30 sin

Name: ________________________________
Period: _______
Solving Trigonometric Functions in Degrees
Secondary III
Evaluate each trigonometric function at the given angle. Leave all answers as fraction. Use the unit circle to evaluate.





1. sin 360
2. tan 60
3. cos 360
4. sin 330
5. sin 135
6. tan 30

7. tan 270

11. cos 225

8. cos 30

12. tan 45



13. tan 225

9. sin 225
10. tan 210

14. cos 240

15. sin 240
Evaluate each trigonometric function at the given negative angle (need to go clockwise on the unit circle - start in
quadrant IV). Leave all answers as fractions.



16. sin 180
17. sin 30

21. tan 240

22. sin 270


18. cos 60
19. cos 225
20. tan 135

23. cos 315

24. tan 330

25. sin 360
Evaluate each trigonometric function that exceeds 360 or -360. (Hint: add or subtract 360 until you get an angle that is
less than 360).
26. sin 390

27. cos 540

31. sin 495

32. tan1470
28. tan 720

33. cos 570

29. sin 750


30. cos 450


35. cos 405

34. tan 405
Solve each trigonometric equation for the range of 0    360 .

36. sin   1
37. cos   1

38. tan   1
39. sin  
1
2
40. sin   
3
2
42. tan    3
41. cos   1
44.  2 sin   1
45. 4 cos   2
47. 3 tan   1
48. 4 sin   3
2
2
43.
3 tan   1
46. sin   1
2
2
Factor out the common factor. Then set each side equal to the constant and solve. Give answers in the range of
0    360 .
49. sin   sin   0
50. sin   cos  sin   0
2
52. 2 sin   sin   1
53. tan  tan sin   0
2
51. cos   cos   0
2