree,sooureyeseventuallyretainthreevalues fromarealbeamoflightanditisfromthosethreevaluesthatourbrainassociatesanidea ofacertaincolor. Thefactthatwe,humans,havethreetypesofconecellsandliveinathreedimensional vectorspaceseemstobeacoincidence,actuallyintheanimalworldthereissome diversityconcerningthenumberoftypesofconecells:itseemstobeanevolutivefeature ofthespecies.Thekangaroosandhoneybeesalsohavethreetypesofconecells,weare theso-calledtrichromats.Mostofnon-primatemammalsaredichromats,onlyhavetwo typesofconecells,thisisalsothecaseofsomecolorblindhumans.Adichromateonly needstwoprimarycolorstobuilditstwodimensionalchromaticspace.Monochromacyis veryrareamonghumansbutthisisthecaseofmarinemammalsandsomesealions,they onlyhaveonesensor,theirchromaticspaceisunidimensional.Ontheotherextreme therearethetetrachromats,withfourtypesofconecells,thisisthecaseofsomereptiles, birds,insects…andsomewomen[1].Thefactthatamonghumansonlywomenhavethis characteristicisrelatedtothefactthatthegeneticinformationconcerningthisconecells iscontainedintheXchromosome.Therearesomespeciesofmonkeyswherethefemales havetrichromaticvisionwhilethemalesaredichromat.Therearealsopentachromats, somebutterfliesandpigeons,andotherspecieswithmorethanfivesensors,however theybecomemoreandmorerare. Mathematically,thesetofcolorswecanperceivecanbeseenastheimage,overathree dimensionalspace,ofaprojectionappliedonthisinfinitedimensionalspaceofthereal colors.ThisisarealoccurrenceoftheallegoryofPlato’scave.Asaconsequence,inreality therearemanymore“colors”thanwecandistinguish,therearedifferentwavelength distributionsthatwehumansperceiveasthesamecolor,thisistheso-called metamerism.Insomesenseweareallcolorblind,indeedtherearedifferentrealbeams oflightthatwecannotdistinguish. Eventhoughthereissomehope,in2009agroupofscientistssucceedininjectingavirus intheeyesofadichromatemonkeyandtransformedsomeofthoseconecells[2].Of coursethisisgoodenough,howevertheresultsovercametheexpectationsofthegroup, sincethebrainofthisadultmonkeysomehowmanagedtodealwiththeadditional informationsentbythemodifiedconecells,something,theybelieve,couldonlybe possibleinearlystagesofthedevelopmentofthebrain.Thiswasconfirmedsincethe monkeywastrainedtoidentifycolorspotsonascreen,thismonkeyreallystartedto distinguishcolorsthathedidnotdifferentiatebeforetheoperation. Thisexperienceraisesaninterestingthought:whatdidthismonkeyfeelwhenhestarted toseethenewcolors?IntheFig.3.,ontheright,weseeanimagethewayitisseenbya red-greencolorblind:thecaseexhibitedbythismonkey.Ontheleft,weseetheimageas seenbyatrichromat.Suddenlythismonkeystartedtodistinguishcolorshedidnot experiencebefore.Itwouldbeimpossibletoexplaintothismonkey,beforetheoperation, howthecolorofthet’shirtwasdifferentfromthegreencoloroftheboard.Thisis probablyoneofthemostsimilarsensationswecanthinkofwhenseeingafourth dimension. Figure3.Asimulationofanimageseenwithnormalcolorvisionontheleftandred-greencolorblindnesson theright.PhotobyRodrigodeMatos. Thisexperimentgivessomehopetocolorblindpeople,thisgroupofscientistsbelieve thatthisopennewpossibilitiesinthetreatmentofcolorblindnessinhumans.Whoknows ifthesametechnologycouldalsobeusedtocreateafourthconecellinatrichromat. Perhapsinthefuturewecanaskforanextrasensorwiththesameeasinessweasktoget atattoo. Abunchofideasraisedbythecolorexample Theexampleaboveisinterestinginitsown,butitisalsousefultoclarifytheproblemwe aretryingtoaddress.Itraisessomequestionsandallowssomecuriousanalogies.So,let ustrytoanswersome: Arethereotheroptionsforafamiliarvectorspacewherewecan“see”? Inthebeginningofthispaperwesawhowdoweuseourthreedimensionalphysicalspace toseeorvisualizeageometricobject,forexampleasphere,thatlivesinathree dimensionalabstractvectorspace.Wetakeadvantageofourstrongspatialintuitionto understandthepropertiesofthisobject,whenweimaginethisobjectassomethingreal thatwecanfeel.Whatifthereisanotherintuitivevectorspacethatwecanuseto visualizegeometricobjects? Imaginesomeonewhohassuchacomplete masteryovercolorthathecanimagine geometricobjectsinhischromaticspace.For example,theFig.4.representsthesetofcolors thatformacubeinourthreedimensional chromaticspace.Wearealsorepresentingthis setofcolorsinapicturethatrepresenteach coloratapointinathreedimensionalphysical Figure4.Thesetofcolorsthatforma space.However,theideaistoconceivesomeone tridimensionalcubeintheRGBcolorsystem. whohasasodeepcontrolovercolorthathedoesnotfeeltheneedtoarrangethecolors aspointsinathreedimensionalphysicalspace.Eventhough,thispersonhasaclearidea ofthepropertiesofthevectorspacesatisfiedbythecolors(points),whichcolorsareina neighborhoodofacertaincolor,thedistancebetweencolorsinitschromaticvector space,theresultofthe‘sum’oftwocolors,multiplicationbyascalarandsoon.This personcouldimaginedirectlythesetofcolorsthatformthiscubeandhowthesecolors setoutinhischromaticspace. Inprinciplethispersoncanvisualizeanygeometricalobjectinthisspace.However,since thechromaticspaceofanormalpersonisthreedimensional,thesameblockadehappens inpassingfromthethirdtothefourthdimension.Butmaybesometetrachromatwoman wantstogiveitatry,ormaybeinthefutureoneofuscandothesamewithartificialextra conecells. Coulditbedifferentevenlivinginathreedimensionalspace? Thecolorexampleshowsusthatourbrainseemstobeformatteddependingontheway weinteractwithreality,eachbrainisadaptedtoacertainnumberoftypesofconecells. Inthesameway,aswesawintheintroduction,ourbrainwasoriginallybuiltessentiallyto dealwithourphysicalinteractionwithphysicalsurroundings,andsoitwasformatted accordingly. Weintuitivelysplitandgroupourphysicalstateinaspatialposition,plusandirectionof thebodyinthisphysicalspace,plusapositionintime,andmanyothermeasures,like thermalsensationornoiselevel(Fig.5.).Forus,thisisthenaturalsplit,eachofthese characteristicshavetheirownphysicalandmathematicalproperties.Thethreespatial coordinatesaresimilarinnatureandavectorspace.Then,directionofthebodyisno longeravectorspace,mathematicallyitisagroup,theusualSO(3),thegroupofall rotationsabouttheorigin.Timehasdifferentphysicalproperties,andsooneandsoforth. Figure5.Wesplitandgroupourphysicalstateinatridimensionalspacialposition,plusanorientationinthisphysical space,plusapositionintime,andsoon. However,itcouldbedifferent.Imaginethatwewereananimalthatonlymovesina relativelyflatsurface,sayakindoflizardinthedesert,allourlifehappensinthisplane, predators,food,mating,etcetera.Itisnotdifficulttoimaginethatmaybeinthiscaseour braincannotfindarelationbetweenthetwoplanarcoordinates,neededtoposition ourselvesinthisplane,andaltitude. Probablytheorientationortimecouldbemuchmoreimportantforusthanthealtitude, thatmightnotbeevenrecognized(Fig.6.).Inthiscase,wewouldhaveaproblemtrying toseeasphere,probablythisbeingwouldnotseebeyondtwodimensions. Figure6.However,itcouldbedifferent. Inamoreextremesituationwecanimaginethatsomebrainscanonlybeawareofone spatialdimension.Imagineforexamplelice,maybetheonlyimportantspatialdatatotake intoaccountisthedistanceneededtoreachthenexthead,anunidimensionalquantity.If thisbrainattainsareasonableunderstandingofmathematics,thenitcannoteven“see” thecircle. Whataboutseeingmorethanthreedimensions? Considerthefollowingimaginaryexperiment:whatifourbodyweremadeoftwoparts? Twopartsbutjustonebrain(Fig.7).Weareaccustomedtotheideathattoeachbody correspondsonebrain,thatinsomecasescanevenhaveaconscienceofitself.However, thisisnothingbutjustonemorecharacteristicofthespecies,likehavingtwoarms.Iam notconcernedwithwhetherthismakesensefromthebiologicalandevolutionarypointof view.Surelytherearesomeexplanationsmissing.Wouldthisbrainbeattachedtojust onepartorwoulditbesplit?Howisitlinkedtotheparts?Nonetheless,donotworry abouttechnicaldetailsandforthepresentmomentjustimagineabeingmadeofone brainandabodyseparatedintotwodisconnectedparts. Sinceeachpartofthisbodylivesinourthree dimensionalphysicalworld,itneedsthreespatial coordinatestospecifyitsposition.Eventuallythis braincouldsplitthepositionofeachpart,saythree dimensionalpositionforpartAplusthree dimensionalpositionforpartB,however,thefactis thatfromamathematicalpointofview,asix dimensionalEuclideanvectorspacewouldbethe rightspacetodefinethepositionofthisbeing.Since thisbrainwouldhaveevolvetogetherwiththisbody, itispossiblethatitwoulddealdirectlywiththesix coordinatesasawhole.Inthiscasethisbeingwould hadanintuitivesixdimensionalvectorspaceto“see” thegeometricalobjects.Probably,ifthisbeingwere theauthorofthispaperthetitlewouldbe:whyarewe Figure7.Whatifweweremadeoftwoparts? notabletoseebeyondsixdimensions? Doesthenumberofdimensionsweperceivecoincidewiththenumberofreal dimensions? Thelastexampleshowedusthatweperceiveathreedimensionalchromaticspace,even ifthe“real”chromaticspaceisbetterdescribedasaninfinitedimensionalvectorspace. Thefirstthoughtthatcomestomindisthatsomesimilarphenomenacouldhappenwith ourphysicaldimensions.Maybewesomehowonlyperceivethreedimensionsofareality thatishighdimensional,perhapseveninfinitedimensional. Well,insomesense,wereallyperceiveathreedimensionalphysicalspacewhilethereare higherdimensionalmathematicalmodelsthatbetterdescribeourreality,thisisfor examplethecaseofthegeneraltheoryofrelativity.Thefactthatthe“real”setofcolorsis modeledbyaninfinitedimensionalspaceis,likethetheoryofrelativity,justanabstract modelthatgoesfurtherinthedescriptionofourreality.Thechromaticspacegenerated bythethreeprimariescolorsorthethreephysicaldimensionsweperceiveareafirst approachbaseddirectlyonoursenses. However,thehigherdimensionalmathematicalmodelsthatdescribetherealityseemto showdifferentqualitativepropertiesamongthosedimensions.Forexample,thequantum theories,involvemodelswithmoredimensions,atanyrateallthishappensinscales whereoursensesarehelpless.Itwouldbedifficulttocomparethephysicaldimensions weperceivewiththeremainingones.Ontheotherhand,intheinfinitedimensional modelofcolorallthedimensionshaveasimilarrule. Theideaofsuddenlyseeafourthspacialdimensioncertainlygiveagreatstorylinefora filmorabook,howeverwedonotknowhowitcouldmakesense. Conclusion Finally,itseemsthat“seeing”uptothreedimensionsisanevolutionarycharacteristiclike havingtwoears,onenose,orhavingthreeconecellsandhencetrichromaticvision.The brainseemstobeformattedwithacertainviewofreality,thatcouldbemoreorless inevitableduetoourphysicalcondition. Butitcouldbedifferent.Ialwayswonderedhowdifferentwewouldbeifwecouldsee morethenthreedimensions.Wouldthemathematicswehavedevelopedbethesame? Probably,notcompletely.Forexample,ifwewerecapableofseeinginfourdimensions, theroleoccupiedbyrealanalysiswouldprobablyhavebeentakenbycomplexanalysis.It isinsomesensemuchsimplerapartfromthehandicapthatthecomplexfunctionsof complexvariablehavefourdimensionalgraphs,andsoatanyratenoteasilyhandledby someonethathasaprobleminvisualizingbeyondthreedimensions. References: [1]Jameson,K.A.,Highnote,S.M.,&Wasserman,L.M.(2001)Richercolorexperiencein observerswithmultiplephotopigmentopsingenes,PsychonomicBulletin&Review8(2). 244–261.doi:10.3758/BF03196159 [2]Mancusoetall(2009)Genetherapyforred–greencolorblindnessinadultprimates, Nature461(7265):784-787. [3]Abbott,EdwinA.(1884),Flatland:ARomanceofmanydimensions,Dover,NewYork. [4]Abbott,EdwinA.(2010),Flatland,aneditionwithnotesandcommentarybyW. LindgrenandT.Banchoff,CambridgeUniversityPress. [5]Groh,JenniferM.(2014)Makingspace-Howthebrainknowswherethingsare, BelknapPress. [6]Damásio,António(2000)TheFeelingofWhatHappens:BodyandEmotioninthe MakingofConsciousness,MarinerBooks. [7]L.W.Barsalou,PerceptualSymbolSystems,BehavioralandBrainSciences22(04),577660. [8]AlexanderSchlegel,PeterJ.Kohler,SergeyV.Fogelson,PrescottAlexander,Dedeepya Konuthula,andPeterUlricTse,Networkstructureanddynamicsofthementalworkspace, PNAS,110(40),16277-16282.
© Copyright 2026 Paperzz